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Abstract

We show how random projections can be used to solve large-scale dense linear programs approx-
imately. This is a new application of techniques which are now fairly well known in probabilistic
algorithms, but have never yet been systematically applied to the fundamental class of Linear Pro-
gramming. We develop the necessary theoretical framework, and show that this idea works in practice
by showcasing its effect on the quantile regression problem, where the state-of-the-art CPLEX solver
fails on large or poorly scaled datasets.

1 Introduction

Linear Programming (LP) lies at the very heart of all of Mathematical Programming (MP): its main
solution algorithms (the simplex algorithm and the interior-point method) are implemented as part of
extremely advanced solver technology, e.g. IBM-ILOG CPLEX [7]. They can yield valid solutions for
very large-scale instances in very short times. So much so, in fact, that “solve an LP” is now routinely
found listed as an “elementary step” in many algorithms. We consider LPs in standard form:

min c>x
Ax = b
x ≥ 0,

 (1)

where c ∈ Rn is a given cost vector, x is vector of n (continuous) decision variables, A is an m×n matrix
with m ≤ n, and b ∈ Rm.

Our idea is to pre-multiply A and b by a “short and fat” k×m carefully chosen random matrix T , so
as to obtain fewer constraints TAx = Tb, and then solve the “shortened and fattened” LP

min{c>x | TAx = Tb ∧ x ≥ 0}. (2)

We shall argue in this paper that there exist matrices T such that Eq. (2) is likely to yield an approximate
solution for Eq. (1).

The technique we propose is application-independent, and applies to all LPs (Eq. (1)). Since it is
probabilistic with increasing success probability in function of instance size, it is most useful with large
LP instances. Moreover, since it involves a pre-multiplication of the constraint matrix of the LP instance
by a reasonably dense random matrix, the original LP is transformed into a dense LP having smaller
size, but yielding approximately the same solution with “high probability”. By this we mean that the
probability approaches 1 as 1 − e−f where f is an increasing function of the size of the instance. Since
most LP solvers exploit sparsity, if the original instance is sparse but large, and the transformed instance
is smaller but dense, our technique may not yield a performance improvement (though extremely recent
— yet unpublished — experiments on network flow LPs seems to point out its usefulness even in case of
huge, sparse instances).
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Although the large majority of LP instances are sparse, there are a few important LP applications
yielding dense instances, such as blending and diet [17, 5] or quantile regression [11] problems. Whereas
most blending instances we have seen were not large-scale, quantile regression instances may be as large
and dense as the databases they involve. We shall therefore consider quantile regression as our motivat-
ing application, and we shall see that size and ill-scaling of the underlying databases prevent quantile
regression computations, even using state-of-the-art solvers such as CPLEX or statistical packages such
as R [16].

We remark that there exist works in the literature that leverage random projections to solve quantile
regression problems (e.g. [4]) but they exploit a different formulation (minimization of ‖Ax − b‖) which
lacks an essential element of the LP in Eq. (1), namely the restriction to the non-negative orthant x ≥ 0.
Showing that random projections preserve order relations is non-trivial: for example, if Ax ≤ b holds and
T is an appropriately sized random matrix with entries from a normal distribution, there is no particular
reason why TAx ≤ Tb should hold. This work is mainly a contribution to LP, but also marks important
progress as regards the range of applicability of random projections.

As regards size and density of the instances our technique can tackle, our results point out that m
in O(103) and a constraint matrix density around 10-15% is already enough to observe improvements.
A side benefit of our technique is that a poorly scaled quantile regression LP, unsolvable for CPLEX
due to ill scaling, transforms into a well-scaled LP. Since many database tables have columns containing
absolute magnitudes (e.g. for gross revenue or expenditures, often in the millions or billions) as well
as percentages (often encoded as fractions in [0, 1]), it is not hard to see that ill scaling is common in
quantile regression problems. If the statistical model being considered is linear, it might be possible to
partly remove ill-scaling by judicious pre- and post-processing; but polynomial models that multiply data
columns generally make such processing impossible. We therefore think that our method also contributes
something fundamentally new and useful to applications yielding ill-scaled instances.

The rest of this paper is organized as follows. In Sect. 2 we introduce random projections and the
Johnson-Lindenstrauss lemma. In Sect. 3 we present our main theoretical result. In Sect. 4 we comment
on the practical applicability of these techniques to LP. In Sect. 5 we introduce the quantile regression
problem, and in Sect. 6 we discuss computational experiments.

2 Random projections

The term “random projections” is usually employed to describe a certain class of linear maps (commonly
represented by matrices) which satisfy the claim of the celebrated Johnson-Lindenstrauss Lemma (JLL)
[10], i.e.

given n points in Euclidean space, [. . . ] the smallest k = k(n) so that these points can be
moved into k-dimensional Euclidean space via a transformation which expands or contracts all
pairwise distances by a factor of at most 1 + ε [is] k ≤ C(ε) log n [for some universal constant
C].

This is proved by choosing a random orthogonal projection on Rk and showing that with positive prob-
ability it satisfies the required condition. A more modern statement of the JLL is provided in [6].

2.1 Theorem ([6])
For any 0 < ε < 1 and any integer n, let k be O( 4

ε2/2−ε3/3 log n). Then for any set X of n points in Rm,

there is a map f : Rm → Rk such that for all x, y ∈ X we have

(1− ε)‖x− y‖22 ≤ ‖f(x)− f(y)‖22 ≤ (1 + ε)‖x− y‖2. (3)

Furthermore, f can be found in randomized polynomial time.
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The proof goes on to show that if f(x) = T x (for x ∈ X), where T is a k ×m matrix each component
of which is sampled randomly from a normal distribution N (0, 1√

k
) [8], then f satisfies Eq. (3) with

probability at least 1
n (the probability can be increased arbitrarily by repeating the sampling sufficiently

many times — in the set-up presented in [6], O(n) times are prescribed).

Random projections have been used to design theoretically efficient algorithms for nearest neighbours
[8, 9], to speed up clustering in high-dimensional spaces [3] as well as the efficiency of linear Support
Vector Machines (SVM) [14]. It has also been used, interestingly, to perform quantile regression [4] in a
way that is different from what we suggest in this paper, namely the problem is reduced to min ‖Ax− b‖1
(as observed above, this eschews the difficulty of preserving the orthant x ≥ 0). Our technique can be
used to approximately solve any LP; we showcase its usefulness in particular to an LP formulation of the
quantile regression problem.

We remark that the random projector T is a fully dense matrix, in general. This property can be
relaxed by approximating the normal distribution by the discrete distribution which picks +1 or −1 with

equal probabilities
√
s

2s and 0 with probability
√
s(1 − 1

s ): we find s = 3 in [1] and s =
√
m or s = m

logm

in [13].

3 Approximately preserving LP optimality

For any LP P (with minimization direction in the objective function), we denote by v(P) the optimal
objective function value of P. We denote infeasibility by v(P) = +∞ and unboundedness by v(P) =
−∞. We denote the system of constraints of P by con(P) and its feasible set by F(P). If F(P) 6= ∅,
we write feas(P). If the constraint matrix A in con(P) is m×n, and T is a k×n matrix, we write TP to
denote the LP obtained by pre-multiplying con(P) by T , namely TP ≡ min{c>x | TAx = Tb ∧ x ≥ 0}.

In this section we are going to argue that, if F(P) is non-empty and bounded, and T is an appro-
priately sized random projector, we have v(P) ≈ v(TP) with overwhelming probability (w.o.p.). The
approximation relation ≈ will be defined in Thm. 3.3. By “w.o.p.” we mean that the probability of
the event referred to is 1 − ψ(k), where ψ(k) → 0 as k → ∞. Typically, ψ(k) is O(e−k). We encode
the boundedness assumption of P as the statement that there exists a constant θ ≥ 1 and an optimal
solution x∗ of P such that

∑
j≤n

x∗j ≤ θ.

We first show that one can project just a subset of the constraints of an LP.

3.1 Lemma
Let P be an LP in standard form min{c>x | Ax = b ∧ x ≥ 0}, T be a k × n random projector, and Q
be an LP such that con(Q) is the system

Ax = b ∧ A′x ≤ b′ ∧ x ≥ 0,

where A is m×n, A′ is m′×n and T is k×n. If feas(P)↔ feas(TP) w.o.p., then there exists a matrix
T ′ such that feas(Q)↔ feas(T ′Q).

Proof. It suffices to take T ′ =

(
T 0
0 Im′

)
. 2 2

We remark that Lemma 3.1 assumes that random projections can preserve feasibility and optimality of
an LP: if that is the case, then the lemma says that one can also just project a part of the constraints,
rather than all of them. The objective of the rest of this section is to prove that that assumption holds,
i.e. random projections do preserve LP feasibility and optimality w.o.p.
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The fact that if Ax = b ∧ x ≥ 0 is feasible, then TAx = Tb ∧ x ≥ 0 is also feasible should be obvious,
as T simply achieves a weighted aggregation of feasible constraints (there is no probability involved in
this statement). The fact that if Ax = b∧ x ≥ 0 is infeasible, then the projected version is also infeasible
is not true in general, but it was shown in [12] that it holds w.o.p., since random projections preserve
separating hyperplanes and distances from a point to a cone w.o.p.

3.2 Theorem ([12])
Given an LP P in standard form (Eq. (1)) and an appropriately sized random projector T , the statement
feas(P)↔ feas(TP) holds w.o.p.

Now let P be the given LP, with bounded non-empty feasible set and a primal solution x∗ such
that

∑
j x
∗
j ≤ θ for some θ ≥ 1. We enforce this assumption by means of a single inequality constraint∑

j xj ≤ θ, so that P is the following problem:

P ≡ min{c>x | Ax = b ∧
∑
j≤n

xj ≤ θ ∧ x ≥ 0}.

By Lemma 3.1 and Thm. 3.2, we can extend the definition of TP to cover LPs other than in standard
form as follows:

TP ≡ min{c>x | TAx = Tb ∧
∑
j≤n

xj ≤ θ ∧ x ≥ 0}.

Our main theorem follows.

3.3 Theorem
Given δ > 0, we have v(P)− δ ≤ v(TP) ≤ v(P) w.o.p.

We remark that most of the technical complexity behind the statement of Thm. 3.3 is hidden in the
“w.o.p.”. A more precise statement is that given δ > 0 there is an ε, expressed as a function of δ, that
ensures that v(P)− δ ≤ v(TP) ≤ v(P) with probability exceeding 1− 4n e−C(ε2−ε3)k, where k is as in
Thm. 2.1 and C is a universal constant.

We only sketch the proof; our sketch hides all of the technical details behind the “w.o.p.” statement,
but maintains the proof structure. The boundedness constraint

∑
j xj ≤ θ is used to show that a

separation argument based on that constraint has overwhelming probability of being projected (we already
mentioned that random projections preserve separating hyperplanes [12]).

Proof sketch. For v(TP) ≤ v(P) (the “easy” part of the proof), it suffices to remark that TAx = Tb
is a weighted aggregation of the constraints Ax = b, and hence any feasible solution of P is also feasible
in TP. Moreover, P and TP have the same objective function, so TP is actually a relaxation of P,
whence v(TP) ≤ v(P). For the converse, we first reduce P to a Linear Feasibility Problem (LFP), in
function of a given parameter δ ≥ 0, as follows:

c>x = v(P)− δ
Ax = b
x ≥ 0.

 (4)

We note that, by definition of v(P), Eq. (4) is infeasible for all δ > 0. By Thm. 3.2 and Lemma 3.1,

c>x = v(P)− δ
TAx = Tb

x ≥ 0.

 (5)

is infeasible w.o.p. for all δ > 0. Hence

c>x < v(P)− δ
TAx = Tb

x ≥ 0.

 (6)
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is also infeasible w.o.p. This means that c>x ≥ v(P)− δ holds w.o.p. for any x ∈ F(TP), which proves
that v(P)− δ ≤ v(TP) w.o.p. 2

4 Practical applicability

Many applications of random projections to computer science described in the literature are theoretical
in nature (see e.g. [1, 9, 15]). The empirical study [18] was designed to test the direct applicability of
the JLL (Sect. 2) in view of determining the value of certain parameters best suited to speed up the
k-means clustering algorithm. The application to neuroscience in [2] is almost philosophical in nature,
illustrating how the brain itself might conceivably be doing something similar to random projections in
order to compress information. Although random projections are regularly used empirically [3, 14, 4],
we found it somewhat surprising that such an apparently easy-to-use tool is not employed more often in
practice.

Our experience provides evidence that random projections are only apparently easy to use, specially
with respect to optimization. We found it extremely difficult to obtain good results, for both technical
as well as theoretical reasons. In this section we discuss these difficulties and the way we tackled them.

4.1 The optimal value and the optimum

We remark that the main theorem of Sect. 3 only shows that random projections preserve optimality
(w.o.p.) in the sense of the optimal objective value, rather then the actual optima. By running preliminary
computational experiments, we found that the optima of TP were often infeasible w.r.t. the constraints
of P. We remark that Thm. 3.2 only states that feas(P) ↔ feas(TP) w.o.p.; while obviously every
solution of P is feasible in TP (which just lists aggregated constraints of P), nothing is said about the
solutions of TP. These experiments motivated us to prove the following result.

4.1 Proposition
Let P be a feasible LP in standard form (Eq. (1)) with non-empty relative interior, and T be an
appropriately sized random projector. If feas(P) and x∗ is uniformly sampled in F(TP) (which we
assume to be equipped with a uniform probability measure µ), then the event x∗ ∈ F(P) has probability
zero.

Proof. Let F = F(P) and TF = F(TP). For each v ∈ ker(T ) we let

Fv = {x ≥ 0 | Ax− b = v} ∩ TF (7)

(note that F0 = F ). We aim to show that Prob(x∗ ∈ F ) = 0, and proceed by contradiction: suppose
Prob(x∗ ∈ F ) = p > 0. We shall prove that there is a δ > 0 and a family V of infinitely many v ∈ ker(T )
such that

Prob

(
x∗ ∈

⋃
v∈V

Fv

)
≥
∑
v∈V

δ = +∞,

leading to a contradiction. The case where random projectors are actually useful is when k � m, so we
can assume dim(ker(T )) ≥ 1. So ker(T ) must contain at least one segment [−u, u]. Moreover, since the
relative interior of F is non-empty, we can choose ‖u‖ small enough so that [−u, u] also belongs to the
set {Ax− b | x ≥ 0}. For the same reason, there is x̄ > 0 such that Ax̄ = b. Let x̂ be such that Ax̂ = −u.
Then, since x̄ > 0, there is a constant M > 0 large enough so that 2x̂ ≤Mx̄. For all N ≥M and for all
x ∈ F , we let x′N = x̄+x

2 − 1
N x̂. This yields Ax′N = b − 1

NAx̄ = b + u
N and x′N = x

2 + ( x̄2 −
x̂
N ) ≥ 0. We

therefore obtain x̄+F
2 − 1

N x̂ ⊆ Fu/N (where Fu/N is as in Eq. (7) with v replaced by 1
N u), which implies
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that, for all N ≥M ,

Prob(x∗ ∈ Fu/N ) = µ(Fu/N ) ≥ µ
(
x̄+ F

2

)
≥ Cµ(F ) = Cp > 0

for some constant C > 0, which proves the claim. 2 2

One might argue that we are interested in extreme points of TF rather than a uniformly sampled
point in TF , since this is what we obtain from solving TP in practice. We were able to prove that this
does not help either.

4.2 Solution recovery

We were able to circumvent the setback discussed in Sect. 4.1 by considering the dual LP of P and TP
(where T is an appropriately sized random projector):

D ≡ max{b>y | A>y ≤ c} (8)

TD ≡ max{(Tb)>y | (TA)
>
y ≤ c}. (9)

Most existing LP solvers will output both primal and dual solution pairs (x∗, y∗) to any given LP in
standard form Eq. (1). If we solve TP and get a primal/dual solution pair (x′, y′), however, we know by
Prop. 4.1 that x′ is almost never a solution of P.

4.2 Proposition
y∗ = T>y′ is a feasible solution of D .

Proof. The proof is simply (TA)
>
y′ = (A>T>)y′ = A>(T>y′) = A>y∗ ≤ c, from which it follows, by

Eq. (9), that y′ is a solution of TD . 2 2

It is somewhat more involved to find a dual optimal solution of D . By Thm. 3.3, we know we can find
the optimal objective function value c∗ = v(P) w.o.p. by simply solving TP. We consider the following
auxiliary LP Q, defined for any uniformly chosen random vector α ∈ (0, 1)n:

Q ≡ min{α>x | c>x = c∗ ∧Ax = b ∧ x ≥ 0}, (10)

with associated projected LP TQ defined by replacing Ax = b by TAx = Tb (as per Lemma 3.1 applied
to a pair of inequalities c>x ≤ c∗ and c>x ≥ c∗). By Prop. 4.2 we obtain a dual solution y′ to TQ whose
primal x′ satisfies cx′ = c∗ and is therefore optimal for TP.

4.3 Lemma
Let y′ be an optimal dual solution for TQ, where T is a k ×m random projector. Then almost surely

y∗ = A>y′ satisfies exactly k constraints of the system A>y ≤ α at equality.

Proof. Since y′ is dual optimal in TQ it is a basic solution, so it satisfies at least k constraints of
(TA)

>
y ≤ c at equality, and hence by the proof of Prop. 4.2 this also holds for y∗ w.r.t. A>y ≤ c. Let I be

the set of indices of rows of A> corresponding to equalities: then we have A>I y
∗ = αI , i.e. A>I T

>y∗ = αI ,
where M = A>I T

> is an square invertible k× k matrix and y∗ = M−1αI . Suppose there were more than
k constraints satisfied at equality by y∗. Then there would be an index j 6∈ I such that A>j M

−1αI = αj .
But since α is sampled uniformly at random, this happens with probability 0. 2 2

We can now use Lemma 4.3 to reconstruct a primal solution of Q, which is by definition also optimal
for P: we consider the set J of column indices of A (i.e. row indices of A>) such that A>j y < α. By the
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LP complementarity conditions applied to D , (A>j y − α)xj = 0, which implies that xj = 0 for all j ∈ J .

We let J̄ be the complement of J w.r.t. {1, . . . , n}, and consider the subsystem AJ̄xJ̄ = b obtained by
removing the columns of A indexed by J . This is an m × k linear system having rank k. It suffices to
pre-multiply AJ̄ by any k ×m full rank matrix B to obtain the square invertible system BAJ̄xJ̄ = Bb,
which yields a partial solution x∗

J̄
. Finally, re-inserting the zero components indexed by J yields a primal

solution x∗ of P.

5 The quantile regression LP

Quantile regression is a form of regression analysis. Linear regression indicates a regression towards the
mean, but other types of regressions are possible, e.g. towards the median (which is also the 1

2 -quantile), or
towards other arbitrary τ -quantiles, for any τ ∈ [0, 1]. Rather than properly defining quantile regression
in a forum for optimizers, we give an introduction “by analogy with linear regression”, hoping that
everyone is familiar with the latter.

Suppose we have a random variable B, and that we assume that B depends linearly on a vector A
of independent random variables A1, . . . ,Ap, so that B ∼

∑
j≤p xjAj . We do not know the coefficient

vector x = (x1, . . . , xp), but we have a database table A consisting of p columns A1, . . . , Ap ∈ Rq, the
j-th of which is a sample for Aj . We also have a sample b for B. We represent the database table by a
q × p matrix A, its i-th row by Ai and its j-th column by Aj .

Following [19], the sample mean for B can be defined as the optimum of the single-variable optimization
problem arg min

µ∈R

∑
i≤q

(bi − µ)2. The sample mean conditional to B being a linear form in A1, . . . ,Ap can

be defined by generalizing the previous problem as arg min
ν∈Rp

∑
i≤q

(bi − νAi)2. The loss function related to

the sample mean is `(u) = u2.

The sample median for for B can be defined analogously, but with a loss function `(u) = 1
2 |u| [19]. It

is the optimum of arg min
ξ∈R

1
2

∑
i≤q
|bi − ξ|, which can also be written as

arg min
ξ∈R

∑
i≤q

(
1

2
max(bi − ξ, 0)− 1

2
min(bi − ξ, 0)

)
.

Finally, the τ -quantile sample conditional to B being a linear form in function of the multivariate random
variable A is:

β̂ = arg min
β∈Rp

∑
i≤q

(τ max(bi − βAi, 0)− (1− τ) min(bi − βAi, 0)) . (11)

It is well known (and not too surprising) that Eq. (11) can be reformulated exactly to an LP in standard
form. We replace the positive part max(bi − βAi, 0) by an additional variable u+

i and the negative part
min(bi − βAi, 0) by −u−i (for all i ≤ q), and obtain min{τ1u+(1− τ)1u− | Aβ + u+ − u− = b ∧ u ≥ 0}.
This can be simply written as the following LP:

min
β,u+,u−

τ1>u+ + (1− τ)1>u−

Aβ + u+ − u− = b
u+, u− ≥ 0.

 [QR] (12)

We note that the constraint matrix of Problem [QR] (Eq. (12)) can be written as the m × n matrix
B = (A | Im | − Im), where m = q and n = p+ 2m. If A is dense, then we can expect B to be reasonably
dense. Moreover, since A is a (numeric) database, it can be as large as desired. This turns out to be a
good testbed for our technique, as we shall see.
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We also remark that, although the LP in Eq. (12) is not in standard form, unrestricted variables such
as β are easy to deal with, as ‖Ax−b‖22 is projected to ‖TAx−Tb‖22 w.o.p. directly by Thm. 2.1 whenever
x is unrestricted. As already mentioned, the reason why random projections do not apply to LPs directly,
and why our results are important, is that the projection w.o.p. of a given orthant is non-trivial to prove.

6 Computational experiments

We report results on two different sets of computational experiments. The first consists of randomly
generated instances where we are able to compute the quantile exactly. These are used to check that
the projected LP actually gives an approximate solution that is close to the correct one. This empirical
verification is necessary since random projection results are asymptotic, and may fail for “small” instances.
The second consists of two difficult instances, on which we were unable to compute the quantile precisely.

All our results have been obtained by running the IBM ILOG CPLEX 12.6.2 [7] on a twin-core 3.1GHz
Intel Core i7 CPU virtually appearing as a quad-core to the operating system (OSX 10.11.6), configured
with 16GB RAM. All non-CPLEX related computation was carried out using Python 2.7 (and hence
slower than it could be, since Python is not a compiled language). We note moreover that much faster
implementations exist for matrix multiplications than the default ones provided by Python; in this sense,
the time gain in using our techniques could be even larger.

In all experiments we used the CPLEX barrier algorithm. In both test sets, projected LPs have been
solved with the crossover option active, which guarantees the solution to be exact.

We used an evaluation of the universal constant C involved in the asymptotic term O(log n) for the
projected dimension k (see Thm. 2.1) of C = 1.8 (derived from a mixture of experimentation and advice
found in [18]). We also pursued a couple of other (minor) software engineering tuning actions, which
would take too long to explain here. We remark that in each case, we only ever sampled the random
projector T once.

To obtain computational results, we proceed as follows. We first solve the original LP P (11) to
optimality to obtain the primal/dual solution pair (x∗, y∗) and f∗ = v(P ). We then solve the projected
LP TP to optimality to obtain the solution pair (x̄, ȳ) and the optimal value f̄ . By Prop. 4.1 we ignore
x̄, and use the results of Sect. 4.2 to recover an approximate primal solution x′ from the projected dual
ȳ. We note that x∗ = (β∗, u∗) and x′ = (β′, u′). Our main quality measure compares β∗ to β′ (both
vectors in Rp) to extract the mean component error (MCE):

MCE(β∗, β′) =
1

p
‖β∗ − β′‖2. (13)

We would also like to ascertain whether the projected solution is within the JLL multiplicative error

factor ε (see Thm. 2.1). Since this error is related to the columns of A by ε ≥
∣∣1 − ‖TAi−TAj‖2

‖Ai−Aj‖2

∣∣, we

consider the dual solutions y∗ and ȳ∗, and compute the mean dual projection error (MDPE):

MDPE(y∗, ȳ) =

∣∣∣∣1− 1

n

∑
j≤n

‖ȳ − TAj‖2
‖y∗ −Aj‖2

∣∣∣∣. (14)

6.1 Random instances

We generated random q × p data matrices A and corresponding random columns b ∈ Rq, as follows:
every component of A is sampled uniformly at random from [0, 1], and b = Aβ + 1

p+1N (0, 1) where

each component of β ∈ Rq is sampled uniformly at random from [0, 1]. Eight instances were generated
for q ∈ {2000, 3000} and p ∈ {100, 500, 1000, 1500}, and computed MCE and MDPE for every quantile
τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Only aggregated results (over all 40 instances) are presented in Table 1. The
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MCE MDPE f∗ f̄ CPU T CPU
Average 2.51E-05 0.09 2.18 1.31 104.62 73.57
Standard deviation 3.75E-05 0.07 3.14 2.04 121.69 38.93

Table 1: Aggregated results on random instances. We also report comparative CPU times (T CPU are
the wall-clock seconds of CPU taken to solve TP).

MCE being O(10−5) and p being O(103) yields an absolute error in the order O(10−2), which must be
related with solution vectors β with components in O(10−1): this yields an approximation ratio O(ε)
(with ε = 0.1). The MDPE is also O(ε). By contrast, f̄/f∗ ≈ 0.6.

6.2 Two realistic instances

We now discuss two realistic instances where quantile regression fails using established tools such as
CPLEX on the LP (11), or even the statistical software R [16]. The first (hh1995f) is the “household
table” from the Russia Longitudinal Monitoring Survey 1995 www.cpc.unc.edu/projects/rlms-hse,
with q = 3783, p = 855, 0.185 density and very poorly scaled. The second (my photos) is a set of 14596
RGB graphic files scaled to 90×90 pixels: it has q = 14596, p = 24300, 0.624 density and is well scaled.
We set ε (Thm. 2.1) to 0.2 for both instances. CPLEX failed by returning (an impossible) “infeasible” on
hh1995f, and by resource exhaustion on my photos. This prevents us from computing MCE and MDPE

measures. We only compute a mean relative feasibility error φ(x′) = ‖Ax′−b‖/q
avg(|b|) of x′ with respect to the

equality constraints of P, shown in Table 2 together with the f̄ = v(TP) and the CPU time taken to
solve it.

φ f̄ T CPU
hh1995f 0.0005 0.0 3.88
my photos 0.0002 0.0 168.67

Table 2: Projected 1
4 -quantile regression on hard instances.
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