
Submitted to INFORMS Journal on Computing
manuscript (Please, provide the manuscript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Branch-and-bound for biobjective mixed-integer
linear programming

Nathan Adelgren* †

Department of Mathematics and Computer Science, Edinboro University, PA, USA. nadelgren@edinboro.edu,

Akshay Gupte∗

School of Mathematics, University of Edinburgh, Edinburgh, UK. akshay.gupte@ed.ac.uk,

We present a generic branch-and-bound algorithm for finding all the Pareto solutions of a biobjective mixed-

integer linear program. The main contributions are new algorithms for obtaining dual bounds at a node, for

checking node fathoming, presolve and duality gap measurement. Our branch-and-bound is predominantly

a decision space search method since the branching is performed on the decision variables, akin to single

objective problems, although we also sometimes split gaps and branch in the objective space. The various

algorithms are implemented using a data structure for storing Pareto sets. Computational experiments are

carried out on literature instances and also on a new set of instances that we generate using the MIPLIB

benchmark library for single objective problems. We also perform comparisons against the triangle splitting

method from literature, which is an objective space search algorithm.

Key words : Branch-and-bound; Mixed-integer programming; Multiobjective optimization; Pareto optima;

Fathoming rules

History : Submitted November 2019; Revised August 2020, February 2021

1. Introduction

We present a branch-and-bound (BB) algorithm that computes the nondominated solu-

tions of a biobjective mixed-integer linear program (BOMILP), formulated as

min
x

 f1(x) := c1
T

x

f2(x) := c2
T

x

 s.t. x∈XI :=
{
x∈Zn+×Rp

+ : Ax≤ b, li ≤ xi ≤ ui ∀i
}
. (1)

∗ This work was initiated when the authors were in the School of Mathematical and Statistical Sciences at Clemson

University, USA, and they were partially supported by ONR grant N00014-16-1-2725

† The first author used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported

by National Science Foundation grant number ACI-1548562

1

Author: Branch-and-bound for biobjective MILP
2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

The only assumption we make on the above model is a mild and standard one: that XI 6= ∅
and −∞< li <ui <+∞ for all i, in order to have a bounded feasible problem.

BOMILPs belong to the general class of multiobjective optimization [Ehr05] and are

an extension of the single objective mixed-integer linear program (MILP) that has been

studied for decades. A multiobjective problem is considered solved when the entire set

of nondominated solutions in the (f1, f2)-space has been discovered. More precisely,

decision makers would also want that at least one solution x∈XI , called a Pareto solution,

also be found corresponding to each nondominated solution. A common approach to find

these nondominated points has been to scalarize the vector objective (cf. [Ehr06; BKR17])

either by aggregating all objectives into one or by moving all but one objective to the

constraints, but doing so does not generate all the nondominated points and supplies

a very small part of the optimality information that can otherwise be supplied by the

original multiobjective problem. Indeed, it is easy to construct examples of biobjective

MILPs where many Pareto solutions are located in the interior of the convex hull of the

feasible set, a phenomenon that is impossible with optimal solutions of MILPs. The set of

nondominated solutions of a mixed-integer multiobjective problem with a bounded feasible

region is equal to the union of the set of nondominated solutions from each slice problem.

Here the union is taken over the set of integer feasible values and a slice problem is a

continuous multiobjective program obtained by fixing the integer variables to some feasible

values. In general, there could be exponentially many slice problems, each providing some

nondominated solutions. Enumeration of the nondominated set for a pure integer problem

has received considerable attention, including iterative approaches [ÖK10; LK13; TV21]

and lower and upper bounds on the number of nondominated solutions [BJV13; SVS13]

under certain assumptions. Algorithms using rational generating functions to enumerate all

the nondominated optima in polynomial-time for fixed parameters (either size of decision

space or number of objectives) were given in [DHK09; BP12]. There also have been many

efforts at finding good approximations of the Pareto set [Say00; Say03; RW05; MS13;

Gra+14; BJV15; BJV17; HRT21].

1.1. Background on existing methods

Algorithms for exact solution of multiobjective mixed-integer problems (MOMILPs) can

be broadly classified into three categories depending on the underlying techniques they use:

(i) those based on scalarization methods that transform the MOMILP into a MILP with

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 3

a modified objective or with new constraints, (ii) branch-and-bound algorithms which are

decision space search since they divide the feasible region XI by branching on variables (in a

manner similar to solving MILPs), and (iii) those based on objective/criterion space search

methods that solve MILPs or multiobjective LPs over subsets of the feasible objective

space f(XI) := {(f1(x), f2(x)) : x ∈XI}. Multiobjective pure integer problems have been

extensively studied in literature and many scalarization methods have been developed,

either specifically for biobjective problems [RSW06] or the fully general multiobjective case

[Ehr06; ER08; PGE10; MF13]. Specific classes of biobjective combinatorial problems also

have algorithms for solving them [Vis+98; RW07; SS08; BGP09; LLS14]. Earliest branch-

and-bound methods for multiobjective pure integer programs can be found in [KH82;

KY83], but since then more sophisticated algorithms have been developed [BSW12; JLS12;

Vin+13; SAD14; CD17; GNE19; PT19; De +20; For+20]. Objective space search methods

have been the focus of study in the last few years separately for pure integer programs

[KS14; BCS15a; DK15; BCS16; BCS17; TDM19] and mixed-integer programs [BCS15b;

Per+20].

Algorithms specialized for the pure integer case do not extend to the mixed-integer

case primarily because of the way they certify Pareto optimality. The Pareto set of a

mixed-integer problem is a finite union of graphs of piecewise linear functions, whereas

that for a pure integer problem is a finite set of points, and hence Pareto computation

and certification of Pareto optimality of a given subset is far more complicated in the

former case. In fact, mixed-integer problems can benefit immensely from sophisticated

data structures for storing Pareto sets, as shown recently by Adelgren et al. [ABG18].

Most of the BB algorithms in literature are designed specifically for problems where all

the integer variables are binary; see the literature reviews in [PG17; GNE19]. Correct

node fathoming rules are necessary to guarantee correctness of a BB algorithm. Belotti

et al. [BSW12; BSW16] have proposed sophisticated algorithms, based on solving LPs, for

node fathoming rules and checking Pareto optimality, and report some limited preliminary

computational results. In principle, this leads to a BB algorithm for BOMILP with general

integer variables, however, such an algorithm based on sophisticated node fathoming rules

has neither been fully implemented nor extensively tested.

The original preprint of this paper was first made available as [AG16]. Since then, several

other papers on exact methods for generating the entire nondominated set have appeared

Author: Branch-and-bound for biobjective MILP
4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

in literature [SY16; FT18; Soy18; BCS19; RT19], none of which are based on a BB method

and some of which also have the restriction that they can handle only binary variables,

not general integers. Recently, other BB algorithms have been proposed by Gadegaard

et al. [GNE19] for BOMILP and by Forget et al. [For+20] for triobjective combinatorial

problems (p = 0 and XI ⊂ {0,1}n). At the end of the next section, we present several

distinguishing features of our algorithm compared to other BB algorithms for BOMILP.

1.2. Summary of our work

Our exact algorithm for general BOMILP is based on the BB method. Although there

is certainly merit in studying and developing objective space search methods for solving

BOMILP, our choice is motivated by the recognition that there is still much work that

can be done to exploit the structure of Pareto points in biobjective problems to improve

BB techniques for BOMILP. That is indeed the main contribution of this paper — an

exhaustive computational study of ideas that specifically address the biobjective nature of

problem (1). Besides the fact that BB operates mainly in the x-space and objective space

search, as the name suggests, operates solely in the f -space, another point of distinction

between the two is that the MILPs we consider at each node of the BB tree do not have

to be solved to optimality whereas the correctness of the latter depends on MILPs being

solved to optimality. Of course, it is to be expected that solving MILPs for a longer time

will lead to better convergence results for our BB. Implementing our BB through the

callback interface of a MILP solver allows us to utilize the huge computational progress

made in different components of BB for MILP (cf. [AW13; Mor+16]).

The main components of any BB for MILP include presolve, preprocessing, primal heuris-

tics, dual bounding via cutting planes, node processing, and branching. We present new

algorithms to adapt and extend each of these components to the biobjective case. We begin

with presolve; since primal presolve techniques work solely on the feasible region, their

implementations in state-of-the-art MILP solvers can be directly used for a BOMILP. How-

ever, dual presolve utilizes information from the objective function and hence cannot be

used directly for a BOMILP. We are the first to discuss (§3.1) and implement an extension

of a variety of dual presolve techniques to the multiobjective setting. Additionally, we show

that using one of the primal presolve techniques — probing on integer variables (§3.3),

alongside branching reduces the overall computational time. Two different preprocessing

algorithms (§3.2) are proposed for generating good primal bounds. Our main body of work

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 5

is in developing new node processing techniques (§4) for BOMILP. The node processing

component takes increased importance for BOMILP since bound sets for a multiobjective

problem are much more complicated than those for a single objective problem (cf. §2.1),

meaning that generation of valid dual bounds and fathoming of a node is not as straight-

forward as that for MILPs. At each node, we describe procedures to generate valid dual

bounds while accounting for the challenges of biobjective problems and strengthen these

bounds through the use of locally valid cutting planes and the solution of single objective

MILPs. Our bounds are tighter than what has previously been proposed. To guarantee

correctness of our BB, we develop new fathoming rules and delineate their difference to

the work of [BSW12; BSW16] in §4.4. We use the depth first rule for node selection.

A branching scheme is presented in §5.1 and a method for exploiting distances between

Pareto points in the objective space is discussed in §5.3. Finally, our BB also incorporates

an early termination feature that allows it to terminate after a prescribed gap has been

attained. In the MILP case, gap computation is trivial to implement because primal and

dual bounds for MILPs are scalars. However for BOMILPs, since these bounds are sub-

sets of R2 as explained in §2.1, computation of optimality gap requires the use of error

measures that are nontrivial to compute. To aid quicker computation, we propose in §5.4

an approximated version of the Hausdorff metric and computationally compare it to the

hypervolume gap measure from literature.

An extensive computational analysis is carried out in §6 on literature instances. The

first of these experiments evaluates our three dual presolve techniques and the results show

that duality fixing is the most useful of the three for reducing CPU time. In our second

experiment, we demonstrate that preprocessing methods utilizing ε-constraint scalarization

techniques typically yield better primal bounds at the start of BB than weighted sum

scalarization techniques. Next, we evaluate the performance of various procedures, such

as probing, objective-space fathoming, a variety of cut generation techniques, and some

minor improvements to our proposed fathoming rules, that we propose in this paper for

improving the overall performance of BB. These tests indicated that probing prior to each

branching decision and objective space fathoming are very useful for decreasing the total

solution time. The local cuts that we added were not as useful. Finally, we compared the

performance of our BB with that of the triangle splitting method [BCS15b], which we

Author: Branch-and-bound for biobjective MILP
6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

recall is an objective space search method, and observe that our BB uses less CPU time

to compute the complete Pareto sets of the test instances.

We conclude this paper with a few remarks in §7. We observe that a majority of the

algorithms proposed in this paper can be extended naturally to the multiobjective case.

The main challenge in developing a fully implementable and efficient BB algorithm for

multiobjective MILP is in carrying out the bound domination step. We present some

directions for future research on this topic.

Comparing the contributions of this paper to the literature review on other BB algo-

rithms found in [GNE19, Table 1], we see that there are several distinguishing features of

our algorithm:

1. ours is the only full implementation so far that handles mixed-integer problems,

whereas all others are either pure binary or mixed-binary;

2. branching is not simply a matter of variable fixing for us and we develop a scoring

scheme for branching motivated by reliability branching in MILP;

3. we are the only BB that does extensive presolve and preprocessing at the root node;

4. we perform probing before branching, which provides a huge speedup;

5. for our lower bound, we employ all of the strategies, except hypersurface, used by

others but also go a step further. Instead of stopping by using supported points of the

BOMILP, we use dual information from the MILP to use a tighter lower bound than just

the supported points themselves – specifically, we use a line segment bound generated from

the MILP’s dual information;

6. we propose a new optimality gap measure, that is an approximate Hausdorff metric

in the objective space, to allow for early termination of our BB once a prescribed gap has

been attained.

There are also similarities with others, such as Pareto branching and use of cutting planes

in the objective space.

2. Preliminaries

The idea of optimality for single objective optimization is replaced with the idea of effi-

ciency in multiobjective problems. Consider BOMILP (1). For any two points y, y′ ∈R2, it

is said that y dominates y′ if y≤ y′, or equivalently y′ ∈ y+R2
≥0. We express this relation-

ship as y � y′. Denoting f(x) := (f1(x), f2(x)), which is a vector in R2, a point x ∈XI is

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 7

said to be efficient if there is no x′ ∈XI such that f(x′)� f(x). Efficient solutions are also

called Pareto optimal solutions. A point in R2 is called nondominated if it is the f -image

of some efficient solution in XI . Denote the sets of efficient solutions and nondominated

solutions respectively, by

XE := {x∈XI : x is efficient}, YN = f(XE) := {f(x) : x∈XE}.

The nondominated subset of any S ⊂R2 is defined as

ND(S) := {y ∈ S : @y′ ∈ S s.t. y′ � y}.

Therefore, if we let YI := {f(x) : x∈XI}, we have that YN =ND(YI).

For k = 1,2, let f ∗k := min{fk(x) : x ∈ XI} be the optimal value of objective k for the

single objective problem. Denote

Y k
I :=

{
y ∈R2 : yi = f ∗i i 6= k, yk = min

x∈XI
{fk(x) : fi(x) = f ∗i i 6= k}

}
k= 1,2.

These sets are singletons and are called the lexicographic minima of the biobjective

problem of minimising the two objectives over XI . We have Y k
I ⊂ YN . For each of XI , YI ,

and Y k
I , dropping the I subscript indicates the continuous relaxation of the set. Also, if

we add a subscript s, then it means that the set is associated with node s of the BB tree.

We use OS to denote the objective space1, i.e., the smallest rectangle in R2 that contains

Y . Given S ⊆ OS ⊆ R2, the ideal point of S, denoted Sideal, is the point y ∈ R2 with

yk = miny∈S{yk} for k= 1,2.

We assume background in branch-and-cut algorithms for single objective problems (cf.

[Mor+16]). One of the key differences and challenging aspects of BOMILP versus MILP is

the concept of primal and dual bound sets, which we explain next.

2.1. Bound sets for BOMILP

Similar to the single objective case, correct fathoming rules are essential for any BB algo-

rithm to solve BOMILP to Pareto optimality (generate the entire nondominated frontier).

Primal and dual bounds in a single objective BB are scalars, making it easy to compare

them and fathom a node by bound dominance. In biobjective BB, these bounds are subsets

of R2. Bound sets were first discussed by Ehrgott and Gandibleux [EG07]. The manner

1 Note that there is a slight deviation from literature where it is common to denote R2 as the objective space.

Author: Branch-and-bound for biobjective MILP
8 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

in which these bound sets are generated within a BB is conceptually similar to the single

objective case and we explain this next. Note that our forthcoming explanation trivially

extends to the multiobjective case.

Suppose that we are currently at node s of the BB tree. The primal bound sets are

constructed from the set of integer feasible solutions, denoted by Ts ⊂ Zn+, found so far

by the BB. For every x̃ ∈ Ts, the BOLP (biobjective linear program) obtained by fixing

xi = x̃i for i= 1, . . . , n in BOMILP (1) is called the slice problem. The Pareto curve for this

slice problem is ND(f(X(x̃))), where X(x̃) denotes the feasible set of the slice problem,

and this curve is convex (because it is minimisation) and piecewise linear. Then

Ns :=ND(∪x̃∈TsND(f(X(x̃)))) (2)

is the globally valid primal bound calculated at node s. For the dual bound set, we consider

BOLPs obtained by relaxing integrality on variables. Since Xs denotes the relaxed feasible

set at node s and Ys = f(Xs), the local dual bound is

Ls :=ND(Ys),

which is convex piecewise linear. The global dual bound Lglobals is obtained by considering

the local dual bounds for all the open nodes in the BB tree, i.e., Lglobals =ND(∪s′∈ΩsLs′)

where Ωs is the set of unexplored nodes so far, and this bound is a union of convex piecewise

linear curves.

For multiobjective BB, node s is allowed to be fathomed by bound dominance if and

only if Ls is dominated by Ns, i.e., for every y′ ∈Ls there exists a y ∈Ns such that y� y′.

Equivalently, due to translation invariance of �, we have that node s can be fathomed

by bound dominance if and only if Ls + R2
≥0 ⊂Ns + R2

≥0, where R2
≥0 is the nonnegative

orthant . For this reason, henceforth for convenience, we consider our local dual bound

to be Ls =ND(Ys) + R2
≥0 and the current primal bound to be Us :=Ns + R2

≥0. Thus the

dual bound set is a polyhedron whereas the primal bound is a finite union of polyhedra.

Although this deviates from the traditional view of bound sets, which defines them in the

previous paragraph in terms of the boundary of these polyhedra, it is clear that there is a

one-to-one correspondence between fathoming rules for the two alternate representations

of bound sets.

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 9

Figure 1 illustrates the concept of bound sets. Here, s2 can be fathomed because Ls2 ⊂Us
but we cannot say anything about fathoming node s1 since Ls1 * Us. As can be imagined

from Figure 1, fathoming is even more crucial and computationally expensive for BOMILPs

since it involves checking inclusion and intersection of polyhedral sets as opposed to com-

paring scalar values in the MILP case. Thus, the majority of the computational effort

in multiobjective BB is spent processing a node s of the BB tree, in particular checking

various fathoming rules.

Us

Ls1

Ls2

Ns

Figure 1 Primal (U) and dual (L) bound sets for BOMILP

3. Presolve and Preprocessing

Examining the structure of an instance of single objective MILP prior to solving it, and

utilizing information found during this examination to simplify the structure of the instance

often has had a significant impact on the time and effort needed to solve that instance.

It has also been shown that knowledge of feasible solutions for an instance of MILP can

have a significant impact on solution time. Hence, it seems natural as a first step to extend

the techniques used in these procedures to the biobjective case. For the discussion that

follows we distinguish the idea of simplifying an instance of BOMILP based on its problem

structure from the idea of determining a set of initial integer feasible solutions. We refer

to the first as dual presolve and the latter as preprocessing.

3.1. Dual Presolve

Presolve for MILP uses both primal and dual information [cf. Gam+15; Ach+20]. The

primal information of a BOMILP instance is no different than its single objective coun-

terpart and thus primal presolve techniques can be applied directly to it. However, due to

the presence of an additional objective, one must take care while utilizing dual information

for a biobjective problem. We extend a few single objective dual presolve techniques to

BOMILP (their extension to three or more objectives is immediate and omitted here).

Author: Branch-and-bound for biobjective MILP
10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

First, we extend duality fixing. Let arj denote the element of matrix A in row r and

column j and ckj be the jth entry of kth objective.

Proposition 1 (Duality fixing). Suppose there exists a j with ckj ≥ 0 and aij ≥ 0 for

all k, i. Then YN ⊆ f({x ∈XI : xj = lj}). Similarly, if there exists a j with ckj ≤ 0 and

aij ≤ 0 for all k, i, then YN ⊆ f({x∈XI : xj = uj}).

Proof. It is well known (cf. [Ehr05, Theorem 4.5]) that x∗ is efficient for a MOMILP if

and only if there exists ε such that x∗ is optimal to the problem:

min
x
{f1(x) : x∈XI , fk(x)≤ εk for all k 6= 1} (3)

Hence, every efficient solution to the given BOMILP can be obtained by solving (3) for

some ε. If the stated assumptions hold, then single objective duality fixing can be applied

to (3). This shows that every efficient solution to the given BOMILP can be obtained by

solving the modified version of (3) in which variable fixing has been performed. �

Next, we extend the exploitation of singleton and dominating columns [Gam+15].

Proposition 2 (Singleton Columns). For every row r in the system Ax≤ b, define

J(r) := {j : arj > 0, ckj < 0 ∀k,aij = 0 ∀i 6= r} and

Ur :=
∑
j∈J(r)

arjlj +
∑

j 6∈J(r),arj>0

arjuj +
∑

j 6∈J(r),arj<0

arjlj.

Suppose there exists some i∈ J(r) such that

cki
ari
≤ min

{
ckt
art

: t∈ J(r), t 6= i

}
.

If ari(ui− li)≤ br−Ur, then XE ⊆ {x : xi = ui}.

Proof. Let x be an efficient solution with xi <ui. If xj = lj for all j ∈ J(r) \ {i}, then a

new solution x′ constructed from x by setting x′i to ui is feasible because∑
j

arjx
′
j =
∑
j 6=i

arjx
′
j + ariui ≤Ur + ari(ui− li)≤ br.

Additionally, the value of every objective function improves because cki < 0 for all k. This

contradicts our assumption of x being efficient. Hence, there exists a j ∈ J(r) \ {i} with

xj > lj. In this case we can construct a new solution x∗ from x by decreasing the value of xj

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 11

to x′j while at the same time increasing the value of xi so that Ar•x
∗ =Ar•x. In particular,

ari(x
∗
i −xi) = arj(xj −x∗j) holds. The change of objective k can be estimated by

cki x
∗
i + ckjx

∗
j = cki xi + ckjxj + cki (x

∗
i −xi)− ckj (xj −x∗j)

= cki xi + ckjxj + cki
ars
ars

(x∗i −xi)− ckj
arj
arj

(xj −x∗j)

≤ cki xi + ckjxj + cki
ars
ars

(x∗i −xi)− cki
arj
ars

(xj −x∗j)

= cki xi + ckjxj +
cki
ars

(
ars(x

∗
i −xi)− arj(xj −x∗j)

)
= cki xi + ckjxj.

If x∗i = ui, the result of the proposition holds. Otherwise, x∗j = lj holds. Applying this

argument iteratively results in an optimal solution with x∗i = ui or x∗j = j for all j ∈

J(r) \ {s}. But as shown before, the latter case contradicts the efficiency of x∗. �

A similar procedure can be followed for arj < 0, ckj > 0 for all k, thereby fixing xs = ls.

Given two variables xi and xj, either both integer or both continuous, we say that xj

dominates xi if (i) ckj ≤ cki for all k, and (ii) arj ≤ ari for every r. 2

Proposition 3 (Dominating columns). If xj dominates xi,

YN = {f(x) : x∈XE, xi = li or xj = uj} ⊆ {f(x) : x∈XI , xi = li or xj = uj} .

Proof. The ⊆-inclusion is obvious from XE ⊆XI , and so we have to argue the equality.

We will need the following claim, which can be argued easily and is also an extension of

[Gam+15, Lemma 1] : for any x∈XI with a pair of indices (i, j) such that xj <uj, xi > li,

and xj dominates xi, the point xα constructed for arbitrary 0< α≤min{xi − li, uj − xj}

as follows,

xαi = xi−α, xαj = xj +α, xαt = xt, t 6= i, j, (4)

satisfies xα ∈XI and fk(x
α)≤ fk(x) for all k.

Since YN = f(XE) by definition, the ⊇-inclusion is obvious. Now suppose for sake of

contradiction that the ⊆-inclusion is not true. Then there exists some y ∈ YN for which

f−1(y)
⋂

({x : xi = li}∪ {x : xj = uj}) = ∅. (5)

2 This variable domination has no relationship with the idea of domination between bound sets

Author: Branch-and-bound for biobjective MILP
12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Take any x ∈ f−1(y), this point has xj < uj and xi > li. Consider the feasible solution xα,

for α = min{xi − li, uj − xj}, constructed as in equation (4). By definition of α, we have

xαj = uj or xαi = li, and the claim gives us xα ∈XI . We know that f(x) = y ∈ YN . Then,

f(xα) ≤ f(x) from the above claim implies that xα ∈ f−1(y). Hence, we have reached a

contradiction to equation (5). �

One may use the disjunction resulting from Proposition 3 to generate valid cutting planes

for XI prior to branching. Additionally, there are also ways to further utilize the structure

of dominating columns in order to strengthen variable bounds as described in Gamrath

et al. [Gam+15, Theorem 3, Corollary 1 and 2]. These methods for strengthening bounds

also extend to the multiobjective case. However, we did not find these methods to be

advantageous in our experiments. Thus, since the description of these additional strategies

is quite lengthy, we omit them from this work.

3.2. Preprocessing

As in the single objective case, the efficiency of BB can be significantly improved if good-

quality primal feasible solutions can be generated prior to the start of BB. This can be

accomplished by a heuristic method, such as [Soy15; Lei+16]. We utilize two different

preprocessing techniques, both of which solve single objective MILPs subject to a certain

time limitation — the first uses the ε-constraint method, and the second uses the weighted-

sum approach (cf. [Ehr05; BKR17] for background on scalarization methods). There is a

certain level of trade-off present between these two methods. The pros and cons of each

technique are illustrated in Figures 2a and 2b.

Both our preprocessing methods solve the following MILP for some λ∈ [0,1],

Pλ : min
x

fλ(x) s.t. x∈XI , where fλ := (1−λ)f1 +λf2. (6)

For our purposes, the parameter λ is computed so that the level curves of fλ have the

same slope as the line segment joining y1
I and y2

I . In particular, we take

λ=
(y1
I)1− (y2

I)1

(y1
I)1− (y2

I)1− (y1
I)2 + (y2

I)2

(7)

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 13

(a) ε-constraint method (b) Weighted sum method

Figure 2 Bound information when a single objective MILP terminates early. (i) YN , which we assume to be

unknown, is shown in grey, (ii) the optimal solution, which we assume is not known at termination of

the MILP solve, is depicted as a yellow star, (iii) the best known solution at termination is shown as

a blue square, and (iv) the level curve associated with the best known dual bound at termination is

shown as a dotted red line. For 2a, we assume that ε is defined so that the feasible region is restricted

to the light blue box.

3.2.1. ε-constraint method It is well known that for a BOMILP every y ∈ YN can be

obtained using the ε-constraint method. Unfortunately though, when a MILP formulated

using the ε-constraint method is not solved to optimality, there is the drawback that each

y ∈ YI discovered while processing the MILP must lie within a restricted region of OS. In

this work, we do not utilise the information associated with the best dual bound.

Algorithm 1 is our ε-constraint method for preprocessing. On line 3, we solve the MILP

Pλ from (6). On line 5 we then use the solution of this MILP to compute horizontal and

vertical step sizes, h1 and h2, using the default value of M = 60. These step sizes are then

used to sequentially increase the values of ε1 and ε2 which are used on line 8 to construct

a new MILP using the ε-constraint problem,

Pk(εk) : min
x
{f{1,2}\{k}(x) : x∈XI , fk(x)≤ εk}. (8)

This may yield new, undiscovered Pareto solutions. On lines 9 and 10 we modify the step

sizes h1 and h2. If the MILP Pk(εk) yields a new, previously undiscovered Pareto solution,

we decrease the step size. Otherwise, we increase it. This allows us the continue search-

ing for additional new solutions in locations of OS which are near previously discovered

solutions, and to cease searching in areas in which new solutions are not being generated.

Note that the amount in which the step sizes are increased or decreased depends on the

Author: Branch-and-bound for biobjective MILP
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

value of the parameter ρ. Each time we solve a MILP, we utilize its solution to update Ns
by calling Algorithm 4 which generates the nondominated portion of the local dual bound

set and is described later. This is done on line 11.

Algorithm 1 Preprocessing based on the ε-constraint method.

Input: y1I , y2I and a nonnegative value for parameter ρ.

Output: An initialized set of Pareto solutions N0 ⊆ YN .

1: Let N0 = ∅.

2: Solve the MILP Pλ from (6) with λ from (7) to obtain yλI ∈ YI .

3: Add a cutting plane to X lying on the level curve of fλ associated with the best dual solution.

4: Set h1 =
(y2I)1−(y

λ
I)1

M
, ε1 = (yλI)1 +h1, h2 =

(y1I)2−(y
λ
I)2

M
and ε2 = (yλI)2 +h2, some M � 1

5: for k ∈ {1,2} do

6: while εk > (ykI)k do

7: Solve the MILP Pk(εk) from (8) to obtain y∗ ∈ YN .

8: if N0 6� y∗ then Set hk = hk
1+ρ

.

9: else Set hk = max(5− ρ,1)hk.

10: for each x∈XI found while solving Pk(εk) do

11: Update primal bound N0 by calling Algorithm 5 at node 0 with x.

12: Set εk = εk +hk.

13: Return N0.

3.2.2. Weighted-sum method The major drawback of the weighted sum method is

that when a MILP is formulated using this method, only supported Pareto solutions can

be found, i.e., those lying on the boundary of the convex hull of YN . There are, however,

the following two benefits: (i) y ∈ YI discovered during the MILP solve are not restricted

to any particular region of OS, and (ii) the best dual bound discovered during the MILP

solve is valid for all y ∈ YI and can therefore be used to create a cutting plane in OS.

In Algorithm 2 we compute several sets of weights which we utilize in the weighted-sum

approach to generate Pareto solutions. We initialize the set of weights Λ with the weight

λ for which the level curves of fλ have the same slope as the line segment joining y1
I and

y2
I . We use σ to represent the number of weights for which MILPs will be solved in a given

iteration. We deem an iteration successful if at least a fifth of the solved MILPs reveal

previously undiscovered Pareto solutions. We use τ to count the number of unsuccessful

iterations. On line 12 we increase the number of weights that will be used in the next

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 15

Algorithm 2 Preprocessing based on the weighted-sum method.

Input: y1I , y2I and a nonnegative value for parameter ρ.

Output: An initialized set of Pareto solutions N0 ⊆ YN .

1: Let N0 = ∅.

2: Set Λ = {λ}, where λ is from (7), Λ′ = {0,1} and t= 0.

3: while t≤ ρ do

4: Set τ = 0 and σ= |Λ|.

5: for λ′ ∈Λ do

6: Remove λ′ from Λ, add it to Λ′ and sort Λ′ in increasing order.

7: Solve the MILP Pλ′ from (6) to obtain yλ
′ ∈ YI .

8: Add a cutting plane to X lying on the level curve of fλ′ associated with the best dual solution.

9: if N0 6� yλ
′

then Set τ = τ + 1.

10: for each x∈XI found while solving P (λ′) do

11: Update primal bound N0 by calling Algorithm 5 at node 0 with x.

12: for each adjacent pair (λ1, λ2)∈Λ′ do

13: Add λ1+λ2

2
to Λ.

14: if τ < σ
5

then Set t= t+ 1.

15: Return N0.

iteration by computing the next set of weights so that it contains the midpoint of each pair

of adjacent weights in the set Λ′, which is the set of previously used weights together with

0 and 1. The process then terminates when the number of unsuccessful iterations exceeds

the value of the parameter ρ. As we did with Algorithm 1, we also utilize the solution of

each MILP we solve in this procedure to update Ns.

3.3. Probing

After Preprocessing, a probing technique can be used to strengthen the bounds on each

integer variable, as stated below.

Proposition 4 (Probing on xi). Let xi be an integer variable. Fix xi = li, relax inte-

grality on other integer variables and solve the BOLP relaxation to obtain its Pareto set

Lli. If U0 �Lli then XE ⊆ {x : xi ≥ li + 1}.

Proof. Recognize that Lli dominates every y ∈ YI where y = f(x) with xi = li. The

desired result follows from U0 �Lli . �

This probing procedure can be repeated multiple times for a given integer xi and then

iterated over each additional integer variable xj. Furthermore, a similar procedure to that

Author: Branch-and-bound for biobjective MILP
16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

of Proposition 4 exists for tightening the upper bound. We point out that there are likely

many more tasks that could be performed during Presolve and/or Preprocessing that could

further impact the performance of BB. However, our goal here is not to develop extensive

procedures for these tasks, but to put together an initial implementation that highlights

some of what can be done.

4. Node processing

Processing a node consists of following basic steps:

1. Generate a valid dual bound,

2. Update the global primal bound,

3. Check a fathoming rule to determine whether or not s can be eliminated from the

search tree,

4. Optionally, if s is not fathomed, generate a tighter dual bound and repeat above step.

Figure 3 provides a visual example. Most of the fathoming rules for biobjective BB are

designed to check whether or not Us dominates (Ys)I by exploiting the transitivity of

dominance. First, a set T is generated such that T� (Ys)I . Then if Us �T, Us � (Ys)I and

s can be fathomed. Otherwise, a tighter bound on (Ys)I is needed. The first bound we use

is a set of two ideal points which we obtain by solving three single objective LPs; one for

each fk and an one with a weighted sum objective fλ in which the weights, denoted λs, are

given by the normal vector of the line segment Hs passing through y1
s and y2

s . We begin

with these points because it is straightforward to determine whether or not Us dominates

a singleton. In Figure 3a these points are labelled “LP ideal points.” Notice that they are

not dominated. Consider the intersection of (Ys)
ideal+R2

≥0 and the line with normal vector

λs passing through yλs . Recognize that this intersection, which we denote Hλ
s , is also a

valid dual bound. In Figure 3a the resulting line segment is labelled “LP ideal segment,”

but is not dominated. A tighter bound can next be found by explicitly generating the

nondominated portion of Ls. In Figure 3a this is the set indicated by the red points,

which is again not dominated. After generating ND(Ls), one cannot hope to find a tighter

bound on (Ys)I resulting from LP solutions. Instead, one can solve single objective MILPs

to generate elements of (Ys)I and use these elements to form a valid dual bound. We first

generate ideal points in the same way as before, but use single objective MILPs rather

than LPs. In Figure 3b these points are labelled “MILP ideal points.” Yet again they are

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 17

y1
s

yλs

y2
s

LP ideal
points

LP
ideal

segment

(a) LP ideal points and segment

y1
s

yλs
y2
s

MILP
ideal pts.

(y1
s)I

(yλs)I
(y2
s)I

MILP
ideal seg.

(b) MILP ideal points and segment

Figure 3 Fathoming in biobjective BB

not dominated. We can then consider the intersection of ((Ys)I)
ideal + R2

≥0 and the line

with normal vector λs passing through (yλs)I , which we denote H̃λ
s . This intersection forms

another valid dual bound. In Figure 3b the resulting line segment is labelled “MILP ideal

segment” and is dominated. Hence, s can be fathomed in this example.

4.1. Generating Local Dual Bound

We are interested in the nondominated portion of the local dual bound set Ls at node s,

which we denote by ND(Ls). Typical techniques for generating ND(Ls) include the multi-

objective simplex method and the parametric simplex algorithm (PSA) [Ehr05]. However,

the multiobjective simplex method is far more robust than is necessary for biobjective

problems. Also, we found in practice that using the PSA often resulted in many basis

changes yielding the same extreme point of Ls in OS. Since much work is done during the

PSA to determine the entering and exiting variables, we found that generating ND(Ls)

using the PSA required a significant amount of computational effort. We decided to use

an alternative method for generating ND(Ls) which relies on sensitivity analysis. We first

solve the single objective LP using objective f2 to obtain y2
s . Next we create the LP

Ps(α) := min{f1(x) +αf2(x) : x∈Xs} (9)

and then carry out the procedure outlined in Algorithm 4. This procedure in turn depends

on some sensitivity analysis which is described separately in Algorithm 3 since it is also

used later during fathoming rules.

Author: Branch-and-bound for biobjective MILP
18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Algorithm 3 Sensitivity analysis subroutine.

Input: Node s, solution x∗s to problem Ps(0), and solution y2s .

Output: x̃∈Xs

1: Use sensitivity analysis to obtain an interval [α′, α′′] such that x∗s is optimal to Ps(α) for all α∈ [α′, α′′].

2: Let α∗ be the negative reciprocal of the slope of the line through f(x∗s) and y2s .

3: Set x̃= arg min{Ps(α′′+ ε)} for sufficiently small ε∈ (0, α∗−α′′].

Algorithm 4 Generate ND(Ls).

Input: Node s.

Output: A set B containing all defining line segments of ND(Ls).
1: Set B= ∅.

2: Solve the LP min{f2(x) : x∈Xs} to obtain y2s .

3: Solve Ps(0) from (9) to obtain solution x∗s and set y= f(x∗).

4: while y 6= y2s do

5: Call Algorithm 3 and let x̃ be its output.

6: if f(x̃) 6= y then

7: Add the line segment connecting f(x̃) and y to B.

8: Update y to be f(x̃).

9: Return B.

In lines 2 and 3 of Algorithm 4 we compute the south-east and north-west most extreme

points of ND(Ls), respectively. The while loop is then used to sequentially compute adja-

cent extreme points of ND(Ls) in a west to east pattern, until the south-east most extreme

point is rediscovered. Each line segment joining a pair of adjacent extreme points ofND(Ls)

is stored and the set of all computed segments is returned at the end of the procedure.

Note that the correctness of the algorithm relies on an appropriately small choice for ε in

Algorithm 3 (in our implementation, ε is set to 10−5). As we have discussed, there are other

methods which can be used here that do not rely on ε, such as the PSA or the first phase

of the two-phase method for solving biobjective combinatorial problems [Ehr05]. We have

already discussed the difficulties we encountered with the PSA. The difficulty with the

first phase of the two-phase method is that, although it generates the extreme supported

Pareto solutions of a BOLP, it does not generate them in order from left to right. Thus,

when using a simplex-style solution method for each single objective LP, each iteration can

require a significant number of basis changes. Our method generates these extreme points

in order from left to right, and as a result, warm-starting each iteration by reusing the

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 19

(a) Example instance of

BOMILP
(b) After branching (c) Locally valid cut

Figure 4 An example showing the usefulness of locally valid cuts for BOMILP

basis information from the previous iteration reduces the overall number of required basis

changes.

4.1.1. Bound tightening In order to increase the likelihood of fathoming, we utilize

a few different strategies for tightening the bound Ls. The first strategy we use is the

generation of locally valid cutting planes. We do this in two ways: (i) we generate discjuntive

cuts based on disjunctions observed in OS when performing OS fathoming, and (ii) we

convert the BOLP relaxation associated with s to the BOMILP min{fλ(x) : x ∈ (Xs)I},
allow the MILP solver to process its root node, and add all cuts generated by this solver as

local cuts to s as local cuts. It is widely accepted that for single objective MILPs, locally

valid cutting planes are not particularly helpful for improving the performance of BB.

However, locally valid cutting planes can have a significantly greater impact on BOMILPs.

To see this, observe Figure 4. Assume that Figure 4a displays an instance of BOMILP for

which the (f1, f2)-space and the X-space are one and the same, i.e., this instance contains

only two variables y1 and y2, both integer, and f1 = y1 and f2 = y2. The constraints of this

instance yield the blue polytope, and the integer lattice is indicated by the black dots.

The red dots represent the Pareto-optimal solutions. Suppose that branching is performed

as shown in Figure 4b. Notice that all Pareto optimal solutions in the left branch can be

revealed by a single locally valid cutting plane, as shown by the red dashed line in Figure

4c. Also notice that this could never be accomplished by using globally valid cuts.

4.2. Updating Global Primal Bound

The second important task that ought to be carried out while processing node s is updating

Ns. Recall from (2) that Ns is the globally valid primal bound calculated at node s. We

Author: Branch-and-bound for biobjective MILP
20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

update Ns in two ways: (i) add each integer-feasible line segment discovered while checking

Fathoming Rule 0 (cf. Proposition 5) to Ns, and (ii) for each discovered x̂ ∈XI , generate

the nondominated subset of Y(x̂) := {y = f(x) : x ∈ X,xi = x̂i for i= 1, . . . , n} and add

each defining line segment of this set to Ns. Consider the latter of these strategies. The

preimage of Y(x̂), i.e., the set X ∩{x : xi = x̂i for i= 1, . . . , n}, can be interpreted as a leaf

node of the BB tree, which we denote s(x̂). Hence, Y(x̂) +R2
≥0 =Ls(x̂). Therefore, we can

generate the nondominated subset of Ls(x̂), i.e. ND(Ls(x̂)), and use it to update the primal

bound. This is formally stated in Algorithm 5.

Algorithm 5 Update primal bound.

Input: Node s and x∈XI .

Output: Primal bound Ns.
1: Call Algorithm 4 with node s(x) and let N be its output.

2: Set Ns =ND(Ns ∪N).

4.3. Fathoming Rules

We now formally outline the fathoming rules employed in this work. Some additional

notation will be useful. For k ∈ {1,2}, define

Pks := {yis : i 6= k}∪ {yλs }, (10)

and let

Ps := (P1
s)ideal ∪ (P2

s)ideal. (11)

Additionally, for any I ⊂ {1,2, λ}, define

DIs :=∪2
k=1

((
Pks \∪i∈I yis

)
∪∪i∈I\{k} (yis)I

)ideal
. (12)

Ps represents the sets of ideal points obtained from LP solutions, while DIs represents a

set of ideal points obtained from a mixture of LP and MILP solutions. Our five fathoming

rules are given below. Rule 0 expresses the idea of fathoming due to optimality, while

the remainder of the rules indicate situations in which s can be fathomed due to bound

dominance.

Proposition 5 (Fathoming Rules). Node s can be fathomed if any of the following

holds:

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 21

0. Ls ⊂ (Ys)I ,

1a. Us �Ps,

2a. Us �Hλ
s ,

1b. Us �DIs for some I ⊂ {1,2, λ},

2b. Us � H̃λ
s ,

3. Ls ⊆Us.

Proof. Rule 0 is due to integer feasibility of Ls. Rule 1a holds since by construction

Ps �Ls, and so Us �Ls. Rule 2a holds since by construction H̃λ
s �Ls, and so Us �Ls. For

Rule 1b, note that by construction, for any I ⊂ {1,2, λ}, DIs � (ys)I for every (ys)I ∈ (Ys)I

and thus DIs is a valid dual bound at node s. For Rule 2b, note that by construction

Hλ
s � (ys)I for every (ys)I ∈ (Ys)I and thus Hλ

s is a valid dual bound at node s. Rule 3 is

obvious. �

Algorithm 6 Fathoming Rule 0

Input: Node s and solutions y1s and y2s .

Output: 1 if node s should be fathomed, 0 otherwise.

1: Set y= y1s .

2: if y= y2s then return 1

3: else

4: while y 6= y2s do

5: Call Algorithm 3 and let x̃ be its output.

6: if f(x̃) 6= y then

7: Let S represent the line segment connecting f(x̃) and y.

8: if S 6⊂ (Ys)I then return 0

9: else Set Ns =ND(Ns ∪ S) and update y to be f(x̃).

10: return 1

Recognize from Proposition 5 that Fathoming Rules 0 and 3 each impose a condition

on Ls and therefore require knowledge of ND(Ls) in order to be employed. We note,

however, that for each of these rules it is often unnecessary to generate ND(Ls) entirely.

In particular, the generation of ND(Ls) should cease if: (i) one is checking Fathoming Rule

0 and a defining line segment of ND(Ls) is generated that is not integer feasible, or (ii)

one is checking Fathoming Rule 3 and a defining line segment of ND(Ls) is generated that

is not contained in Us. Hence, the procedures in Algorithm 4 can be modified in order to

Author: Branch-and-bound for biobjective MILP
22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Algorithm 7 Fathoming Rule 3

Input: Node s and solutions y1s and y2s .

Output: 1 if node s should be fathomed, 0 otherwise.

1: y1s is the solution to Ps(0). Let x∗ represent the preimage of y1s . Set y= y1s .

2: if y= y2s then

3: if Us � y then return 1

4: else return 0

5: else

6: while y 6= y2s do

7: Call Algorithm 3 and let x̃ be its output.

8: if f(x̃) 6= y then

9: Let S represent the line segment connecting f(x̃) and y.

10: if Us 6� S then return 0

11: else Update y to be f(x̃).

12: return 1

develop strategies for checking Fathoming Rules 0 and 3. These strategies are outlined in

Algorithms 6 and 7, respectively. They follow almost the same procedure as Algorithm 4,

except that they terminate differently. The former terminates if a line segment is computed

that is not integer feasible, and the latter terminates if a point or line segment is computed

that is not dominated by Us.

We have now built the tools necessary to present our proposed procedure for processing

a node s. We do so in Algorithm 8. Line 1 is an optional procedure in which we can

generate locally valid cutting planes to strengthen the representation of Xs if so desired.

We then compute y1
s and y2

s on line 3. We then check to see if either of these solutions are

integer feasible, and if they are, we generate the dual bound associated with the integer

solution in order to update Ns. Furthermore, if both solutions are integer feasible, we check

Fathoming Rule 0 on line 6. On line 7 we compute the value λs, the value of the weights on

the objectives so that the level curves of fλ have the same slope as the line segment joining

y1
s and y2

s . We then solve the LP associated with fλ. If the solution is integer feasible, we

again update Ns as before. On line 11 we check whether or not y1
s , y

2
s and yλs are dominated

by Us. If they are, we proceed to check Fathoming Rules 1a, 2a, and 3. Otherwise, we

solve the MILP associated with fλ and fk for each k ∈ {1,2} such that the ideal point

(Pks)ideal is not dominated by Us. On lines 23 and 24 we utilize the solutions of each MILP

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 23

to (optionally) add local cuts to Xs and update Ns. Finally, we check Fathoming Rules 1b

and 2b.

Note that we never actually compute the entire nondominated portion ND(Ls) of the

local dual bound set, which could be achieved by calling Algorithm 4. This is because such

a computation is very expensive in general and so computing this local dual bound at

each node of the BB tree will considerably slow down the entire algorithm. Recognise that

besides fathoming, the other reason for storing the local dual bound for single objective

problems is so that by taking the minimum across all these bounds for open nodes, one

can compute the % optimality gap after comparing to the primal bound. Since in our

biobjective BB we don’t compute this % gap after each node is processed, but only when

the algorithm has terminated after the given time limit, there does not appear to be a need

for computing the dual bound entirely, besides how we are using its partial information

for fathoming. We do this computation on open nodes while calculating the % gap, which

is explained later in the paper.

4.4. Comparison with another BB

We highlight some key differences regarding the node processing step between our BB and

that of Belotti et al. [BSW12; BSW16], which is the only other BB method for general

BOMILP. There are also differences in the other components of BB, but that is not of

concern here.

The two methods differ in the way fathoming rules are implemented. Firstly, we utilize

the data structure of Adelgren et al. [ABG18] to store and dynamically update the set Ns
throughout the BB process. In [BSW12; BSW16], fathoming rules are checked at a node

s of the BB tree by: (i) using Ns to generate Us by adding a set of local nadir points to

Ns, (ii) selecting the subset R := Us ∩ ((Ys)
ideal + R2

≥0), and (iii) solving auxiliary LPs to

determine whether R and Ls can be separated by a hyperplane. Node s is then fathomed

if R = ∅ or if a separating hyperplane is found. Note that these procedures amount to

comparing each element of the primal bound with the dual bound as a whole by solving

at most one LP for each element of the primal bound.

In this paper, we utilize the opposite approach to fathoming. Rather than comparing

each element of the primal bound with the dual bound as a whole, we compare each

element of the dual bound with the primal bound as a whole. Additionally, instead of

making these comparisons by solving LPs, we exploit the following guarantee of the data

Author: Branch-and-bound for biobjective MILP
24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Algorithm 8 Process node s

1: Compute valid cutting planes for (Xs)I and add them to the description of Xs.

2: for k ∈ {1,2} do

3: Solve min{fk(x) : x∈Xs} to find optimal solution x̄k and generate yks ∈ Y k
s .

4: if x̄k ∈XI then

5: Update primal bound by calling Algorithm 5 with x̄k.

6: if x̄1, x̄2 ∈XI and Algorithm 6 returns 1 then Fathom s, STOP! (Fathoming Rule 0)

7: Calculate Hs and λs using y1s and y2s .

8: Solve min{fλ(x) : x∈Xs} to find optimal solution x̄λ and generate yλs ∈ Y λ
s .

9: if x̄λ ∈XI then

10: Update primal bound by calling Algorithm 5 with x̄λ.

11: if Us � y1s , Us � y2s and Us � yλs then

12: if Us �Ps then Fathom s, STOP! (Fathoming Rule 1a)

13: else

14: Calculate H̃λ
s .

15: if Us � H̃λ
s then Fathom s, STOP! (Fathoming Rule 2a)

16: else if Algorithm 7 returns 1 then Fathom s, STOP! (Fathoming Rule 3)

17: else

18: Define the set I = ∅.

19: for k ∈ {1,2} do

20: if Us 6� (Pks)ideal then Add {1,2, λ} \ {k} to I

21: for each k ∈ I do

22: Solve the MILP min{fk(x) : x∈ (Xs)I} to find optimal solution x̂k.

23: Add a local cut to Xs lying on the level curve of fk associated with the best dual solution.

24: Update primal bound by calling Algorithm 5 with x̂k.

25: if Us �DIs then Fathom s, STOP! (Fathoming Rule 1b)

26: else if λ∈ I then

27: Calculate Hλ
s .

28: if Us �Hλ
s then Fathom s, STOP! (Fathoming Rule 2b)

structure of [ABG18]: a point or line segment inserted to the structure is added to the

structure if and only if the point or segment is not dominated by the data already stored

in the structure. Hence, we implement an extra function IsDominated(·) alongside this

data structure which returns 1 if the input is dominated by Ns and 0 otherwise. We then

implement our fathoming rules 1-3 by passing the appropriate sets (Ps,Hλ
s ,D

I
s , H̃

λ
s and

Ls) to IsDominated. If a 1 is returned for any of these sets, we fathom, otherwise we do

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 25

not. It is difficult to comment on whether solving LPs or utilizing a function call to a data

structure is more efficient for checking fathoming. However, we have found in practice that

for a particular node s of the BB tree, the primal bound Us typically contains far more

points and segments than the dual bound Ls. Thus, comparing each element of the dual

bound with the primal bound as a set seems to be a more efficient procedure than doing

it the opposite way.

5. Biobjective BB

We now discuss the extension of the remaining major aspects of BB to the biobjective

setting. In particular, we discuss the specifics of how the different components of sin-

gle objective BB — presolve/preprocessing, node processing, and branching, can each be

extended to the biobjective setting. We then briefly discuss optional additions to our basic

biobjective BB procedure. A pseudocode of our BB procedure is given in Algorithm 9 at

the end of this section.

5.1. Branching

In general, any rule for selecting a branching variable is permissible. However, it should be

noted that for BOMILP several y ∈ Y , and consequently several x∈X, may be discovered

while processing a node s. In fact, our implementation requires solving at least three

LPs at each node. Since the variables may take on different values at each solution, it is

possible that an integer variable takes a fractional value at some of these solutions and

not at others. Because of this, we use a scoring scheme for branching in which each integer

variable is given a score. Of the variables with the highest score, the one with the highest

index is selected for branching. The score of xi is increased if: (i) xi is fractional at the LP

solution associated with objective fk, k ∈ {1,2, λs}, (ii) xi changes value at a pivoting step

of Algorithm 6, or (iii) multiple single objective MILPs are solved to optimality at s and

xi takes different values for at least two of the MILP solutions.

After a branching decision has been made we utilize probing, as introduced in Propo-

sition 4, to strengthen bounds on each variable for both of the resulting subproblems.

We do this for several reasons: (i) we may find during this process that our branching

decision results in an infeasible subproblem, in which case we can discard the infeasible

subproblem, enforce that the variable bounds associated with the feasible subproblem be

satisfied at any child node of s, and choose a new branching variable; (ii) because much

Author: Branch-and-bound for biobjective MILP
26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

work in biobjective BB is dedicated to fathoming, we want to generate the strongest dual

bound possible, which probing helps us to do; (iii) since processing a node in biobjective

BB is an expensive operation, we seek to limit the number of nodes explored and probing

aids in this endeavor by reducing the number of possible future branching decisions. We

found during testing that this probing scheme at each node was extremely powerful, both

in reducing the number of nodes processed during BB as well as overall running time. See

Table 1 in Section 6 for evidence of this.

5.2. Objective space (OS) fathoming

After processing each node as in Algorithm 7, we perform an additional type of fathoming

which we refer to as objective-space fathoming. After updating Ns, we impose bounds on

f1 and f2 which “cut off” portions of OS in which we have discovered that Us � (Ys)I . In

certain cases the remaining subset of OS consists of disjoint regions. When this is the case,

we implement objective-space fathoming by branching on f1 and f2 bounds which generate

the desired disjunctions in OS. In these cases, objective-space fathoming resembles the

“Pareto branching” of Stidsen et al. [SAD14] and “objective branching” of Parragh and

Tricoire [PT19], see also Forget et al. [For+20].

5.3. Exploiting gaps in OS

Due to the noncontinuous, nonconvex nature of the Pareto set of a BOMILP, there are

occasionally large gaps between Pareto solutions in OS. If this occurs, the likelihood that

Ls ⊆Us is significantly decreased for each node. Hence, this can result in an extreme amount

of computational effort which yields no additional Pareto solutions. One way to combat

this issue is to observe the solutions obtained during Preprocessing and record locations

in OS where large gaps exist between discovered solutions. One can then split OS into a

series of subregions based on the locations of these gaps and solve single objective MILPs

(using objectives f1 and f2) within each subregion in order to remove locations containing

no Pareto solutions. Afterwards BB can be run in each subregion rather than over the

entire OS. To aid in understanding this idea, observe Figure 5. Here Pareto solutions are

shown in blue and subregions in OS are indicated by green dashed lines.

5.4. Measuring Performance

In single objective BB, one can terminate the procedure at any time and obtain a measure

of the quality of the best known solution in terms of the gap between this solution and the

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 27

(a) Gaps (b) Slitting OS (c) Reducing the subregions

Figure 5 Large gaps between solutions in OS

best known dual bound. We propose a similar scheme for biobjective BB. Let Os∗ represent

the set of open nodes after a node s∗ has been processed. After processing s∗, the global

dual bound is DBs∗ =ND(∪s∈Os∗Ls). Therefore, if BB is terminated after s∗ is processed,

the performance of BB can be quantified by measuring the distance between DBs∗ and

Us∗. One natural metric to use for measuring this distance is the Hausdorff metric:

dH(DBs∗ ,Us∗) := max

{
sup

i∈DBs∗
inf
j∈Us∗

d(i, j), sup
j∈Us∗

inf
i∈DBs∗

d(i, j)

}
.

Unfortunately the nonconvex nature of Us makes the Hausdorff metric difficult to use since

it cannot be computed using a linear program. In our implementation Us∗ is stored as

the individual line segments and singletons comprising Ns∗ using the data structure of

[ABG18]. DBs∗ is computed by generating the points and line segments comprising its

nondominated subset, which are also stored using the same data structure. Thus, rather

than explicitly computing dH(DBs∗ ,Us∗), we instead compute

Gs∗ := max{dH(DBs∗,S +R2
≥0) : S ∈Ns∗}

via pairwise comparison of the points and line segments comprising DBs∗ and Ns∗. Clearly,

Gs∗ is a upper bound on dH(DBs∗ ,Us∗). Recognize, though, that Gs∗ is an absolute measure-

ment and so it is difficult to use to compare the performance of BB on multiple instances

of BOMILP. Thus, in practice we use a percentage calculated as

Ḡs∗ := 100× |max{y2
1 − y1

1, y
1
2 − y2

2}−Gs∗ |
max{y2

1 − y1
1, y

1
2 − y2

2}
.

We refer to this number as the % duality gap. The number Ḡ0 means the duality gap at

the root node.

Author: Branch-and-bound for biobjective MILP
28 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Another method for measuring the distance between DBs∗ and Us∗ is to compute a so

called hypervolume gap. Let hv(·) denote the area of subset of R2. Then the hypervolume

gap between DBs∗ and Us∗, as proposed by Zitzler et al. [Zit+03], is

HVs∗ := 100×
hv((DBs∗ +R2

≥0)∩OS)−hv(Us∗ ∩OS)

hv((DBs∗ +R2
≥0)∩OS)

,

A similar measure is used to assess the quality of approximations to the Pareto sets of

BOMILP instances in [BCS15b].

Recognize that the Hausdorff and hypervolume gap measurements play significantly

different roles. The hypervolume gap provides a measure of the proximity of the dual bound

to the primal bound throughout the entirety of OS, while the Hausdorff gap provides a

measure of the proximity of the dual and primal bounds in the location at which they are

furthest apart. Hence, we can interpret the Hausdorff gap as a worst-case measurement and

the hypervolume gap as a sort of average-case measurement. We note that in our initial

tests we utilize both the Hausdorff and hypervolume measurements so that our results

can be compared with other works, such as [BCS15b], which use the hypervolume gap.

However, since the Hausdorff gap provides a worst-case measure and is therefore more

robust, we do not use the hypervolume gap measurement in our final set of experiments.

We also mention that recently, another domination measure has been proposed by Hale

et al. [HZZ20], but we do not consider this in our study.

Our BB algorithm

For sake of completeness, we present Algorithm 9 which gives a pseudocode of our branch-

and-bound algorithm for BOMILP.

6. Computational Analysis

We implemented Algorithm 9 for our BB scheme using the C programming language

and the ILOG CPLEX 12.6 optimization package. This implementation, along with the

instances we generated for use in Section 6.6 can be found at https://github.com/

nadelgr/BOMILP_BB. Boland et al. [BCS15b] graciously shared their code for the trian-

gle splitting (TS) algorithm, which also uses CPLEX 12.6, and so we were able to run

their code on our machines to compare TS against our BB algorithm. Recall that TS is a

search method in the objective space. In preliminary tests, we also compared with the BB

method of Belotti et al. [BSW12]. However, their implementation was incomplete and so

https://github.com/nadelgr/BOMILP_BB
https://github.com/nadelgr/BOMILP_BB

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 29

Algorithm 9 BB for BOMILP.

Input: An instance I of BOMILP.

Output: The Pareto set of instance I.

1: Set S = ∅.

2: Use primal presolve, and dual presolve from Propositions 1–3 to simplify I.

3: for k ∈ {1,2} do

4: Solve the MILP min{fk(x) : x∈XI} to obtain ykI ∈ YI .

5: Select ρ≥ 0 and call either Algorithm 1 or 2 to obtain N0.

6: Perform probing from Proposition 4 to further simplify I.

7: Add the continuous relaxation of I to S.

8: while S 6= ∅ do

9: Select s from S and run Algorithm 8.

10: if s is not fathomed then

11: Perform OS fathoming.

12: if the nondominated portion of OS consists of disjoint regions then

13: Perform Pareto branching and add the resulting subproblems to S.

14: else

15: Amongst all candidate variables for branching, select the variable with highest score.

16: Perform probing from Proposition 4 to simplify each of the subproblems for current branching.

17: if probing reveals an infeasible subproblem then

18: Remove this variable as a branching candidate and go to Line 15.

19: else

20: Branch on the selected variable, and add the subproblems to S.

21: Return Ns∗ , where s∗ is the last node for which Algorithm 8 was called.

the performance of our BB was far superior to theirs. For this reason, we do not include

the results of their BB. All testing described in Sections 6.1–6.5 was conducted using a

Dell PowerEdge R430 server running Fedora Core 27 and which had a Xeon E5-2640 CPU

and 64 GB of RAM. For tests described in Section 6.6 we utilized the Extreme Science

and Engineering Discovery Environment (XSEDE) [Tow+14] Bridges system at the Pitts-

burgh Supercomputing Center (PSC) through allocation DMS200019. Specifically, these

tests were conducted using a HPE Apollo 2000 server running CentOS Linux 7 and which

had a Intel Haswell CPU and 128 GB of RAM.

For experiments described in §6.1–§6.5 we utilized a test set consisting of the instances

examined in Belotti et al. [BSW12] and Boland et al. [BCS14; BCS15b]. The former con-

tained 30 instances with 60 variables and 60 constraints (Belotti60) and 30 instances

Author: Branch-and-bound for biobjective MILP
30 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

with 80 variables and 80 constraints (Belotti80). The latter had 5 instances for each

of the three types Boland80, Boland160, and Boland320 (we do not solve instances with

less than 60 constraints or variables due to their relative ease), and 4 instances for each

of the three types Boland16, Boland25, and Boland50.3

(a) Instance from the Belotti60 set. (b) Instance from the Boland16 set.

Figure 6 Pareto set and boundary of L0 for the two instance families.

Figure 6 depicts the Pareto set and boundary of L0 for one instance from each of the

two instance classes. Note the following structural differences displayed in the two figures

1. The relative gap between the Pareto set and boundary of L0 is greater in Figure 6a

than in Figure 6b.

2. The relative gap between connected subsets of the Pareto set is greater in Figure 6a

than in Figure 6b.

3. The overall number of solutions present in the Pareto set is greater in Figure 6b than

in Figure 6a.

We found that the above differences were typical for these instance families. This pro-

vides some insight into the differences in performance seen for these two instances families

through the rest of this section. Note, in particular, the difference in duality gaps seen

in Experiments 1, 3, and 5 as well as the difference in number of nodes processed when

utilizing OS gap splitting in Experiment 4.

Our final set of experiments are described in §6.6, where we opted to generate a more

difficult test set. For this purpose, we created biobjective variants of instances from MIPLIB

3 These are labelled this way to maintain consistency with the way other instances are labeled although the respective
total number of variables and constraints is approximately 800, 1250 and 2500.

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 31

2017 [Gle+19] that were feasible, mixed-integer, marked easy, and contained at most 1000

decision variables. For each such instance, we generated two secondary objective functions

and discarded instances for which: (i) the Pareto set was a singleton, or (ii) the second

objective was unbounded, or (iii) the MILP associated with either f1 or f2 took over 8

hours to solve.

The computational tests with our BB had a maximum solution time of 8 hours. For each

instance, we recorded the computation time in seconds, the number of nodes explored in

our BB tree, and the % duality gap computed after the root node was processed or at

termination, as applicable. We report average values of these numbers for the Belotti*

instances, which we recall are 30 of each type, since the performance of these instances

was mostly similar, and individual numbers for the other instances.

We began our tests by turning off all nonessential features of our BB procedure, and

then sequentially turning on various features to test their impact on the overall procedure.

If a particular feature of our BB procedure was deemed effective in reducing the overall

effort required to solve instances of BOMILP, this feature was left on for the remainder of

the tests, otherwise it was turned back off.

Our original implementation included a variety of features which did not prove useful

in either reducing the overall BB time or the number of explored nodes. For the sake

of space, in the sections that follow we focus only on features that proved useful. We

briefly note some of these ideas here to motivate future research into them. Most of our

fruitless features involved adding various cutting planes to the problem formulation. Note

that we are not referring to CPLEX default cut generation – this was left on and did

prove useful. Instead, we are referring to: (i) attempts to add user-generated cuts from

discovered disjunctions, and (ii) attempts to use CPLEX default cut generation at each

node and add the discovered cuts as local cuts. Other attempted features included checks

for early termination of Fathoming Rule 3 and the generation of ND(Ls). Each of these

provided inconsistent results, reducing BB time for some problems but increasing it for

others. Hence, both were abandoned in the end.

6.1. Presolve Techniques

Table 1 contains the results of our first computational experiment. For this test we utilized

Algorithm 2 with ρ set to zero. The column “Fixed” in this table refers to the number of

variables that were fixed by the presolve method.

Author: Branch-and-bound for biobjective MILP
32 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Table 1 Experiment 1 – Impact of presolve techniques

Instance
All Off Duality Fixing Singleton Columns Dominating Columns

Time Nodes Ḡ0 Time Nodes Fixed Ḡ0 Time Nodes Ḡ0 Time Nodes Fixed Ḡ0

Belotti60 (30) 4 77 53 4 77 0 53 4 77 53 4 77 0 53
Belotti80 (30) 11 96 52 11 96 0 52 11 96 52 11 96 0 52

Boland80 16 507 46 15 520 13 46 18 507 46 16 507 27 46
9 267 23 6 268 8 37 10 267 23 9 267 24 23

26 668 17 21 689 11 17 26 668 17 27 668 17 17
16 531 19 11 415 13 19 17 531 19 17 531 1 19
14 465 22 11 400 12 18 14 465 22 13 465 2 22

16 488 25 13 458 11 27 17 488 25 17 488 14 25

Boland160 430 3133 13 387 2944 20 13 444 3133 13 445 3133 85 13
564 2543 12 483 2437 20 12 549 2543 12 544 2543 76 12
241 1781 13 276 2303 17 20 233 1781 13 239 1781 129 13
782 3646 15 814 3768 20 15 763 3646 15 777 3646 82 15
302 2021 17 291 2086 25 13 291 2021 17 301 2021 107 17

464 2625 14 450 2708 20 15 456 2625 14 461 2625 96 14

Boland320 13019 10862 10 16403 17004 39 63 13009 10862 10 13355 10862 390 10
22572 15924 8 22102 17575 32 8 22931 15924 8 22306 15924 409 8
22006 14403 9 24181 21072 40 75 21820 14403 9 22153 14403 79 9
21831 16990 10 22486 18319 35 12 21837 16990 10 20380 16990 357 10
15981 13597 9 13840 12569 36 9 15277 13597 9 14204 13597 157 9

19082 14355 9 19802 17308 36 33 18975 14355 9 18480 14355 278 9

Boland16 2 32 5 1 32 1 5 2 32 5 2 32 0 5
3 49 11 2 47 1 11 2 49 11 2 49 0 11
7 125 27 5 123 1 27 7 125 27 6 125 0 27

10 183 25 8 183 1 25 10 183 25 10 183 0 25

5 97 17 4 96 1 17 5 97 17 5 97 0 17

Boland25 14 162 14 13 183 1 14 13 162 14 14 162 0 14
25 283 15 22 289 1 15 26 283 15 25 283 0 15
40 429 13 33 422 1 13 39 429 13 40 429 0 13
43 437 20 41 466 1 20 44 437 20 43 437 0 20

31 328 16 27 340 1 16 31 328 16 31 328 0 16

Boland50 395 1343 14 341 1409 1 14 397 1343 14 397 1343 0 14
754 1952 17 606 1890 1 17 766 1952 17 772 1952 0 17

1427 2593 9 1249 2437 1 9 1382 2593 9 1357 2593 0 9
1740 3386 15 615 1622 1 15 1754 3386 15 1702 3386 0 15

1079 2319 14 703 1840 1 14 1074 2319 14 1057 2319 0 14

Notice from Table 1 that the results for duality fixing show the opposite pattern for

the Boland320 instances than for all other instances. This is due to the fact that, for an

unknown reason, fixing several variables during presolve had a negative impact on pre-

processing, causing many fewer solutions to be discovered during this phase and therefore

having an overall negative impact on the rest of the BB procedure. We felt though that the

positive impact duality fixing had on the other instances sets warranted leaving this feature

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 33

on for the remainder of our tests. Also observe from Table 1 that the exploitation of neither

singleton nor dominating columns had any significant impact on the overall BB procedure.

We found that this was mainly due to the fact that there were very few occurrences of

either of these types of columns. Singleton columns did not fix any variables values, and

so there is no column “Fixed” for it in the table . We opted to turn off the exploitation of

singleton columns for the remainder of our tests, but we left on the exploitation of dom-

inating columns. Our reasoning here was that singleton columns have no impact on BB

that extends beyond presolve, while dominating columns result in disjunctions from which

we can generate global cutting planes. Hence, we left on the exploitation of dominating

columns in order to test the impact of generating these cuts in later tests.

6.2. Preprocessing

In our next test we examined the impact of the two preprocessing techniques discussed in

Section 3.1, as well as a hybrid method we derived as a combination of the two presented

procedures. In our initial implementation of this test we used each of these methods with

ρ assigned each integer value in [0,5]. Recognize from Algorithms 1 and 2 that each of

the proposed preprocessing procedures are designed so that the total number of Pareto

solutions computed should have a positive correlation with the value of ρ. We determined

that ProprocesingMethod1 performed poorly for ρ≤ 1, ProprocesingMethod2 per-

formed poorly for ρ≥ 2 and the hybrid method performed poorly in general. Hence, we do

not report results for these procedures. We also discovered that the impact of ρ on overall

solution time varied with the size of the instance solved. As a result, we also implemented

modified preprocessing procedures in which the value of ρ is automatically computed as a

function of the size of an instance. For each family of instance, the average CPU required

to complete BB after employing each of the aforementioned preprocessing strategies is

reported in Table 2. We note that in Table 2 ρ = v indicates that ρ was automatically

computed as a function of instance size.

Observe from Table 2 that although variants of Algorithm 2 performed well for smaller

instances, the same is not true for larger instances. Algorithm 1, on the other hand, per-

formed quite well on all instances. Notice, however, that values of ρ near two performed

quite well for small instances while values near five performed extremely poorly. On the

other hand, for larger instances values of ρ near five seem to outperform almost every other

procedure. Due to the consistent performance of the variant of Algorithm 1 with ρ= 2, we

opted to use this approach for the remainder of our tests.

Author: Branch-and-bound for biobjective MILP
34 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Table 2 Experiment 2 – Impact of preprocessing techniques. Solution time (sec.) to optimality

Instance
PreprocessingMethod1 PreprocessingMethod2

ρ= 2 3 4 5 v ρ= 0 1 v

Belotti60 (30) 4 4 8 8 4 4 5 5
Belotti80 (30) 11 11 18 18 11 11 12 12

Boland80 10 11 10 10 11 15 16 15
5 7 6 7 8 6 7 7

20 18 17 18 22 21 26 25
16 17 16 17 16 11 12 13
7 6 7 7 11 11 12 12

12 12 11 12 13 13 14 14

Boland160 388 299 218 219 298 401 383 393
300 265 266 263 335 487 516 506
177 144 125 125 158 282 291 287
549 552 541 557 548 816 880 862
171 185 158 158 443 302 280 290

317 289 262 264 356 458 470 467

Boland320 11036 8619 6398 6232 9561 16480 16544 16636
15099 16278 16210 16142 14963 22319 21181 21246
9433 10421 9615 9840 10675 24151 21878 21788

14379 16642 16446 16427 16253 22837 24763 24384
10303 10706 10779 10811 10602 14422 14440 14449

12050 12533 11890 11891 12411 20042 19761 19701

Boland16 1 2 2 3 1 2 3 3
2 2 3 3 2 2 3 3
5 5 6 6 5 5 7 7
8 9 10 9 8 8 10 9

4 4 5 5 4 4 6 5

Boland25 11 10 10 10 12 14 16 17
18 19 18 18 18 23 26 25
22 22 22 23 24 31 37 37
50 49 50 53 52 40 44 43

25 25 25 26 27 27 31 31

Boland50 278 293 196 198 335 342 354 356
633 546 456 464 663 583 689 678
990 1110 743 708 945 1250 1848 1852
599 2217 1325 1382 1325 625 2054 2001

625 1042 680 688 817 700 1236 1222

6.3. Probing and Pareto Branching

The next test we performed was designed to examine the utility of the variable probing

procedure used directly after preprocessing and at each node prior to branching, and the

Pareto branching that we perform when OS fathoming results in disjoint feasible regions

of OS. The results of this experiment are given in Table 3.

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 35

Table 3 Experiment 3 – Impact of Probing and Pareto branching

Instance
All Off Initial Probing Probing in Branching Pareto Branching

Time Nodes Ḡ0 Time Nodes Ḡ0 Time Nodes Time Nodes

Belotti60 (30) 4 72 48 4 74 49 3 48 4 72
Belotti80 (30) 11 98 49 11 97 49 8 62 10 94

Boland80 10 368 12 10 366 12 5 160 11 388
5 256 35 6 254 35 5 210 7 260

20 647 19 20 647 19 7 283 17 621
14 598 45 16 581 45 9 393 15 526
7 302 18 7 284 18 5 157 7 332

11 434 26 12 426 26 6 241 11 425

Boland160 393 3185 19 349 2815 19 125 1082 259 2394
309 1713 20 338 1743 20 122 625 290 1948
171 1466 5 178 1433 5 91 651 149 1551
547 2982 8 547 3016 8 201 1249 488 3595
167 1196 28 168 1154 28 78 570 153 1447

318 2108 16 316 2032 16 123 835 268 2187

Boland320 10951 10391 6 11061 10673 6 3099 3882 7120 8292
14601 12827 6 15038 12954 6 5012 5329 11358 12004
9402 7626 12 9316 7598 12 3173 3380 7571 8072

14065 12161 6 14542 12528 6 5583 5679 11685 13181
9991 9900 5 9850 9930 5 2664 3462 6555 8380

11802 10581 7 11962 10737 7 3906 4346 8858 9986

Boland16 1 29 5 1 28 5 1 28 1 47
2 54 12 2 56 12 1 43 2 63
5 128 42 5 124 42 3 104 6 163
7 165 12 7 168 12 5 129 9 199

4 94 18 4 94 18 3 76 4 118

Boland25 11 157 32 11 159 32 7 130 10 175
18 343 36 18 337 36 12 259 23 445
23 370 64 29 505 64 15 284 26 379
50 764 76 52 765 76 33 545 38 580

25 409 52 28 442 52 17 305 24 395

Boland50 278 1501 33 304 1660 33 165 1063 292 1831
614 2318 44 749 2799 44 499 1862 585 2857
948 2966 22 1101 3367 22 600 2188 704 2949
559 2083 60 2038 5349 60 1001 2583 438 2135

600 2217 40 1048 3294 40 566 1924 505 2443

Observe from Table 3 that when utilizing probing directly after preprocessing, in many

cases the total CPU time and number of nodes processed increased. Surprisingly, however,

performing the same probing procedure prior to branching at each node had an extremely

positive impact on the overall performance of BB, significantly lowering total CPU time

and the number of explored nodes. We also found that Pareto branching had an overall

Author: Branch-and-bound for biobjective MILP
36 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

positive impact on BB performance. For the remainder of our tests we opted to cease

probing directly after preprocessing, but to still employ probing during branching as well

as Pareto branching.

6.4. Exploiting OS Gaps and Comparing with Triangle Splitting

We now present the results of an experiment designed to test the performance of our BB

procedure against that of the triangle splitting (TS) method of [BCS15b]. For this exper-

iment we solved all the same instances we used in our previous tests and employed two

variants of our BB procedure, one in which we utilized the OS splitting procedure we

discussed in Section 5.3 and one in which we utilized our standard implementation. The

results of this test are given in Table 4. Our standard BB procedure outperformed the

triangle splitting method on all but one set of instances, while our OS splitting procedure

outperformed the triangle splitting method on all sets of instances except one. Also rec-

ognize that the total CPU times associated with our OS splitting procedure are always

comparable with those of our standard procedure. We point out that there were many more

substantial gaps between solutions to exploit after preprocessing for the Belotti* instances

than for the Boland* instances. This is the reason that there is a drastic reduction in total

number of nodes processed when using OS splitting on the Belotti* instances but not the

Boland* instances. We also did a parallel implementation of the OS splitting procedure

and observed some reduction in the CPU times, which suggests that parallelising this pro-

cedure can further improve the BB algorithm. There is some recent work by Pettersson

and Ozlen [PO20] in this regard.

6.5. Approximations of the Pareto Set

Boland et al. [BCS15b] measured the time it takes the Triangle Splitting method to com-

pute an approximate Pareto set having the property that the hypervolume gap between

valid primal and dual bounds implied by this approximate set is less than 2%. We repeat

this experiment for our BB procedure, though we note that the primal and dual bounds we

utilize are significantly different than those used in [BCS15b]. We measure this gap directly

after the completion of our preprocessing procedure, and then each time 25 nodes are pro-

cessed during BB. We cease the procedure if: (i) BB terminates with the true Pareto set,

or (ii) the hypervolume gap is less than 2%. In this experiment we also report Hausdorff

gap measurements, as described in Section 5.4. Additionally, for comparison we include

certain results as reported in [BCS15b].

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 37

Table 4 Experiment 4 – Impact of OS Gap Splitting and comparison with Triangle Splitting (TS)

Instance
Standard BB BB with OS Gaps TS
Time Nodes Time Nodes Time

Belotti60 (30) 3 49 4 33 9
Belotti80 (30) 7 64 8 44 20

Boland80 6 205 5 205 44
3 203 3 138 29
7 326 7 261 46
7 300 6 262 48
3 165 3 165 32

5 240 5 206 40

Boland160 79 914 85 886 320
97 734 105 749 335
67 692 60 668 267

180 1631 188 1626 677
56 691 48 573 258

96 932 97 900 371

Boland320 2048 3391 2055 3371 3800
3213 4568 3333 4743 6219
1981 3135 1957 3164 5035
3239 5429 3328 5385 5421
1755 3461 1912 3697 4293

2447 3997 2517 4072 4954

Boland16 1 39 1 39 4
2 47 1 47 5
2 94 4 128 10
5 133 5 133 13

3 78 3 87 8

Boland25 6 137 6 119 19
14 325 9 215 30
13 258 16 347 39
22 397 24 433 51

14 279 14 279 35

Boland50 158 1156 137 961 159
374 2058 306 1754 262
484 2240 371 1795 346
990 3843 977 3369 475

502 2324 448 1970 311

The results of this experiment are displayed in Table 5 from which we make several

observations. For the majority of the Boland* instances, the hypervolume gap is already less

than 2% after preprocessing, before BB even begins. This is evidence that these instances

are relatively easy. Recall Figure 6, and notice that for the Boland80 instance the boundary

of the dual bound at the root node is very close to the Pareto set. This is further evidence

Author: Branch-and-bound for biobjective MILP
38 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Table 5 Experiment 5 – Obtaining approximate Pareto sets

Standard BB TS

Instance
Preprocessing Until HVs∗ ≤ 2%
HV0 Ḡ0 Time % Time Nodes % Nodes HVs∗ Ḡs∗ % Time

Belotti60 (30) 21.7 62.4 3 100 49 98 0.2 4.9 –
Belotti80 (30) 25.7 66.8 7 100 62 98 0.2 3.3 –

Boland80 1.6 12.3 1 18 0 0 1.6 12.3 12
3.5 34.7 3 74 100 49 2.0 16.3 9
2.9 19.0 2 31 25 8 1.8 10.9 4

49.0 67.1 5 74 225 75 1.2 10.7 6
2.2 18.2 1 47 25 15 1.2 11.2 7

11.8 30.3 2 49 75 29 1.6 12.3 7.6

Boland160 2.6 18.6 16 21 75 8 1.2 8.8 2.30
1.9 20.0 8 9 0 0 1.9 20.0 3.85
1.2 4.7 4 6 0 0 1.2 4.7 1.50
0.8 7.9 10 5 0 0 0.8 7.9 0.61
9.2 28.4 20 35 150 22 1.8 8.4 2.90

3.1 15.9 12 15 45 6 1.4 10.0 2.23

Boland320 1.1 6.4 52 3 0 0 1.1 6.4 0.21
0.5 5.9 82 3 0 0 0.5 5.9 0.23
0.5 12.3 78 4 0 0 0.5 12.3 0.26
0.5 5.9 80 2 0 0 0.5 5.9 0.23
0.4 5.5 72 4 0 0 0.4 5.5 0.22

0.6 7.2 73 3 0 0 0.6 7.2 0.23

Boland16 0.6 5.3 1 68 0 0 0.6 5.3 –
1.2 11.9 0 26 0 0 1.2 11.9 –
3.1 42.3 2 74 25 27 1.0 18.6 –
2.2 12.3 2 34 25 19 1.6 11.4 –

1.7 18.0 1 50 13 11 1.1 11.8 –

Boland25 4.0 32.2 5 82 75 55 1.2 9.7 –
67.3 79.4 13 94 175 54 1.8 19.9 –
83.0 87.8 7 55 75 29 1.5 28.5 –
91.2 93.7 11 50 100 25 1.9 22.0 –

61.4 73.3 9 70 106 41 1.6 20.0 –

Boland50 2.6 33.3 15 10 25 2 1.9 28.9 –
3.8 44.3 152 41 325 16 2.0 28.5 –
1.9 21.8 6 1 0 0 1.9 21.8 –

26.6 75.1 191 19 275 7 1.7 24.0 –

8.7 43.6 91 18 156 6 1.9 25.8 –

of the ease of these instances. In contrast to this, notice from Table 5 that for the Belotti*

instances, it takes over 75% of the total BB time in order to obtain a hypervolume gap of

less than 2%. We note that Table 5 also shows that the triangle splitting method is able to

determine an approximate solution with a hypervolume gap of less than 2% in less time,

relative to the total solution time.

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 39

6.6. MIPLIB Instances

Due to the successful results we obtained using our BB procedure on instances from the

literature, we designed our second set of tests to measure the performance of our algorithm

on a more challenging set of instances. For this we utilized a set of single objective MILP

instances available from the MIPLIB 2017 library [Gle+19, p]. We chose only instances

that were feasible, mixed-integer, contained at most 1000 total decision variables, and were

marked easy. For each instance, we generated two secondary objective functions as follows:

(r) For each i∈ {1, . . . ,m+n} the coefficient c2
i is randomly generated using the uniform

distribution over the closed interval [−|maxi c
1
i | , |maxi c

1
i |].

(n) We set c2
i =−c1

i .

After generation of these instances we did some preliminary testing and discarded

instances for which: (i) the Pareto set was a singleton, or (ii) the second objective was

unbounded, or (iii) the MILP associated with either f1 or f2 took over 8 hours to solve.

In the end, 104 instances remained for final testing (2 each, originating from 52 single

objective MILP instances).

A primary reason for generating this additional set of instances is the relative ease with

which single objective MILPs were solved throughout the solution process, both during

the execution of triangle splitting and our BB, when using the previously considered test

sets. As such, in our first analysis of these new instances we set a variety of node limits

on single objective MILPs solved during our BB (other than the two specified on line 4

of Algorithm 9). By limiting the number of nodes processed during each single objective

MILP solve, we hoped to increase the speed of the overall BB procedure while still being

able to exploit useful dual bound information at each node. For initial tests, we set node

limits of 10, 102, 103, 104, and∞ and compared the overall solution time for BB on all 104

instances, with a maximum execution time of 8 hours. Surprisingly, the best performing

node limits were 104 and ∞. Hence, we opted to leave the single objective MILP node

limit off for the remainder of our analysis. We did note, however, that on some instances,

single objective MILPs took significant time to solve even when relatively few nodes were

explored in order to do so. Thus, we opted to solve each instance again, this time with

an overall time limit imposed when solving each single objective MILP. For this test we

utilized time limits of 15, 30, 45, 60, 300, 1800, and∞ seconds. In this case, the limits that

appeared to produce the best results were 30 and 300 seconds, with 300 seconds having a

Author: Branch-and-bound for biobjective MILP
40 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

slight advantage. We therefore imposed a single objective MILP time limit of 300 seconds

when conducting our final round of tests.

Tables 6 — 8 give the results of this experiment, where the two lines for each instance

correspond to the (r) and (n) methods, respectively, for generating the second objective

function. Of the 104 instances considered, 46 were solved in under 8 hours by the original

BB implementation, 44 by the OS splitting BB variant, and 64 by the triangle splitting

method. Additionally, there were 8 instances which were solved in under 8 hours by at

least one version of BB, but not by the triangle splitting method, and 23 instances solved

in under 8 hours by the triangle splitting method, but not by a BB procedure. When BB

failed to complete in 8 hours, we allowed an additional hour for the computation of Ḡs∗.

This computation was sometimes unsuccessful due to the extreme number of open nodes

present upon termination. When it was successful, it is reported in Tables 6 and 7 using

the % symbol, otherwise we display a ∗ symbol. Table 8 gives the number of nondominated

solutions stored when our BB terminated either by solving to optimality or reached its

time limit.

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 41

T
a

b
le

6
E

xp
er

im
en

t
6

–
S

o
lu

ti
o

n
ti

m
e

(s
ec

.)
o

r
d

u
a

lit
y

g
a

p
G s
∗

(%
)

fo
r

b
io

b
je

ct
iv

e
in

st
a

n
ce

s
g

en
er

a
te

d
fr

o
m

M
IP

L
IB

2
0

1
7

B
ra

n
ch

-a
n

d
-b

ou
n

d
T

ri
a
n

g
le

S
p

li
tt

in
g

B
ra

n
ch

-a
n

d
-b

o
u

n
d

T
ri

a
n

g
le

S
p

li
tt

in
g

In
st

an
ce

S
ta

n
d

ar
d

G
ap

S
p

li
tt

in
g

In
st

a
n

ce
S

ta
n
d

a
rd

G
a
p

S
p

li
tt

in
g

2
2
4
3
3

5.
53

3
.9

3
5
.3

6
n
e
o
s
-
1
4
2
5
6
9
9

∗
N

∗
21

.3
1

59
.4

3
1
3
9
.4

0
∗

∗
∗

2
3
5
8
8

60
.6

9
50

.6
0

9
1
.4

7
n
e
o
s
-
1
4
3
0
7
0
1

5
7
9
7
.0

7
2
7
2
9
2
.2

0
2
0
8
6
.5

3
24

61
6.

54
25

09
2
.1

6
7
9
0
.1

6
1
.8

7
1
.9

0
2
.6

4

a
s
s
i
g
n
1
-
5
-
8

25
59

9.
20

25
10

4
.1

2
1
8
6
7
.3

9
n
e
o
s
-
1
4
4
2
1
1
9

0
.4

0
%

0
.3

8
%

2
2
5
5
2
.6

20
35

.0
7

20
31

.2
0

1
4
1
5
.8

1
3
2
6
.4

8
3
2
8
.6

8
1
5
3
4
.1

8

b
-
b
a
l
l

0.
60

0
.3

1
0
.0

6
n
e
o
s
1
7

∗
∗

2
5
3
0
2
.7

0
0.

01
0
.0

1
0
.0

2
∗

∗
∗

b
e
a
v
m
a

41
78

.2
7

36
15

.4
5

∗
n
e
o
s
-
3
6
1
0
0
4
1
-
i
s
c
a
r

7
3
1
.4

5
1
4
2
.5

1
8
.1

4
∗

∗
∗

3
.3

7
3
.4

2
3
.9

1

b
l
e
n
d
2

52
32

.4
8

52
7
4
.6

2
∗

n
e
o
s
-
3
6
1
0
0
5
1
-
i
s
t
r
a

2
0
0
2
.6

5
8
8
0
.8

3
3
7
.8

1
∗

∗
2
8
4
0
5
.8

0
∗

N
6
.3

4

c
i
-
s
4

2.
85

%
2.

8
6
%

∗
n
e
o
s
-
3
6
1
0
1
7
3
-
i
t
a
t
a

1
22

5
1
.5

2
N

7
5
.7

4
13

51
1.

01
15

17
1
.0

0
∗

0
.7

1
%

9
.9

8
%

2
5
.9

0

d
c
m
u
l
t
i

72
5.

25
72

8
.5

4
1
7
3
.8

8
n
e
o
s
-
3
6
1
1
4
4
7
-
j
i
j
i
a

2
9
3
4
.4

9
1
3
5
4
.5

0
3
7
.6

8
∗

∗
0
.7

6
∗

1
.1

7
%

1
9
.0

7

e
x
p
-
1
-
5
0
0
-
5
-
5

∗
∗

∗
n
e
o
s
-
3
6
1
1
6
8
9
-
k
a
i
h
u

3
9
8
.3

9
N

5
3
.7

0
5.

59
5
.5

6
2
1
.3

6
∗

∗
1
8
.4

1

f
a
s
t
x
g
e
m
m
-
n
2
r
6
s
0
t
2

11
.3

7%
11

.9
4
%

1
7
8
.4

8
n
e
o
s
5

2
8
5
.4

7
2
8
6
.6

8
2
6
5
.4

6
14

19
.8

3
14

14
.0

9
0
.6

2
6
1
3
.9

4
3
0
4
6
.4

1
2
7
3
.8

5

f
l
u
g
p
l

0.
48

0
.4

4
1
.4

6
N
e
o
s
-
5
1
9
2
0
5
2
-
n
e
c
k
a
r

0
.7

9
0
.7

9
∗

0.
02

0
.0

2
0
.0

4
9
.7

2
9
.7

1
0
.0

6

g
e
n

72
.6

1
7
4
.0

1
1
5
.5

7
N
e
x
p
-
5
0
-
2
0
-
1
-
1

∗
N

1
3
1
8
.0

4
24

.5
8%

35
.3

7
%

0
.3

2
M

M
2
8
.0

8

g
r
4
x
6

0.
69

0
.5

6
1
.1

2
n
o
s
w
o
t

4
0
7
.9

7
N

2
6
1
.7

7
∗

∗
5
.2

9
2
7
2
.7

5
1
9
5
.1

2
1
7
1
.7

Author: Branch-and-bound for biobjective MILP
42 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

T
a

b
le

7
E

xp
er

im
en

t
6

–
S

o
lu

ti
o

n
ti

m
e

(s
ec

.)
o

r
d

u
a

lit
y

g
a

p
G s
∗

(%
)

fo
r

b
io

b
je

ct
iv

e
in

st
a

n
ce

s
g

en
er

a
te

d
fr

o
m

M
IP

L
IB

2
0

1
7

B
ra

n
ch

-a
n

d
-b

ou
n

d
T

ri
a
n

g
le

S
p

li
tt

in
g

B
ra

n
ch

-a
n

d
-b

o
u

n
d

T
ri

a
n

g
le

S
p

li
tt

in
g

In
st

an
ce

S
ta

n
d
ar

d
G

ap
S

p
li

tt
in

g
In

st
a
n

ce
S

ta
n

d
a
rd

G
a
p

S
p

li
tt

in
g

i
c
9
7
p
o
t
e
n
t
i
a
l

13
.0

5%
12

.1
6
%

∗
n
s
a

1
4
.4

7
%

N
∗

21
41

1.
78

21
59

7
.3

6
∗

0
.9

4
%

8
.0

6
%

∗

i
c
9
7
t
e
n
s
i
o
n

4.
52

%
4.

5
5
%

∗
o
p
t
1
2
1
7

0
.2

1
0
.2

1
0
.1

5
9.

10
9
.1

2
5
3
.1

9
0
.1

0
0
.0

9
0
.0

2

k
1
6
x
2
4
0
b

∗
∗

∗
p
r
o
d
1

3
.7

1
%

1
9
2
4
0
.0

7
9
7
8
.3

4
39

0.
86

66
4
.7

3
∗

2
0
.2

9
2
3
.3

4
2
7
.5

2

m
a
r
k
s
h
a
r
e
4
0

36
65

.9
0

11
2
.3

3
9
8
4
1
.9

0
p
r
o
d
2

3
.0

4
%

1
.9

8
%

2
5
2
1
4
.9

0
M

M
7
6
8
.8

8
2
8
3
.9

5
2
8
3
.3

6
1
8
3
.9

8

m
a
r
k
s
h
a
r
e
5
0

0.
93

%
∗

2
7
0
9
8
.7

0
q
i
u

8
6
3
.7

0
1
0
0
2
.6

8
1
8
2
6
7
.5

0
0.

27
%

0.
2
7
%

6
7
6
7
.0

1
∗

7
.8

0
%

∗

m
a
s
7
4

27
11

8.
70

20
17

0
.7

2
1
9
1
8
2
.2

0
r
5
0
x
3
6
0

∗
∗

∗
48

6.
88

48
9
.4

2
∗

M
M

∗

m
a
s
7
6

∗
5
0
%

∗
r
a
n
1
2
x
2
1

∗
4
.6

8
%

∗
∗

∗
∗

∗
∗

∗

m
i
k
2
5
0
2
0
7
5
1

∗
2.

9
0
%

∗
r
a
n
1
3
x
1
3

8
7
3
2
.9

4
8
4
2
0
.7

9
∗

∗
7.

7
9
%

2
0
.5

7
∗

∗
∗

m
i
k
2
5
0
2
0
7
5
2

∗
∗

∗
r
a
n
1
4
x
1
8
-
d
i
s
j
-
8

1
.7

0
%

1
.7

5
%

∗
∗

∗
1
4
.6

2
∗

¡
0
.0

1
%

∗

m
i
k
2
5
0
2
0
7
5
3

∗
∗

∗
r
o
u
t

1
1
9
1
.1

2
1
0
9
5
.0

0
2
7
9
5
.3

4
∗

∗
1
5
.6

0
∗

∗
∗

m
i
k
2
5
0
2
0
7
5
4

∗
1.

1
8
%

∗
s
p
1
5
0
x
3
0
0
d

∗
0
.4

8
%

∗
1.

01
%

1.
4
2
%

1
3
9
.2

8
∗

2
.9

3
%

3
9
.2

7

m
i
k
2
5
0
2
0
7
5
5

∗
∗

∗
t
i
m
t
a
b
1

1
5
.1

9
%

∗
∗

∗
6.

3
8
%

1
7
.6

9
¡

0
.0

1
%

2
.4

1
%

∗

m
i
s
c
0
7

∗
∗

3
8
1
6
.0

2
t
i
m
t
a
b
1
C
U
T
S

2
3
.5

5
%

4
8
.7

5
%

∗
4.

42
%

16
.8

9
%

6
1
4
.3

8
∗

∗
∗

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 43

Table 8 Number of primal solutions (singletons plus line segments) at termination for MIPLIB test set

Instance Sol Instance Sol Instance Sol Instance Sol

22433 3 ic97 potential 158 Neos-1425699 2415 nsa 22
46 6 148983 118

23588 10 ic97 tension 117 Neos-1430701 33 opt1217 2
234 4 2 2

Assign1-5-8 11 k16x240b 2521 Neos-1442119 33 prod1 38
2 38 2 2

B-ball 4 Markshare 4 0 126 neos17 400 prod2 54
2 2811 96 2

beavma 473 Markshare 5 0 285 neos-3610041-iscar 53 qiu 600
6235 4992 64 1948

blend2 255 mas74 20 neos-3610051-istra 52 r50x360 1760
1536 7 52 219

Ci-s4 365 mas76 230 neos-3610173-itata 141 ran12x21 3740
4 89200 142 1705

dcmulti 243 Mik 250 20 75 1 2638 neos-3611447-jijia 157 ran13x13 2586
5 32 204 2923

Exp-1-500-5-5 419 Mik 250 20 75 2 3638 neos-3611689-kaihu 78 ran14x18-disj-8 2729
4 32 204 2150

Fastxgemm-n2r6s0t2 38 Mik 250 20 75 3 2898 neos5 30 rout 2
2 32 8 32817

flugpl 87 Mik 250 20 75 4 2584 Neos-5192052-neckar 77 sp150x300d 103
4 32 5 232

gen 193 Mik 250 20 75 5 2715 Nexp-50-20-1-1 118 timtab1 324
4 32 217 148

gr4x6 40 misc07 629 noswot 7 timtab1CUTS 238
50 630 37 112

In all, the results display comparable performance between the BB approaches and the

triangle splitting method, though for instances in which there was a relative difference

in performance, it was generally large. These discrepancies in performance seem to stem

from overall structure of the Pareto set in OS. In particular, triangle splitting appears

have superior performance on instances for which either: (i) the total number of Pareto

solutions is small, or (ii) most Pareto solutions are supported, particularly if all Pareto

solutions lie along a single line segment in OS. The latter of these two properties was

observed on the second variant of the “markshare 5 0” instance, for example. Additionally,

both of these properties were observed in the Pareto sets of the second variant of instances

beginning with “mik,” for example. To aid in the visualization of this property, we include

Figure 7 which displays the Pareto set and boundary of L0 for the (n) variants of the

“markshare 5 0” and “mik 25 20 75 1” instances. On the other hand, BB appears to have

superior performance on instances for which either: (i) the total number of Pareto solu-

tions is large, or (ii) a relatively large percentage of Pareto solutions are unsupported. We

also note that occasionally numerical issues caused early termination of BB when solving

instances for which all Pareto solutions fall on a single line segment in OS. In particular,

for some such instances, the cutting plane generated on line 21 of Algorithm 8 fell along

Author: Branch-and-bound for biobjective MILP
44 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

this line segment in OS when the root node was processed. Thus, CPLEX determined that

the duality gap here was 0 and terminated BB execution prematurely. This phenomenon

was observed on the (n) variant of the “markshare 4 0,” “Nexp-50-20-1-1,” and “r50x360”

instances. This is indicated in Table 6 using the M symbol. In addition, the implementa-

tion of BB which exploits OS gaps failed due to numerical issues on a small number of

instances. This is indicated in Table 6 using the N symbol.

(a) Variant (n) of the “markshare 5 0” instance.

(b) Variant (n) of the “mik 25 20 75 1”

instance.

Figure 7 Pareto set and boundary of L0 for two instances from MIPlib 2017.

7. Concluding Remarks

In this paper, we have introduced a new BB method for solving BOMILP with general inte-

gers. For each component of single objective BB, we presented procedure(s) for extending

this component to the biobjective setting. We have also conducted numerous computa-

tional experiments. The first several experiments provide insight into the usefulness of each

of the algorithms we proposed. The final few experiments compare the performance of our

BB procedure and the triangle splitting method [BCS15b]. Our BB procedure outperforms

the triangle splitting method on instances from literature, and performs comparably on

large, challenging instances that were developed in this paper.

Most of the algorithms proposed by us have, in theory, straightforward generalizations

to the multiobjective case (MOMILPs). However, having an implementable correct BB

for MOMILPs is far from a trivial extension of this work. We point out some important

questions that need to be answered in this regard.

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 45

7.1. Extension to multiobjective MILP

Correct node fathoming is what makes a BB algorithm a correct and exact method. Fath-

oming by bound dominance is how fathoming mostly occurs in BB. For BOMILP, the

bound sets are two-dimensional polyhedra. This greatly simplifies checking bound domi-

nance for BOMILPs since given two line segments, or piecewise linear curves in general,

in R2, one can easily identify the dominated portion through pairwise comparisons. The

data structure [ABG18] stores nondomimated line segments and efficiently checks if a new

line segment is dominated by what is currently stored. This enabled the node processing

step in this paper to perform fathoming efficiently. Bound sets for MOMILP are higher-

dimensional polyhedra and hence one will require an even more sophisticated data structure

to store these sets. Since the local dual bound set at each node is a polyhedron and the

global primal bound is a finite union of polyhedra, checking dominance requires checking

containment of polyhedra, whose complexity depends on their respective representations,

and also computing the set difference between the primal and dual bound sets. The set

resulting from this set difference would be nonconvex, in general, which begs the question:

is there a straightforward way to represent this nonconvex set as a union of polyhedra

whose relative interiors are disjoint? Thus, fathoming and storing nondominated regions for

a MOMILP is even more nontrivial. Once these obstacles are overcome, the BB proposed

in this paper should extend to a implementable BB for MOMILPs.

Acknowledgments

The authors thank two anonymous referees whose meticulous reading has helped us significantly improve

the contributions of this paper.

References

[Ach+20] T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. “Presolve reductions in

mixed integer programming”. In: INFORMS Journal on Computing 32.2 (2020), pp. 473–506.

[AW13] T. Achterberg and R. Wunderling. “Mixed integer programming: Analyzing 12 years of

progress”. In: Facets of Combinatorial Optimization: Festschrift for Martin Grötschel. Ed. by

M. Jünger and G. Reinelt. Springer, 2013, pp. 449–481.

[ABG18] N. Adelgren, P. Belotti, and A. Gupte. “Effecient storage of Pareto points in biobjective mixed

integer programming”. In: INFORMS Journal on Computing 30.2 (2018), pp. 324–338.

[AG16] N. Adelgren and A. Gupte. Branch-and-bound for biobjective mixed-integer linear programming.

Preprint first available at Optimization Online: http://www.optimization-online.org/DB_

HTML/2016/10/5676.html. Oct. 2016. arXiv: 1709.03668 [math.OC].

http://www.optimization-online.org/DB_HTML/2016/10/5676.html
http://www.optimization-online.org/DB_HTML/2016/10/5676.html
https://arxiv.org/abs/1709.03668

Author: Branch-and-bound for biobjective MILP
46 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

[BJV13] C. Bazgan, F. Jamain, and D. Vanderpooten. “On the number of non-dominated points of a

multicriteria optimization problem”. In: Discrete Applied Mathematics 161.18 (2013), pp. 2841–

2850.

[BJV15] C. Bazgan, F. Jamain, and D. Vanderpooten. “Approximate Pareto sets of minimal size for

multi-objective optimization problems”. In: Operations Research Letters 43.1 (2015), pp. 1–6.

[BJV17] C. Bazgan, F. Jamain, and D. Vanderpooten. “Discrete representation of the non-dominated set

for multi-objective optimization problems using kernels”. In: European Journal of Operational

Research 260.3 (2017), pp. 814–827.

[BSW12] P. Belotti, B. Soylu, and M. M. Wiecek. A Branch-and-Bound Algorithm for Biobjective Mixed-

Integer Programs. Preprint. Dec. 2012. Optimization-Online: http://www.optimization-

online.org/DB_HTML/2013/01/3719.html.

[BSW16] P. Belotti, B. Soylu, and M. M. Wiecek. “Fathoming rules for biobjective mixed integer linear

programs: Review and extensions”. In: Discrete Optimization 22.Part B (2016), pp. 341–363.

[BGP09] J.-F. Bérubé, M. Gendreau, and J.-Y. Potvin. “An exact eps-constraint method for bi-objective

combinatorial optimization problems: Application to the Traveling Salesman Problem with Prof-

its”. In: European Journal of Operational Research 194.1 (2009), pp. 39–50.

[BP12] V. Blanco and J. Puerto. “A new complexity result on multiobjective linear integer programming

using short rational generating functions”. In: Optimization Letters 6.3 (2012), pp. 537–543.

[BCS14] N. Boland, H. Charkhgard, and M. Savelsbergh. “The Triangle Splitting Method for Biobjec-

tive Mixed Integer Programming”. In: Integer Programming and Combinatorial Optimization

(IPCO). Ed. by J. Lee and J. Vygen. Vol. 8494. Lecture Notes in Computer Science. Springer

International Publishing, 2014, pp. 162–173.

[BCS15a] N. Boland, H. Charkhgard, and M. Savelsbergh. “A criterion space search algorithm for biob-

jective integer programming: The balanced box method”. In: INFORMS Journal on Computing

27.4 (2015), pp. 735–754.

[BCS15b] N. Boland, H. Charkhgard, and M. Savelsbergh. “A criterion space search algorithm for biob-

jective mixed integer programming: The triangle splitting method”. In: INFORMS Journal on

Computing 27.4 (2015), pp. 597–618.

[BCS16] N. Boland, H. Charkhgard, and M. Savelsbergh. “The L-shape search method for triobjective

integer programming”. In: Mathematical Programming Computation 8.2 (2016), pp. 217–251.

[BCS17] N. Boland, H. Charkhgard, and M. Savelsbergh. “The Quadrant Shrinking Method: A simple

and efficient algorithm for solving tri-objective integer programs”. In: European Journal of

Operational Research 260.3 (2017), pp. 873–885.

[BCS19] N. Boland, H. Charkhgard, and M. Savelsbergh. “Preprocessing and cut generation techniques

for multi-objective binary programming”. In: European Journal of Operational Research 274.3

(2019), pp. 858–875.

[BKR17] R. S. Burachik, C. Y. Kaya, and M. Rizvi. “A new scalarization technique and new algorithms

to generate Pareto fronts”. In: SIAM Journal on Optimization 27.2 (2017), pp. 1010–1034.

http://www.optimization-online.org/DB_HTML/2013/01/3719.html
http://www.optimization-online.org/DB_HTML/2013/01/3719.html

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 47

[CD17] V. Cacchiani and C. D’Ambrosio. “A branch-and-bound based heuristic algorithm for convex

multi-objective MINLPs”. In: European Journal of Operational Research 260.3 (2017), pp. 920–

933.

[DK15] K. Dächert and K. Klamroth. “A linear bound on the number of scalarizations needed to

solve discrete tricriteria optimization problems”. In: Journal of Global Optimization 61.4 (2015),

pp. 643–676.

[DHK09] J. A. De Loera, R. Hemmecke, and M. Köppe. “Pareto optima of multicriteria integer linear

programs”. In: INFORMS Journal on Computing 21.1 (2009), pp. 39–48.

[De +20] M. De Santis, G. Eichfelder, J. Niebling, and S. Rocktäschel. “Solving Multiobjective Mixed Inte-

ger Convex Optimization Problems”. In: SIAM Journal on Optimization 30.4 (2020), pp. 3122–

3145.

[Ehr05] M. Ehrgott. Multicriteria optimization. Springer, 2005.

[Ehr06] M. Ehrgott. “A discussion of scalarization techniques for multiple objective integer program-

ming”. In: Annals of Operations Research 147.1 (2006), pp. 343–360.

[EG07] M. Ehrgott and X. Gandibleux. “Bound sets for biobjective combinatorial optimization prob-

lems”. In: Computers & Operations Research 34.9 (2007), pp. 2674–2694.

[ER08] M. Ehrgott and S. Ruzika. “Improved eps-constraint method for multiobjective programming”.

In: Journal of Optimization Theory and Applications 138.3 (2008), pp. 375–396.

[FT18] A. Fattahi and M. Turkay. “A one direction search method to find the exact nondominated

frontier of biobjective mixed-binary linear programming problems”. In: European Journal of

Operational Research 266.2 (2018), pp. 415–425.

[For+20] N. Forget, K. Klamroth, S. L. Gadegaard, A. Przybylski, and L. R. Nielsen. Branch-and-bound

and objective branching with three objectives. Preprint. Dec. 2020. Optimization-Online: http:

//www.optimization-online.org/DB_HTML/2020/12/8158.html.

[GNE19] S. L. Gadegaard, L. R. Nielsen, and M. Ehrgott. “Bi-objective Branch-and-Cut Algorithms

Based on LP Relaxation and Bound Sets”. In: INFORMS Journal on Computing 31.4 (2019),

pp. 790–804.

[Gam+15] G. Gamrath, T. Koch, A. Martin, M. Miltenberger, and D. Weninger. “Progress in presolving for

mixed integer programming”. In: Mathematical Programming Computation 7.4 (2015), pp. 367–

398.

[Gle+19] A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold, P. M.

Christophel, K. Jarck, T. Koch, J. Linderoth, M. Lübecke, H. D. Mittelmann, D. Ozyurt, T. K.

Ralphs, D. Salvagnin, and Y. Shinano. MIPLIB 2017: Data-Driven Compilation of the 6th

Mixed-Integer Programming Library. Technical Report. Optimization Online, July 2019.

[Gra+14] F. Grandoni, R. Ravi, M. Singh, and R. Zenklusen. “New approaches to multi-objective opti-

mization”. In: Mathematical Programming 146.1-2 (2014), pp. 525–554.

[HZZ20] J. Q. Hale, H. Zhu, and E. Zhou. “Domination measure: A new metric for solving multiobjective

optimization”. In: INFORMS Journal on Computing 32.3 (2020), pp. 565–581.

http://www.optimization-online.org/DB_HTML/2020/12/8158.html
http://www.optimization-online.org/DB_HTML/2020/12/8158.html

Author: Branch-and-bound for biobjective MILP
48 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

[HRT21] A. Herzel, S. Ruzika, and C. Thielen. “Approximation Methods for Multiobjective Optimization

Problems: A Survey”. In: INFORMS Journal on Computing Articles in Advance (2021). doi:

10.1287/ijoc.2020.1028.

[JLS12] N. Jozefowiez, G. Laporte, and F. Semet. “A generic branch-and-cut algorithm for multiob-

jective optimization problems: Application to the multilabel traveling salesman problem”. In:

INFORMS Journal on Computing 24.4 (2012), pp. 554–564.

[KS14] G. Kirlik and S. Sayın. “A new algorithm for generating all nondominated solutions of multi-

objective discrete optimization problems”. In: European Journal of Operational Research 232.3

(2014), pp. 479–488.

[KY83] G. Kiziltan and E. Yucaoğlu. “An algorithm for multiobjective zero-one linear programming”.

In: Management Science 29.12 (1983), pp. 1444–1453.

[KH82] D. Klein and E. Hannan. “An algorithm for the multiple objective integer linear programming

problem”. In: European Journal of Operational Research 9.4 (1982), pp. 378–385.

[LLS14] M. Leitner, I. Ljubić, and M. Sinnl. “A computational study of exact approaches for the bi-

objective prize-collecting steiner tree problem”. In: INFORMS Journal on Computing 27.1

(2014), pp. 118–134.

[Lei+16] M. Leitner, I. Ljubić, M. Sinnl, and A. Werner. “ILP heuristics and a new exact method for bi-

objective 0/1 ILPs: Application to FTTx-network design”. In: Computers & Operations Research

72 (2016), pp. 128–146.

[LK13] B. Lokman and M. Köksalan. “Finding all nondominated points of multi-objective integer pro-

grams”. In: Journal of Global Optimization 57 (2013), pp. 347–365.

[MF13] G. Mavrotas and K. Florios. “An improved version of the augmented ε-constraint method (AUG-

MECON2) for finding the exact pareto set in multi-objective integer programming problems”.

In: Applied Mathematics and Computation 219.18 (2013), pp. 9652–9669.

[MS13] S. Mittal and A. S. Schulz. “A general framework for designing approximation schemes for

combinatorial optimization problems with many objectives combined into one”. In: Operations

Research 61.2 (2013), pp. 386–397.

[Mor+16] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell. “Branch-and-bound algorithms:

A survey of recent advances in searching, branching, and pruning”. In: Discrete Optimization

19 (2016), pp. 79–102.

[ÖK10] Ö. Özpeynirci and M. Köksalan. “An exact algorithm for finding extreme supported nondomi-

nated points of multiobjective mixed integer programs”. In: Management Science 56.12 (2010),

pp. 2302–2315.

[PT19] S. N. Parragh and F. Tricoire. “Branch-and-bound for bi-objective integer programming”. In:

INFORMS Journal on Computing 31.4 (2019), pp. 805–822.

[Per+20] T. Perini, N. Boland, D. Pecin, and M. Savelsbergh. “A Criterion Space Method for Biobjective

Mixed Integer Programming: The Boxed Line Method”. In: INFORMS Journal on Computing

32.1 (2020), pp. 16–39.

https://doi.org/10.1287/ijoc.2020.1028

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 49

[PO20] W. Pettersson and M. Ozlen. “Multiobjective Integer Programming: Synergistic Parallel

Approaches”. In: INFORMS Journal on Computing 32.2 (2020), pp. 461–472.

[PG17] A. Przybylski and X. Gandibleux. “Multi-objective branch and bound”. In: European Journal

of Operational Research 260.3 (2017), pp. 856–872.

[PGE10] A. Przybylski, X. Gandibleux, and M. Ehrgott. “A two phase method for multi-objective integer

programming and its application to the assignment problem with three objectives”. In: Discrete

Optimization 7.3 (2010), pp. 149–165.

[RSW06] T. K. Ralphs, M. J. Saltzman, and M. M. Wiecek. “An improved algorithm for solving biobjec-

tive integer programs”. In: Annals of Operations Research 147.1 (2006), pp. 43–70.

[RT19] S. A. B. Rasmi and M. Türkay. “GoNDEF: an exact method to generate all non-dominated

points of multi-objective mixed-integer linear programs”. In: Optimization and Engineering 20.1

(2019), pp. 89–117.

[RW07] J. O. Royset and R. K. Wood. “Solving the bi-objective maximum-flow network-interdiction

problem”. In: INFORMS Journal on Computing 19.2 (2007), pp. 175–184.

[RW05] S. Ruzika and M. M. Wiecek. “Approximation methods in multiobjective programming”. In:

Journal of Optimization Theory and Applications 126.3 (2005), pp. 473–501.

[Say03] S. Sayin. “A procedure to find discrete representations of the efficient set with specified coverage

errors”. In: Operations Research 51.3 (2003), pp. 427–436.

[Say00] S. Sayın. “Measuring the quality of discrete representations of efficient sets in multiple objective

mathematical programming”. In: Mathematical Programming 87.3 (2000), pp. 543–560.

[SS08] F. Sourd and O. Spanjaard. “A multiobjective branch-and-bound framework: Application to the

biobjective spanning tree problem”. In: INFORMS Journal on Computing 20.3 (2008), pp. 472–

484.

[Soy15] B. Soylu. “Heuristic approaches for biobjective mixed 0–1 integer linear programming problems”.

In: European Journal of Operational Research 245.3 (2015), pp. 690–703.

[Soy18] B. Soylu. “The search-and-remove algorithm for biobjective mixed-integer linear programming

problems”. In: European Journal of Operational Research 268.1 (2018), pp. 281–299.

[SY16] B. Soylu and G. B. Yıldız. “An exact algorithm for biobjective mixed integer linear programming

problems”. In: Computers & Operations Research 72 (2016), pp. 204–213.

[SVS13] M. Stanojević, M. Vujošević, and B. Stanojević. “On the cardinality of the nondominated set

of multi-objective combinatorial optimization problems”. In: Operations Research Letters 41.2

(2013), pp. 197–200.

[SAD14] T. Stidsen, K. A. Andersen, and B. Dammann. “A branch and bound algorithm for a class of

biobjective mixed integer programs”. In: Management Science 60.4 (2014), pp. 1009–1032.

[TV21] S. Tamby and D. Vanderpooten. “Enumeration of the nondominated set of multiobjective dis-

crete optimization problems”. In: INFORMS Journal on Computing 33.1 (2021), pp. 72–85.

[Tow+14] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop,

D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr. “XSEDE: Accelerating

Scientific Discovery”. In: Computing in Science & Engineering 16.5 (2014), pp. 62–74.

Author: Branch-and-bound for biobjective MILP
50 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

[TDM19] O. Turgut, E. Dalkiran, and A. E. Murat. “An exact parallel objective space decomposition

algorithm for solving multi-objective integer programming problems”. In: Journal of Global

Optimization 75.1 (2019), pp. 35–62.

[Vin+13] T. Vincent, F. Seipp, S. Ruzika, A. Przybylski, and X. Gandibleux. “Multiple objective branch

and bound for mixed 0-1 linear programming: Corrections and improvements for the biobjective

case”. In: Computers & Operations Research 40.1 (2013), pp. 498–509.

[Vis+98] M. Visée, J. Teghem, M. Pirlot, and E. Ulungu. “Two-phases Method and Branch and Bound

Procedures to Solve the Biobjective Knapsack Problem”. In: Journal of Global Optimization 12

(2 1998), pp. 139–155.

[Zit+03] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca. “Performance

assessment of multiobjective optimizers: An analysis and review”. In: IEEE Transactions on

Evolutionary Computation 7.2 (2003), pp. 117–132.

	Introduction
	Background on existing methods
	Summary of our work

	Preliminaries
	Bound sets for BOMILP

	Presolve and Preprocessing
	Dual Presolve
	Preprocessing
	-constraint method
	Weighted-sum method

	Probing

	Node processing
	Generating Local Dual Bound
	Bound tightening

	Updating Global Primal Bound
	Fathoming Rules
	Comparison with another BB

	Biobjective BB
	Branching
	Objective space (OS) fathoming
	Exploiting gaps in OS
	Measuring Performance

	Computational Analysis
	Presolve Techniques
	Preprocessing
	Probing and Pareto Branching
	Exploiting OS Gaps and Comparing with Triangle Splitting
	Approximations of the Pareto Set
	MIPLIB Instances

	Concluding Remarks
	Extension to multiobjective MILP

