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Abstract

Crouzeix’s conjecture states that for all polynomials p and matrices
A, the inequality ‖p(A)‖ ≤ 2 ‖p‖W (A) holds, where the quantity on the
left is the 2-norm of the matrix p(A) and the norm on the right is the
maximum modulus of the polynomial p on W (A), the field of values
of A. We report on some extensive numerical experiments investigat-
ing the conjecture via nonsmooth minimization of the Crouzeix ratio
f ≡ ‖p‖W (A)/‖p(A)‖, using Chebfun to evaluate this quantity accu-
rately and efficiently and the BFGS method to search for its minimal
value, which is 0.5 if Crouzeix’s conjecture is true. Almost all of our op-
timization searches deliver final polynomial-matrix pairs that are very
close to nonsmooth stationary points of f with stationary value 0.5
(for which W (A) is a disk) or smooth stationary points of f with sta-
tionary value 1 (for which W (A) has a corner). Our observations have
led us to some additional conjectures as well as some new theorems.
We hope that these give insight into Crouzeix’s conjecture, which is
strongly supported by our results.
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1 Crouzeix’s Conjecture

Let Mn denote the space of n × n complex matrices, let Pm denote the
space of polynomials with complex coefficients and degree ≤ m, and let ‖ · ‖
denote the 2-norm. For A ∈ Mn, the field of values (or numerical range) of
A is

W (A) = {v∗Av : v ∈ C
n, ‖v‖ = 1} ⊂ C.

The Toeplitz-Hausdorff theorem states that W (A) is convex for all A ∈ Mn

[HJ91, Ch 1].

Let p ∈ Pm and let A ∈ Mn. In 2004, M. Crouzeix conjectured [Cro04]
that for all m and n,

‖p(A)‖ ≤ 2 ‖p‖W (A). (1)

The left-hand side is the 2-norm (spectral norm, maximum singular value) of
the matrix p(A), while ‖p‖W (A) on the right-hand side is maxζ∈W (A) |p(ζ)|.
By the maximum modulus theorem, ‖p‖W (A) must be attained on bdW (A),
the boundary of W (A).

In 2007, Crouzeix proved [Cro07] that

‖p(A)‖ ≤ 11.08 ‖p‖W (A) (2)

i.e., the conjecture is true if we replace 2 by 11.08. Crouzeix wrote

The estimate 11.08 is not optimal. There is no doubt that re-
finements are possible which would decrease this bound. We are
convinced that our estimate is very pessimistic, but to improve
it drastically (recall that our conjecture is that 11.08 can be re-
placed by 2), it is clear that we have to find a completely different
method.

The example

p(ζ) = ζ − λ, A =

[

λ α
0 λ

]

,

where α, λ ∈ C, α 6= 0, shows that 11.08 cannot be replaced by a smaller

number than 2. In this case, W (A) is the disk of radius |α|/2 centered at λ
so ‖p‖W (A) = |α|/2, and ‖p(A)‖ = |α|.
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As the degree of p is unbounded in Crouzeix’s conjecture (1) and theorem
(2), they can be extended from polynomials to functions analytic in the
interior of W (A) and continuous on its boundary. This is because W (A)
is a compact subset of the complex plane such that C\W (A) is connected,
and by Mergelyan’s theorem [Mer53, Mer54] any function analytic on the
interior of such a set and continuous on its boundary can be uniformly
approximated by polynomials. The conjecture and theorem can also be
extended from matrix space to infinite-dimensional Hilbert space, where the
only difference is that W (A) may not be closed, so ‖p‖W (A) is defined as
supζ∈W (A) |p(ζ)|. Crouzeix’s conjecture and theorem might seem somewhat
esoteric, but in our view they are quite fundamental with remarkably broad
impact: the norm of an analytic function of a matrix A is bounded by a
modest constant times its norm on the field of values of A. Applications of
the conjecture include estimating the transient behavior of ‖etA‖ [GCL16]
and describing the convergence rate of GMRES [CG15].

The conjecture is known to hold for certain restricted classes of polyno-
mials p ∈ Pm or matrices A ∈ C

n×n. Let D denote the open unit disk, and
let D denote its closure.

• p(ζ) = ζm (from the power inequality [Ber65, Pea66], which states that
the numerical radius r(Am) is less than or equal to [r(A)]m, and since
‖Am‖ ≤ 2r(Am), it follows that ‖Am‖ ≤ 2[r(A)]m = 2maxζ∈W (A) |ζm|)

• W (A) is a disk (Badea [Cro04, p.462], based on von Neumann’s in-
equality [vN51], which states that if B is a contraction, i.e., ‖B‖ ≤ 1,
then ‖p(B)‖ ≤ supζ∈D |p(ζ)|, and work of Okubo and Ando [OA75],
which shows that if r(A) ≤ 1, then A is similar to a contraction B via a
similarity transformation with condition number at most 2, and hence
‖p(A)‖ ≤ 2‖p(B)‖, giving the result when W (A) = D; the extension
to any disk follows by scaling and translating A)

• n = 2 (Crouzeix [Cro04])

• the minimum polynomial of A has degree 2 (combining the previous
result with [TW99])

• n = 3 and A3 = 0 (Crouzeix [Cro13])

• A is an upper Jordan block with a perturbation in the bottom left
corner (Greenbaum and Choi [GC12]) or any diagonal scaling of such
A (Choi [Cho13])
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• A is diagonalizable with an eigenvector matrix having condition num-
ber less than or equal to 2 (easy)

• AA∗ = A∗A (then the constant 2 can be improved to 1).

2 The Boundary of the Field of Values

It is well known from Kippenhahn [Kip51] and Johnson [Joh78] that bdW (A),
the boundary of W (A), can be characterized as

bd W (A) = {zθ = v∗θAvθ : θ ∈ [0, 2π)} (3)

where vθ is a normalized eigenvector corresponding to the largest eigenvalue
of the Hermitian matrix

Hθ =
1

2

(

eiθA+ e−iθA∗
)

.

The proof uses a supporting hyperplane argument (for a succinct version,
see [GLO16]).

As an example, let i denote the imaginary unit and let

J =

[

0 1
0 0

]

, B =

[

1 2
−3 4

]

, D =

[

5 + i 0
0 5− i

]

, A = diag(J,B,D).

The fields of values of J , B and D are, respectively, the disk of radius 1/2
centered at 0, an elliptical disk with major axis joining 2.5 ± 2.5i, and the
line segment joining 5± i, and the field of values of A is the convex hull of
these three sets. Figure 1 plots the points zθ ∈ bd W (A) (shown as small
circles) for some values of θ in [0, 2π]. The extreme points of W (A) (those
that cannot be expressed as a convex combination of two other points in the
set) consist of five disjoint separated connected sets, two of which are the
eigenvalues 5 ± i. The boundary of W (A) also includes five line segments
joining these sets, because the largest eigenvalue of Hθ has multiplicity two
at five critical values of θ, and hence the corresponding eigenvector vθ can
be taken as any normalized vector in a two-dimensional subspace, resulting
in multiple values for zθ.

A point z ∈ bd W (A) is called a vertex (or a corner point, or a singular
point) if there is more than one supporting hyperplane (supporting line) for
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Figure 1: For A = diag(J,B,D), the extreme points of W (A) lie in the
union of five connected sets, including the two eigenvalues 5± i.

W (A) passing through z. It is known [Kip51, Theorem 13] that vertices
of W (A) are always eigenvalues of A, such as 5 ± i in Figure 1. Clearly,
bd W (A) is nonsmooth at a vertex. Although the points in the interior of
line segments of bd W (A) cannot easily be parametrized by zθ, due to its
non-unique values, there is a convenient parametrization for these points
which is based on computing the skew-Hermitian part of eiθA as well as its
Hermitian part Hθ. Although this is not difficult to derive, it does not seem
to be well known; the only reference we know is an unpublished paper by
Cowen and Harel [CH95].

3 The Crouzeix Ratio and its Gradient

Let us identify p ∈ Pm with its coefficient vector c = [c0, c1, . . . , cm]T ∈
C
m+1, and define the function q : Cm+1 × C → C by

q(c, ζ) =

m
∑

j=0

cjζ
j.
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We define the Crouzeix ratio as

f(c,A) =
τ(c,A)

β(c,A)
(4)

where
τ(c,A) = max

{

|q(c, z)| : z ∈ W (A)
}

,

and
β(c,A) = ‖p(A)‖ = σmax

(

q(c,A)
)

,

the largest singular value of
∑m

j=0 cjA
j . Thus f maps the Euclidean space

C
m+1 ×Mn, with real inner product

〈(c,A), (d,B)〉 = Re
(

c∗d+ tr(A∗B)
)

, (5)

to R. Here ∗ denotes complex conjugate transpose. The notations τ and β
were chosen to indicate the “top” and “bottom” components of the ratio.
The conjecture (1) states that f(c,A) is bounded below by 0.5 independently
of the polynomial degree m and the matrix order n.

The Crouzeix ratio f is not convex, and it is not defined if the denomi-
nator is zero, but it is locally Lipschitz on the set of all pairs (c,A) for which
q(c,A) 6= 0. It is semialgebraic (its graph is a finite union of sets, each of
which is defined by a finite system of polynomial inequalities). It is a non-
smooth function, meaning that it is not differentiable at some points, which
necessarily form a set of measure zero both because f is locally Lipschitz
and because it is semialgebraic.

There are three different potential sources of nonsmoothness in the Crouz-
eix ratio f . The first occurs when the numerator τ(c,A) is attained at more
than one point z ∈ bdW (A). The second possibility is that although τ(c,A)
is attained only at a single point z ∈ bd W (A), the equation z = v∗Av in
(3) holds for two or more linearly independent unit vectors v. The third
possibility is that the maximum singular value of q(c,A), which defines the
denominator of the Crouzeix ratio, has multiplicity two or more.

Theorem 1 Suppose that τ(c,A) is attained at a unique point z ∈ bdW (A),
that z = v∗Av holds only for one unit vector v up to multiplication by a

unimodular scalar, and that the maximum singular value of q(c,A) is sim-

ple, with corresponding left and right singular vectors u and w satisfying

q(c,A)w = β(c,A)u and u∗q(c,A) = β(c,A)w∗, so that none of the three
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nonsmooth scenarios described above occur. Then the Crouzeix ratio f is

differentiable at (c,A), and its gradient, w.r.t. the inner product (5), is

∇f(c,A) =
β(c,A)∇τ(c,A) − τ(c,A)∇β(c,A)

β(c,A)2
(6)

where ∇τ(c,A) = [∇cτ(c,A);∇Aτ(c,A)], ∇β(c,A) = [∇cβ(c,A);∇Aβ(c,A)],
with

∇cτ(c,A) =
q(c, z)

|q(c, z)| [1, z̄, . . . , z̄
m]T ,

∇Aτ(c,A) =
q(c, z)

|q(c, z)|

m
∑

j=1

jc̄j z̄
j−1vv∗,

∇cβ(c,A) = [w∗u,w∗A∗u, . . . , w∗(A∗)mu]T ,

∇Aβ(c,A) =

m
∑

j=1

j−1
∑

ℓ=0

c̄j(A
∗)ℓuw∗(A∗)j−ℓ−1.

Proof. This formula is a special case of Theorem 3 in [GLO16], our com-
panion paper with A.S. Lewis, which gives a formula for ∂f(c,A), the Clarke
subdifferential1 [Cla83] of f at (c,A), that applies in both the first and sec-
ond nonsmooth scenarios discussed above,2 assuming only that the third
does not occur. Under the stronger assumptions made here, ∂f(c,A) con-
sists of only a single point, implying [BL00, Theorem 6.2.4] that f is differ-
entiable at (c,A), and that its gradient is this point, whose formula is given
above.3 �

1The Clarke subdifferential ∂f(c,A) is conv{lim(c(k),A(k))→(c,A) ∇f(c(k), A(k))}, where

conv denotes convex hull, and the limit is taken over all sequences ((c(k), A(k))) converging
to (c,A) on which f is differentiable. As a simple example, the subdifferential of the
absolute value function at 0 is the interval [−1, 1], since its gradient is −1 on the negative
numbers and 1 on the positive numbers.

2In the language of [GLO16], the first case occurs when Z(c, A) contains multiple
points, and the second case occurs when Z(c, A) is a singleton but Ω(c,A) consists of
points (ω, v) where there are at least two linearly independent possible choices for v.

3Theorem 3 of [GLO16] assumes that the matrix has order greater than one and that the
polynomial is not constant, but if n = 1, then W (A) consists of a single point, f(c, A) = 1
for all (c,A), and it is straightforward to verify that (6) holds with ∇f(c, A) = 0, while
if n > 1 and c = [c0, 0, . . . , 0], representing the constant polynomial q(c, ζ) = c0, then the
assumptions of Theorem 1 do not hold, since if A is not a multiple of the identity matrix
the first assumption fails, and if A is a multiple of the identity, the third assumption fails.
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4 Smooth Stationary Points of the Crouzeix Ratio

In our optimization experiments, we frequently encounter pairs (c,A) of the
following form.

Definition 1 The matrix A has an outside scalar block if A = diag(λ,B),
λ ∈ C, λ 6∈ W (B). Furthermore, the pair (c,A) has a dominant outside

scalar block if it also holds that

|q(c, λ)| > |q(c, ν)| for all ν ∈ W (A), ν 6= λ,

and

|q(c, λ)| > ‖q(c,B)‖.

If A has an outside scalar block then W (A) = conv(λ,W (B)) with bd W (A)
consisting only of λ, part of bd W (B) and two line segments connecting λ
to W (B), as illustrated by the examples reported in Figure 4 below. Hence,
W (A) has a vertex at λ.

Theorem 2 If (c,A) has a dominant outside scalar block then the Crouzeix

ratio f is differentiable at (c,A), its value f(c,A) = 1 and its gradient

∇f(c,A) = 0.

Proof. It is immediate from the assumption that the maximum in the
definition of τ(c,A) is attained only at λ, with τ(c,A) = |q(c, λ)|, and that
the largest singular value of q(c,A) is simple, with β(c,A) = |q(c, λ)|. Hence
f(c,A) = τ(c,A)/β(c,A) = 1. Since, for all θ ∈ [0, 2π], the matrix Hθ

has the same block diagonal structure as A, it follows that its normalized
eigenvectors have the form either v = νe1, where e1 is the first coordinate
vector and |ν| = 1, and for which v∗Av = λ, or v = [0; ṽ], for which ‖ṽ‖ = 1
and v∗Av = ṽ∗Bṽ ∈ W (B) 6∋ λ. Hence, the only unit vector v for which
v∗Av = λ is e1, up to multiplication by a unimodular scalar. We can also
take the right singular vector w for the maximum singular value of q(c,A)
to be e1, and then the corresponding left singular vector is u = µe1 where
µ = q(c, λ)/|q(c, λ)|. Since all three assumptions of Theorem 1 are satisfied,
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f is differentiable at (c,A), with gradient given by (6), with

∇cτ(c,A) = µ
[

1, λ̄, . . . , λ̄m
]T

,

∇Aτ(c,A) = µ

m
∑

j=1

jc̄j λ̄
j−1e1e

T
1 ,

∇cβ(c,A) = µ
[

1, λ̄, . . . , λ̄m
]T

,

∇Aβ(c,A) = µ
m
∑

j=1

j−1
∑

ℓ=0

c̄j λ̄
ℓe1e

T
1 λ̄

j−ℓ−1.

It follows that ∇f(c,A) = 0. �

Thus, pairs (c,A) which have a dominant outside scalar block, as well as
equivalent pairs (c, U∗AU) where U is unitary, are smooth stationary points
of the Crouzeix ratio f with stationary value 1. Note that although f is
smooth at (c,A), the boundary of the field of values of A is nonsmooth.

If we consider the matrix diag(λI,B), where I is the identity matrix
of order 2 or more, instead of diag(λ,B), we no longer find that the unit
vector v for which v∗Av = λ is unique up to a scaling, and hence f is not
differentiable. Also, if we consider a matrix A = diag(λ,B) with an outside
scalar block, where τ(c,A) is attained at a unique point in the interior of a
line segment in bd W (A) instead of the vertex λ, we find, working through
the Cowen-Harel parametrization mentioned above, that v is not unique up
to a scaling, and hence again f is not differentiable at (c,A).

5 Nonsmooth Stationary Points of the Crouzeix

Ratio

Pairs (c,A) for which the Crouzeix ratio is 0.5 are known. Given an integer
k with 2 ≤ k ≤ min(n,m+1), define the polynomial p ∈ Pm by p(ζ) = ζk−1,
with corresponding coefficient vector

c = [c0, c1, . . . , ck−1, . . . , cm] = [0, 0, . . . , 0, 1, 0, . . . , 0],
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set the matrix Ξk ∈ Mk to

[

0 2
0 0

]

if k = 2, or





















0
√
2
· 1

· ·
· ·

· 1

·
√
2
0





















if k > 2, (7)

and set A = diag(Ξk, 0) ∈ Mn. It was independently observed by Choi
[Cho13] and Crouzeix [Cro15] that W (A) = W (Ξk) = D, so the numerator
of the Crouzeix ratio for (c,A) is one, and that p(A) = Ak−1 = diag(Ξk−1

k , 0)
is a matrix with just one nonzero, namely a 2 in the (1, k) position, so the
denominator of the Crouzeix ratio is 2 and hence the ratio is 0.5. Note that
Ξk−1
k is unitarily similar (via row and column permutations) to a direct sum

of a 2 × 2 Jordan block and a zero matrix of order k − 2. We call Ξk the
Choi-Crouzeix matrix of order k.

Since |p| is constant on bd W (A), the Crouzeix ratio f is nonsmooth at
(c,A). In [GLO16], together with A.S. Lewis, we showed that 0 ∈ ∂f(c,A),
i.e., (c,A) is a nonsmooth stationary point of f . This result extends easily
to the pair (c,A) where c is the coefficient vector for p(ζ) = (ζ − λ)k−1 and

A = λI + αUdiag(Ξk, B)U∗, (8)

for any nonzero α, λ ∈ C, unitary matrix U , and matrix B with W (B) ⊂ D.
Of course, if Crouzeix’s conjecture is true, then these pairs are all global
minimizers of f .

Note an interesting difference from the situation in the previous section:
here f is nonsmooth at (c,A), although the boundary of the field of values
of A is smooth.

6 The Computational Model

To accurately and efficiently approximate bdW (A), we use Chebfun [DHT14],
a system for approximating real- or complex-valued functions to machine
precision accuracy by adaptive Chebshev approximation, generating inter-
polation points zθ automatically. In the case illustrated in Figure 1, Chebfun
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automatically generates a “chebfun” consisting of five “pieces” representing
connected sets of extreme points, which must be joined together by line seg-
ments to represent all boundary points. The circles plotted in Figure 1 are
in fact the Chebyshev interpolation points zθ computed by Chebfun.

We have applied two methods for nonsmooth optimization to search for
minimizers of the Crouzeix ratio: the Gradient Sampling method [BLO05],
which has convergence guarantees described below, and the BFGS method,
devised independently in 1970 by Broyden, Fletcher, Goldfarb and Shanno
for unconstrained optimization of differentiable functions, but which is also
extremely effective for nonsmooth optimization [LO13], although it does not
have convergence guarantees in this domain.

Both the Gradient Sampling method and the BFGS method require
computation of f(c,A) and its gradient ∇f(c,A) at a sequence of iterates
(c(k), A(k)) generated by the method. The main cost in computing f(c,A) is
that of constructing the chebfun representing bd W (A), including any line
segments connecting the extreme points. Computing τ(c,A), the maximum
of the modulus of q(c, z) on bdW (A), is then done by invoking two Matlab

functions that have been overloaded to be applicable to chebfuns, namely
polyval and norm(.,inf), while computing β(c,A), the 2-norm of q(c,A),
is carried out by calls to two standard Matlab functions, polyvalm and
norm.

Once f(c,A) = τ(c,A)/β(c,A) has been computed, the additional com-
putation required to obtain its gradient given by (6) is minimal, even though
the formula is somewhat complicated. A natural question is: what is the
method to do if f is not differentiable at (c,A)? The answer is that both the
Gradient Sampling method and BFGS have the same computational philos-
ophy on this point: there is no need to check whether f is differentiable at
(c,A), as the algorithm will virtually never encounter points where f is non-
smooth, except in the limit. In the case of Gradient Sampling this statement
can be formalized: convergence results in [Kiw07], which refine the original
convergence results given by [BLO05], are applicable to the Crouzeix ratio
f , since it is locally Lipschitz, continuously differentiable on an open full-
measure subset of its domain, and bounded below by zero. Hence, with prob-
ability one, Gradient Sampling generates a sequence of points (c(k), A(k)) on
which f is differentiable, and for which all cluster points (c̃, Ã) of the se-
quence are Clarke stationary, i.e., 0 ∈ ∂f(c̃, Ã). Thus, the Matlab codes
that compute the Crouzeix ratio can arbitrarily break any ties for the max-
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imum value of |q(c, z)| on bd W (A), ties for the maximum eigenvalue of Hθ,
and ties for the maximum singular value of q(c,A), since it is highly unlikely
that an exact tie will occur. Clearly, small changes in (c,A) may result in
large changes in the computed ∇f(c,A), but this is inherent in nonsmooth
optimization.

The Gradient Sampling and BFGS methods are both line-search descent
methods, meaning that at every iteration they use an inexact line search to
repeatedly evaluate the minimization objective f along a search direction in
the variable space until a reduction in f is obtained.

Gradient Sampling is essentially a stabilized steepest descent method
designed for nonsmooth optimization. BFGS is a quasi-Newton method
originally designed for smooth optimization problems: the essential idea is
that gradient difference information is exploited to update an approximation
to the Hessian of the function. In the smooth case, under a regularity
condition, eventually the line search takes only unit steps, with just one
function evaluation sufficing to obtain a reduction in f , and the asymptotic
convergence rate is superlinear. In the nonsmooth case, where the gradient
is discontinuous at nonsmooth points, the BFGS update results in a Hessian
approximation indicating huge curvature in some directions – exactly what
is needed, since a nonsmooth function can always be approximated by a
highly ill-conditioned quadratic function. The unit-step and superlinear
convergence properties do not hold in the nonsmooth case, but usually not
many steps are needed in the line search and the convergence rate is linear.
In practice, when BFGS terminates near a point where the function is not
differentiable, typically the approximate “Hessian” has condition number of
the order of 1016, the inverse of the machine precision, and the algorithm
terminates because it cannot obtain descent in the line search due to the
limitations of rounding error.

In the next three sections we report results of our experiments that search
for a minimizer of the Crouzeix ratio f(c,A) using nonsmooth optimization,
along with some theorems and additional conjectures that were inspired by
the results. We first treat the case where we vary c and A together; then
we describe cases where we fix c and vary A, and finally cases where we fix
A and vary c. Since optimizing over complex (c,A) gave similar results to
optimizing over real (c,A), but required substantially more time to run, we
report only the results for real (c,A), and without loss of generality we op-
timized over upper Hessenberg matrices A, with all but one subdiagonal set
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to zero, since any real matrix is orthogonally similar to a Hessenberg matrix
and f is invariant under orthogonal similarity transformations. Since W (A)
is symmetric w.r.t. the real axis when A is real, we computed bd W (A) only
in the upper half plane.4 Also, since the runs using Gradient Sampling and
BFGS gave similar results, but the former required much more computa-
tion, we report only the results using BFGS. In each BFGS run, we imposed
a maximum of 1000 iterations, stopping earlier if demanding stationarity
criteria were met (see [LO13] for details), or if the method was unable to
reduce f in the line search (usually indicating that the current iterate is
nearly locally optimal).

The Matlab codes that we used to generate the results in this paper
are available on request to the authors.

7 Varying c and A

Since Crouzeix’s conjecture is known to hold for n = 2, we consider n =
3, . . . , 8 and, for each n, we set m, the maximum degree of p, to n − 1, so
that the vector of the corresponding coefficients c0, . . . , cn−1 has length n.
Since an n×n Hessenberg matrix has (n2+3n−2)/2 nonzeros, this amounts
to a total of (n2 + 5n − 2)/2 optimization variables. For each n, we made
100 runs of BFGS starting from normally distributed randomly generated
starting points. Figure 2 shows, for each n, the final values of f for each
of the 100 starting points, sorted into ascending order. We see that values
close to 0.5 are found repeatedly, for all n = 3, . . . , 8, and no lower values
were found. (We will discuss the values near 1 below.) The fact that the
minimal value found is so often close to 0.5 is strong evidence that 0.5 is
at least a locally minimal value for f ; it also indicates substantial support
for the conjecture that this is the globally minimal value. Examining the
second column of Table 1, we see that, for each n, the lowest value of f
found approximates 0.5 quite accurately, ranging from 15 decimal digits of
agreement for n = 3 (about the best that is possible using IEEE double
precision in Matlab) to 6 digits for n = 8.

4The top half of the boundary is represented by a chebfun parametrized by θ ∈ [π, 2π].
In the example of Figure 1, this chebfun would have 3 smooth pieces, with two line
segments connecting them together as well as a third line segment connecting 5+ i to the
real axis.
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Figure 2: Results for minimizing f over c and A for n = 3, . . . , 8. Each panel
shows the final values of f obtained in 100 runs of BFGS from normally
distributed starting points, sorted into ascending order.

n f ecc(W (A)) |κ− λ1| |κ− µ1| |κ− µ2| ‖d‖ ‖E‖
3 0.500000000000000 2.1e− 08 1.2e− 11 2.2e− 07 2.2e− 07 3.3e− 12 3.1e− 05
4 0.500000000000000 1.9e− 04 1.2e− 08 1.7e− 04 1.7e− 04 3.3e− 08 1.9e− 06
5 0.500000000000014 3.2e− 04 2.6e− 08 5.0e− 04 5.0e− 04 1.7e− 08 1.3e− 04
6 0.500000017156953 8.4e− 02 3.5e− 01 1.7e− 01 3.2e− 01 4.4e+ 00 NaN

7 0.500000746246673 1.2e− 01 1.6e− 01 4.4e− 01 1.0e+ 00 5.7e+ 00 NaN

8 0.500000206563813 1.3e− 01 5.1e− 01 7.2e− 01 7.5e− 01 8.8e+ 00 NaN

Table 1: Results for minimizing f over c and A for n = 3, . . . , 8. The
second column shows the lowest final value of f over 100 runs of BFGS
from normally distributed starting points and the third column shows the
eccentricity of the corresponding computed W (A). The next three columns
show |κ− λ1|, |κ−µ1| and |κ−µ2| where κ is the center of W (A), λ1 is the
smallest root (in magnitude) of p and µ1, µ2 are the two eigenvalues of A that
are closest to κ, with p and A respectively the polynomial corresponding to
the final coefficient vector c and the final matrix. The meaning of the final
two columns is explained in the text.
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Figure 3: Results for minimizing f over c and A for n = 3, . . . , 8. The
panel for each n shows the boundary of W (A) (solid blue), the eigenvalues
of A (blue asterisks) and the roots of p (red circles), where p and A are
respectively the final polynomial and matrix corresponding to the lowest
final value of f , all plotted in the complex plane. Roots of p lying outside
W (A) are not shown.
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Figure 3 shows, for each n, the boundary of the field of values of A, the
eigenvalues of A, and the roots of p, where A and p are respectively the final
computed matrix and polynomial (with coefficients given by c) associated
with the lowest final Crouzeix ratio f . In all cases, W (A) is close to a
disk, as further verified by the eccentricities5 reported in the third column
of Table 1, but there are some subtle distinctions between the results for the
various values of n.

In the panels for n = 3, 4 and 5, for which the final value of f approx-
imates 0.5 to between 13 and 15 digits, we see that exactly one root of p,
denoted λ1, and two eigenvalues of A, denoted µ1 and µ2, are very nearly
coincident with κ, the center6 of W (A); their distances from κ are displayed
in Table 1. Define the coefficient vectors

c̃ =
1

c1
c and d =

1

c1
[0, 0, c2, . . . , cn−1], so that c̃− d =

[

c0
c1
, 1, 0, . . . , 0

]

.

The penultimate column of Table 1 displays the norm of d, which measures
how close c̃ is to being a linear polynomial. When ‖d‖ is small, as it is for
n = 3, 4 and 5, all the roots of p except λ1 ≈ −c0/c1 are enormous (they
diverge to ∞ as the coefficients c2, . . . , cn−1 converge to zero). Furthermore,
we find using the Generalized Null Space Decomposition (GNSD)7 that

A− λI = αUdiag(Ξ, B)UT + E, (9)

where λ = λ1, 0.5 < α < 4, U is orthogonal, Ξ = Ξ2 (the 2 × 2 Choi-
Crouzeix matrix given in (7)), W (B) ⊂ D and ‖E‖ is given in the last
column of Table 1. Since, for n = 3, 4 and 5, ‖d‖ and ‖E‖ are both small,
the pair (c̃, A) is close to a pair (c̃−d,A−E) which is precisely a nonsmooth
stationary point of the kind discussed in Section 5, with k = 2.

Although most of the final pairs (c,A) for which f agrees with 0.5
to about 15 digits have the configuration just described, some have roots
λ1, . . . , λk−1 of p and eigenvalues µ1, . . . , µk of A nearly coincident for k > 2,

5Defined as (1− b2/a2)1/2, where a and b are respectively the maximum and minimum
of the real and imaginary diameters of W (A), giving zero if W (A) is a disk.

6Computed as the real part of the integral of the chebfun representing bd W (A) in the
upper half-plane, divided by π.

7See [GOS15] for the history of the GNSD, more often known as the staircase form,
which goes back to [Kub66]. We used the Matlab code available in the supplementary
online materials published with [GOS15]. This requires an input tolerance, but the results
given here are identical for tolerances in the range 10−6 to 10−1.

16



with coefficients ck, . . . , cn−1 close to zero and with (9) holding as above, ex-
cept that λ = (

∑k−1
j=1 λj)/(k− 1), Ξ is the k× k Choi-Crouzeix matrix given

in (7) with k > 2, and ‖Bk−1‖ < 2. These pairs (c,A) are also close to being
nonsmooth stationary points of the kind discussed in Section 5.

The results for n = 6, 7, and 8 are quite different. The final polynomial p
does not have any small coefficients, and hence does not have any huge roots.
Instead, all roots of p as well as all eigenvalues of A are approximately near
κ, the center of W (A), but none of them is nearly coincident with κ or with
any of the other roots or eigenvalues. Furthermore, as can be seen from the
eccentricities, W (A) is not as close to being a disk as it is in the cases n = 3,
4 and 5. We have observed repeatedly that this kind of configuration, with
the roots of p and the eigenvalues of A all clustered fairly near, but not very
near, the center of an approximate disk W (A), is typical for approximate
minimizers of the Crouzeix ratio with values fairly, but not very, close to
0.5.

Another striking observation from Figure 2 is that the final value of f
equals 1 for a significant number of starting points, ranging from just 1%
for n = 3 to 70% for n = 8. The corresponding final computed (c,A) all
have the property that8

A = Udiag(λ,B)UT + E

where (c,diag(λ,B)) has a dominant outside scalar block λ (see Definition
1), U is orthogonal and ‖E‖ is small, typically of the order of 10−8. Hence,
according to Theorem 2, the pairs (c,A−E) are smooth stationary points of
f . Further numerical investigation indicates that they are local minimizers,
as is also indicated by the fact that we repeatedly find these stationary
values. Figure 4 shows, for n = 3, . . . , 8, the fields of values for which f is
closest to 1 — in fact, agreeing with the value 1 to 15 digits. Note the “ice
cream cone” shapes of these fields of values, with the dominant scalar block
λ at the vertex. As n is increased, it becomes increasing difficult for BFGS
from randomly generated starting points to find any values of f below 1.

There are a few final computed values of f displayed in Figure 2 that are
not close to 0.5 or 1, so we restarted BFGS at the corresponding final pairs
(c,A) and at nearby points using various perturbation levels. For n = 3 and

8Computed from the Schur decomposition of A, permuting the eigenvalues if necessary
to ensure that the dominant one appears in the 1,1 position. This can be done in Matlab

using the ordschur function.
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Figure 4: “Ice Cream Cone” stationary points of the Crouzeix ratio f , dis-
covered while minimizing f for n = 3, . . . , 8. The panel for each n shows the
boundary of W (A) (solid blue), the eigenvalues of A (blue asterisks) and the
roots of p (red circles), where p and A are respectively the final polynomial
and matrix corresponding to the final value of f that is closest to one, all
plotted in the complex plane.
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n f ecc(W (A)) |κ| |µ1| |µn| ‖E‖
3 0.500000000000000 0.0e+ 00 1.5e− 16 1.3e− 05 1.3e− 05 1.9e− 08
4 0.500000000000000 1.5e− 08 3.4e− 16 6.8e− 04 6.8e− 04 1.5e− 07
5 0.500000000000002 2.1e− 08 3.1e− 16 1.3e− 03 3.9e− 03 1.8e− 07
6 0.500000000000129 1.9e− 07 8.8e− 16 1.9e− 03 7.4e− 02 2.6e− 06
7 0.500002622037000 9.2e− 04 1.6e− 06 7.0e− 01 1.7e+ 00 NaN

8 0.500040868776241 2.7e− 03 8.7e− 06 1.2e+ 00 2.9e+ 00 NaN

Table 2: Results for minimizing f over A for n = 3, . . . , 8, with p fixed to the
monomial ζn−1. The second column shows the lowest final value of f over
100 runs of BFGS from normally distributed starting points and the third
column shows the eccentricity of the corresponding computed W (A). The
remaining columns show |κ|, |µ1| and |µn| where κ is the center of W (A),
and µ1 and µn are respectively the smallest and largest eigenvalues of A in
modulus, where A is the matrix associated with the lowest value of f .

4, we quickly found values of f that were close to 0.5. For n = 5 and 6,
there were no final values that were not close to 0.5 or 1, so no restarts were
needed. However, for n = 7 and 8, restarting BFGS at and near the final
computed pairs did not lead to much improvement, suggesting the possibility
that there are other stationary values of f between 0.5 and 1.

8 Fixing p, Varying A

Additional insight is gained by fixing p ∈ Pm, allowing A to vary over n×n
matrices. The case p(ζ) = ζm is addressed first. In this case, as mentioned
in Section 1, we know that Crouzeix’s conjecture holds, so finding values
of f lower than 0.5 is impossible. The interest in these experiments is in
discovering for what A we find f equal to or close to 0.5. The results are
completely different for the cases n > m and n ≤ m.

8.1 When p(ζ) = ζm and n > m

As in the previous section, we optimized the Crouzeix ratio f over n× n real
upper Hessenberg matrices, with n ranging from 3 to 8, but this time with
p fixed to the monomial p(ζ) = ζm, with m = n−1, so c = [0, . . . , 0, 1]. Fig-
ure 5 displays the final values of f , again starting BFGS from 100 randomly
generated starting points, sorted into ascending order. As before, many
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Figure 5: Results for minimizing f over A for n = 3, . . . , 8, with p fixed
to the monomial ζn−1. Each panel shows the final values of f obtained in
100 runs of BFGS from normally distributed starting points, sorted into
ascending order.
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Figure 6: Results for minimizing f over A for n = 3, . . . , 8, with p fixed
to the monomial ζn−1. The panel for each n shows the boundary of W (A)
(solid blue), the eigenvalues of A (blue asterisks) and the origin (red circle),
where A is the matrix corresponding to the lowest final value of f .
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values close to 0.5 or equal to 1 were found, but other apparently locally
minimal values between 0.5 and 1 were also discovered, for n = 4, . . . , 8.
Figure 6 shows, for each n, the boundary of W (A) where A is the final
matrix associated with the lowest value of f , along with the eigenvalues of
A and the single root 0 of p. The fields of values of the final matrices are
somewhat closer to being disks than previously, as the eccentricities shown
in Table 2 are now smaller. The table also shows the smallest and largest
eigenvalues of A in modulus. The most important difference from the results
of the previous section is that for n = 3, 4, 5 and 6, all n eigenvalues of A
are close to zero, and (9) now holds with λ = 0, ‖E‖ small and Ξ = Ξn, the
n× n Choi-Crouzeix matrix given in (7).

Based on these results and others, we conjecture that, when p(ζ) =
ζn−1, with corresponding coefficient vector c, the only n× n matrices A for
which f(c,A) = 0.5 are those of the form αUΞnU

∗, where α 6= 0 and U
is unitary, and for p(ζ) = ζm and A of order n > m, a matrix of the form
αUdiag(Ξm+1, B)U∗, where α 6= 0, U is unitary and W (B) ⊆ D.

8.2 When p(ζ) = ζm and n ≤ m

When we fix p to the monomial ζm but insist that the matrix A have order
n ≤ m, we are no longer able to find values of the Crouzeix ratio f that are
close to 0.5, as illustrated in Figure 7 in the case n = m. We conjecture that
when p(ζ) = ζm there is no sequence of matrices of order n ≤ m for which
the Crouzeix ratio converges to 0.5. Note that Ξn

n = 0, so for A close to Ξn

the Crouzeix ratio is large.

8.3 When p is arbitrary and n > m

When we fix p to be any polynomial of degree m except a monomial, and
we optimize over (m+1)× (m+1) matrices, we are able to generate values
of the Crouzeix ratio that approximate 0.5, but the closer we approximate
it, the larger W (A) becomes, so that the limit 0.5 is not actually attained.
This observation led us to the following theorem.

Theorem 3 For any fixed polynomial p of degree m ≥ 1, with corresponding

coefficient vector c, there exists a divergent sequence {A(k)} of order n =
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Figure 7: Results for minimizing f over A for n = 3, . . . , 8, with p fixed
to the monomial ζn. Each panel shows the final values of f obtained in
100 runs of BFGS from normally distributed starting points, sorted into
ascending order.
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m+1 for which f(c,A(k)) converges to 0.5. Furthermore, we can choose the

sequence so that {W (A(k))} are disks.

Proof. Let A(k) = k Ξm+1, where Ξm+1 is the Choi-Crouzeix matrix given
in (7). Then W (A(k)) is a disk centered at 0 with radius k. Write p(ζ) =
cmζm + · · · + c0. Then the (1, n) entry of p(A(k)) is 2cmkm, so 2|cm|km
dominates ‖p(A(k))‖ as k → ∞. Furthermore, ‖p‖W (A(k)) is increasingly

well approximated by |cm|km as k → ∞. So, f(c,A(k)) → 0.5 as k → ∞. �

Note also that if p(ζ) = ζm, then f(c,A(k)) = 0.5 for all k, so there is
no need for W (A) to blow up in this case and we can replace the sequence
{A(k)} by the constant matrix Ξm+1.

We conjecture that when p is fixed to be any polynomial of fixed degreem
except a monomial, with corresponding coefficient vector c, it is not possible
to findA with orderm+1, or indeed any larger order, for which f(c,A) = 0.5.
However, 0.5 can be approximated to arbitrary accuracy by blowing up
W (A) sufficiently, and attained when p is a monomial, as explained above.

8.4 When p is arbitrary and n ≤ m

When we fix p with degree m with at least two distinct roots and optimize
over A with size n = m, we find very different behavior. We frequently
generate a sequence of matrices for which W (A) shrinks to a single point,
namely, one of the roots of p, with f converging to 0.5, but as in the previous
subsection, the limit 0.5 is not actually attained. This observation led us to
the following theorem.

Theorem 4 Fix p to have degree m with at least two distinct roots and with

corresponding coefficient vector c. Then, for all integers n with 2 ≤ n ≤ m,

there exists a convergent sequence of n × n matrices {A(k)} for which the

Crouzeix ratio f(c,A(k)) converges to 0.5. Furthermore, we can choose A(k)

so {W (A(k))} is a sequence of disks shrinking to a root of p.
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Proof. Without loss of generality we can assume that one of the roots of p
is zero, so

p(ζ) = ζℓ
m−ℓ
∏

i=1

(λi − ζ)

where ℓ is the multiplicity of the zero root, and the other roots λi, i =
1, . . . ,m − ℓ, are nonzero, though not necessarily distinct from each other.
Let A(k) be zero except that its leading (ℓ+1)× (ℓ+1) submatrix is Ξℓ+1/k.
Then

p(A(k)) = (A(k))ℓ
m−ℓ
∏

i=1

(λiI −A(k))

is a matrix that is all zero except that its (1, ℓ+1) entry is 2(1/k)ℓ
∏m−ℓ

i=1 λi,

so ‖p(A(k))‖ = 2(1/k)ℓ
∏m−ℓ

i=1 |λi|. Furthermore, W (A(k)) is a disk around 0
of radius 1/k, so for large k the maximum of |p(ζ)| on this disk is increasingly
well approximated by (1/k)ℓ

∏m−ℓ
i=1 |λi|. Hence, f(c,A(k)) → 0.5 as k → ∞.

�

Note that the quantity 0.5 is not attained as in the limit one instead
obtains 0/0.

We conjecture that when p is fixed to be any polynomial of fixed degree
m, with corresponding coefficient vector c, it is not possible to find A with
order m, or less, for which f(c,A) = 0.5. However, as long as p has at least
two distinct roots, 0.5 can be approximated to any accuracy by shrinking
W (A) sufficiently close to one of the roots, as explained above.

9 Fixing A, Varying p.

If we fix A, then in general the Crouzeix ratio 0.5 cannot be attained or
approximated to arbitrary accuracy by some p of fixed maximal degree.
Obviously this is true if A is normal, but we conjecture that it is true for
all A unless it is essentially a Choi-Crouzeix matrix, that is a matrix of the
form (8).9

Suppose we remove the limitation on the maximum degree of p. It

9Extended to allow W (B) ⊆ D: this possibility is not included in (8) as the variational
analysis result does not extend to this case.
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is known that for any fixed A, any analytic function g that minimizes
‖g‖W (A)/‖g(A)‖ has constant magnitude on bd W (A) [Cro04], and it is
possible to compute this numerically using conformal mapping techniques
and Blaschke products. This work is beyond the scope of the paper, so we
leave discussion of this to a future paper.

10 Summary

In this work, we investigated Crouzeix’s conjecture by optimizing the Crouz-
eix ratio f defined in (4), whose minimum value over all polynomials p and
matrices A is 0.5 if the conjecture is true. We used Chebfun to approximate
the boundary of the field of values W (A) to high accuracy and BFGS to
search for minimizers of f over the variable space (c,A), where c is the co-
efficient vector for the polynomial p. It is remarkable how reliably Chebfun
and BFGS performed despite the nonsmoothness that can occur either in
the boundary of W (A) (w.r.t. the complex plane) or in the Crouzeix ratio
f (w.r.t. the variable space). The results for the 600 runs of BFGS reported
in Figure 2 alone required about 500,000 chebfun constructions, each one
to represent the field of values of a different matrix, including all the eval-
uations of f(c,A) carried out in the line searches. Almost all these runs
delivered pairs (c,A) that are either (i) close to a nonsmooth stationary
point of f with stationary value 0.5 (for which p is a monomial with degree
m and A is essentially10 a Choi-Crouzeix matrix of order m+1, with W (A)
being a disk) or (ii) close to a smooth stationary point of f with stationary
value 1 (for which (c,A) has a dominant outside scalar block, with W (A)
having an “ice-cream-cone” shape).

We also searched for minimizers of the Crouzeix ratio when the polyno-
mial is fixed. The resulting observations led to Theorems 3 and 4, which
show that given any fixed polynomial with at least two distinct roots, there
is a sequence of matrices of any given order on which the Crouzeix ratio
converges to 0.5.

Overall, our results strongly support Crouzeix’s conjecture: the globally
minimal value of f is 0.5.

Acknowledgments. We especially thank Nick Trefethen for suggesting

10More precisely, has the form (8), with k = m+ 1
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