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Abstract

Crashing is a method for optimally shortening the project makespan by reducing the time of one or more

activities in a project network by allocating resources to it. Activity durations are however uncertain and

techniques in stochastic optimization, robust optimization and distributionally robust optimization have been

developed to tackle this problem. In this paper, we study a class of distributionally robust project crashing

problems where the objective is to choose the first two moments of the activity durations to minimize the worst-

case expected makespan. Under a partial correlation information structure or no correlation information, the

problem is shown to be solvable in polynomial time as a semidefinite program or a second order cone program

respectively. However in practice, solving the semidefinite program is challenging for large project networks.

We exploit the structure of the problem to reformulate it as a convex-concave saddle point problem over the

first two moment variables and the arc criticality index variables. This provides the opportunity to use first

order saddle point methods to solve larger sized distributionally robust project crashing problems. Numerical

results also provide an useful insight that as compared to the crashing solution for the multivariate normal

distribution, the distributionally robust project crashing solution tends to deploy more resources in reducing

the standard deviation rather than the mean of the activity durations.

1 Introduction

A project is defined by a set of activities with given precedence constraints. In a project, an activity is a task that

must be performed and an event is a milestone marking the start of one or more activities. Before an activity

begins, all of its predecessor activities must be completed. Such a project is represented by an activity-on-arc
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network G(V,A), where V = {1, 2, . . . , n} is the set of nodes denoting the events, and A ⊆ {(i, j) : i, j ∈ V} is

the set of arcs denoting the activities. The corresponding network G(V,A) is directed and acyclic where we use

node 1 and node n to represent the start and the end of the project respectively. Let tij denote the duration of

activity (i, j). The completion time or the makespan of the project is equal to the length of the critical (longest)

path of the project network from node 1 to node n where arc lengths denote activity durations. The problem is

formulated as:

Z(t) = max
x∈X∩{0,1}m

∑
(i,j)∈A

tijxij , (1.1)

where

X =

x :
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji =


1, i = 1

0, i = 2, 3, . . . , n− 1

−1, i = n

, xij ∈ [0, 1],∀(i, j) ∈ A

 . (1.2)

Project crashing is a method for shortening the project makespan by reducing the time of one or more of the

project activities to less than its normal activity time. To reduce the duration of an activity, the project manager

can assign more resources to it which typically implies additional costs. This may include using more efficient

equipment or hiring more workers. Hence it is important to find the tradeoff between the makespan and the

crashing cost so as to identify the specific activities to crash and the corresponding amounts by which to crash

them. Early work on the deterministic project crashing problem (PCP) dates back to 1960s (see Kelley Jr (1961),

Fulkerson (1961)) where parametric network flow methods were developed to solve the problem. One intuitive

method is to find the critical path of the project, and then crash one or more activities on the critical path.

However, when the activities on the critical path have been crashed, the original critical path may no longer be

critical. The problem of minimizing the project makespan with a given cost budget is formulated as follows:

min
t

Z(t)

s.t.
∑

(i,j)∈A

cij(tij) ≤M,

tij ≤ tij ≤ tij , ∀(i, j) ∈ A,

where M is the cost budget, tij is the original duration of activity (i, j), tij is the minimal value of the duration of

activity (i, j) that can be achieved by crashing, and cij(tij) is the cost function of crashing which is a decreasing

function of the activity duration tij . Since the longest path problem on a directed acyclic graph is solvable

as a linear program by optimizing over the set X directly, using duality, the project crashing problem (1.3) is

formulated as:

min
t,y

yn − y1,

s.t. yj − yi ≥ tij , ∀(i, j) ∈ A,∑
(i,j)∈A

cij(tij) ≤M,

tij ≤ tij ≤ tij , ∀(i, j) ∈ A.

(1.3)
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When the cost functions are linear or piecewise linear convex, the deterministic PCP (1.3) is formulated as

a linear program. For nonlinear convex differentiable cost functions, an algorithm based on piecewise linear

approximations was proposed by Lamberson and Hocking (1970) to solve the project crashing problem. When

the cost function is nonlinear and concave, Falk and Horowitz (1972) proposed a globally convergent branch and

bound algorithm to solve the problem of minimizing the total cost and when the cost function is discrete, the

project crashing problem has shown to be NP-hard (see De et al. (2007)). In the next section, we provide a

literature review on project crashing problems with uncertain activity durations.

Notations

Throughout the paper, we use bold letters to denote vectors and matrices, such as x, W , ρ, and standard letters

to denote scalars, such as x,W, ρ. 1n is a vector of dimension n with all entries equal to 1. ∆n−1 = {x : 1Tnx =

1,x ≥ 0} denotes a unit simplex. We suppress the subscript when the dimension is clear. We use the tilde

notation to denote a random variable or random vector, such as r̃, r̃. |A| denote the number of elements in the

set A. Z+ denotes the set of nonnegative integers. <+
n and <++

n are the sets of n dimensional vectors whose

entries are all nonnegative and strictly positive respectively. S+
n and S++

n are the sets of all symmetric n × n

positive semidefinite matrices and positive definite matrices, respectively. For a positive semidefinite matrix X,

we use X1/2 to denote the unique positive semidefinite square root of the matrix such that X1/2X1/2 = X. For

a square matrix X, X† denotes the its unique Moore-Penrose pseudoinverse. diag(X) denotes a vector formed

by the diagonal elements of a matrix X, and Diag(x) denotes a diagonal matrix whose diagonal elements are the

entries of x.

2 Literature Review

In this section, we provide a literature review of the project crashing problem with uncertain activity durations.

Since this problem has been well-studied, our literature review while extensive is not exhaustive. We highlight

some of the current state of art methods to solve the project crashing problem before discussing our proposed

method in later sections.

2.1 Stochastic Project Crashing

In stochastic projects, the activity durations are modeled as random variables which follow a probability distri-

bution such as normal, uniform, exponential or beta. When the probability distribution function of the activity

durations is known, a popular performance measure is the expected project makespan which is defined as follows:

E(Z(t̃)) =

∫
Z(t)fλ(t)dt, (2.1)

3



where fλ(t) is the probability density function of the random vector t̃ with the parameter vector λ. The stochastic

PCP that minimizes the expected makespan with a given cost budget is formulated as:

min
λ∈Ωλ

E
(
Z(t̃)

)
, (2.2)

where Ωλ is the possible set of values from which λ can be chosen. For a fixed λ, computing the expected project

makespan unlike the deterministic makespan is a hard problem. Hagstrom (1988) showed that computing the

expected project makespan is NP-hard when the activity durations are independent discrete random variables.

Even in simple cases such as the multivariate normal distribution, the expected makespan does not have a

simple expression and the standard approach is to use Monte Carlo simulation methods to estimate the expected

makespan (see Van Slyke (1963), Burt Jr and Garman (1971)). Simple bounds (Fulkerson (1962), Möhring

(2001)) and approximations (Lindsey (1972)) have also been proposed for the expected makespan. For example,

by replacing the activity times with the mean durations and computing the deterministic longest path, we obtain

a lower bound on the expected makespan due to the convexity of the makespan objective. Equality holds if and

only if there is a path that is the longest with probability 1, but this condition is rarely satisfied in applications.

To solve the stochastic project crashing problem, heuristics and simulation-based optimization methods have

been proposed. Kim et al. (2007) developed a heuristic approach to minimize the quantile of the makespan by

using a surrogate deterministic objective function with activity durations defined as:

dij(λ) = µij(λ) + kijσij(λ),

with fixed margin coefficients kij ≥ 0, where µij(λ) and σij(λ) denote the mean and standard deviation of the

activity duration t̃ij that depends on the decision vector λ. They then solve the deterministic PCP:

min
λ∈Ωλ

Z(d(λ)), (2.3)

to find a heuristic solution for project crashing. Other heuristics for the project crashing problem have also

been developed (see Mitchell and Klastorin (2007)). Simulation based optimization techniques have been used

to solve the project crashing problem. Stochastic gradient methods for minimizing the expected makespan

have been developed in this context (see Bowman (1994), Fu (2015)). Another approach is to use the sample

average approximation (SAA) method to minimize the expected makespan (see Plambeck et al. (1996), Shapiro

(2003), Kim et al. (2015)). For example, consider the case where the activity duration vector t̃ is a multivariate

normal random vector N(µ,Σ), where µ and Σ are the mean and the covariance matrix of the random vector t̃,

respectively. Then t̃ = µ+ Diag(σ)ξ̃, where σ is a vector of standard deviations of t̃ij , (i, j) ∈ A and ξ̃ ∼ N(0,ρ)

is a normally distributed random vector where ρ is the correlation matrix of ξ̃ and hence t̃. Suppose the decision

variables are the means and standard deviations of the random activity durations where Ωµ,σ represents a convex

set of feasible parameters from which it can be chosen. Let ξ(k), k = 1, 2, . . . , N , denote a set of i.i.d samples of

the random vector ξ̃. The SAA formulation is given as:

min
(µ,σ)∈Ωµ,σ

1

N

N∑
k=1

(
max
x∈X

(
µ+ Diag(σ)ξ(k)

)T
x

)
, (2.4)
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which is equivalent to the linear program:

min
µ,σ,y(k)

1

N

N∑
k=1

(
y(k)
n − y

(k)
1

)
s.t. y

(k)
j − y

(k)
i ≥ µij + σijξ

(k)
ij , ∀k = 1, . . . , N,

(µ,σ) ∈ Ωµ,σ.

(2.5)

Convergence results for the objective value and the optimal solution as N ↑ ∞ have been derived in Shapiro

(2003).

2.2 Robust Project Crashing

There are two main challenges in the stochastic project crashing model. Firstly, solving the problem is computa-

tionally challenging as discussed. Secondly, the distribution of the activity durations is assumed to be given but

in reality it might be often difficult to estimate the full distributional information. To overcome these challenges,

robust optimization methods (see Ben-Tal et al. (2009)) have been developed to solve the project crashing prob-

lem. In this technique, uncertainty sets are used to model the activity durations and the objective is to minimize

the worst-case makespan. Cohen et al. (2007) adopted the affinely adjustable robust formulation of Ben-Tal et al.

(2004) to tackle the problem of minimizing the worst-case project makespan under interval and ellipsoidal un-

certainty sets. The corresponding problems are formulated as linear and second order cone programs. Iancu and

Trichakis (2014) extended the affinely adjustable robust counterpart to develop Pareto robust optimal solutions

for project crashing. However as discussed in Wiesemann et al. (2012) while computationally tractable, the linear

decision rule is sub-optimal for the robust project crashing problem. Chen et al. (2007) proposed new uncertainty

sets for the robust project crashing problem to capture asymmetry information in the activity durations. Using

linear decision rules they developed second order cone programs for the robust project crashing problem. Chen

et al. (2008) considered more general decision rules beyond the linear decision rule for the crashing problem.

While their results clearly demonstrate that the linear and piecewise linear decision rules are computationally

tractable, it only solves a relaxation of the robust problem. Wiesemann et al. (2012) showed that for a given

resource allocation, the problem of computing the worst-case makespan with some of the popular uncertainty sets

is NP-hard. Examples of uncertainty sets for which worst-case makespan is known to be NP-hard to compute

include the ellipsoidal uncertainty set and polyhedral uncertainty sets such as the intersection of a hypercube

and a halfspace. Only for simple uncertainty sets such as the hypercube this problem is easy since the worst-

case makespan is obtained simply by making all the activity durations take the maximum value. Wiesemann

et al. (2012) proposed alternative methods to solve the robust project crashing problem by developing convergent

bounds using path enumeration and path generation methods.
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2.3 Distributionally Robust Project Crashing

Distributionally robust optimization is a more recent approach that has been used to tackle the project crashing

problem. Under this model, the uncertain activity durations are assumed to be random variables but the prob-

ability distribution of the random variables is itself ambiguous and chosen by nature from a set of distributions.

Meilijson and Nadas (1979) studied the worst-case expected makespan under the assumption that the marginal

distributions of the random activity durations are known but the joint distribution of the activity durations is un-

known. Under this assumption, they showed that the worst-case expected makespan can be computed by solving

a convex optimization problem. Birge and Maddox (1995) extended this bound to the case where the support for

each activity duration is known and up to the first two moments (mean and standard deviations) of the random

activity duration is provided. Bertsimas et al. (2004, 2006) extended this result to general higher order univariate

moment information and developed a semidefinite program to compute the worst-case expected makespan. Mak

et al. (2015) applied the dual of the formulation with two moments to solve an appointment scheduling problem

where the objective is to choose service times to minimize the worst-case expected waiting time and overtime

costs as a second order cone program. Under the assumption that the mean, standard deviation and correlation

matrix of the activity durations is known, Natarajan et al. (2011) developed a completely positive programming

reformulation for the worst-case expected makespan. While this problem is NP-hard, semidefinite relaxations

can be used to find weaker upper bounds on the worst-case expected makespan. Kong et al. (2013) developed

a dual copositive formulation for the appointment scheduling problem where the objective is to choose service

times to minimize the worst-case expected waiting time and overtime costs given correlation information. Since

this problem is NP-hard, they developed a tractable semidefinite relaxation for this problem. Natarajan and

Teo (2016) recently showed that the complexity of computing this bound is closely related to characterizing the

convex hull of quadratic forms of directed paths from the start node to the end node in the network. In a related

stream of literature, Goh and Hall (2013) developed approximations for the distributionally robust project crash-

ing problem using information on the support, mean and correlation matrix of the activity durations. Using linear

and piecewise linear decision rules, they developed computationally tractable second order conic programming

formulations to find resource allocations to minimize an upper bound on the worst-case expected makespan under

both static and adaptive policies. While their numerical results demonstrate the promise of the distributionally

robust approach, it is not clear as to how far their solution is from the true optimal solution that minimizes

the worst-case expected makespan. Recently, Hanasusanto et al. (2016) studied a distributionally robust chance

constrained version of the project crashing problem and developed a conic program to solve the problem under

the assumption of the knowledge of a conic support, the mean and an upper bound on a positive homogeneous

dispersion measure of the random activity durations. While their formulation is exact for the distributionally

robust chance constrained project crashing problem, the size of the formulation grows in the number of paths

in the network. An example where the worst-case expected makespan is computable in polynomial time was

developed in Doan and Natarajan (2012) who assumed that a discrete distribution is provided for the activity
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durations for the set of arcs coming out of each node. The dependency structure among the activities for arcs

coming out of two different nodes is however unspecified. Li et al. (2014) extended this result to propose a bound

on the worst-case expected makespan with information on the mean and covariance matrix.

In this paper, we build on these models to solve a class of distributionally robust project crashing problems

in polynomial time. To the best of our knowledge, these are the only type of information structures for the

moment models for which the problem is known to be solvable in polynomial time currently. Furthermore, unlike

the typical use of semidefinite programming solvers to directly solve the problem, we exploit the structure of

the objective function to illustrate that recent developments in first order saddle point methods can be used to

solve the problem. As we demonstrate, this helps us solve much larger problems in practice. Lastly, we provide

numerical insights into the nature of the crashing solution from distributionally robust models that we believe is

insightful. Specifically, our results show that in comparison to the sample average approximation method for a

multivariate normal distribution of activity durations, the distributionally robust models deploy more resources

in crashing the standard deviations rather than the means.

3 SOCP, SDP and Saddle Point Formulations

In this section, we study instances of the distributionally robust project crashing problem with moment infor-

mation that is solvable in polynomial time in the size of the network. The random duration of activity (i, j) is

denoted by t̃ij . We assume that it is possible to vary the mean and the standard deviation of t̃ij . Specifically let

µ = (µij : (i, j) ∈ A) and σ = (σij : (i, j) ∈ A) denote the vector of means and standard deviations of the activity

durations with ρ denoting additional information on the correlation matrix that is available. We allow for the

activity durations to be correlated. This often arises in projects when activities use the same set of resources such

as equipment and manpower or are affected by common factors such as weather in a construction project (see

Banerjee and Paul (2008)). When the joint distribution of t̃ is known only to lie in a set of distributions Θ(µ,σ;ρ)

with the given mean, standard deviation and correlation information, the worst-case expected makespan is:

max
θ∈Θ(µ,σ;ρ)

Eθ
(

max
x∈X

t̃
T
x

)
, (3.1)

where the outer maximization is over the set of distributions with the given moment information on the random

t̃ and the inner maximization is over the set X defined in (1.2). When the correlation matrix ρ is completely

specified, computing just the worst-case expected makespan for a given µ and σ is known to be a hard problem

(see Bertsimas et al. (2010), Natarajan et al. (2011), Wiesemann et al. (2012)). The distributionally robust

project crashing problem of selecting the means and standard deviations to minimize the worst-case expected

makespan for the project network is formulated as:

min
(µ,σ)∈Ωµ,σ

max
θ∈Θ(µ,σ;ρ)

Eθ
(

max
x∈X

t̃
T
x

)
, (3.2)
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where Ωµ,σ defines a convex set of feasible allocations for (µ,σ). The set Ωµ,σ for example can be defined as:

Ωµ,σ =

(µ,σ) :
∑

(i,j)∈A

cij(µij , σij) ≤M, µ
ij
≤ µij ≤ µij , σij ≤ σij ≤ σij , ∀(i, j) ∈ A

 , (3.3)

where µij and σij are the mean and standard deviation of the original duration of activity (i, j), and µ
ij

and σij

are the minimal mean and standard deviation of the duration of activity (i, j) that can be achieved by crashing.

Further M is the amount of total cost budget, and cij(µij , σij) is the cost function which has the following

properties: (a) cij(µij , σij) = 0, that means the extra cost of activity (i, j) is 0 under the original activity

duration; and (b) cij(µij , σij) is a decreasing function of µij and σi,j . In this formulation, it is possible to to

just crash the means by forcing the standard deviation to be fixed by setting σij = σij in the outer optimization

problem.

3.1 No Correlation Information

We first consider the marginal moment model where information on the mean and the standard deviation of

the activity durations is assumed but no information on the correlations is assumed. The set of probability

distributions of the activity durations with the given first two moments is defined as:

Θmmm(µ,σ) =
{
θ ∈M(<m) : Eθ(t̃ij) = µij ,Eθ(t̃2ij) = µ2

ij + σ2
ij ,∀(i, j) ∈ A

}
, (3.4)

where M(<m) is the set of finite positive Borel measures supported on <m. In the definition of this set, we

allow for the activity durations to be positively correlated, negatively correlated or even possibly uncorrelated.

Furthermore, we do not make an explicit assumption on the nonnegativity of activity durations. There are two

main reasons for this. Firstly, since we allow for the possibility of any valid correlation matrix with the given

means and standard deviations, the most easy to fit multivariate probability distribution to the activity durations

is the normal distribution. As a result, this distribution has been used extensively in the literature on project

networks (see Clark (1961), Banerjee and Paul (2008)), particularly when the activity durations are correlated for

this very reason. Secondly in practice, such an assumption is reasonable to justify when the mean of the activity

duration is comparatively larger than the standard deviation in which case the probability of having a negative

realization is small. Assuming no correlation information, the worst-case expected makespan in (3.1) is equivalent

to the optimal objective value of the following concave maximization problem over the convex hull of the set X

(see Lemma 2 on page 458 in Natarajan et al. (2009)):

max
x∈X

fmmm(µ,σ,x), (3.5)

where

fmmm(µ,σ,x) =
∑

(i,j)∈A

(
µijxij + σij

√
xij(1− xij)

)
. (3.6)

In the formulation, the optimal x∗ij variables is an estimate of the arc criticality index of activity (i, j) under the

worst-case distribution. The worst-case expected makespan in (3.5) is computed using the following second order
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cone program (SOCP):

max
x,t

∑
(i,j)∈A

(µijxij + σijtij)

s.t. x ∈ X ,√
t2ij +

(
xij −

1

2

)2

≤ 1

2
, ∀(i, j) ∈ A.

(3.7)

The distributionally robust PCP (3.2) under the marginal moment model is hence formulated as a saddle point

over the moment variables and arc criticality index variables as follows:

min
(µ,σ)∈Ωµ,σ

max
x∈X

fmmm(µ,σ,x). (3.8)

One approach to solve the problem is to take the dual of the maximization problem in (3.7) in which case the

distributionally robust PCP (3.8) is formulated as the following second order cone program:

min
µ,σ,y,α,β

yn − y1 +
1

2

∑
(i,j)∈A

(αij − βij)

s.t. yj − yi − βij ≥ µij , ∀(i, j) ∈ A,√
σ2
ij + β2

ij ≤ αij , ∀(i, j) ∈ A

(µ,σ) ∈ Ωµ,σ.

(3.9)

Several points regarding the formulation in (3.9) are important to take note of. Firstly, the formulation is tight,

namely it solves the distributionally robust project crashing problem exactly. Secondly, such a dual formulation

has been recently applied by Mak et al. (2015) to the appointment scheduling problem where the appointment

times are chosen for patients (activities) while the actual service times for the patients are random. Their problem

is equivalent to simply crashing the means of the activity durations. From formulation (3.9), we see that it is

also possible to crash the standard deviation of the activity durations in a tractable manner using second order

cone programming under the marginal moment model. Lastly, though we focus on the project crashing problem,

one of the nice features of this model is that it easily extends to all sets X ⊆ {0, 1}n with a compact convex hull

representation. In the next section, we discuss a partial correlation information structure that makes use of the

project network in identifying a polynomial time solvable project crashing instance.

3.2 Partial Correlation Information

In the marginal moment model, we do not make any assumptions on the correlation information between the

activity durations. Hence it is possible that in the worst-case, the correlations might be unrealistic particularly

if some information on the dependence between activity durations is available. In this section, we consider

alternative formulations where partial correlation information on the activity durations is known. Since the

general version of this problem is hard, we focus on partial correlation information structures where the problem

is solvable in polynomial time. Towards this, we first consider a parallel network, before considering a general

network.

9



3.2.1 Parallel Network

Consider a parallel project network with m activities where the correlation among the activities is known. In this

case the set of probability distributions of the activity durations is defined as:

Θcmm(µ,σ;ρ) =
{
θ ∈M(<m) : Eθ(t̃) = µ,Eθ(t̃t̃

T
) = µµT + Diag(σ)ρDiag(σ)

}
, (3.10)

where ρ ∈ S++
m denotes the correlation matrix and Σ = Diag(σ)ρDiag(σ) denotes the covariance matrix. We

refer to this model as the cross moment model. The distributionally robust project crashing problem for a parallel

network is then formulated as:

min
(µ,σ)∈Ωµ,σ

max
θ∈Θcmm(µ,σ;ρ)

Eθ
(

max
x∈∆

t̃
T
x

)
, (3.11)

where the inner maximization is over the simplex since the network is parallel. The worst-case expected makespan

in (3.11) is equivalent to the moment problem over the random vector ξ̃ with the given first two moments:

max Eγ
(

max
x∈∆

(
µ+ Diag(σ)ξ̃

)T
x

)
s.t. Pγ(ξ̃ ∈ <m) = 1,

Eγ(ξ̃) = 0,

Eγ(ξ̃ξ̃
T

) = ρ.

(3.12)

A direct application of standard moment duality for this problem by associating the dual variables λ0, λ and

Λ with the constraints and disaggregating the maximum over the extreme points of the simplex implies that

problem (3.12) can be solved as a semidefinite program:

min
λ0,λ,Λ

λ0 + 〈ρ,Λ〉

s.t.

 λ0 − µij 1
2 (λ− σijeij)T

1
2 (λ− σijeij) Λ

 � 0, ∀(i, j) ∈ A.
(3.13)

Strong duality holds in this case under the assumption that the correlation matrix is positive definite. Plugging

it back into (3.11), we obtain the semidefinite program for distributionally robust project crashing problem over

a parallel network as follows:

min
µ,σ,λ0,λ,Λ

λ0 + 〈ρ,Λ〉

s.t.

 λ0 − µij 1
2 (λ− σijeij)T

1
2 (λ− σijeij) Λ

 � 0, ∀(i, j) ∈ A,

(µ,σ) ∈ Ωµ,σ.

(3.14)

We next provide an alternative reformulation of the project crashing problem in the spirit of (3.8) as a convex-

concave saddle point problem where the number of variables in the formulation grow linearly in the number of

arcs m. Unlike the original minimax formulation in (3.11) where the outer maximization problem is over infinite

dimensional probability measures, we transform the outer maximization problem to optimization over finite

dimensional variables (specifically the arc criticality indices).
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Proposition 1. Define S(x) = Diag(x) − xxT . Under the cross moment model with a parallel network, the

distributionally robust PCP (3.11) is solvable as a convex-concave saddle point problem:

min
(µ,σ)∈Ωµ,σ

max
x∈∆

fcmm(µ,σ,x), (3.15)

where

fcmm(µ,σ,x) = µTx+ trace

((
Σ1/2S(x)Σ1/2

)1/2
)
. (3.16)

The objective function is convex with respect to the moments µ and Σ1/2 (and hence σ for a fixed ρ) and strictly

concave with respect to the criticality index variables x.

Proof. The worst-case expected makespan under the cross moment model for a parallel network was studied in

Ahipasaoglu et al. (2016) (see Theorem 1) who showed that it is equivalent to the optimal objective value of the

following nonlinear concave maximization problem over the unit simplex:

max
θ∈Θcmm(µ,σ;ρ)

Eθ
(

max
x∈∆

t̃
T
x

)
= max
x∈∆

(
µTx+ trace

((
Σ1/2S(x)Σ1/2

)1/2
))

, (3.17)

where the optimal x∗ij variables is an estimate of the arc criticality index of activity (i, j) under the worst-case

distribution. This results in the equivalent saddle point formulation (3.15) for the distributionally robust project

crashing problem under the cross moment model with a parallel network. The function fcmm(µ,σ,x) has shown to

be strongly concave in the x variable (see Theorem 3 in Ahipasaoglu et al. (2016)). The function fcmm(µ,σ,x) is

linear and hence convex in the µ variable. Furthermore this function is convex with respect to Σ1/2 ∈ S++
m . To see

this, we apply Theorem 7.2 in Carlen (2010) which proves that the function g(A) = trace((BTA2B)1/2) is convex

inA ∈ S++
m for a fixedB ∈ <m×m. Clearly, the function trace((Σ1/2S(x)Σ1/2)1/2) = trace((S(x)1/2ΣS(x)1/2)1/2)

since for any square matrix X, the eigenvalues of XXT are the same as XTX, which implies trace((XXT )1/2) =

trace((XTX)1/2). Setting A = Σ1/2 and B = S(x)1/2, implies that the objective function is convex with respect

to Σ1/2 ∈ S++
m . �

3.2.2 General Network

To model the partial correlation information, we assume that for the subset of arcs that leave a node, information

on the correlation matrix is available. Let [n − 1] denote the subset of nodes {1, 2, . . . , n − 1} and Ai denote

the set of arcs originating from node i for i ∈ [n − 1]. Note that the sets Ai, i ∈ [n − 1] are non-overlapping.

Then, the set of arcs A =
⋃n−1
i=1 Ai. We let t̃i denote the sub-vector of durations t̃ij for arcs (i, j) ∈ Ai. In the

non-overlapping marginal moment model, we define the set of distributions of the random vector t̃ as follows:

Θnmm(µi,σi;ρi∀i) =
{
θ ∈M(<n) : Eθ(t̃i) = µi,Eθ(t̃it̃

T
i ) = µiµ

T
i + Diag(σi)ρiDiag(σi),∀i ∈ [n− 1]

}
, (3.18)

where µi denotes the mean vector for t̃i, ρi ∈ S++
|Ai| denotes the correlation matrix of t̃i and Σi = Diag(σi)ρiDiag(σi)

denotes the covariance matrix of t̃i. However, note that in the definition of (3.18), we assume that the correla-

tion between activity durations of the arcs that originate from different nodes is unknown. This is a reasonable
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assumption in project networks since the local information of activity durations that originate from a node will

typically be better understood by the project manager who might subcontract those activities to a group that

is responsible for that part of the project while the global dependency information is often more complicated to

model. A typical simplifying assumption is to then let the activity durations be independent for arcs leaving

different nodes. The expected project completion time is hard to compute in this case and bounds have been pro-

posed under the assumption of independence (see Fulkerson (1962)). On the other hand, in the model discussed

in this paper, the activity durations are arbitrarily dependent for arcs exiting different nodes. Under partial

correlation information, the distributionally robust project crashing problem for a general network is formulated

as:

min
(µ,σ)∈Ωµ,σ

max
θ∈Θnmm(µi,σi;ρi∀i)

Eθ
(

max
x∈X

t̃
T
x

)
. (3.19)

Under the nonoverlapping marginal moment model, the worst-case expected makespan in (3.19) is equivalent to

the optimal objective value of the following semidefinite maximization problem over the convex hull of the set X

(see Theorem 15 on page 467 in Li et al. (2014)):

max
xij ,wij ,W ij

∑
(i,j)∈A

(
µijxij + σije

T
ijwij

)
s.t. x ∈ X ,1 0

0 ρi

− ∑
(i,j)∈Ai

xij wT
ij

wij W ij

 � 0, ∀i ∈ [n− 1],xij wT
ij

wij W ij

 � 0, ∀(i, j) ∈ A,

By taking the dual of the problem where strong duality holds under the assumption ρi ∈ S++
|Ai| for all i, the

distributionally robust PCP (3.19) is solvable as the semidefinite program:

min
µ,σ,y,d,λ0i,λi,Λi

yn − y1 +

n−1∑
i=1

(λ0i + 〈ρi,Λi〉)

s.t. yj − yi ≥ dij , ∀(i, j) ∈ A,λ0i + dij − µij 1
2 (λi − σijeij)T

1
2 (λi − σijeij) Λi

 � 0, ∀(i, j) ∈ A,λ0i
1
2λ

T
i

1
2λi Λi

 � 0, ∀i ∈ [n− 1],

(µ,σ) ∈ Ωµ,σ.

We next provide an alternative reformulation of the project crashing problem with partial correlation infor-

mation as a convex-concave saddle point problem using the result from the previous section for parallel networks.

Proposition 2. Let xi ∈ <|Ai| have xij as its jth coordinate and define S(xi) = Diag(xi)−xixTi for all i ∈ [n−1].

Under the nonoverlapping multivariate marginal moment model for a general network, the distributionally robust

12



PCP (3.19) is solvable as a convex-concave saddle point problem:

min
(µ,σ)∈Ω(µ,σ)

max
x∈X

fnmm(µ,σ,x), (3.20)

where

fnmm(µ,σ,x) =

n−1∑
i=1

(
µTi xi + trace

(
Σ

1/2
i S(xi)Σ

1/2
i

))
. (3.21)

The objective function is convex with respect to the moment variables µi and Σ
1/2
i (and hence σi for a fixed ρi)

and strictly concave with respect to the arc criticality index variables x.

Proof. See Appendix. �

4 Saddle Point Methods for Project Crashing

In this section, we illustrate the possibility of using first order saddle point methods to solve distributionally

robust project crashing problems.

4.1 Gradient Characterization and Optimality Condition

We first characterize the gradient of the objective function for the parallel network and the general network before

characterizing the optimality condition.

Proposition 3. Define Σ = Diag(σ)ρDiag(σ) and T (x) = Σ1/2S(x)Σ1/2. Under the cross moment model with

a parallel network, the gradient of fcmm in (3.16) with respect to x is given as:

∇xfcmm(µ,σ,x) = µ+
1

2

(
diag(Σ1/2(T 1/2(x))†Σ1/2)− 2Σ1/2(T 1/2(x))†Σ1/2x

)
. (4.1)

The gradient of fcmm in (3.16) with respect to (µ,σ) is given as:

∇µ,σfcmm(µ,σ,x) =
(
x,diag

(
Σ−1/2T 1/2(x)Σ−1/2Diag(σ)ρ

))
. (4.2)

Proof. See Appendix. �

The optimality condition for (3.15) is then given as:

x =P∆

(
x+∇xfcmm(µ,σ,x)

)
(µ,σ) =PΩµ,σ

(
(µ,σ)−∇µ,σfcmm(µ,σ,x)

)
,

(4.3)

where PS(·) denotes the projection onto a set S and ∇ denotes the partial derivative.

Similarly for the general network with partial correlations, we can extend the gradient characterization from

Proposition 3 to the general network. Define T (xi) = Σ
1/2
i S(xi)Σ

1/2
i , ∀i ∈ [n− 1]. The gradients of fnmm with
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respect to x and (µ,σ) are

∇xfnmm(µ,σ,x) =


µ1 + gx(σ1,x1)

µ2 + gx(σ2,x2)
...

µn−1 + gx(σn−1,xn−1)

 , ∇µ,σfnmm(µ,σ,x) =




x1

x2

...

xn−1

 ,


gσ(σ1,x1)

gσ(σ2,x2)
...

gσ(σn−1,xn−1)



 ,

(4.4)

where

gx(σi,xi) =
1

2

(
diag(Σ

1/2
i (T 1/2(xi))

†Σ
1/2
i )− 2Σ

1/2
i (T 1/2(xi))

†Σ
1/2
i xi

)
,∀i ∈ [n− 1],

gσ(σi,xi) =diag
(
Σ
−1/2
i T 1/2(xi)Σ

−1/2
i Diag(σi)ρi

)
,∀i ∈ [n− 1].

(4.5)

The optimality condition for (3.20) is then given as:

x =PX

(
x+∇xfnmm(µ,σ,x)

)
(µ,σ) =PΩµ,σ

(
(µ,σ)−∇µ,σfnmm(µ,σ,x)

)
.

(4.6)

In the next section, we discuss saddle point methods that can be used to solve the problem.

4.2 Algorithm

In this section, we discuss the possibility of the use of saddle point algorithms to solve the distributionally robust

project crashing problem. Define the inner maximization problem φ(µ,σ) = maxx∈X f(µ,σ,x) which requires

solving a maximization problem of a strictly concave function over a polyhedral set X . One possible method is

to use a projected gradient method possibly with an Armijo line search method to compute the value of φ(µ,σ)

and the corresponding optimal x∗(µ,σ). Such an algorithm is described in Algorithm 1 and has been used in

Ahipasaoglu et al. (2016) to solve the inner maximization problem in a discrete choice problem setting.

Algorithm 1: Projected gradient algorithm with Armijo search

Input: µ,σ, X , starting point x0, initial step size α, tolerance ε.

Output: Optimal solution x.

Initialize stopping criteria: criteria← ε+ 1;

while criteria > ε do

z ← PX (x0 +∇xf(µ,σ,x0)),

criteria← ‖z − x0‖,

x← x0 + γ(z − x0), where γ is determined with an Armijo rule, i.e. γ = α · 2−l with

l = min{j ∈ Z+ : f(µ,σ,x0 + α · 2−j(z − x0)) ≥ f(µ,σ,x0) + τα2−j〈∇xf(µ,σ,x0), z − x0〉}

for some τ ∈ (0, 1).

x0 ← x.

end
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The optimality condition (4.6) in this case is reduced to:

(µ,σ) = PΩµ,σ

(
(µ,σ)− F (µ,σ)

)
, (4.7)

where

F (µ,σ) = ∇µ,σf(µ,σ,x∗(µ,σ)). (4.8)

Proposition 4. The operator F as defined in (4.8) is continuous and monotone.

Proof. First, the optimal solution x∗(µ,σ) to max
x∈X

f(µ,σ,x) is unique because of the strict concavity of

f(µ,σ,x) with respect x. Moreover, x∗(µ,σ) is continuous with respect to (µ,σ) since f is strictly concave

with respect to x and X is convex and bounded (see Fiacco and Ishizuka (1990)). In addition, the function

∇µ,σf(µ,σ,x) is continuous with respect to (µ,σ) and x. Therefore, F (µ,σ) is continuous with respect to

(µ,σ). Notice that F (µ,σ) is a subgradient of the convex function φ(µ,σ) = max
x∈X

f(µ,σ,x) (see Rockafellar

(1997)). Hence F is monotone:

〈F (µ̄, σ̄)− F (µ,σ), (µ̄, σ̄)− (µ,σ)〉 ≥ 0, ∀(µ,σ), (µ̄, σ̄) ∈ Ωµ,σ. (4.9)

�

The optimality condition is then equivalent to the following variational inequality (Eaves (1971)) :

find (µ∗,σ∗) ∈ Ωµ,σ : 〈F (µ∗,σ∗), (µ,σ)− (µ∗,σ∗)〉 ≥ 0, ∀(µ,σ) ∈ Ωµ,σ. (4.10)

Under the condition that the operator F is continuous monotone, one method to find a solution to such a

variational inequality is the projection and contraction method (He (1997)). The algorithm is as follows:

Algorithm 2: Projection and contraction algorithm for monotone variational inequalities

Input: Parameters for set Ωµ,σ, the starting point (µ0,σ0), initial step size α, tolerance ε.

Output: Optimal solution (µ,σ).

Initialize stopping criteria: criteria← ε+ 1, set a value of δ ∈ (0, 1).

while criteria > ε do
β ← α

res← (µ0,σ0)− PΩµ,σ ((µ0,σ0)− βF (µ0,σ0))

d← res− β[F (µ0,σ0)− F (PΩµ,σ ((µ0,σ0)− βF (µ0,σ0)))]

criteria← ‖res‖

while 〈res,d〉 < δ‖res‖2 do

β ← β/2

res← (µ0,σ0)− PΩµ,σ ((µ0,σ0)− βF (µ0,σ0))

d← res− β[F (µ0,σ0)− F (PΩµ,σ ((µ0,σ0)− βF (µ0,σ0)))]

end

(µ,σ)← (µ0,σ0)− 〈res,d〉〈d,d〉 · d, (µ0,σ0)← (µ,σ).

end
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5 Numerical Experiments

In this section, we report the results from numerical tests for the distributionally robust project crashing problem.

In the numerical tests, the feasible set of (µ,σ) is defined as

Ωµ,σ =
{

(µ,σ) :
∑

(i,j)∈A

cij(µij , σij) ≤M, µ
ij
≤ µij ≤ µij , σij ≤ σij ≤ σij , ∀(i, j) ∈ A

}
. (5.1)

The cost functions are assumed to be convex and quadratic of the form:

cij(µij , σij) = a
(1)
ij (µij − µij) + a

(2)
ij (µij − µij)2 + b

(1)
ij (σij − σij) + b

(2)
ij (σij − σij)2,∀(i, j) ∈ A, (5.2)

where a
(1)
ij , a

(2)
ij , b

(1)
ij and b

(2)
ij are given nonnegative real numbers. These cost functions are chosen such that: (a)

cij(µij , σij) = 0, namely the cost of activity (i, j) is 0 under normal duration; and (b) cij(µij , σij) is a convex

decreasing function of µij and σi,j .

We compare the distributionally robust project crashing solution with the following models:

1. Deterministic PCP: Simply use the mean value of the random activity durations as the deterministic activity

durations and ignore the variability. The crashing solution in this case is given as:

min
(µ,σ)∈Ωµ,σ :σ=σ̄

max
x∈X

∑
(i,j)∈A

µijxij . (5.3)

2. Heuristic model (Kim et al. (2007)): The crashing solution in this case is given as:

min
(µ,σ)∈Ωµ,σ

max
x∈X

∑
(i,j)∈A

(µij + κ · σij)xij . (5.4)

In the numerical tests, we set κ = 3.

3. Sample Average Approximation (SAA): Assume that the activity duration vector follows a multivariate

normal distribution in which case the SAA solution is given by (2.5). In our experiment, we use a sample

size of N = 5000.

Example 1

In the first example, we consider the small project network in Figure 1. The mean and standard deviation for

the original activity durations are given as

µ1 =


µ̄12

µ̄13

µ̄14

 =


2

2.5

4

 , σ1 =


σ̄12

σ̄13

σ̄14

 =


1

1

2

 , ρ1 =


1 0.5 0

0.5 1 0

0 0 1


µ̄2 =

µ̄23

µ̄24

 =

1

3

 , σ̄2 =

σ̄23

σ̄24

 =

1.5

2

 , ρ2 =

 1 −0.2

−0.2 1


µ̄3 = µ̄34 = 4, σ̄3 = σ̄34 = 3.
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 (µ2, σ2; ρ2)

            (µ3, σ3; ρ3)

            (µ1, σ1; ρ1)

x12

x13

x14

x24

x23

x34

Figure 1: Project Network

For the SAA approach, the correlations between the activity durations originating from different nodes is set to

0. Similarly for the CMM approach, we convert the network to a parallel network by path enumeration. The

minimum value of the mean and standard deviation that can be achieved by crashing is set to half of the mean and

standard deviation of the original activity durations. As the cost budget M is varied from 0 to
∑

(i,j) cij(µij , σij),

the time cost trade-off of the six models: Deterministic PCP (5.3), Heuristic PCP (5.4), SAA (2.5), and the

Distributionally Robust PCP under MMM, CMM and NMM is shown in Figure 2.
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Figure 2: Optimal objective value as cost budget increases

From Figure 2, we see that all the objective functions decreases as the cost budget increases as should be

expected. The deterministic PCP always has the smallest objective, since its objective is the lower bound for

the expected makespan by Jensen’s inequality. The objective value of distributionally robust PCP are tight

upper bounds for the expected makespan under MMM, CMM and NMM. We also find the objective values of

the distributionally robust PCP is fairly close to the expected makespan under normal distribution, and by using
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more correlation information the objective value is closer to the expected makespan under SAA. However, the

objective value of the heuristic PCP is much larger than the objective value of other models implying it is a poor

approximation of the expected makespan. We also see that the objective value of deterministic PCP and heuristic

PCP does not change when the cost budget exceeds a certain value (close to half of the budget upper bound∑
(i,j) cij(µij , σij)). This implies that under these models the critical paths of the two models do not change

beyond this budget and the mean and standard deviation of the activity durations on the critical paths has been

crashed to minimum. In this case, reducing the mean and variance of other activity durations will not change

the objective value of the deterministic PCP and heuristic PCP. In comparison, under uncertainty the objective

values of SAA and the distributionally robust PCP always decreases as the cost increases.

Next, we compare the expected makespan under the assumption of a normal distribution using the crashed solu-

tion of these models. Using the optimal (µ,σ) obtained by the tested models, and assuming that the activity dura-

tion vector follows a multivariate normal distribution with mean µ and covariance matrix Σ = Diag(σ)ρDiag(σ),

we compute the expected makespan by a Monte Carlo simulation with 10000 samples. The results are shown

in Figure 3. As expected, using the optimal solution obtained by SAA, we get the smallest expected makespan.
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Figure 3: The expected makespan under the multivariate normal distribution

When the cost budget is small, the deterministic PCP also provides reasonable decision with small expected

makespan, but this model is not robust. When the budget is large, we observe that the expected makespan of

the deterministic model is much larger than the expected makespans of other models. The heuristic PCP has

better performance that the deterministic PCP, but still the gap of the expected makespan between this model

and SAA is large. The solutions obtained by the distributionally robust models are very close to the expected

makespan of SAA.

We now provide a comparison of the optimal solutions from the various models. Assume the cost function

is linear and the cost budget M = 1
2

∑
(i,j) cij(µij , σij) = 5.4375. In this case the expected makespans are

5.43 (MMM), 5.43 (NMM), 5.40 (CMM) and 5.39 (SAA), and the standard deviation of the makespans are 1.10
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(MMM), 1.10 (NMM), 1.14 (CMM) and 1.18 (SAA). The optimal solutions of the four models are shown in Figure

4. The optimal solutions from the four models are fairly close. For activities (1,2) and (1,3), SAA tends to crash
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(b) Optimal standard deviation
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Figure 4: Optimal solutions obtained by MMM, NMM, CMM and SAA

the mean more while the robust models tend to crash the standard deviation more. We validate this observation

with more numerical examples later.

Example 2

In this example, we consider a project with m parallel activities. The data is randomly generated as follows:

1. For every activity, the mean and the standard deviation of the original activity duration are generated

by uniform distributions µij ∼ U(10, 20), σij ∼ U(6, 10), and the minimal values of mean and standard

deviation that can be obtained by crashing are µ
ij
∼ U(5, 10), σij ∼ U(2, 6).

2. The coefficients in the cost function (5.2) are chosen as follows a
(1)
ij ∼ U(1, 2), a

(2)
ij ∼ U(0, 1), b

(1)
ij ∼ U(1, 2)

and b
(2)
ij ∼ U(0, 1). The amount of the cost budget is chosen as 1

4

∑
(i,j) cij(µij , σij).

We first consider a simple case with two parallel activities. In Figure 5, we plot the optimal values of fcmm as the

correlation between the two activity durations increases from −1 to 1, and compare these values with the optimal

value of fmmm for one such random instance. The worst-case expected project makespan fcmm is a decreasing

function of the correlation ρ, and when ρ = −1 (perfectly negatively correlated), the worst-case expected makespan

under CMM and MMM are the same. Clearly if the activity durations are positively correlated, then the bound

from capturing correlation information is much tighter.

Next, we consider a parallel network with 10 activities. We compute the optimal values of the crashed moments

(µ,σ) under the MMM, CMM and SAA models and compute the expected makespans under these moments by

assuming that the activity durations follows a multivariate normal distribution N(µ,σ). We consider two types

of instances - one with uncorrelated activity durations and the other with highly correlated activity durations.

The distribution of the makespan and the statistics are provided in Figure 6 and Table 1. When the activities are

uncorrelated, with the optimal solution obtained from MMM and CMM, the distribution of the makespan is very
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Figure 5: Optimal value of fcmm and fmmm

close. However when the activities are highly correlated, the distribution is farther apart. As should be expected,

SAA provides the smallest expected makespan under the normal distribution. However, the maximum value and

standard deviation of the makespan obtained by SAA is the largest in comparison to the distributionally robust

models indicating that the robust models provide a reduction in the variability of the makespan.
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(a) Uncorrelated activity durations
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(b) Highly correlated activity durations

Figure 6: Probability density function of the makespan
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Table 1: Statistics of the makespan

Makespan Statistics
Uncorrelated activities Highly correlated activities

MMM CMM SAA MMM CMM SAA

Min 11.9012 11.7435 9.1955 13.744 12.0311 11.2626

Max 34.9514 35.0389 35.3919 35.5185 36.1969 38.0104

Mean 20.5953 20.5539 20.1615 19.167 18.056 17.885

Median 20.312 20.2567 19.832 18.5274 17.2832 17.0001

Std deviation 3.1807 3.1939 3.4344 3.0475 3.4391 3.8575

Finally, we compare the CPU time of solving the SDP reformulation (3.14) and the saddle point reformulation

(3.15) for the distributionally robust PCP under CMM. To solve the SDP (3.14), we used CVX, a package for

specifying and solving convex programs (Grant and Boyd (2014, 2008)) with the solver SDPT3 (Toh et al. (1999),

Tütüncü et al. (2003)). We set the accuracy of the SDP solver with ”cvx precision low”. To solve the saddle

point problem (3.15), we use Algorithm 2 with tolerance ε = 10−3. In our implementation, we used the mean

and standard deviation obtained from MMM by solving a SOCP as a warm start for Algorithm 2. The average

value of the CPU time and the objective function for 10 randomly generated instances is provided in Table 2. For

large instances, it is clear that the saddle point algorithm is able to solve problems to reasonable accuracy for all

practical purposes much faster than interior point method solvers.

Table 2: CPU time of the SDP solver and Algorithm 2

Arcs
CPU time in seconds Objective value

SDP solver Saddle point algorithm SDP solver Saddle point algorithm

20 0.81 4.47 31.642 31.643

40 3.36 9.06 39.273 39.274

60 22.73 37.57 45.909 45.910

80 77.53 71.42 50.400 50.401

100 255.54 169.65 54.261 54.261

120 685.56 297.57 58.541 58.542

140 1749.25 458.60 62.577 62.579

160 ** 568.91 ** 65.025

180 ** 810.99 ** 68.581

200 ** 1255.38 ** 70.919

** means the instances cannot be solved in 2 hours by the SDP solver.

Example 3

In this third example, we consider a grid network (see Figure 7). The size of the problem is determined by its

width and height. Let width=m and height=n in which case there are (m+ 1)(n+ 1) nodes, m(n+ 1) +n(m+ 1)

activities and
(
m+n
m

)
possible critical paths in the project. For example, in Figure 7, m = 6 and n = 4, then there

are 35 nodes, 58 activities and 210 possible critical paths.

We test the distributionally robust project crashing models with randomly generated data. The data is chosen

as follows:
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Start

End

Figure 7: Grid project network with width = 6, height=4

1. For every activity (i, j) ∈ A, the mean and the standard deviation of the original activity duration are

generated by uniform distributions µij ∼ U(5, 10), σij ∼ U(4, 8), and the minimal values of mean and

standard deviation that can be obtained by crashing are chosen as µ
ij
∼ U(2, µij), σij ∼ U(1, σij).

2. For the coefficients in the cost function (5.2), we choose a
(1)
ij ∼ U(2, 4), a

(2)
ij ∼ U(0, 1), b

(1)
ij ∼ U(1, 2) and

b
(2)
ij ∼ U(0, 1) for all (i, j) ∈ A.

3. The amount of the cost budget is chosen as
∑

(i,j) a
(1)
ij (µij − µij) + a

(2)
ij (µij − µij)

2. In the deterministic

model (5.3), an optimal strategy is to reduce the mean of every activity duration to its lower bound without

the change of variance.

4. For simulations, the activities are assumed to be independent which implies that the correlation matrix for

the activity durations is an identity matrix.

Both the deterministic PCP (5.3) and the heuristic PCP (5.4) can be formulated as convex quadratic pro-

grams which can be quickly solved. Solving the distributionally robust PCP and SAA are more computationally

expensive. We compare the expected makespan with the optimal solutions obtained by the Deterministic PCP

(5.3), Heuristic PCP (5.4), SAA and the distributionally robust PCP under MMM and NMM. Let E(T0) denote

the expected makespan without crashing, and E(T1) denote the expected makespan with crashing by the deter-

ministic model (5.3). We define the “reduction” as the percentage of the extra expected makespan achieved by

the other models, that is

100 ·
(
E(T0)− E(Tnew)

E(T0)− E(T1)
− 1

)
,

where E(Tnew) is the expected makespan with crashed activity durations obtained from a project crashing model

(Heuristic, SAA, MMM or NMM).

The numerical results presented in Table 3 are the average of 10 randomly generated instances. With the

crashed activity durations, we compare the expected makespan under four different distributions including normal,

uniform, gamma and the worst-case distribution in NMM. The expected makespans achieved by the distribution-

ally robust PCP are always smaller than the deterministic and heuristic PCP models. The reduction improvement
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Table 3: Expected makespan and reduction

size models objective
|

time
expected makespan reduction (%)

| normal uniform gamma worst-case normal uniform gamma worst-case

2× 1 grid

7 arcs

Deterministic 14.30 | 0.44 20.12 20.22 19.56 30.07 - - - -

Heuristic 45.92 | 0.52 21.41 21.46 21.41 26.76 -14.44 -13.89 -19.85 38.92

MMM 26.04 | 0.72 19.47 19.55 19.36 25.10 8.28 8.55 3.01 59.36

NMM 25.08 | 0.82 19.40 19.48 19.27 25.08 9.10 9.35 3.84 59.69

SAA 19.00 | 42.34 19.00 19.08 18.80 25.84 13.75 14.04 8.93 50.54

2× 2 grid

12 arcs

Deterministic 18.37 | 0.45 28.90 29.03 28.46 45.91 - - - -

Heuristic 59.95 | 0.61 29.06 29.12 29.15 38.43 -1.21 -0.50 -5.56 64.44

MMM 37.71 | 0.97 27.32 27.39 27.32 36.73 14.86 15.45 10.51 80.37

NMM 36.71 | 1.14 27.28 27.35 27.28 36.71 15.14 15.74 10.74 80.50

SAA 26.63 | 66.27 26.63 26.70 26.63 38.10 20.49 21.07 15.87 68.86

3× 3 grid

24 arcs

Deterministic 27.72 | 0.54 46.14 46.11 46.09 79.22 - - - -

Heuristic 90.20 | 0.83 44.48 44.48 44.85 63.39 9.96 9.91 7.41 92.88

MMM 61.74 | 1.43 42.52 42.51 42.76 60.74 23.06 22.98 20.92 109.99

NMM 60.73 | 2.50 42.52 42.51 42.74 60.73 23.07 22.99 21.02 110.04

SAA 41.39 | 128.06 41.39 41.39 41.90 63.15 29.46 29.37 25.64 96.37

4× 3 grid

31 arcs

Deterministic 33.00 | 0.62 54.83 54.89 55.67 97.10 - - - -

Heuristic 106.59 | 0.96 52.67 52.67 53.29 77.17 11.37 11.66 12.51 102.54

MMM 74.66 | 1.68 50.30 50.34 50.77 73.65 25.31 25.38 27.18 122.39

NMM 73.64 | 2.98 50.31 50.35 50.79 73.64 25.25 25.33 27.10 122.42

SAA 48.89 | 163.02 48.89 48.91 49.77 76.83 32.44 32.59 32.15 106.45

6× 4 grid

58 arcs

Deterministic 47.63 | 0.85 81.31 81.17 83.64 156.23 - - - -

Heuristic 153.50 | 1.49 76.91 76.82 78.37 121.34 16.87 16.57 19.93 129.10

MMM 116.44 | 2.83 73.60 73.52 74.66 115.41 31.11 30.80 35.74 152.91

NMM 115.41 | 4.58 73.62 73.55 74.65 115.41 31.04 30.72 35.80 152.92

SAA 71.45 | 388.74 71.45 71.26 73.14 120.94 39.16 39.27 41.29 132.79

6× 6 grid

84 arcs

Deterministic 55.77 | 1.07 99.36 99.19 103.30 202.86 - - - -

Heuristic 181.39 | 1.97 92.47 92.37 94.55 153.48 21.42 21.17 27.97 150.56

MMM 147.81 | 3.90 89.12 89.04 90.86 146.78 33.88 33.67 41.66 172.96

NMM 146.77 | 6.28 89.15 89.07 90.84 146.78 33.80 33.58 41.78 172.99

SAA 86.21 | 594.79 86.21 86.05 88.81 154.36 42.87 42.89 48.08 150.41

8× 6 grid

110 arcs

Deterministic 66.33 | 1.31 117.60 117.56 123.52 249.05 - - - -

Heuristic 214.57 | 2.67 109.63 109.51 112.37 187.98 22.04 22.32 31.54 163.40

MMM 180.23 | 5.13 105.34 105.30 107.57 179.20 35.77 35.88 47.10 189.01

NMM 179.19 | 8.08 105.37 105.33 107.58 179.19 35.69 35.80 47.09 189.03

SAA 101.82 | 880.33 101.82 101.65 105.34 188.92 45.51 46.01 53.39 163.36

8× 8 grid

144 arcs

Deterministic 74.47 | 1.62 135.59 135.47 143.48 301.01 - - - -

Heuristic 242.32 | 3.50 125.20 125.03 128.78 223.20 24.65 24.79 36.44 180.68

MMM 214.44 | 6.77 120.64 120.50 123.74 213.40 37.73 37.89 51.21 205.70

NMM 213.40 | 10.43 120.67 120.54 123.78 213.40 37.66 37.81 51.16 205.73

SAA 116.41 |1385.43 116.41 116.11 120.96 225.59 47.87 48.44 58.12 177.91

10× 10 grid

220 arcs

Deterministic 93.18 | 2.50 172.33 171.67 183.83 409.65 - - - -

Heuristic 303.30 | 5.95 158.44 157.90 163.43 299.44 26.64 26.39 41.51 207.00

MMM 287.21 | 10.82 152.56 152.06 156.98 286.18 40.43 40.17 57.00 234.56

NMM 286.17 | 16.88 152.59 152.09 157.06 286.17 40.38 40.11 56.87 234.60

SAA 146.78 |2657.14 146.78 146.14 153.16 303.58 51.79 51.83 64.90 202.32
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Figure 8: Optimal solution comparison of SAA and NMM

of the distributionally robust PCP is much larger than the reduction improvement of the heuristic PCP under all

the distributions. In comparison with SAA, we see that the expected makespans obtained by MMM and NMM are

bigger than the expected makespans obtained by SAA under normal, uniform and gamma distributions. However,

the gaps is quite small and under the worst-case distribution the expected makespan of NMM and MMM are

always smaller than the expected makespan of SAA. Moreover, we find that the computational time of solving

MMM and NMM is smaller than solving SAA. Between MMM and NMM, the additional information in this

graph is the correlation between each pair of activities originated from a node. Due to the grid network structure,

we find that the optimal solutions between MMM and NMM are much closer in comparison to the parallel graph

in Example 2.

We also compare the optimal crashing decisions obtained by SAA and the distributionally robust PCP. The

results for all 10 instances for the 8 × 8 gird network are plotted in Figure 8. From the figure, we see that the

SAA model tends to crash the means more while NMM tends to crash the standard deviations more.

6 Conclusions

In this paper, we proposed a class of distributionally robust project crashing problems that is solvable in poly-

nomial time where the objective is to choose the first two moments to minimize the worst-case expected project

makespan. While semidefinite programming is the typical approach to tackle such problems, we provide an alter-

native saddle point reformulation over the moment and arc criticality index variables which helps us use saddle

point methods to solve the problem. Numerical experiments show that this can help us solve larger instances of

such problems. Furthermore, in terms of insights the robust models tend to crash the standard deviations more

in comparison with the sample average approximation for standard distributions such as the mulivariate normal

distribution.
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We believe there are several ways to build on this work. Given several developments that have occurred in

first order methods for saddle point problems in the recent years, we believe more can be done to apply these

methods to solve distributionally robust optimization problems. To the best of knowledge, little has been done in

this area thus far. Another research direction is to identify new instances where distributionally robust project

crashing problem is solvable in polynomial time. Lastly it would be interesting if these results can be used to

find approximation guarantees for the general distributionally robust project crashing problem with arbitrary

correlations.

Appendix

Proof of Proposition 2

We consider the inner maximization problem of (3.19), which is to compute the worst-case expected duration

of the project with given mean, standard deviation and partial correlation information of the activity durations

under the nonoverlapping structure. We denote it by

φnmm(µ,σ) = max
θ∈Θnmm(µi,σi;ρi,i∈[n−1])

Eθ

(
max
x∈X

n−1∑
i=1

c̃Ti xi

)
. (6.1)

Applying Theorem 15 on page 467 in Li et al. (2014), the worst-case expected makespan in (6.1) is formulated as

the following SDP:

φnmm(µ,σ) = max
xij ,wij ,W ij

∑
(i,j)∈A

eTijwij

s.t. x ∈ X , 1 µTi

µi Σi + µiµ
T
i

−∑(i,j)∈Ai

xij wT
ij

wij W ij

 � 0, ∀i ∈ [n− 1],xij wT
ij

wij W ij

 � 0, ∀(i, j) ∈ A.

(6.2)

To show the result of Proposition 2, we need the following lemma:

Lemma 1. The SDP problem (6.2) can be simplified as

max
x,Y i

n−1∑
i=1

trace(Y i)

s.t. x ∈ X ,
Σi + µiµ

T
i Y T

i µi

Y i Diag(xi) xi

µTi xTi 1

 � 0, ∀i ∈ [n− 1].

(6.3)
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Proof. First, we show the optimal value of (6.2) ≤ the optimal value of (6.3). Consider an optimal solution

to the SDP (6.2) denoted by (x∗ij ,w
∗
ij ,W

∗
ij) for (i, j) ∈ A. Let x = x∗ and Y T

i eij = w∗ij for all (i, j) ∈ A. Then

trace(Y i) =
∑

(i,j)∈Ai
eTijw

∗
ij , which implies

n−1∑
i=1

trace(Y i) =
∑

(i,j)∈A

eTijw
∗
ij .

Next we verify that xi,Y i, i ∈ [n− 1] is feasible for (6.3). For an i ∈ [n− 1], we consider the case with all the xij

values being strictly positive first. In this caseΣi + µiµ
T
i µi

µTi 1

−
Y T

i

xTi

Diag(xi)
−1
(
Y i xi

)

=

Σi + µiµ
T
i − Y

T
i Diag(xi)

−1Y i µi − Y
T
i 1

µTi − 1TY i 1− 1Txi


=

Σi + µiµ
T
i −

∑
(i,j)∈Ai

w∗
ijw

∗
ij

T

xij
µi −

∑
(i,j)∈Ai

w∗ij

(µi −
∑

(i,j)∈Ai
w∗ij)

T 1− 1Txi


�

 Σi + µiµ
T
i −W

∗
ij µi −

∑
(i,j)∈Ai

w∗ij

(µi −
∑

(i,j)∈Ai
w∗ij)

T 1−
∑

(i,j)∈Ai
xij


� 0.

The last two matrix inequalities come from the feasibility condition of (6.2). The case with some of the variables

xij = 0 is handled similarly by dropping the rows and columns corresponding to the zero entries. Thus the

solution (Y i,xi), i ∈ [n− 1] is feasible to the semidefinite program (6.3) by the Schur complement condition for

positive semidefiniteness . Therefore, the optimal value of (6.2) is less than or equal to the optimal value of (6.3).

Next, we show the optimal value of (6.2) ≥ the optimal value of (6.3). Consider an optimal solution to (6.3)

denoted by (Y ∗i ,x
∗
i ), i ∈ [n− 1]. For an i ∈ [n− 1] we consider the case x∗ij are all positive for (i, j) ∈ Ai. From

Schur’s complement, the positive semidefiniteness constraint in (6.3) is equivalent to:Σi + µiµ
T
i − Y

∗
i
T

Diag(x∗i )
−1Y ∗i µi − Y

∗
i
T
1

µTi − 1TY ∗i 1− 1Tx∗i

 � 0,

Define: W ij wij

wT
ij xij

 =

Y ∗i TeijeTijY ∗i /x∗ij Y ∗i
T
eij

eTijY
∗
i x∗ij

 , (i, j) ∈ Ai.

Then (W ij ,wij ,xij), (i, j) ∈ A is a feasible solution to the SDP (6.2), the objective function has the same value

as the optimal objective function value of (6.3). As before, the case with some of the x∗ij = 0 can be handled by

dropping the rows and columns corresponding to the zeros. Therefore, the optimal value of (6.2) is greater than

to equal to the optimal value of (6.3). �
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Given the formulation (6.2) and using Theorem 2 from Ahipasaoglu et al. (2016) for each node i, it is easy to

verify that the SDP (6.3) is equivalent to:

max
x∈X

n−1∑
i=1

(
µTi xi + trace

((
Σ

1/2
i S(xi)Σ

1/2
i

)1/2
))

. (6.4)

Therefore, the project crashing problem is equivalent to

min
(µ,σ)∈Ωµ,σ

max
x∈X

n∑
i=1

(
µTi xi + trace

((
Σ

1/2
i S(xi)Σ

1/2
i

)1/2
))

, (6.5)

where Σi = Diag(σi)ρiDiag(σi) is a matrix function of σi, S(xi) = Diag(xi) − xixTi . The convexity of the

objective function with respect to µi and Σ
1/2
i and concavity with respect to the xi variables follows naturally

from Proposition 1.

Proof of Proposition 3

The gradient of the function with respect to x is derived in Theorem 4 in Ahipasaoglu et al. (2016). The gradient

with respect to µ is straightforward. We derive the expression for the gradient of fcmm with respect to σ next.

Towards this, we first characterize the gradient of the trace function f(A) = trace((ASA)1/2) with A defined on

the set of positive definite matrices.

Proposition 5. Function f : Sn++ → < is defined as f(A) = trace((ASA)1/2) where S ∈ S++
n . When the matrix

S is positive definite, then the gradient of f at the point A is

g(A) =
1

2
[A−1(ASA)1/2 + (ASA)1/2A−1]. (6.6)

Proof. Let F (A) = (ASA)1/2, then f(A) = trace(F (A)). For a given symmetric matrix D,

F (A+ tD)− F (A) = (ASA+ED(t,A))1/2 − (ASA)1/2,

where ED(t,A) = t(DSA + ASD) + t2DSD. Since both A and S are positive definite, the matrix ASA is

positive definite. Let L1/2(ASA,ED(t,A)) (or L1/2 in short format) denote the Fréchet derivative for the matrix

square root which is the unique solution to the Sylvester equation:

(ASA)1/2L1/2 + L1/2(ASA)1/2 = ED(t,A). (6.7)

By the definition of Fréchet derivative, we have

‖F (A+ tD)− F (A)− L1/2(ASA,ED(t,A))‖ = o(‖ED(t,A)‖) = o(t).

Then

f(A+ tD)− f(A) = trace(F (A+ tD)− F (A))

= trace((ASA)−1/2(ASA)1/2[F (A+ tD)− F (A)])
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= trace((ASA)−1/2(ASA)1/2L1/2) + o(t)

=
1

2
trace((ASA)−1/2ED(t,A)) + o(t)

=
1

2
trace((ASA)−1/2[t(DSA+ASD) + t2DSD]) + o(t)

=
1

2
t · trace(SA(ASA)−1/2D + (ASA)−1/2ASD) + o(t).

Hence the directional derivative of f in the direction D ∈ Sn is

∇Df(A) = lim
t→0

1

t
(f(A+ tD)− f(A))

= 〈1
2

[SA(ASA)−1/2 + (ASA)−1/2AS],D〉.

Therefore, the gradient of f at point A is

g(A) =
1

2
[SA(ASA)−1/2 + (ASA)−1/2AS]

=
1

2
[A−1(ASA)1/2 + (ASA)1/2A−1].

�

We next extend the result of Proposition 5 to a more general case in which the matrix S might be singular.

Proposition 6. Function f : Sn++ → < is defined as f(A) = trace((ASA)1/2) where S ∈ S+
n . Then the gradient

of f at the point A is

g(A) =
1

2
[A−1(ASA)1/2 + (ASA)1/2A−1]. (6.8)

Proof. Let f(ε,A) = trace((A(S + εI)A)1/2), ε ∈ (0, 1] , then f(A) = lim
ε↓0

f(ε,A). From Theorem 5 we know

that the gradient of f(ε,A) is

g(ε,A) =
1

2
[A−1(A(S + εI)A)1/2 + (A(S + εI)A)1/2A−1].

For a given symmetric matrix D, there exists δ > 0 such that A + tD � 0 when t ∈ [−δ, δ]. The directional

derivative of f on the direction D is

lim
t→0

1

t
[f(A+ tD)− f(A)] = lim

t→0
lim
ε→0

1

t
[f(ε,A+ tD)− f(ε,A)]

= lim
ε→0

lim
t→0

1

t
[f(ε,A+ tD)− f(ε,A)]

= lim
ε→0
〈g(ε,A),D〉

= 〈g(A),D〉.

In the second equality, we change limits which we justify next. For given matrices A and D, we define

G(ε, t) =

 1
t [f(ε,A+ tD)− f(ε,A)] if t 6= 0,

〈g(ε,A),D〉 if t = 0
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as a function of ε ∈ (0, 1] and t ∈ [−δ, δ]. To show that

lim
t→0

lim
ε→0

G(ε, t) = lim
ε→0

lim
t→0

G(ε, t),

a sufficient condition is (see Theorem 7.11 in Rudin (1964) ):

(a) For every ε ∈ (0, 1] the finite limit limt→0G(ε, t) exists.

(b) For every t ∈ [−δ, δ], the finite limit limε→0G(ε, t) exists.

(c) As t→ 0, G(ε, t) uniformly converges to a limit function for ε ∈ (0, 1].

It is obvious that conditions (a) and (b) are true. A sufficient and necessary condition for (c) is (see Theorem 7.9

in Rudin (1964) ):

lim
t→0

sup
ε∈(0,1]

|G(ε, t)−G(ε, 0)| = 0. (6.9)

Next, we prove the result of (6.9). By the mean value theorem and the proof of Theorem 5, there exists a t1

between 0 and t, such that G(ε, t) = 〈(g(ε,A+ t1D),D〉. Then

G(ε, t)−G(ε, 0) = 〈g(ε,A+ t1D),D)〉 − 〈g(ε,A),D)〉. (6.10)

For t ∈ (−δ, δ), define h(ε, t) = 〈g(ε,A+ tD),D)〉. Let At = (A+ tD), Sε = S + εI, then

∂h(ε, t)

∂t
= lim

∆t→0

1

∆t
trace

(
D(At + ∆tD)−1[(At + ∆tD)Sε(At + ∆tD)]1/2 −DA−1

t [AtSεAt]
1/2
)

= lim
∆t→0

1

∆t
trace

(
DA−1

t (I −∆tDA−1
t + o(∆t))

[
(AtSεAt)

1/2 + L1/2(AtSεAt,∆t(AtSεD +DSεAt)) + o(t)
]

−DA−1
t (AtSεAt)

1/2
)
,

where L1/2(AtSεAt, t(AtSεD +DSεAt)) is the Fréchet derivative of the matrix square root. For simplicity we

denote it by L1/2, and it satisfies

(AtSεAt)
1/2L1/2 + L1/2(AtSεAt)

1/2 = ∆t(AtSεD +DSεAt).

Let L = L1/2/∆t, then

(AtSεAt)
1/2L+ L(AtSεAt)

1/2 = (AtSεD +DSεAt) (6.11)

and

∂h(ε, t)

∂t
= lim

∆t→0

1

∆t
trace

(
DA−1

t (∆tL−∆tDA−1(AtSεAt)
1/2
)

+ o(∆t)

= trace
(
DA−1

t L
)
− trace

(
(DA−1

t )2(AtSεAt)
1/2
)
. (6.12)

L is the solution of the Sylvester equation (6.11) which is unique, hence the partial derivative of h(ε, t) with

respect t exists. Next, we show that ∂h(ε,t)
∂t is bounded for (ε, t) ∈ (0, 1] × (−δ, δ). We can find that the second
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item of (6.12) is well defined and continuous on a compact set [0, 1]× [−δ, δ], hence it is bounded on (0, 1]×(−δ, δ).

For the first item of (6.12), we know that

|trace
(
DA−1

t L
)
| ≤ 1

2
‖DA−1

t ‖2F +
1

2
‖L‖2F ,

where ‖ · ‖F denotes the Frobenius norm of a matrix. ‖DA−1
t ‖2F is continuous in t on the set [−δ, δ], hence it is

bounded. We only need to show that ‖L‖F is bounded. Actually, we can obtain the closed form of L by solving

the Sylvester equation (6.11).

Let P TΛP be the eigenvalue decomposition of AtSεAt. Then (6.11) can be written as

P TΛ1/2PL+ LP TΛ1/2P = (AtSεAt)A
−1
t D +DA−1

t (AtSεAt)

= P TΛPA−1
t D +DA−1

t P
TΛP

Let L̄ = PLP T , we have

Λ1/2L̄+ L̄Λ1/2 = ΛPA−1
t DP

T + PDA−1
t P

TΛ

= ΛE +ETΛ, (6.13)

where E = PA−1
t DP

T . The solution for equation (6.13) is

L̄ij =
λiEij + λjEji

λ
1/2
i + λ

1/2
j

.

Therefore |L̄ij | ≤ (λ
1/2
i +λ

1/2
j ) maxi,j [|Eij |]. Notice that ‖E‖ ≤ ‖P ‖·‖A−1

t D‖·‖P
T ‖ is bounded on (0, 1]×[−δ, δ].

The eigenvalues of At(S + εI)At are no larger than the eigenvalues of At(S + I)At when ε ∈ (0, 1]. Since

‖At(S + I)At‖F is continuous on [−δ, δ], it is bounded. Hence the eigenvalues of At(S + εI)At are bounded on

(0, ε]× [−δ, δ]. Therefore ‖L̄‖F is bound which implies that ‖L‖F is also bounded.

By the above discussion, we know that for all ε ∈ (0, 1], and t ∈ (−δ, δ), there exists a constant M such that

|∂h(ε,t)
∂t | ≤ M. Therefore, for all ε ∈ (0, 1], and t ∈ (−δ, δ), |h(ε, t) − h(ε, 0)| ≤ M |t|. Then by (6.10) and the

definition of h(ε, t),

lim
t→0

sup
ε∈(0,1]

|G(ε, t)−G(ε, 0)| = lim
t→0

sup
ε∈(0,1]

|h(ε, t1)− h(ε, 0)|

≤ lim
t→0

M |t|

= 0.

�

We now provide the proof of the gradient of the function which helps complete the proof.

Proposition 7. Function V : <++
n → < is defined as

V (σ) = trace
((

[ADiag(σ)CDiag(σ)AT ]1/2S[ADiag(σ)CDiag(σ)AT ]1/2
)1/2)

, (6.14)
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where A ∈ <m×n is a matrix with full row rank, C ∈ S++
n is a given positive definite matrix, and S ∈ S+

m is a

given positive semidefinite matrix. Then the gradient of V is

grad(σ) = diag
(
ATh(σ)−1

(
h(σ)Sh(σ)

)1/2
h(σ)−1ADiag(σ)C

)
, (6.15)

where h(σ) = (ADiag(σ)CDiag(σ)AT )1/2.

Proof. Let L(σ, ·) be the Fréchet derivative of h. Then for all unit vector v ∈ <n and t ∈ <,

‖h(σ + tv)− h(σ)− L(σ, tv)‖ = o(t). (6.16)

By simple calculation, we have

h(σ + tv)− h(σ) = (h(σ) +Ev(t,σ))1/2 − h(σ), (6.17)

where Ev(t,σ) = tA[Diag(σ)CDiag(v) + Diag(v)CDiag(σ)]AT + t2ADiag(v)CDiag(v)AT . Let L1/2 denote the

Fréchet derivative of the matrix square root, then

‖h(σ + tv)− h(σ)− L1/2(h(σ)2,Ev(t,σ))‖ = o(‖Ev(t,σ)‖) = o(t). (6.18)

By (6.16) and (6.18), we have

‖L(σ, tv)− L1/2(h(σ)2,Ev(t,σ))‖ = o(t). (6.19)

From the Sylvester equation for the Fréchet derivative of matrix square root, we obtain

h(σ)L(σ, tv) + L(σ, tv)h(σ) = tA[Diag(σ)CDiag(v) + Diag(v)CDiag(σ)]AT + o(t). (6.20)

By the above equation we have ‖L(σ, tv)‖ = O(t).

Let f be the trace function f(A) = trace((ASA)1/2), and g be its gradient as in Theorem 6. Then V (σ) =

f(h(σ)). By the mean value theorem, there exist an α ∈ [0, 1] such that

V (σ + tv)− V (σ) = f(h(σ + tv)− h(σ))

= 〈g(αh(σ + tv) + (1− α)h(σ)), h(σ + tv)− h(σ)〉

= 〈g(αh(σ + tv) + (1− α)h(σ)), L(σ, tv)〉+ o(t)

Then the directional derivative of V at the direction v is

lim
t→0

1

t
(V (σ + tv)− V (σ)) = lim

t→0
〈g(h(σ)), L(σ, tv)〉

= lim
t→0

trace

(
1

2
[h(σ)−1(h(σ)Sh(σ))1/2 + (h(σ)Sh(σ))1/2h(σ)−1]L(σ, tv)

)
= lim

t→0
trace

(
h(σ)−1(h(σ)Sh(σ))1/2L(σ, tv)

)
= lim

t→0
trace (B(σ)h(σ)L(σ, tv)) ,
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where B(σ) = h(σ)−1(h(σ)Sh(σ))1/2h(σ)−1 is a symmetric matrix. By (6.20), we know that

trace (B(σ)h(σ)L(σ, tv)) =
t

2
trace(B(σ)A[Diag(σ)CDiag(v) + Diag(v)CDiag(σ)]AT ) + o(t)

= t · trace(B(σ)ADiag(σ)CDiag(v)AT ) + o(t).

Then

lim
t→0

1

t
(V (σ + tv)− V (σ)) = trace(B(σ)ADiag(σ)CDiag(v)AT )

= 〈diag(ATB(σ)ADiag(σ)C),v〉.

Hence, the gradient of V at σ is diag
(
ATB(σ)ADiag(σ)C

)
and the result is proved. �

Using the result of Proposition 7, the closed form (4.2) for the gradient of fcmm with respect to σ can be

easily obtained.
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