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Abstract

We propose simple polynomial-time algorithms for two linear conic feasibility prob-
lems. For a matrix A ∈ Rm×n, the kernel problem requires a positive vector in the kernel
of A, and the image problem requires a positive vector in the image of AT. Both algo-
rithms iterate between simple first order steps and rescaling steps. These rescalings steps
improve natural geometric potentials in the domain and image spaces, respectively. If
Goffin’s condition measure ρ̂A is negative, then the kernel problem is feasible and the
worst-case complexity of the kernel algorithm is O

(
(m3n+mn2) log |ρ̂A|−1

)
; if ρ̂A > 0,

then the image problem is feasible and the image algorithm runs in time O
(
m2n2 log ρ̂−1

A

)
.

We also address the degenerate case ρ̂A = 0: we extend our algorithms for finding
maximum support nonnegative vectors in the kernel of A and in the image of A>. We
obtain the same running time bounds, with ρ̂A replaced by appropriate condition numbers.
In case the input matrix A has integer entries and total encoding length L, all algorithms
are polynomial. Both full support and maximum support kernel algorithms run in time
O
(
(m3n+mn2)L

)
, whereas both image algorithms run in timeO

(
m2n2L

)
. The standard

linear programming feasibility problem can be easily reduced to either maximum support
problems, yielding polynomial-time algorithms for Linear Programming.

1 Introduction

We consider two fundamental linear conic feasibility problems. Consider an m×n matrix
A. In the kernel problem for A the goal is to find a positive vector in ker(A), whereas in
the image problem the goal is to find a positive vector in im(AT). These can be formulated
by the following feasibility problems.

Ax = 0

x > 0
(K++) ATy > 0 (I++)

We present simple polynomial-time algorithms for the kernel problem (K++) and the
image problem (I++). Both algorithms combine a first order method with a geometric
rescaling, which improve natural volumetric potentials.

The algorithms we propose fit into a line of research developed over the past 15 years
[2, 3, 4, 8, 9, 10, 14, 21, 29, 30, 31, 37]. These are polynomial algorithms for Linear
Programming that combine simple iterative updates, such as variants of perceptron [32]
or of the relaxation method [1, 23], with some form of geometric rescaling. The current
paper is the first in a paper series that gives new, more efficient algorithms based on this
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technique and extends it to further applications. Our aim is to build a systematic theory
of geometric rescaling algorithms.

Problems (K++) and (I++) have the following natural geometric interpretations. Let
a1, . . . , an denote the columns of the matrix A. A feasible solution to the (K++) means
that 0 is in the relative interior of the convex hull of the columns ai, whereas a feasible
solution to (I++) gives a hyperplane that strictly separates 0 from the convex hull. For
Goffin’s condition measure ρ̂A, the value |ρ̂A| is the distance of 0 from the relative bound-
ary of the convex hull of the normalized vectors ai/‖ai‖. If ρ̂A < 0, then (K++) is feasible,
and if ρ̂A > 0, then (I++) is feasible.

Both the kernel and image algorithms can be extended to the case ρ̂A = 0, that is, when
0 falls on the relative boundary of the convex hull of the ai’s. We address the following
more general problems: to find a maximum support nonnegative vector in ker(A), and to
find a maximum support nonnegative vector in im(AT). Geometrically, these amount to
identifying the face of the convex hull that contains 0 in its relative interior. By strong
duality, the two maximum supports are complementary to each other.

To highlight the importance of the maximum support problems, let us note that an
algorithm for either maximum support problem can be used directly for an LP feasibility
problem of the form Ax ≤ b (i.e. general LP feasibility) via simple homogenization. While
LP feasibility (and thus LP optimization) can also be reduced either to (K++) or to
(I++) via standard perturbation methods (see for example [33]), this is not desirable
for numerical stability. The maximum support problems provides fine-grained structural
information on LP, and are crucial for exact LP algorithms (see e.g. [36]).

Previous work. We give a brief overview of geometric rescaling algorithms that com-
bine first order iterations and rescalings. The first such algorithms were given by Betke
[4] and by Dunagan and Vempala [14]. Both papers address the problem (I++). The de-
terministic algorithm of Betke [4] combines a variant of Wolfe’s algorithm with a rank-one
update to the matrix A. Progress is measured by showing that the spherical volume of
the cone A>y ≥ 0 increases. This approach was further improved by Soheili and Peña
[30], using different first order methods, in particular, a smoothed perceptron algorithm
[25, 34]. Dunagan and Vempala [14] give a randomized algorithm, combining two different
first order methods. They also use a rank-one update, but a different one from [4], and
can show progress directly in terms of Goffin’s condition measure ρ̂A. Extension of (I++)
to a conic setting were also given [3, 29]

For (K++), as well as for the maximum support version, a rescaling algorithm was
given by Chubanov [10], see also [21, 31]. A main iteration of the algorithm concludes
that in the system Ax = 0, 0 ≤ x ≤ ~e, one can identify at least one index i such that
xi ≤ 1

2 must hold for every solution. Hence the rescaling multiplies A from the right hand
side by a diagonal matrix. (This is in contrast to the above mentioned algorithms, where
rescaling multiplies the matrix A from the left hand side.) The first order iterations are
von Neumann steps on the system defined by the projection matrix.

The algorithm [10] builds on previous work by Chubanov on binary integer programs
and linear feasibility [8, 7], see also [2]. A more efficient variant of this algorithm was
given in [37]. These algorithms use a similar rescaling, but for a non-homogeneous linear
system, and the first order iterations are variants of the relaxation method.

Our contributions. We introduce new algorithms for (K++) and (I++) as well as for
their maximum support versions. If ρ̂A < 0, that is, (K++) is feasible, then the kernel
algorithm runs in O

(
(m3n+mn2) log |ρ̂A|−1

)
arithmetic operations. If ρ̂A > 0, and thus

(I++) is feasible, and the image algorithm runs in O
(
m2n2 log ρ̂−1

A

)
arithmetic operations.

This can be improved to O
(
m3n
√

log n · log ρ̂−1
A

)
using smoothing techniques [25, 34]. The

rescalings improve volumetric potentials in the domain or in the image spaces, that act
as proxies to the condition measure |ρ̂A|.
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For the maximum support variants, we express the running time in terms of appro-
priate condition measures. These are close relatives of measures previously studied in
the interior point literature. The kernel case uses measures θA, a variant of the symme-
try measure introduced by Epelman and Freund [16], and ρ∗A, which is closely related to
Steward’s χA [35]. The maximum support kernel algorithm runs in time O((m3n+mn2)
log(θAρ

∗
A)−1). In the image case, we introduce the measure ω̂A, which is related to the

dual condition measure of Vavasis and Ye [36]. The full support image algorithm runs in
time O

(
m2n2 log(nω̂−1

A )
)
. We also study a natural orthonormal preconditioning where

many of the above condition measures become equivalent (see Section 4 and potentially
improve.

Our algorithms use the real model of computation [5]. However, if the input ma-
trix A ∈ Zm×n is integer of encoding length L, all condition numbers can be bounded
by 2−O(L), and therefore we obtain polynomial running bounds: O

(
(m3n+mn2)L

)
for

both the full support and maximum support kernel algorithms, and O
(
m2n2L

)
for both

full support and maximum support image algorithms; or O
(
m3n
√

log n · L
)

using the
smoothed variants.

Our algorithms improve on the best previous algorithms in the family of rescaling
algorithms. For the maximum support kernel problem, the best previous algorithm was
given by Chubanov [10], in time O(n4L). In applications, the number of rows m can be
much smaller than the number of variables n. If m <

√
n, then our algorithm improves by

a factor Ω(n2/m). Further, we note that the condition numbers may provide much better
running time estimates than the encoding size L used in [10]. For the image problem, our
algorithm improves on Peña and Soheili’s running-time [30] by a factor Ω(

√
m log(n)),

and our smoothed variant improves by a factor Ω(n/
√
m). A summary of running times

is given in Table 1. For better comparability, we expressed all running times in terms of
the encoding length L instead of using the various condition numbers.

Kernel problem
Full support Maximum support
O(n18+3ε · L12+2ε) [7, 2]
O([n5/ log n] · L) [37]
O(n4 · L) [10] O(n4 · L) [10]
O ((m3n+mn2) · L) this paper O((m3n+mn2) · L) this paper

Image problem
Full support Maximum support
O(m3n3 · L) [4]
O(m4n logm · L)[14]
O
(
m2.5n2

√
log n · L

)
[30]

O
(
m3n
√

log n · L
)

this paper O
(
m3n
√

log n · L
)

this paper

Table 1: Running time of geometric rescaling algorithms, in terms of encoding size L.

Our kernel algorithm can be seen as the most natural geometric rescaling algorithm
for the kernel problem. We use a first order iteration used by Dunagan and Vempala
[14], as well as the same rescaling. There are however substantial differences. Most
importantly, Dunagan and Vempala assume ρ̂A > 0, and give a randomized algorithm to
find a feasible solution to the image problem (I++). In contrast, we assume ρ̂A < 0, and
give a deterministic algorithm for finding a feasible solution the kernel problem (K++),
as well as for the more general maximum support problem. The key ingredient of our
analysis is a new volumetric potential.

Our image algorithm is an improved version of Betke’s [4] and Peña and Soheili’s [30]
algorithms. We introduce a new, more efficient rescaling, that enables to decrease the
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number of first order iterations needed. In contrast to rank-1 updates used in all previous
work, we use higher rank updates. For the maximum support image problem, we provide
the first rescaling algorithm.

The full support kernel algorithm was first presented in the conference version [11].
The image algorithm and the maximum support variants for both the kernel and dual
problems are new in this paper. The full support image algorithm was also independently
obtained by Hoberg and Rothvoß [20].

While the current geometric rescaling methods are slower than current interior point or
cutting plane methods, we believe there is much scope for improvement for future research.
Also, they yield important insights into the structure of linear programs, for example, by
identifying interesting subclasses of LPs that can be solved in strongly polynomial time
(see for example [9]).

This paper is the first part in a series exploring geometric rescaling techniques for
Linear Programming. In subsequent papers, we will provide a systematic study of the
various rescaling algorithms and the relationships between them (highlighting the deep
connections with the ellipsoid method), extensions of our algorithms to the oracle model,
as well as applications to submodular function minimization and linear optimization.

The rest of the paper is structured as follows. Section 1.1 introduces notation and
important concepts. Section 1.2 introduces the condition measures relevant to our algo-
rithms, and Section 1.3 briefly surveys relevant first order methods. Section 2 presents the
kernel algorithm in two variants. In Section 2.1 we give an algorithm for the full support
problem (K++) assuming it is feasible. This is extended in Section 2.2 to the maximum
support case. Section 3 details the image algorithm and is subdivided in a similar manner.
Section 4 discusses the relationship of our condition measures to others previously studied
in the literature, and studies a natural preconditioning that leads to improved bounds.

1.1 Notation and preliminaries

For a natural number n, let [n] = {1, 2, . . . , n}. For a subset X ⊆ [n], we let AX ∈ Rm×|X|
denote the submatrix formed by the columns of A indexed by X. For any non-zero vector
v ∈ Rm we denote by v̂ the normal vector in the direction of v, that is,

v̂
def
=

v

‖v‖
.

By convention, we also define 0̂ = 0. We let Â
def
= [â1, . . . , ân]. Note that, given v, w ∈ Rm,

v̂Tŵ is the cosine of the angle between them.

Let Rn+ = {x ∈ Rn : x ≥ 0} and Rn++ = {x ∈ Rn : x > 0} denote the set of nonnegative

and positive vectors in Rn, respectively. For any set H ⊆ Rn, we let H+
def
= H ∩ Rn+ and

H++
def
= H ∩ Rn++. These notations will be used in particular for the kernel and image

spaces

ker(A)
def
= {x ∈ Rn : Ax = 0}, im(AT)

def
= {ATy : y ∈ Rm}.

Clearly, im(AT) = ker(A)⊥. Using this notation, (K++) is the problem of finding a point
in ker(A)++, and (I++) amounts to finding a point in im(AT)++. By strong duality,
(K++) is feasible if and only if im(AT)+ = {0}, that is,

ATy ≥ 0, (I)

has no solution other than y ∈ ker(AT). Similarly, (I++) is feasible if and only if ker(A)+ =
{0}, that is,

Ax = 0

x ≥ 0
(K)
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has no solution other than x = 0. Let us define

ΣA
def
= {y ∈ Rm : ATy ≥ 0}

as the set of solutions to (I).

Given a vector x ∈ Rn, the support of x is the subset of [n] defined by supp(x)
def
= {i ∈

[n] : xi 6= 0}. Given any linear subspace H, we denote by supp(H+) the maximum support
of H+, that is, the unique inclusion-wise maximal element of the family {supp(x) : x ∈
H+}. Note that, since H+ is closed under summation, it follows that supp(H+) = {i ∈
[n] : xi > 0 ∃x ∈ H+}.

Throughout the paper, we denote

S∗A
def
= supp(ker(A)+), T ∗A

def
= supp(im(AT)+). (1)

When clear from the context, we will use the simpler notation S∗ and T ∗. Since ker(A)
and im(AT) are orthogonal to each other, it is immediate that S∗ ∩T ∗ = ∅. Furthermore,
the strong duality theorem implies that S∗ ∪ T ∗ = [n].

Let Id denote the d dimensional identity matrix; we simply use I if the dimension is
clear from the context. Let ~ej denote the jth unit vector, and ~e denote the all-ones vector
of appropriate dimension (depending on the context). For a point p ∈ Rd and r > 0, let
Bd(p, r) denote the ball of radius r centered around p, where we write simply B(p, r) when
the dimension is clear from the context. Let Bd = Bd(0, 1) denote the d dimensional unit
ball, and let νd = vol(Bd) denote its volume.

Given any set C contained in Rd, we denote by span(C) the linear subspace of Rd
spanned by the elements of C. If C ⊆ Rd has dimension r, we denote by volr(C) the
r-dimensional volume of C.

Projection matrices For any matrix A ∈ Rm×n, we denote by ΠI
A the orthogonal

projection matrix to im(AT), and ΠK
A as the orthogonal projection matrix to ker(A). We

recall that ΠK
A + ΠI

A = In, and they can be obtained as

ΠI
A = AT(AAT)+A, ΠK

A = In −AT(AAT)+A,

where (·)+ denotes the Moore-Penrose pseudo-inverse. Note that, in order to compute
ΠI
A and ΠK

A , one does not need to compute the pseudo-inverse of AAT; instead, if we
let B be a matrix comprised by rk(A) many linearly independent rows of A, then ΠI

A =
BT(BBT)−1B, which can be computed in O(n2m) arithmetic operations.

Scalar products We will often need to use scalar products and norms other than the
Euclidean ones. We use the following notation. We denote by Sd+ and Sd++ the sets of
symmetric d × d positive semidefinite and positive definite matrices, respectively. Given
Q ∈ Sd++, we denote by Q

1
2 the square root of Q, that is, the unique matrix in Sd++ such

that Q = Q
1
2Q

1
2 , and by Q−

1
2 the inverse of Q

1
2 .

For Q ∈ Sd++ and two vectors v, w ∈ Rd, we let

〈v, w〉Q
def
= v>Qw, ‖v‖Q

def
=
√
〈v, v〉Q.

These define a scalar product and a norm over Rd. We will use ‖ · ‖1 for the L1-norm and
‖ · ‖2 for the Euclidean norm. When there is no risk of confusion we will simply write ‖ · ‖
for ‖ · ‖2. Further, for any Q ∈ Sd++, we define the ellipsoid

E(Q)
def
= {z ∈ Rd : ‖z‖Q ≤ 1}.
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For a linear subspace H ⊆ Rd, we let EH(Q) = E(Q) ∩ H. Further, we define the
projected determinant of Q on H as

det
H

(Q)
def
= det(W>QW ),

where W is a matrix whose columns form an orthonormal basis of H. Note that the
definition is independent of the choice of the basis W . Indeed, if H has dimension r, then

volr(EH(Q)) =
νr√

detH(Q)
. (2)

We conclude this section by summarizing well-known properties of matrix traces for
later reference. We only prove parts (iii) and (iv).

Lemma 1.1.

(i) For any two matrices X,Y ∈ Rk×d, tr(X>Y ) = tr(XY >).

(ii) The trace is a linear function on square matrices.

(iii) For a positive semidefine matrix X ∈ Rd×d, det(Id +X) ≥ 1 + tr(X).

(iv) For any X ∈ Sd++, det(X)1/m ≤ tr(X)/m.

Proof. (iii): Let λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0 denote the eigenvalues of X, and let Λ denote
the diagonal matrix with entries λi. Then

det(Id +X) =

d∏
i=1

(1 + λi) ≥ 1 +

d∑
i=1

λi = 1 + tr(X),

where the equality is by the nonnegativity of the λi’s.
(iv): Noting that det(X) =

∏d
i=1 λi, this follows by the inequality of arithmetic and

geometric means for the λi’s.

1.2 Condition measures

We will use several condition measures from the literature, and we also introduce natural
new ones for our algorithms. We refer the reader to the survey [6] on condition measures
and their role in the theory of interior point methods.

The most important measure in this context, and used in particular for the convergence
analysis of the full support kernel algorithm, was first introduced by Goffin [18]. Given
A ∈ Rm×n, we define

ρA
def
= max

y∈im(A)\{0}
min
j∈[n]

aTj ŷ. (3)

The Goffin [18] measure of A is the number

ρ̂A
def
= ρÂ.

Note that ρ̂A depends only on the direction of the columns of A, not on their norm.
Furthermore, we have |ρ̂A|(minj∈[n] ‖aj‖) ≤ |ρA| ≤ |ρ̂A|(maxj∈[n] ‖aj‖). We remark that,
in the literature, A is typically assumed to have full row-rank (i.e. rk(A) = m), in
which case y in the above definition ranges over all of Rm. However, in several parts of
the paper it will be convenient not to make such an assumption. The following Lemma
summarizes well-known properties of ρA and ρ̂A; the proof will be given in the Appendix
for completeness.

Lemma 1.2. |ρA| equals the distance of 0 from the relative boundary of conv(A). Further,

(i) ρA < 0 if and only if 0 is in the relative interior of conv(A), or equivalently, S∗ = [n].
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(ii) ρA > 0 if and only if 0 is outside conv(A), or equivalently, T ∗ = [n]. In this case,
the Goffin measure ρ̂A equals the width of the image cone ΣA, that is, the radius of
the largest ball in Rm centered on the surface of the unit sphere and inscribed in ΣA.

Under the assumption that ‖ai‖ ≤ 1 for all i ∈ [n], the full support kernel algorithm
runs in time O

(
(m3n+mn2) log(ρ−1

A )
)
. If we initially renormalize to ‖ai‖ = 1 for all

i ∈ [n], then ρA can be replaced by ρ̂A. The running time of the full support image
algorithm can be bounded in terms of the Goffin measure, as O

(
m2n2 log(ρ̂−1

A )
)
.

In the degenerate case, when 0 is on the boundary, that is S∗ 6= ∅ and T ∗ 6= ∅, ρA will
be 0. Therefore we need alternative condition measures for the maximum support kernel
and image algorithms. We let

θA
def
= min

i∈S∗
max{δ : −δai ∈ conv(A)}, (4)

ρ∗A
def
= min

S⊆[n]
|ρ(AS ,−AS)|, and (5)

ω̂A
def
= min

i∈T ∗
max

{
â>i y : y ∈ Rm, A>y ≥ 0, ‖y‖ ≤ 1

}
, (6)

where (AS ,−AS) is the matrix obtained by juxtaposing the matrix AS and its nega-
tive. The maximum support kernel algorithm runs in time O

(
(m3n+mn2) log(θAρ

∗
A)−1

)
,

whereas the maximum support image algorithm runs in time O
(
m2n2 log(nω̂−1

A )
)
; in the

full support case, log(nω̂−1
A ) can be replaced by log ω̂−1

A . The measure ω̂A is related to the
dual condition measure of Vavasis and Ye [36], see Claim 4.6. In the full support case,
that is, if T ∗ = [n], the measures ω̂A and ρ̂A are essentially equivalent, as shown in the
next statement.

Claim 1.3. If ρ̂A > 0, then ρ̂A ≤ ω̂A ≤ nρ̂A.

Proof. The inequality ρ̂A ≤ ω̂A follows from the definition. For the other inequality, let

y(i) := arg max
{
â>i y : A>y ≥ 0, ‖y‖ ≤ 1

}
,

so that ω̂A = mini∈[n] â
>
i y

(i), and define ȳ =
∑n

i=1 y
(i). Then ρ̂A ≥ ‖ȳ‖−1 mini∈[n] â

T
i ȳ ≥

ωA/n, where the last inequality follows from the fact that ‖ȳ‖ ≤ n and ATy(i) ≥ 0 for all
i ∈ [n].

Consequently, the running time of the full support image algorithm for ρ̂A > 0 can
also be bounded as O

(
m2n2 log(ρ̂−1

A )
)
, the running time stated in the Introduction.

In the kernel full support case (that is, S∗ = [n]), the measure θA is the same as the
symmetry measure of conv(A), introduced by Epelman and Freund [16]. If S∗ = [n], then
θA = 1 if and only if conv(A) is symmetric around the origin, and θA < 1 otherwise.
Regarding ρ∗A, we will show in Lemma 4.5 that it is essentially equivalent to Stewart’s
measure χA [35].

We note that the maximum support algorithms require a priori knowledge of lower
bounds on θA and ω̂A (but not on ρ∗A); the running times are in terms of these lower
bounds rather than the actual values. In contrast, the full support versions require no
prior knowledge of ρA or ρ̂A. It remains an open problem to devise geometric rescaling
algorithms for the maximum support problems that does not require a priori bounds on
the condition numbers. Vavasis and Ye [36] gave such an interior point algorithm that
solves both maximum support problems simultaneously.

All our algorithms are polynomial in the standard bit complexity model, assuming
that we have an integer input matrix A ∈ Zm×n. This follows by the following bounds;
the standard proof is deferred to the Appendix.

Lemma 1.4. Assume A ∈ Zm×n of total encoding length L. Then θA, ρ
∗
A, ω̂A ≥ 2−O(L).

If ρA 6= 0, then |ρA|, |ρ̂A| ≥ 2−O(L).
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Other measures have also been used implicitly in the literature on rescaling algorithms.
For example, Chubanov’s algorithm [10] for finding a maximum support solution to (K),
is essentially about rescaling in order to increase the variant of σKA defined with ∞-norm
instead of 1-norm.

1.3 First order algorithms

Various first order methods are known for finding non-zero solutions to (K) or to (I).
Most algorithms assume either the feasibility of (K++) (that is, S∗ = [n] and T ∗ = ∅), or
the feasibility of (I++) (that is, S∗ = ∅ and T ∗ = [n]). We outline the common update
steps of these algorithms.

At every iteration, maintain a non-negative, non-zero vector x ∈ Rn, and we let
y = Ax. If y = 0, then x is a non-zero point in ker(A)+. If ATy > 0, then ATy ∈ im(A)++.
Otherwise, choose an index k ∈ [n] such that aTk y ≤ 0, and update x and y as follows:

y′ := αy + βâk; x′ := αx+
β

‖ak‖
~ek, (7)

where α, β > 0 depend on the specific algorithm. Below we discuss various possible update
choices.

von Neumann’s algorithm We maintain at every iteration the condition that y is
a convex combination of â1, . . . , ân. The parameters α, β > 0 are chosen so that α+β = 1
and ‖y′‖ is smallest possible. That is, y′ is the point of minimum norm on the line segment
joining y and âk. If we denote by yt the vector at iteration t, and initialize y1 = âk for
an arbitrary k ∈ [n], a simple argument shows that ‖yt‖ ≤ 1/

√
t (see Dantzig [13]). If 0

is contained in the interior of the convex hull, that is ρA < 0, Epelman and Freund [15]

showed that ‖yt‖ decreases by a factor of
√

1− ρ2
A in every iteration. Though the norm

of y converges exponentially to 0, we note that this method may not actually terminate
in finite time. If 0 is outside the convex hull however, that is, ρA > 0, then the algorithm
terminates after at most 1/ρ2

A iterations. A recent result by Peña, Soheili, and Rodriguez
[28] gives a variant of the algorithm with a provable convergence guarantee in the case
ρA = 0, that is, if 0 is on the boundary of the convex hull.

Betke [4] gave a polynomial time algorithm, based on a combinatorial variant of von
Neumann’s update, for the case T ∗ = [n]. Chubanov uses von Neumann’s update on the
columns of the projection matrix ΠK

A , and is able to solve the maximum support problem
in time O(n4L).

Note that von Neumann’s algorithm is the same as the Frank-Wolfe conditional gradi-
ent descent method [17] with optimal step size for the quadratic program min ‖Ax‖2 s.t.
~eTx = 1, x ≥ 0.

Perceptron algorithm The perceptron algorithm chooses α = β = 1 at every itera-
tion. If ρA > 0, then, similarly to the von Neumann algorithm, the perceptron algorithm
terminates with a solution to the system (I++) after at most 1/ρ2

A iterations (see Novikoff
[26]). The perceptron and von Neumann algorithms can be interpreted as duals of each
other, see Li and Terlaky [22].

Peña and Soheili gave a smoothed variant of the perceptron update which guarantees
termination in time O(

√
log n/ρA) iterations [34], and showed how this gives rise to a

polynomial-time algorithm [30] using the rescaling introduced by Betke in [4]. The same
iteration bound O(

√
log n/ρA) was achieved by Yu et al. [39] by adapting the Mirror-Prox

algorithm of Nemirovski [24].
With a normalization to eTx = 1, perceptron implements the Frank-Wolfe algorithm

for the same system min ‖Ax‖2 s.t. ~eTx = 1, x ≥ 0, with step length 1/(k+1) at iteration
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k. An alternative view is to interpret perceptron as a coordinate descent method for the
system min ‖Ax‖2 s.t. x ≥ ~e, with fixed step length 1 at every iteration.

Dunagan-Vempala algorithm The first order method used in [14] chooses α = 1
and β = −(âTk y). The choice of β is the one that makes ‖y′‖ the smallest possible when
α = 1. It can be readily computed that

‖y′‖ = ‖y‖
√

1− (âTk ŷ)2. (8)

In particular, the norm of y′ decreases at every iteration, and the larger is the angle
between ak and y, the larger the decrease. If ρA < 0, then |âTk ŷ| ≥ |ρA|, therefore this

guarantees a decrease in the norm of at least
√

1− ρ2
A.

This is a coordinate descent for the system min ‖Ax‖2 s.t. x ≥ ~e, but with the optimal
step length. One can also interpret it as the Frank-Wolfe algorithm with the optimal step
length for the same system.1

Our kernel algorithm uses Dunagan-Vempala updates, and the image algorithm uses
von Neumann updates. We combine the Dunagan-Vempala updates with a simple pro-
jection step, that guarantees finite convergence for finding a solution to (K++) if ρA < 0,
even without rescaling. This is a relevant contribution in the context of first order algo-
rithms, since von Neumann’s algorithm does not have finite convergence; this aspect is
discussed by Li and Terlaky [22]. Dantzig [12] proposed a finitely converging variant of
von Neumann’s algorithm, but this involves running the algorithm m+ 1 times, and also
an explicit lower bound on the parameter |ρA|. Our algorithm does not incur a running
time increase compared to the original variant, and does not require such a bound.

It is interesting to note that Dunagan and Vempala [14] use these updates for a different
purpose. They address the opposite setting ρA > 0, and use two first order methods as
subroutines: Perceptron for finding a solution once ρA is large, and these updates steps
for the purpose of finding a good rescaling direction.

2 The Kernel Algorithm

Section 2.1 presents the full support kernel algorithm, that is, solving (K++). This is
followed by the maximum support kernel algorithm in Section 2.2. Besides addressing
different problem settings and using different condition numbers, the technical frameworks
are also different. In the full support kernel algorithm, rescalings are applied directly to
the matrix A. In the maximum support variant, we keep the original matrix throughout,
but modify the scalar product at every rescaling. These two frameworks are equivalent,
and the algorithms can be easily translated from one to the other. Rescaling the matrix
directly provides a very clear geometric intuition for the simpler full support setting. On
the other hand, modifying the scalar product is more natural for analyzing the maximum
support problem. We note that both the full support and maximum support versions of
the image algorithm in Section 3 use the scalar product modification framework.

Both versions of the kernel algorithm maintain a vector x ≥ ~e and the conic combi-
nation y = Ax. At every iteration, the algorithm chooses one of two steps: a Dunagan-
Vempala (DV) update, if this results in a “substantial” decrease in the norm of the current
vector y = Ax, or a geometric rescaling aimed at improving the condition measure. We
use the volume of the polytope PA defined by

PA
def
= conv(Â) ∩ (−conv(Â)). (9)

1The Frank-Wolfe method is originally described for a compact set, but the set here is unbounded. Never-
theless, one can easily modify the method by moving along an unbounded recession direction.
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The volume of PA will be used as a proxy to |ρ̂A| in the full support version. Recall
from Lemma 1.2 that |ρ̂A| is the radius of the largest ball around the origin inscribed in
conv(Â). This ball must be contained in PA. Below we state a lemma that shows the
relationship between PA and S∗. The easy proof is postponed to the Appendix.

Lemma 2.1. Let A ∈ Rm×n and S∗ = S∗A. Then span(PA) = im(AS∗), and PA = PAS∗ .

Throughout the kernel and image algorithms, we use the parameter

ε
def
=

1

11m
. (10)

2.1 Full support case

Algorithm 1 Full Support Kernel Algorithm

Input: A matrix A ∈ Rm×n such that ρA < 0 and ‖aj‖ ≤ 1 for all j ∈ [n].
Output: A solution to the system (K++).

1: Compute Π := ΠK
A = In − AT(AAT)+A.

2: Set xj := 1 for all j ∈ [n], and y := Ax.
3: while Πx 6> 0 do
4: Let k := arg min

j∈[n]
âTj ŷ;

5: if âTk ŷ < −ε then

6: update x := x− aTk y

‖ak‖2
~ek; y := y − (âTk y)âk;

7: else
8: rescale A :=

(
Im + ŷŷT

)
A; y := 2y;

return x̄ = Πx as a feasible solution to (K++).

The Full Support Kernel Algorithm (Algorithm 1) solves the full support problem
(K++), that is, it finds a point in ker(A)++, assuming that ρA < 0, or equivalently,
ker(A)++ 6= ∅.

A remark on the condition numbers is in order. We assume w.l.o.g. that the input
matrix A has the property that ‖aj‖ ≤ 1 for all j ∈ [n], and thus |ρA| ≤ |ρ̂A|. The
volumetric analysis relies on the Goffin measure |ρ̂A|, whereas the termination condition
(Lemma 2.6) uses |ρA|. The running time in Theorem 2.2 is stated in terms of |ρA|.
However, if we run the algorithm with the renormalized matrix A, then |ρA| = |ρ̂A|; thus
we obtain a running time bound in terms of |ρ̂A|, as claimed in the Introduction.

We use Dunagan-Vempala (DV) updates as the first order method. We maintain a
vector x ∈ Rn, initialized as x = ~e; the coordinates xi never decrease during the algorithm.
We maintain y = Ax, and a main quantity of interest is the norm ‖y‖2. In each iteration
of the algorithm, we check whether x̄ = Πx, the projection of x onto ker(A), is strictly
positive. If this happens, then x̄ is returned as a feasible solution to (K++).

Every iteration either applies a DV update to x, thus decreasing the norm of y = Ax,
or performs a rescaling of the matrix A. It follows from (8) that, if in a given iteration
there exists k ∈ [n] such that âTk ŷ ≤ −ε, then we obtain a substantial decrease in the
norm, namely

‖y′‖ ≤ ‖y‖
√

1− ε2. (11)

The algorithm proceeds with DV updates as long as there exists such a k ∈ [n]. On the
other hand, if âTj ŷ ≥ −ε for all j ∈ [n], then it follows that |ρ̂A| < ε, that is, the condition
measure of the current matrix A is small. In terms of the polytope PA defined in (9),
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the condition âTj ŷ ≥ −ε for all j ∈ [n] implies then PA is contained in a “narrow strip”

of width 2ε, namely PA ⊆ {z ∈ Rm : −ε ≤ ŷTz ≤ ε}. If we replace A with the matrix
A′ := (I + ŷŷT)A, then Lemma 2.4 implies that vol(PA′) ≥ 3/2vol(PA). Geometrically,
A′ is obtained by applying to the columns of A the linear transformation that “stretches”
them by a factor of two in the direction of ŷ (see Figure 1).

y

1

2

3

4

5

a

b

c

d

e

P
Qv

Figure 1: Effect of rescaling. The dashed circle represent the set of points of norm 1. The
shaded areas are PA and PA′ .

Thus, at every iteration we either have a substantial decrease in the length of the
current y, or we have a constant factor increase in the volume of PA.

The volume of PA is bounded by the volume of the unit ball in Rm, and initially
contains a ball of radius |ρ̂A| around the origin. Consequently, the number of rescalings
cannot exceed m log3/2 |ρ̂A|−1 ≤ m log3/2 |ρA|−1.

The norm ‖y‖ changes as follows. In every iteration where the DV update is applied,
the norm of ‖y‖ decreases by a factor

√
1− ε2 according to (11). At every rescaling, the

norm of ‖y‖ increases by a factor 2. Lemma 2.6 shows that once ‖y‖ < |ρA| for the initial
value of |ρA|, then the algorithm terminates with x̄ = Πx > 0.

Theorem 2.2. For any input matrix A ∈ Rm×n such ρA < 0 and ‖aj‖ ≤ 1 for all j ∈ [n],
Algorithm 1 finds a feasible solution of (K++) in O(m2 log n+m3 log |ρA|−1) DV updates.
The number of arithmetic operations is O(m2n log n +(m3n+mn2) log |ρA|−1).

We prove the statement of Theorem 2.2 in the next subsection (Section 2.1.1). Using
Lemma 1.4, we obtain a running time bound in terms of bit complexity.

Corollary 2.3. Let A be an m×n matrix with integer entries and encoding size L. If ρA <
0, then Algorithm 1 applied to Â finds a feasible solution of (K++) in O

(
(m3n+mn2)L

)
arithmetic operations.

Coordinate Descent with Finite Convergence Before proceeding to the anal-
ysis, let us consider a modification of Algorithm 1 without any rescaling. This yields a
new “pure” coordinate descent method for (K++) in case ρA < 0 with finite convergence,
which was not previously noted in the literature. Again, we assume ‖aj‖ ≤ 1 for all

j ∈ [n]. It follows by (11) that the norm ‖y‖ decreases by at least a factor
√

1− ρ2
A in

every DV update. Initially, ‖y‖ ≤ n, and, as shown in Lemma 2.6, once ‖y‖ < |ρA|, the
algorithm terminates with a solution ΠK

Ax > 0. Hence the total number of DV steps is
bounded by O(log(n/|ρA|)/ρ2

A).
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2.1.1 Analysis

The crucial part of the analysis is to bound the volume increase of PA at every rescaling
iteration.

Lemma 2.4. Let A ∈ Rm×n and let r = rk(A). For some 0 < ε < 1/(11r), let v ∈ Rm,
‖v‖ = 1, such that âTj v ≥ −ε ∀j ∈ [n]. Let T = (I + vvT), and let A′ = TA. Then

i) TPA ⊆ (1 + 3ε)PA′,

ii) If v ∈ im(A), then volr(PA′) ≥ 3
2volr(PA).

The following easy technical claim will be needed. The proof is deferred to the Ap-
pendix.

Lemma 2.5. Let X ∈ R be a random variable supported on the interval [−ε, η], where
0 ≤ ε ≤ η, satisfying E[X] = µ. Then for c ≥ 0, we have that

E[
√

1 + cX2] ≤
√

1 + cη(ε+ |µ|)

Proof of Lemma 2.4.

i) The statement is trivial if PA = ∅, thus we assume PA 6= ∅. Consider an arbitrary
point z ∈ PA. By symmetry, it suffices to show Tz ∈ (1 + 3ε)conv(Â′). By definition,
there exists λ ∈ Rn+ such that

∑n
j=1 λj = 1 and z =

∑n
j=1 λj âj . Note that

Tz =
n∑
j=1

λjT âj =
n∑
j=1

(λj‖T âj‖)â′j =
n∑
j=1

λj

√
1 + 3(vTâj)2 â′j .

Since PA′ 6= ∅, it follows that 0 ∈ conv(Â′), thus it suffices to show that
∑n

j=1 λj
√

1 + 3(vTâj)2 ≤
1 + 3ε.

The above is of the form E[
√

1 + 3X2] where X is a random variable supported on
[−ε, 1] and |E[X]| = |

∑n
j=1 λjv

Tâj | = |vTz|. Note that |vTz| ≤ ε because both z and −z
are in PA. Hence, by Lemma 2.5,

n∑
j=1

λj

√
1 + 3(vTâj)2 ≤

√
1 + 3(2ε) ≤ 1 + 3ε.

ii) Note that volr(TPA) = 2volr(PA) as det(T ) = 2. Thus we obtain volr(P
′
A) ≥

2volr(PA)/(1 + 3ε)r ≥ 3
2volr(PA), since (1 + 3ε)r ≤ (1 + 3/(11m))r ≤ e3/11 ≤ 4

3 .

Lemma 2.6. Let A ∈ Rm×n. Given x ∈ Rn such that x ≥ ~e, if ‖Ax‖ < |ρ(A,−A)| then

ΠK
Ax > 0. If ρA < 0 then |ρ(A,−A)| ≥ |ρA|.

Proof. Let Π := ΠK
A and define δ

def
= minj∈[n] ‖(AAT)+aj‖−1. Observe that, if ‖Ax‖ < δ,

then ΠK
Ax > 0. Indeed, for i ∈ [n], (Πx)i = xi − aTi (AAT)+y ≥ 1 − ‖(AAT)+ai‖‖Ax‖ >

1− δ−1δ = 0, as required. Thus it suffices to show that δ ≥ |ρ(A,−A)|. Since conv(A,−A)
is symmetric around 0, we get that

|ρ(A,−A)| = −ρ(A,−A) = min
y∈im(A)\{0}

max
i∈[n]
|aTi ŷ|.

Let k := arg maxj∈[n] ‖(AA>)+aj‖, and plug in y = (AAT)+ak in the above formula. For
this choice, observe that ‖y‖ = 1/δ by the choice of k, and therefore

|ρ(A,−A)| ≤ δmax
j∈[n]
|aTj y| = δmax

j∈[n]
|Πjk| ≤ δ,

where the last inequality follows since the entries of a projection matrix always have
absolute value at most 1.

The second claim is an immediate consequence of Lemma 1.2, using that conv(A,−A) ⊇
conv(A) and conv(A) contains 0 in its interior if ρA < 0.
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Lemma 2.7. Let v ∈ Rm, ‖v‖ = 1. For any y, ȳ ∈ Rm such that y = (I + vvT)ȳ, we have
‖ȳ‖ ≤ ‖y‖.

Proof. We have ‖y‖2 = ‖ȳ + (vTȳ)v‖2 = ‖ȳ‖2 + 2(vTȳ)2 + (vTȳ)2‖v‖2 ≥ ‖ȳ‖2.

Proof of Theorem 2.2. Denote by Ā the input matrix, and let ρ := |ρĀ| and Π := ΠK
Ā

.
Denote by A the current matrix during the algorithm, so that, after k rescalings, A =
(I + v1v

T
1 ) · · · (I + vkv

T
k )Ā for some vectors v1, . . . , vk ∈ im(A) with ‖vi‖ = 1 for i ∈ [n].

Note that ker(A) = ker(Ā) throughout the algorithm, so ΠK
A = Π throughout. Let x and

y = Ax be the vectors computed in every iteration, and let ȳ := Āx and x̄ = Πx. Lemma
2.6 implies that x̄ > 0 whenever ‖ȳ‖ < |ρ(Ā,−Ā)|. Lemma 2.7 implies that ‖ȳ‖ ≤ ‖y‖, and
|ρ(Ā,−Ā)| ≥ ρ by Lemma 2.6. It follows that the algorithm terminates with the positive
solution x̄ > 0 as soon as ‖y‖ < ρ.

As previously discussed, Lemma 2.4 implies that the number of rescalings cannot
exceed m log3/2 |ρ|−1. At every rescaling, the norm of ‖y‖ increases by a factor 2. In
every iteration where the DV update is applied, the norm of ‖y‖ decreases by a factor√

1− ε2 according to (11). Initially, y = Ā~e, therefore ‖y‖ ≤ n since all columns of Â
have norm at most one. Therefore, the number of DV iterations is bounded by κ, where
κ is the smallest integer such that

n2(1− ε2)κ4m log3/2 |ρ|−1

< ρ2.

Taking the logarithm on both sides, and using the fact that log(1− ε2) < −ε2, it follows
that κ ∈ O(m2 log n+m3 log |ρ|−1).

We can implement every DV update in O(n) time, at the cost of an O(n2) time
preprocessing at every rescaling, as explained next. Let us compute the matrix F := ATA
and the norms of the columns of A after every rescaling. The matrix F is updated as
F := AT(I + ŷŷT)2A = AAT + 3(ATŷŷTA) = F + 3zzT/‖y‖2, which requires time O(n2).
Further, at every DV update, let us update the vectors z = ATy and x̄ = Πx.

Using the vector z, we can compute arg minj∈[n] â
T
j ŷ = arg minj∈[n] zj/‖aj‖ in time

O(n) at any DV update. We also need to recompute y, z, and x̄. Using F = [f1, . . . , fn],
these can be obtained as y := y − (âTk y)âk, z := z − fk(â

T
k y)/‖ak‖, and x̄ := x̄ −

Πk(â
T
k y)/‖ak‖. These updates altogether take O(n) time.

Therefore the number of arithmetic operations is O(n) times the number of DV updates
plus O(n2) times the number of rescalings. The overall running time estimate in the
theorem statement follows.

2.2 Maximum support case

The Maximum Support Kernel Algorithm (Algorithm 2) is a modification of Algorithm 1.
In this context, it will be convenient to describe the full support algorithm within a
different framework: instead of applying the rescaling transformation to the matrix A,
we keep changing the scalar product. If Ā is the input matrix, then after t rescalings
in Algorithm 1, the current matrix A is of the form A = MĀ. Here M ∈ Rm×m is
the composition of all t linear transformations applied to Ā thus far. This sequence of
updates naturally corresponds to the scalar product defined by the matrix M>M ∈ Sm++,
although in the description of the algorithm we use Q = M>M/(1 + 3ε)2t for the sake of
convenience in the analysis.

Consider the vector y = Ax in any iteration of Algorithm 1, and let ȳ = Āx.
Note that y = Mȳ and y/‖y‖2 = Mȳ/((1 + 3ε)t‖ȳ‖Q). When computing âTj ŷ, we

have âTj ŷ =
〈

aj
‖aj‖Q ,

ȳ
‖ȳ‖Q

〉
Q

. Furthermore, when rescaling, Algorithm 1 replaces A by

(Im + ŷŷ>)A, therefore the corresponding update of the scalar product consists of replac-

ing M by
(
Im +Mȳ(Mȳ)T/‖ȳ‖2Q

)
M and recomputing Q. In terms of Q, the update can
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be written as

1

(1 + 3ε)2(t+1)
MT

(
Im +

Mȳ(Mȳ)T

‖ȳ‖2Q

)(
Im +

Mȳ(Mȳ)T

‖ȳ‖2Q

)
M =

1

(1 + 3ε)2

(
Q+

3QȳȳTQ

‖ȳ‖2Q

)
.

We remark that the normalization of Q by (1+3ε)2t can be omitted in the implementation.

Let us now highlight the key ideas of the maximum support setting. Assume the input
matrix A has ‖ai‖ ≤ 1 for all i ∈ [n]. We modify A by removing columns that we were
able to infer to be outside S∗. We remark that, by Lemma 2.1, PA does not change when
we remove columns from A that are not in S∗. From Lemma 2.4(i), we can easily derive
Lemma 2.10, stating that the invariant

PA ⊆ Eim(A)(Q) = {z ∈ im(A) : ‖z‖Q ≤ 1}

is maintained at every rescaling (the normalization by (1 + 3ε)2t in the definition of Q
is needed for this claim). We then show that ‖aj‖Q ≤ 1/θA must hold throughout the
algorithm for every i ∈ S∗, where θA is the symmetry measure defined in (4). Hence
if ‖aj‖Q > 1/θA at any point of the algorithm, we can infer i /∈ S∗, and remove the
column ai from A. A volume argument, involving the condition number ρ∗A defined in (5),
shows that within O(m log(θ−1

A ρ∗A
−1)) rescalings, either the algorithm must terminate,

or the dimension of the set {aj : ‖aj‖Q ≤ θ−1
A , j ∈ [n]} must decrease by one. An

amortized argument will show that O(m log(θ−1
A ρ∗A

−1)) will in fact bound the total number
of rescalings throughout the algorithm.

In Algorithm 2, we maintain a set S ⊆ [n] with the property that S∗ ⊆ S, where
S := [n] at the beginning. At every iteration, the current matrix A is the matrix obtained
from the input matrix by removing all columns outside of S. We also maintain a set T ⊆ S
of indices that we have determined not to belong to S∗ (that is, T ∩S∗ = ∅ throughout the
algorithm). Whenever we conclude that i /∈ S∗ for an index i based on Lemma 2.10(ii),
we add i to T . Columns indexed by T are removed from the current matrix A whenever
doing so decreases the rank of the matrix. The algorithm either terminates with a solution
x̄ to the system Ax̄ = 0, x̄ ≥ 0 with supp(x̄) = S, in which case we may conclude S = S∗,
or S = ∅ is reached, in which case we may conclude that x̄ = 0 is a maximum support
solution.

Theorem 2.8. Let A ∈ Rm×n such that ‖aj‖ ≤ 1 for all j ∈ [n], and let θ̄ be a lower-
bound on θA. Algorithm 2 finds a solution of Ax = 0, x ≥ 0 of maximum support in
O
(
(m3n+mn2) log(θ̄−1ρ∗A

−1)
)

arithmetic operations.

By Lemma 1.4, we can choose θ̄ ∈ 1/2O(L), and we have ρ∗A ∈ 1/2O(L). This implies

the following corollary, when applying the algorithm for Â.

Corollary 2.9. Let A be an m × n matrix with integer entries and encoding size L.
Algorithm 2 finds a solution of Ax = 0, x ≥ 0 of maximum support in O

(
(m3n+mn2)L

)
arithmetic operations.

2.2.1 Analysis

Lemma 2.10. Throughout the algorithm, the following invariants are maintained.

(i) PA ⊆ Eim(A)(Q) = {z ∈ im(A) : ‖z‖Q ≤ 1},
(ii) ‖ai‖Q ≤ 1/θA for every i ∈ S∗,

(iii) S∗ ⊆ S.

14



Algorithm 2 Maximum Support Kernel Algorithm

Input: A matrix A ∈ Rm×n such that ‖aj‖ ≤ 1 for all j ∈ [n], and a
lower-bound θ̄ on θA.

Output: A maximum support solution to the system (K).
1: Compute Π := ΠK

A .
2: Set xj := 1 for all j ∈ [n], and y := Ax.
3: Set S := [n], T := ∅, Q := Im.
4: while (S 6= ∅) and (Πx 6> 0) do
5: if 〈ai, y〉Q ≥ 0 for all i ∈ S then
6: T := T ∪ {i : 〈ai, y〉Q > 0}, Remove(T ) ;
7: else
8: Let k := arg min

i∈S
〈ai, y〉Q /‖ai‖Q;

9: if 〈ak, y〉Q < −ε‖ak‖Q‖y‖Q then

10: update x := x−
〈ak, y〉Q
‖ak‖2

Q

~ek; y := y −
〈ak, y〉Q
‖ak‖2

Q

ak;

11: else

12: rescale Q :=
1

(1 + 3ε)2

(
Q+

3QyyTQ

‖y‖2
Q

)
;

13: if ∃k ∈ S \ T such that ‖âk‖Q > θ̄−1 then
14: T := T ∪ {k ∈ S \ T : ‖âk‖Q > θ̄−1},
15: if rk(AS\T ) < rk(A) then Remove(T );

16: if Πx > 0 then
17: Define x̄i ∈ Rn by x̄i := (Πx)i if i ∈ S, x̄i := 0 if i /∈ S. return x̄.

18: if S = ∅ then return x̄ = 0.

Algorithm 3 Column deletion

1: procedure Remove(T )
2: Delete all ai with i ∈ T from A. S := S \ T ; T := ∅.
3: Reset xj := 1 for all j ∈ S; y := Ax.
4: Recompute Π := ΠK

A ;

Proof. The three conditions are all trivially satisfied at initialization, since Q = Im, so
PA ⊆ E(Q) = Bm, ‖ai‖Q = ‖ai‖2 = 1 ≤ 1/θA for all i ∈ S∗, and S = [n]. Also, as long
as invariant (i) is maintained, invariants (ii) and (iii) also hold. Indeed, by definition (4)
of θA, it follows that θAaj ∈ conv(A) ∩ conv(−A) ⊆ PA ⊂ E(Q) for all j ∈ S∗, where
the first containment follows from the fact that ‖aj‖ ≤ 1 for all j ∈ [n]. Consequently,
‖aj‖Q ≤ 1/θA holds for every i ∈ S∗. Finally, since a column aj is removed only if
‖aj‖Q > 1/θA, we also have S∗ ⊆ S.

Thus, we only need to show that, if at a given iteration we have S∗ ⊆ S, then the
algorithm will maintain the condition PA ⊆ Eim(A)(Q) at the subsequent iteration. By
Lemma 2.1, PA = PAS∗ , so PA does not change throughout the algorithm since we main-
tain S∗ ⊆ S. It suffices to show that PA ⊆ E(Q), since PA ⊆ im(AS∗) ⊆ im(A).

After t rescalings, let M and Q be the corresponding matrices, so that Q = (1 +
ε)−2tMTM . Let A′ = MA. By Lemma 2.4 applied t times, MPA ⊆ (1 + 3ε)tPA′ . It
follows that PA ⊆ (1 + 3ε)tM−1Bm = E(Q).
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Lemma 2.11. The relative volume of the ellipsoid Eim(A)(Q) decreases at least by a factor
3/2 at every rescaling.

Proof. At rescaling, we updated the matrix Q as Q′ = (1 + 3ε)−2(Q + 3QyyTQ/‖y‖2Q)),
where y ∈ im(A) for the current matrix A. Let H = im(A). We need to prove that
detH(Q′) ≥ (9/4) detH(Q). Since (1 + 3ε)m ≤ 4/3, it suffices to show that detH(Q +
3QyyTQ/‖y‖2Q) = 4. Let W be an m× rk(A) matrix whose columns for an orthonormal

basis of im(A). Since y ∈ im(A), we have y = Wz for some z ∈ Rrk(A). Then

det
H

(Q+ 3QyyTQ/‖y‖2Q) = det(WTQW + 3WTQWzzTWTQW/‖y‖2Q)

= det(WTQW )(1 + 3zTWTQWz/‖y‖2Q)

= det(WTQW )(1 + 3yTQy/‖y‖2Q) = 4

where the second equality follows from the Sherman-Morrison formula (that is, for every
non-singular B ∈ Rm×m and u, v ∈ Rm, det(B + uvT) = det(B)(1 + vTB−1u)).

We now formulate the two main technical lemmas, and derive the proof of Theorem 2.8
using them. The proof of these two lemmas is deferred to Section 2.2.2. In the following,
θ̄ denotes the known lower bound on the initial θA, and ρ∗ refers to the initial ρ∗A.

Lemma 2.12. At every call of the procedure Remove, the rank of A decreases. The
algorithm can be implemented so that the total number of operations required for all calls
to the procedure throughout the execution of Algorithm 2 is bounded by O(mn2).

Lemma 2.13. Let A′ be the matrix obtained from the current matrix A after a call of the
procedure Remove. Let r′ := rk(A′) < r, E := Eim(A)(Q), and E′ := Eim(A′)(Q). Then

volr′(E
′)

volr(E)
≤ νr′

νr

(
2

θ̄ρ∗

)r−r′
.

Proof of Theorem 2.8. From Lemma 2.10, whenever Algorithm 2 returns a solution, it is
a maximum support solution. We need to argue that the algorithm terminates in the
prescribed number of iterations. Let Ā denote the input matrix, and A be the current
matrix at any given iteration. Recall that A = ĀS for some S ⊇ S∗, and that we have
PA = PĀ by Lemma 2.1. We let r denote the rank of the current matrix A. Also recall
that the input requires ‖āj‖ ≤ 1 for all j ∈ [n].

We define a round of the algorithm the iterations that take place between two iterations
in which we remove some columns from the matrix A. During each round, the algorithm
maintains the set T = {j ∈ S : ‖aj‖Q > θ̄−1} of columns eligible for removal. Columns are
removed if rk(AS\T ) < rk(A). In particular, the number of rounds is at most rk(A) ≤ m.
We want to bound the total number of rescalings performed by the algorithm.

Claim 2.14. Thus the total number of rescalings throughout the algorithm is O(m log(θ̄−1ρ∗−1)).

Proof. We will show next that at every rescaling within the same round, except for the
last rescaling of the round, the invariant

volr(E) ≥ νr(θ̄ρ∗)r (12)

is maintained. Indeed, by Lemma 2.10(i), PA ⊆ E := Eim(A)(Q) throughout. Since
‖aj‖Q ≤ θ̄−1 for all j ∈ S \ T , it follows that E ⊇ θ̄conv(AS\T ,−AS\T ). Since at
every rescaling except for the last one of the round we have rk(AS\T ) = r, it fol-
lows by Lemma 1.2 that conv(AS\T ,−AS\T ) contains an r-dimensional ball of radius
ρ(AS\T ,−AS\T ) ≥ ρ∗. This implies (12).

At the first iteration, Q = Im and E = Bm ∩ im(Ā), therefore initially volr̄(E) ≤ νr̄,
where r̄ = rk(Ā). By Lemma 2.11, at every rescaling in which we do not remove any
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column volr(E) decreases by at least 2/3; Lemma 2.13 bounds the increase in volr(E) at
column removals. Combined with the lower bound (12), we obtain that the total number
of rescalings is at most m plus the smallest number K satisfying

(2/3)K
(

2

θ̄ρ∗

)m
< (θ̄ρ∗)m.

The claimed bound on K follows.

By Lemma 2.6, the algorithm is guaranteed to terminate when ‖y‖2 < |ρ(A,−A)| ≤ ρ∗.
By Lemma 2.7, after t rescalings ‖y‖2 ≤ ‖y‖Q(1+3ε)t. Hence the algorithm is guaranteed
to terminate if ‖y‖Q ≤ ρ∗/(1 + 3ε)K .

At the beginning of each round, we re-initialize x so that xj = 1 for all j ∈ S. In
particular, y = Ax satisfies ‖y‖Q ≤ |S|maxj∈[S] ‖aj‖Q ≤ nθ̄−1, where the last inequality
follows from ‖aj‖Q ≤ θ̄−1 for all j ∈ S. At every rescaling within the same round, ‖y‖Q
increases by 2/(1 +3ε), and in every DV update, it decreases by at least a factor

√
1− ε2.

Let T be the number of rounds, and K1, . . . ,KT be the number of rescaling within rounds
1, . . . , T .

It follows that, at the ith round, the number of DV updates is at most the smallest
number κi such that

nθ̄−1(1− ε2)κi/22Ki < ρ∗/(1 + 3ε)K .

Taking the logarithm on both sides and recalling that log(1−ε2) < −ε2 and log(1+3ε) ≥
3ε, it follows from our choice of ε that κi ∈ O(m2)Ki + O(m)K. Since K = K1 + · · · +
KT and T ≤ m, this implies that the total number of DV updates is O(m2)K. Using
Claim 2.14, the total number of DV updates is O(m3 log(θ̄ρ∗)−1). As explained in the
proof of Theorem 2.2, we can perform each DV update in O(n) arithmetic operations,
provided that at each rescaling we recompute F = ATQA at a cost of O(n2) arithmetic
operations. This implies the stated running time.

2.2.2 Proofs of technical lemmas

Proof of Lemma 2.12. Algorithm 2 removes columns from the matrix A in two cases (in
step 5 and step 13) of the algorithm. In step 13 we remove the columns in T only if
this decreases the rank of the matrix A. We show that after the column-removal in step
5, the rank of A decreases. This will imply the first part of the statement. Indeed, in
step 5 we determined x with ‖x‖1 = 1 such that 0 6= y = Ax and ATQy ≥ 0. Since
0 < ‖y‖2Q = xTATQy, it follows that A>Qy 6= 0. This shows that there exists k ∈ S such
that 〈ak, y〉Q > 0, so in particular S′ := {j ∈ S : 〈aj , y〉Q = 0} ⊂ S, which implies that
rk(AS′) < rk(A).

At line 13 we need to check if rk(AS\T ) < rk(A). We next observe how this check
can be implemented so that the total number of arithmetic operations carried out for
this purpose throughout the entire execution of the algorithm is O(mn2). Throughout
the algorithm, while rk(AS\T ) = rk(A) we maintain a set B ⊆ S \ T of indices of rk(A)
linearly independent columns of A, and a rk(A) × |S| matrix F that is obtained from A
by Gaussian elimination so that the columns of F indexed by B form an identity matrix.
At the beginning of the algorithm (in which case S := [n] and T = ∅) this will require
O(m2n) arithmetic operations. Suppose now that, in a given iteration, for k ∈ S \ T
we want to check if removing from A the columns in T ′ := T ∪ {k} decreases the rank
of the current matrix A. If k 6∈ B, then the rank does not decrease, and we maintain
the property that B ∩ T ′ = ∅. If k ∈ B, then let h be the index corresponding to the
entry of value 1 in the unit column indexed by k in F and check if there exists an index
j ∈ S \ (B ∪T ) such that the (h, j) entry of F has nonzero value. If such index j does not
exist, then rk(AS\T ′) < rk(A), so we set B := B \ {k} and remove from F the columns
indexed by T ′ and the zero row thus created. Otherwise, update B := B \ {k} ∪ {j} and
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recompute F by performing a pivot on entry (h, j). Performing the pivot requires O(mn)
time. Since we remove at most n columns throughout the algorithm, the total running
time required is O(mn2).

The next three lemmas will also be needed in the proof of Lemma 2.13, as well as in
Sections 3. Given a convex set X ⊂ Rd and a vector a ∈ Rd, we define the width of X
along a as

widthX(a)
def
= max{aTz : z ∈ X}. (13)

Lemma 2.15. Let E := E(D−1) = {x ∈ Rd : x>D−1x ≤ 1}, where D is a symmetric
positive definite matrix. Given a vector a ∈ Rd, widthE(a) = ‖a‖D.

Proof. For every z ∈ E, aTz = aTD1/2D−1/2z ≤ ‖a‖D‖z‖D−1 ≤ ‖a‖D where the first
inequality follows from the Cauchy-Schwarz inequality and the second from z ∈ E. On
the other hand, if we define z = Da/‖a‖D, it follows that z ∈ E and aTz = ‖a‖D.

Lemma 2.16. Let E ⊂ Rd be an ellipsoid. Given a ∈ Rd, a 6= 0, let H = {x : a>x = 0}.
Then

vold−1(E ∩H) =
vold(E)

widthE(â)
· νd−1

νd
.

The lemma follows easily from the next bound on determinants, which we will also
need in Section 3.

Lemma 2.17. Consider a matrix R ∈ Sd++. For a vector a ∈ Rd, a 6= 0, let H = {x :
a>x = 0}. Then

det
H

(R) = det(R)‖â‖2R−1 .

Proof. Without loss of generality we can assume that ‖a‖2 = 1, that is, â = a. Let
W ∈ Rd×(d−1) be a matrix whose columns form an orthonormal basis of H. Since (W |a)
is an orthonormal basis of Rd, we have

det(R) = det

((
W>

a>

)
R(W |a)

)
= det

(
W>RW W>Ra
a>RW ‖a‖2R

)
= det(W>RW )(‖a‖2R − a>RW (W>RW )−1W>Ra),

where the last equality follows from the determinant identity for the Shur’s complement.
We now observe that ‖a‖2R−a>RW (W>RW )−1W>Ra = ‖q‖2, where q is the orthogonal

projection of the vector R
1
2a onto the orthogonal complement of the hyperplane R1/2H.

The orthogonal complement of this hyperplane is the line generated by p = R−1/2a. Thus,

‖q‖2 = a>R
1
2R−

1
2a(a>R−1a)−1a>R−

1
2R

1
2a = ‖a‖2R−1 .

Therefore det(W>RW ) = det(R)‖a‖2R−1 , as required.

Proof of Lemma 2.16. The volume of E can be written as vold(E) = νd/
√

det(R), and
using (2), we get vold−1(E ∩ H) = νd−1/

√
detH(R). The statement follows from Lem-

mas 2.15 and 2.17.

Proof of Lemma 2.13. It suffices to prove the claim for the case r′ = r − 1, therefore we
assume that im(A′) is a hyperplane of im(A). Let a ∈ im(A) be a vector orthogonal to
im(A′) such that ‖a‖2 = 1. By Lemma 2.16,

volr′(E
′) =

volr(E)

widthE(a)
· νr−1

νr
.

Let S′ := {j ∈ S : ‖aj‖Q ≤ 2θ̄−1}. Since at every rescaling the Q-norm of the columns

of Â increases by at most a factor 2, the columns in T \ S′ had Q-norm greater than θ̄−1
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already at the previous rescaling. Since we did not remove the columns in T \ S′ at the
previous rescaling, it follows that rk(AS′) = rk(A), so im(AS′) = im(A). In particular
a ∈ im(AS′), therefore we have

widthE(a) = max{aTz : ‖z‖Q ≤ 1, z ∈ im(A)}

≥ max
k∈S′

|aTak|
‖ak‖Q

≥ θ̄

2
min

y∈im(AS′ )
max
k∈S′
|ŷTak|

=
θ̄

2
|ρ(AS′ ,−AS′ )

| ≥
θ̄ρ∗A

2
,

where the last inequality is by definition of ρ∗A.

3 The Image Algorithm

We now present our algorithms for the image space. Again, we start by describing the full
support version first (Section 3.2), followed by the maximum support version (Section 3.3).
In contrast to the kernel algorithms, these two versions will use the same framework of
changing the scalar product, and even the same condition measure ω̂A. The maximum
support version is obtained by a direct extension of the full support version.

The full support algorithm can be seen as an improved version of previous algorithms
by Betke [4]. While we use a similar volumetric potential, a more sophisticated rescaling
allows for a factor n improvement in the overall number of iterations. In the algorithm we
keep modifying the scalar product 〈., .〉Q via rescalings. For every rescaling, we run the

von Neumann algorithm, using the current scalar product 〈., .〉Q, for O(m2) iterations.
This provides a vector y ∈ conv(a1/‖a1‖Q, . . . , an/‖an‖Q) with ‖y‖Q ≤ ε. The coefficients
of the convex combination will be used to construct an appropriate rescaling.

Instead of von Neumann’s algorithm, one could use other first order methods, such
as Perceptron, the DV-updates, or Wolfe’s nearest-point algorithm [38]. All these first
order methods are interchangeable in this framework, as the only property needed is that
they can find a vector y ∈ conv(a1/‖a1‖Q, . . . , an/‖an‖Q) with ‖y‖ ≤ 1/poly(m) in time
polynomial in m and n. We can use Nesterov’s smoothing technique [25] (as illustrated
by the Smoothed Perceptron algorithm by Peña and Soheili [34], and the Mirror Prox for
Feasibility Problems (MPFP) by Yu et al. [39]).

As mentioned above, our rescaling is an improvement over the one used by Betke [4],
who combined his rescaling with a variant of Wolfe’s nearest-point algorithm. Peña and
Soheili [30] use Betke’s rescaling combined with either the Perceptron or the Smoothed
Perceptron algorithm. Betke’s rescaling requires more first-order iterations, namely,
O(m2n) calls for Perceptron or Wolfe’s nearest-point algorithms; the reason is that his
rescaling is based on a single column ak that has the highest coefficient in the convex com-
bination. To explain the difference, consider an input matrix with unit length columns.
For the column ak with the largest coefficient in the convex combination returned by the
first order algorithm, Betke would perform the rescaling A′ := (Im − 1

2aka
>
k )A. In con-

trast, our update corresponds to changing the matrix to A′ := (Im +
∑n

i=1 xiaia
T
i )−1/2A,

where y = Ax. (Note that in the description of our algorithm we prefer to modify the
scalar product instead of changing the matrix.)

We note that our algorithm also has deeper connections to Chubanov’s algorithm [10]
for the kernel problem; rescaling multiplies A by a diagonal matrix from the right. These
connections will be explored in a subsequent paper in the series.

3.1 The von Neumann algorithm

We now state the von Neumann subroutine (Algorithm 4) in the form needed for our
algorithm. This is the same as the algorithm described by Dantzig [13], with the scalar
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product replaced by 〈., .〉Q for a matrix Q ∈ Sm++, and using the normalized columns
ai/‖ai‖Q.

Algorithm 4 The von Neumann algorithm

Input: A matrix A ∈ Rm×n, a positive definite matrix Q ∈ Rm×m and an ε > 0.
Output: Vectors x ∈ Rn, y ∈ Rm such that y =

∑n
i=1 xiai/‖ai‖Q, ~e>x = 1,

x ≥ 0, and either ATQy > 0 or ‖y‖Q ≤ ε.
1: Set x := ~e1, y := a1/‖a1‖Q.
2: while ‖y‖Q > ε do
3: Let k := arg min

i∈[n]
〈ai, y〉Q /‖ai‖Q;

4: if 〈ak, y〉Q > 0 then return the solution (x, y) such that ATQy > 0.
Terminate.

5: else
6:

λ :=
〈y − ak/‖ak‖Q, y〉Q
‖y − ak/‖ak‖Q‖2

Q

;

7: update x := (1− λ)x+ λ~ek; y := (1− λ)y + λ
ak
‖ak‖Q

;

return the vectors (x, y).

The value of λ for the update is choosen so as to minimize the norm ‖(1 − λ)y +
λ ak
‖ak‖Q ‖Q. The following lemma summarizes the properties of the von Neumann algorithm

as shown in [13]. Running the algorithm with 〈., .〉Q is the same as running it for the

standard scalar product for the unit vectors Q1/2ai/‖Q1/2ai‖2.

Lemma 3.1. For input ε > 0, the von Neumann algorithm terminates in at most d1/ε2e
updates.

3.2 Full support case

Algorithm 5 Full Support Image Algorithm

Input: A matrix A ∈ Rm×n such that rk(A) = m and (I++) is feasible.
Output: A feasible solution to (I++).

1: Set Q := Im, R := Im.
2: while ATQy 6> 0 do
3: Call von Neumann(A,Q, ε) to obtain (x, y).
4: rescale

R :=
1

1 + ε

(
R +

n∑
i=1

xi
‖ai‖2

Q

aia
>
i

)
; Q := R−1.

return The feasible solution ȳ = Qy to (I++).

We use the same value ε = 1
11m as in the kernel algorithm. Here as well as in the

Maximum Support Image Algorithm, we assume that the matrix A has full row rank,
that is, im(A) = Rm. This is without loss of generality; the general case can be easily
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reduced to this case. Let us state the running time bound, which will be proved in
Section 3.2.1.

Theorem 3.2. For any input matrix A ∈ Rm×n such that rk(A) = m and (I++) is
feasible, Algorithm 5 finds a feasible solution to (I++) by performing O

(
m3 log ω̂−1

A

)
von

Neumann iterations. The number of arithmetic operations is O
(
m2n2 log ω̂−1

A

)
.

Using Lemma 1.4, we obtain the running time in terms of the encoding length L.

Corollary 3.3. Let A ∈ Zm×n be an integer matrix of encoding size L. If rk(A) = m
and (I++) is feasible, then Algorithm 5 finds a feasible solution of (I++) in O

(
m2n2L

)
arithmetic operations.

If instead of the von Neumann algorithm we use Nesterov’s smoothing technique [25,
34, 39], we obtain the following alternative running-time bound.

Theorem 3.4. For any input matrix A ∈ Rm×n such that rk(A) = m and (I++) is
feasible, Algorithm 5 with Nesterov’s smoothing technique finds a feasible solution to (I++)
by performing O

(
m2
√

log n · log ω̂−1
A

)
iterations. The number of arithmetic operations is

O
(
m3n
√

log n · log ω̂−1
A

)
. If A ∈ Zm×n is integer with encoding length L, then the running

time is O
(
m3n
√

log n · L
)
.

Oracle model for strict conic feasibility. Let us also remark that the algorithm
immediately extends to an oracle model, where the goal is to find a point in the interior
of a full-dimensional cone Σ ⊆ Rm, given via a separation oracle. That is, for any vector
v, the oracle decides whether v ∈ int(Σ), and if not, it returns a vector z such that
z>v ≤ 0 but z>y > 0 for any z ∈ int(Σ). Hence we can run von Neumann algorithm using
this oracle, and use the vectors return by the oracle for rescaling. The algorithm in this
case performs O(m3 log(ρ̂−1)), where ρ̂ denotes the radius of the largest ball contained
in Σ and centered on the surface of the unit sphere. This model was studied by Peña
and Soheili [30], who gave an algorithm that performs O(m5 log(ρ̂−1)) perceptron (or von
Neumann) updates. We will elaborate further on the oracle model in a subsequent paper,
in particular, show its application to submodular function minimization.

3.2.1 Analysis

It is easy to see that the matrix R remains positive semidefinite throughout the algorithm,
and admits the following decomposition.

Lemma 3.5. At any stage of the algorithm, we can write the matrix R in the form

R = αIm +

n∑
i=1

γiâiâ
T
i

where α = 1/(1 + ε)t for the total number of rescalings t performed thus far, and γi ≥ 0.
The trace is tr(R) = αm+

∑n
i=1 γi.

Recall that we denote by ΣA = {y ∈ Rm : ATy ≥ 0} the image cone. Let us define the
set

FA = ΣA ∩ Bm.

The running time will be bounded in terms of the condition number ω̂A defined in (6).
Using the notation FA, the definition is ω̂A = mini∈T ∗ widthFA

(âi). In the full support
case, we assume T ∗ = [n].

The ellipsoid E(R) = {z ∈ Rm : ‖z‖2R ≤ 1} plays a key role in the analysis, due to the
following property:

Lemma 3.6. Throughout the algorithm, FA ⊆ E(R) holds.
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The correctness and running time estimation follows by the next three lemmas; Lemma 3.6
is essential in the proof of the first one.

Lemma 3.7. Throughout the algorithm, ‖âi‖Q ≥ ω̂A for every i ∈ [n].

Lemma 3.8. The determinant of R increases at least by a factor 16/9 at every rescaling.

Lemma 3.9. At any stage of the algorithm, there exists a column ak with

‖âk‖Q ≤
1√

det(R)1/m − 1
.

We now present the proofs of Theorems 3.2 and 3.4 based on these lemmas.

Proof of Theorem 3.2. After t rescalings, Lemmas 3.8 and 3.9 imply the existence of a
column ak with ‖âk‖Q ≤ 1/(

√
(16/9)t/m − 1). Lemma 3.7 yields 1/ω̂A ≥

√
(16/9)t/m − 1.

Consequently, the total number of rescalings during the entire course of the algorithm is
providing the bound O(m log ω̂−1

A ).
By Lemma 3.1, the von Neumann algorithm performs O(m2) iterations between two

consecutive rescalings. As in the proof of Theorem 2.2, a von Neumann iteration can be
implemented in time O(n), assuming that we compute the matrix ATQA at the beginning
and after every rescaling. Provided Q, this can be done in time O(n2m). This is more
costly than in the kernel case, where we only had to implement rank one updates at every
rescaling, since now we need to recompute ATQA from scratch. For every rescaling, this
computation dominates the term O(m2n) for the von Neumann iterations, as well as the
complexity of updating the matrix R and computing the inverse Q. Hence we obtain the
overall complexity O(n2m2 log ω̂−1

A ).

Proof of Theorem 3.4. The smoothed algorithms [25, 34, 39] can either find a y ∈ Rm
with ATQy > 0, or a y ∈ conv({ai/‖ai‖Q : i ∈ [n]}) with ‖y‖Q ≤ ε in O(

√
log n/ε)

iterations. However, the complexity of each iteration is O(mn) compared to O(n) for
the von Neumann algorithm. We obtain the same bound t = O(m log ω̂−1

A ) on the total
number of iterations as in the proof above. These together give the claimed bound.
Note that we do not have to compute ATQA at every rescaling as it does not yield any
computational benefit.

Lemma 3.6 will be a consequence of the following simple claim.

Claim 3.10. Let Q ∈ Sm++, let R = Q−1, and let x ∈ Rn+ and y ∈ Rm such that
y =

∑n
i=1 xi

ai
‖ai‖Q , ~eTx = 1, ‖y‖Q ≤ ε. Then, for every z ∈ ΣA,

n∑
i=1

xi

(
aTi z

‖ai‖Q

)2

≤ ε‖z‖2R.

Proof. For every i ∈ [m], we obtain 0 ≤ aTi z = aTi Q
1/2Q−1/2z ≤ ‖ai‖Q‖z‖R using the

Cauchy-Schwartz inequality. Then

n∑
i=1

xi

(
aTi z

‖ai‖Q

)2

≤
n∑
i=1

xi
aTi z

‖ai‖Q
‖z‖R = yTz‖z‖R ≤ ‖y‖Q‖z‖2R ≤ ε‖z‖2R.

The first inequality uses the previous estimate, x ≥ 0, and z ∈ ΣA; the second inequality
uses again the Cauchy-Schwarz inequality.

Proof of Lemma 3.6. The proof is by induction on the number of rescalings. At initializa-
tion, FA ⊆ E(Im) = Bm is trivial. Assume FA ⊆ E(R), and we rescale R to R′. We show
FA ⊆ E(R′). Consider an arbitrary point z ∈ FA; by the induction hypothesis, ‖z‖2R ≤ 1
because z ∈ E(R).
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For the vector x returned by the von Neumann algorithm, the algorithm sets R′ =(
R+

∑n
i=1 xiaia

T
i /‖ai‖2Q

)
/(1 + ε). Thus Claim 3.10 implies that

‖z‖2R′ = zT

(
R+

n∑
i=1

xi
‖ai‖2Q

aia
T
i

)
z/(1 + ε) ≤ ‖z‖2R

Consequently, z ∈ E(R′), completing the proof.

Proof of Lemma 3.7. Since FA ⊆ E(R), from Lemmas 2.15 and 3.6 we obtain

‖âi‖Q = widthE(R)(âi) ≥ widthFA
(âi) ≥ ω̂A.

The final equality follows since ω̂A = mini∈T ∗ widthFA
(âi) by definition, and T ∗ = [n] in

case (I++) is feasible.

Proof of Lemma 3.8. Let R and R′ denote the matrix before and after the rescaling. Let
X =

∑n
i=1 xiaia

T
i /‖ai‖2Q; hence R′ = (R+X)/(1 + ε). The ratio of the two determinants

is
det(R′)

det(R)
=

det(R+X)

(1 + ε)m det(R)
=

det
(
Im +R−1/2XR−1/2

)
(1 + ε)m

Now R−1/2 = Q1/2, and Q1/2XQ1/2 is a positive semidefinite matrix. The determinant
can be lower bounded using using Lemma 1.1(iii) and then Lemma 1.1(ii):

det(R′)

det(R)
≥ 1 + tr(Q1/2XQ1/2)

(1 + ε)m
=

(
1 +

n∑
i=1

xi
‖ai‖2Q

tr(Q1/2aia
T
i Q

1/2)

)
/(1 + ε)m.

Finally, Lemma 1.1(i) gives tr(Q1/2aia
T
i Q

1/2) = tr(aTi Qai) = ‖ai‖2Q. Therefore we con-
clude

det(R′)

det(R)
≥

1 +
∑n

i=1 xi
(1 + ε)m

=
2

(1 + ε)m
.

Using that ε = 1
11m , the claim follows.

Proof of Lemma 3.9. Let k = arg mini∈T ‖âi‖Q. Let us use the decomposition of R as in
Lemma 3.5. Then

‖âk‖2Q
n∑
i=1

γi ≤
n∑
i=1

γi‖âi‖2Q =
n∑
i=1

γi

(
aTi Qai/‖ai‖22

)
= tr

(
Q

n∑
i=1

γiaia
T
i /‖ai‖22

)
=

tr(Q(R− αIm)) = tr(Im − αQ) = m− αtr(Q) < m. (14)

The second equality used Lemma 1.1(i) and (ii), the third used the decomposition of R,
the fourth used QR = Im, and the final inequality is since Q is positive definite.

The fact that tr(R) = αm +
∑n

i=1 γi ≤ m +
∑n

i=1 γi and Lemma 1.1(iv) imply that∑n
i=1 γi ≥ tr(R) −m ≥ m(det(R)1/m − 1). Note that the latter term is positive because

det(R) > 1, therefore the statement follows from (14).

3.3 Maximum support case

The Full Support Image Algorithm naturally extends to the maximum support case. We
assume a lower-bound ω̄ is given on ω̂A. Lemma 3.7 easily generalizes to show ‖âk‖Q ≥
ω̂A for every k ∈ T ∗. Hence if the algorithm does not terminate within O(m log ω̄−1)
rescalings, then we can identify a column ‖âk‖Q < ω̄ and conclude k /∈ T ∗. We thus
eliminate ak and recurse. A näıve approach would be to restart the algorithm every time
a column is removed, but this would multiply the running time by a factor m. In what
follows, we show that the same running time bound applies for the maximum support
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Algorithm 6 Maximum Support Image Algorithm

Input: A matrix A ∈ Rm×n with rk(A) = m, and a lower-bound ω̄ on the
condition number ω̂A.

Output: A solution ȳ ∈ Rm to (I) satisfying the maximum number of strict
inequalities.

1: Set Q := Im, R := Im, U := Im, T := [n], r := m.
2: while T 6= ∅ do
3: Call von Neumann(A,Q, ε) to obtain (x, y).
4: if ATQy > 0 then return ȳ = UQy. Terminate.
5: else rescale

R :=
1

1 + ε

(
R +

∑
i∈T

xi
‖ai‖2

Q

aia
T
i

)
; Q := R−1.

6: while ∃k ∈ T such that (‖âk‖Q < ω̄) or (y = 0 and xk > 0) do
7: Select W ∈ Rr×(r−1) whose columns form an orthonormal basis of a⊥k .
8: Set A := WTA, delete all 0 columns, and remove the corresponding

indices from T .
9: Set R := WTRW , U := UW , and r := r − 1. Recompute Q = R−1.

return ȳ = 0.

case as for the full support case. When a column is removed, we continue with the
appropriate projection of the system, and keep track of the potential det(R) throughout
the algorithm. The key new argument (Lemma 3.14) gives a bound on the potential
decrease at any column removal.

Similarly to the Maximum Support Kernel Algorithm (Algorithm 2), we maintain a
set T of indices with the property T ∗ ⊆ T . The set T is initialized as T = [n], and we
remove an index ak once we conclude that k /∈ T ∗. The algorithm terminates with a
solution ȳ such that aTk ȳ > 0 for all i ∈ T and aTk ȳ = 0 for all i /∈ T , verifying T = T ∗ at
termination. We maintain r as the number of rows of A throughout the algorithm. As in
the full support case, we assume that initially the matrix has full row rank; this will be
preserved throughout the reduction steps.

Removing a column ak from T is slightly more complicated than in the primal setting.
We need to make sure aTk ȳ = 0 for the desired solution ȳ, that is, we recurse on the
subspace a⊥k . To do this we apply an isometric transformation of a⊥k to Rr−1. This is
achieved by selecting an r× (r− 1) matrix W whose columns form an orthonormal basis
of a⊥k , and replacing A by the matrix obtained by removing all zero columns from WTA
(in particular, the kth column is removed since WTak = 0); thereby the number of rows
decreases by one.

Theorem 3.11. Let the matrix A ∈ Rm×n have rk(A) = m, and we are given a lower-
bound ω̄ on ω̂A. Algorithm 6 finds a maximum support solution to ATy ≥ 0 in O

(
m2n2 log(nω̄−1)

)
arithmetic operations. The smoothed variant uses O

(
m3n
√

log n · log(nω̄−1)
)

arithmetic
operations. If A ∈ Zm×n is integer of encoding size L, the running times of the two
variants can be bounded as O

(
m2n2L

)
and O

(
m3n
√

log n · L
)
, respectively.

3.3.1 Analysis

Note that the function y 7→ WTy is an isometric bijection from Rr ∩ a⊥k to Rr−1 whose
inverse is the function y′ 7→ Wy′. The corresponding update to the matrix R will be
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WTRW . Note that Ea⊥k
(R) = WE(WTRW ) and that ΣA = WΣWTA.

The matrix U keeps track of the product of all rescalings so far. We let Ā denote the
original input matrix and A the current matrix at any iteration of the algorithm. The
current matrix A is obtained from U>Ā by removing all zero columns (which are the
columns outside T ). Letting H := {y ∈ Rm : ā>i y = 0 ∀i ∈ [n] \ T}, the transformation
y 7→ U>y is an isometric bijection from H to Rr whose inverse is the function y′ 7→ Uy′.
It is easy to see that ΣĀ = UΣA and FĀ = UFA.

We now formulate the main lemmas used in the proof of Theorem 3.11. The proof of
the lemmas are deferred after the proof of the theorem. The first main lemma guarantees
the correctness of the column removal.

Lemma 3.12. If FA ⊆ E(R), then ‖âi‖Q ≥ ω̂A for every i ∈ T ∗. If y =
∑
∈T xiâi = 0,

x ≥ 0, then xk /∈ T ∗ for all k with xk > 0.

The next lemma is a strengthened version of Lemma 3.5, with explicit bounds on the
coefficients. Note that the dimension m is replaced by the actual dimension r and the set
of columns [n] by T . Recall that ω̄ denotes a known lower bound on ω̂A for the initial
input matrix A.

Lemma 3.13. At any stage of the algorithm, we can write the matrix R in the form

R = αIr +
∑
i∈T

γiâiâ
T
i

where γi ≤ 2/ω̄2, ∀i ∈ T , α = 1/(1 + ε)t for the total number of rescalings t performed
thus far, and γi ≥ 0. The trace is tr(R) = αr +

∑
i∈T γi. Furthermore, the matrix Q

satisfies that for any unit-normed vector v ∈ Rr, ‖v‖Q ≥ ω̄/
√

2(n+ 1).

The next lemma is the key new element in the argument for the maximum support
problem.

Lemma 3.14. Assume that at a given iteration FA ⊆ E(R), and consider an index
k ∈ T \ T ∗. Let W ∈ Rr×(r−1) be a matrix whose columns form an orthonormal basis
of a⊥k . Let A′ be the matrix obtained by removing all zero columns from WTA, and let
R′ = WTRW . Then R′ is positive definite and FA′ ⊆ E(R′). Furthermore,

det(R′) ≥ ω̄2

2(n+ 1)
det(R).

We now prove Theorem 3.11 based on these lemmas and the results proved in Sec-
tion 3.2.1.

Proof of Theorem 3.11. Lemmas 3.6 and 3.8 remain valid. Lemma 3.9 also holds under
the assumption det(R) > 1; the proof uses Lemma 3.13 in place of Lemma 3.5

We first show that the solution ȳ returned by the algorithm is a solution to (I) satisfy-
ing the maximum number of strict inequalities. Lemmas 3.6 and 3.12 imply that T ⊆ T ∗
throughout the algorithm. If T = ∅ at termination, then ȳ = 0 is indeed a maximum
support solution. Assume the algorithm terminated at line 5 with ȳ = UQy, where the
matrix U ∈ Rm×r represents the sequence of transformations. For the original matrix Ā,
the current matrix A is obtained from UTĀ by removing all columns outside T ; further,
if k /∈ T then UTāk = 0. It follows that āTk ȳ = 0 for all such columns, and ā>k ȳ > 0 for all
k ∈ T , as required.

The potential det(R) is initially 1, and increases at least by a factor 16/9 at every
rescaling by Lemma 3.8. By Lemmas 3.9 and 3.12, we can find an index k ∈ T \ T ∗
whenever det(R) > (1 + ω̄−2)m. Furthermore, by Lemma 3.14, det(R) drops by at most a

factor ω̄2

2(n+1) after the elimination of a column. Since the number of rows decreases by 1
every time we eliminate a column, the algorithm performs at most m column eliminations.
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Consequently, within O(m log(nω̄−1)) rescalings, all columns outside T ∗ will be removed
and the algorithm terminates with a solution of maximum support.

As in the proof of Theorem 3.2, the iterations between two rescalings can be imple-
mented in time O(n2m), giving the running time bound. Following the proof of Theo-
rem 3.4 we obtain the running time bound for the Smoothed Perceptron or MPFP updates.
The bound on integer matrices follows by Lemma 1.4.

The rest of this section is dedicated to the proof of the lemmas.

Proof of Lemma 3.12. The second statement is straightforward; we only prove the first
part. We denote the original matrix and its columns as Ā = (ā1, . . . , ān). The same
argument as in the proof of Lemma 3.7 shows that

‖āi‖Q/‖āi‖ ≥ ω̂A ∀i ∈ T ∗. (15)

We recall that, for every i ∈ T , ai = UTāi for the current matrix U in the algorithm, and
that UT is an isometry. Thus ‖ai‖Q = ‖āi‖Q. In what follows, we show that ‖ai‖ ≤ ‖āi‖.
Thus the claim follows from (15), using that ‖âi‖Q = ‖ai‖Q/‖ai‖ ≥ ‖āi‖Q/‖āi‖.

To show ‖ai‖ ≤ ‖āi‖, we let H := {y ∈ Rm : āTi y = 0 ∀i ∈ [n] \ T}. Then H ⊇ ΣĀ

holds. We note that the matrix Π := UUT is the orthogonal projection matrix onto H.
In particular, for all i ∈ T ,

‖ai‖ =
√
āiΠāi ≤

√
‖āi‖‖Πāi‖ ≤ ‖āi‖,

where the first inequality follows from Cauchy-Schwartz and the second from ‖Πāi‖ ≤
‖āi‖.

Proof of Lemma 3.13. The proof is by induction. The formula and bound is valid at
initialization when R = Im and γi = 0 ∀i ∈ [n]. Let R = αIr +

∑
i∈T γiâiâ

T
i denote the

current decomposition, where γi ≤ 2/ω̄2. We will show that the required form and bounds
hold for the next update.

Assume that we rescale in the current iteration. Given this, we must have that
mini∈T ‖âi‖Q ≥ ω̄. Next, for i ∈ [n], using Lemma 2.15 we see that

‖âi‖2Q = width2
E(R)(âi) = max

(âTi x)2 : α‖x‖2 +
∑
j∈T

γj(â
T
j x)2 ≤ 1, x ∈ Rr

 ≤ 1

γi
.

Now let x be the convex combination returned by Von Neumann in line 3. By the rescaling
formula in line 5, the matrix R is updated to R′ satisfying

R′ =
1

1 + ε

(
R+

∑
i∈T

xi
‖ai‖2Q

aia
T
i

)
=

1

1 + ε

(
αIr +

∑
i∈T

(
γi +

xi
‖âi‖2Q

)
âiâ

T
i

)
.

Therefore, each γi is updated to γ′i satisfying

γ′i =
1

1 + ε

(
γi +

xi
‖âi‖2Q

)
≤ 2

‖âi‖2Q
≤ 2

ω̄2
,

as needed.
Consider now a step when some columns are eliminated. Then the matrices A and R

are updated to A′ and R′, where A′ is obtained by removing the zero columns from W>A
and R′ = WTRW . We denote by T ′ ⊆ T the index set of columns of A′. Thus

R′ = αWTW +
∑
i∈T ′

γiW
Tâiâ

T
i W = αIr−1 +

∑
i∈T ′

γi‖WTâi‖2
a′ia
′
i
T

‖WTâi‖2
,
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where the last equality follows from WTW = Ir−1 and the fact that WTai = 0 for all
i ∈ T \ T ′. Setting α′ = α and γ′i = γi‖WTâi‖2 for i ∈ T ′ gives the desired decomposition
of R′. Next, since ‖WTâi‖ ≤ ‖âi‖ ≤ 1, we get that γ′i ≤ γi ≤ 2/ω̄2, for all i ∈ T ′.

We now prove the last part lower bounding ‖v‖Q for any unit vector v ∈ Rr. Firstly,
for any x ∈ Rr, the Cauchy-Schwarz inequality gives

xTRx = α‖x‖2 +
∑
i∈T

γi(â
>
i x)2 ≤

(
α+

∑
i∈T

γi

)
‖x‖2 ,

and hence E(R) contains a Euclidean ball of radius at least 1/
√
α+

∑
i∈T γi. Therefore,

for any unit vector v ∈ Rr, using Lemma 2.15 we get

‖v‖Q = max
{
v>x : x ∈ E(R)

}
≥ 1√

α+
∑

i∈T γi
≥ 1√

1 + 2|T |/ω̄2
≥ ω̄√

2(n+ 1)
,

as needed.

Proof of Lemma 3.14. The positive definiteness of R′ follows easily from Lemma 3.5. To
show that FA′ ⊆ E(R′), consider y′ ∈ FA′ , and let y = Wy′. Observe that, by construc-
tion, ATy = A′>y′, ‖y‖2 = ‖y′‖2, and yTRy = (y′)TR′y′. This implies that ATy ≥ 0 and
‖y‖2 ≤ 1 because y′ ∈ FA′ . It follows that y ∈ FA, thus yTRy ≤ 1 because FA ⊆ E(R).
This implies that (y′)TR′y′ ≤ 1, meaning y′ ∈ E(R′), as required.

Finally, note that det(R′) = deta⊥k
(R). Lemma 2.17 gives det(R′) = det(R)‖âk‖2Q. To

obtain the desired bound, we use the estimate ‖âk‖2Q ≥ ω̄2/(2(n+ 1)) from Lemma 3.13,
which holds since âk is a unit vector.

4 Condition measures and orthonormal precon-

ditioning

In this section we show how the condition measures we introduced in Section 1.2 relate
to other conditions measure considered in the literature. We also address the question
of finding a good preconditioning for our algorithms. For both the kernel and image
problems, we get an equivalent problem, if we replace A by B = TA for some non-
singular T ∈ Rm×m. Hence the questions is whether we can replace A by another B with
im(B>) = im(A>), so that the relevant condition numbers improve. We show that, if
B is chosen as a matrix whose rows form an orthonormal basis of im(AT), many of our
condition measures become approximately the best possible, and all running times can be
lower bounded by Stewart’s condition measure χ̄A.

4.1 Relations to other condition measures

As already indicated in Section 1.2, our measures θA, ρ∗A, and ω̂A are closely related to
well known condition measures in the literature. The following pair of condition measures
introduced by Vavasis and Ye [36]:

σKA
def
= min

i∈S∗
max {xi : x ∈ ker(A)+, ‖x‖1 = 1} ,

σIA
def
= min

i∈T ∗
max

{
xi : x ∈ im(A>)+, ‖x‖1 = 1

}
.

(16)

Observe that the above measures depend only on the subspace im(AT), rather than on
the specific choice of the matrix A whose rows span the space. The relationship between
θA and σKA , and between ω̂A and σIA, is formulated in the next claim,
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Claim 4.1. For every matrix A ∈ Rm×n, θA = σKA /(1 − σKA ). Furthermore, if ‖ai‖ = 1
for all i ∈ [n], then σIA ≥ ω̂A/n.

Proof. The first part of the claim is essentially the same as Proposition 22 in [16]. For the
second part, under the assumption that ‖ai‖ = 1 for all i ∈ [n], we have ‖A>y‖1 ≤ n‖y‖
for every y ∈ Rm. The statement now from the definition of ω̂A and by observing that
σIA = mini∈T ∗ max{a>i y : y ∈ Rm, A>y ≥ 0, ‖ATy‖1 ≤ 1}, and that âi = ai for all
i ∈ [n].

The next lemma, shows the relationship between θA and ρA.

Claim 4.2. Let A ∈ Rm×n with l = maxi∈[n] ‖ai‖ > 0. Then, θA ≥ −ρA/l.

Proof. Clearly, the statement is trivial if ρA ≥ 0, thus we may assume ρA < 0. In this
case, by Lemma 1.2 conv(A) contains a Euclidean ball of radius |ρA|. Thus for each
i ∈ [n], we have that −(|ρA|/l)ai ∈ |ρA|Bm ⊆ conv(A). Hence θA ≥ −ρA/l as needed.

Let us now introduce the condition numbers χA and χ̄A defined by Stewart [35] and
by O’Leary [27]. Denoting by D the set of n× n diagonal matrices with positive entries,
we define

χA
def
= sup

{
‖y‖
‖c‖

: y minimizes ‖D(A>y − c)‖ for some c ∈ Rn, D ∈ D
}

χ̄A
def
= sup

{
‖A>y‖
‖c‖

: y minimizes ‖D(A>y − c)‖ for some c ∈ Rn, D ∈ D
}
,

Note that the condition number χ̄A depends only on the subspace im(A>), whereas χA
also depends on the matrix. In what follows, we focus on χA, and show that it is essentially
equivalent to ρ∗A. The χ̄ measure plays an important role in evaluating the running time
of interior point methods (see Cheung et al. [6]), as well as in Section 4.2, where we show
that it provides a lower bound on all of our condition measures, after an orthonormal
preconditioning.

Let us characterize χA in terms of singular values. For a matrix B, let smin(B) denote
the smallest nonzero singular value of B.

Theorem 4.3 ([35, 27]). 1/χA = min
∅6=S⊆[n]

smin(AS).

Claim 4.4. For every matrix A ∈ Rm×n, 1/(
√
nχA) ≤ ρ∗A ≤ 1/χA.

Proof. Recall that Bd denotes the d-dimensional Euclidean ball. Let Bd1 = {x ∈ Rd :
‖x‖1 ≤ 1} denote the d-dimensional `1-ball. Consider a subset S ⊆ [n] with |S| = d. Note
that conv(AS ,−AS) = ASBd1, that is, the image of Bd1 under the linear transformation
AS . Lemma 1.2 gives

|ρ(AS ,−AS)| = max
{
r : rBm ∩ im(AS) ⊆ ASBd1

}
.

On the other hand, we can write smin(AS) as

smin(AS) = max
{
r : rBm ∩ im(AS) ⊆ ASBd

}
,

where ASBd is the image of Bd under AS . Using that Bd1 ⊂ Bd ⊂
√
nBd1, we thus have

|ρ(AS ,−AS)| ≤ smin(AS) ≤
√
n|ρ(AS ,−AS)|. The statement follows using the previous

theorem.
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4.2 Orthonormal preconditioning

Given A ∈ Rm×n, throughout this section we consider a matrix U = [u1, . . . , un] whose
rows form an orthonormal basis of im(AT), that is, im(AT) = im(UT) and UUT = I.
Observe that ΠI

A = UTU , therefore ‖ui‖ ≤ 1 for all i ∈ [n], since ‖ui‖ is the length of
the projection of the ith unit vector onto im(AT). A simple concrete way of obtaining an
orthonormal basis is setting U := (AA>)−1/2A.

We will be interested in evaluating how the condition measures we introduced change if
we adopt the matrix U instead of A to represent our kernel and image feasibility problems.
First, note that, in light of Claim 4.1, the measure θA depends only on the subspace
im(AT), rather than the specific choice of matrix A, hence θA does not change. On the
other hand, we can expect improvement for the measures ρ∗A and ω̂A.

We show that the choice of U is “essentially optimal” with respect to the measures
ρ and ρ∗, in the following sense. Let us assume that ‖ai‖ ≤ 1 for all i ∈ [n], and let A
the set of all matrices B = [b1, . . . , bn] such that im(BT) = im(AT) and ‖bi‖ ≤ 1 for all
i ∈ [n]. Then

ρ∗U ≥
1

n
sup
B∈A

ρ∗B, |ρU | ≥
1√
n

sup
B∈A
|ρB|. (17)

The first bound is proved in Lemma 4.5. The second bound is trivial if ρA = 0; the
nontrivial cases S∗ = [n] or T ∗ = [n] follow by Lemma 4.8. Whereas we cannot prove the
analogous statement for ω̂A, we show that ω̂U can be lower bounded by σIA (Claim 4.6).

We first observe that χU is independent from the choice of U , since ‖U>y‖ = ‖y‖ for
an orthonormal basis; moreover, χU = χ̄A.

Lemma 4.5. If ‖ai‖ ≤ 1 for all i ∈ [n], then χ̄A ≤
√
nχA and ρ∗U ≥ ρ∗A/n.

Proof. Consider x ∈ im(AT), c ∈ Rn, and D ∈ D such that A>y minimizes ‖D(A>y− c)‖
and χ̄A = ‖A>y‖/‖c‖. Then

χ̄A =
‖ATy‖
‖c‖

≤ ‖A
T‖‖y‖
‖c‖

≤
√
nχA;

where ‖AT‖ denotes the operator norm of AT, and the last inequality follows from the
definition of χA and the fact that ‖A‖ ≤

√
n because ‖ai‖ ≤ 1 for all i ∈ [n]. Finally,

from Claim 4.4, we have ρ∗U ≥ 1/(
√
nχ̄A) ≥ 1/(nχA) ≥ ρ∗A/n.

In particular, the above statement proves the first of the two inequalities in (17). The
next claim shows that ω̂U is independent of the choice of the orthonormal basis U , and
compares ω̂U to σIA.

Claim 4.6. We have

ω̂U = min
i∈T ∗

max

{
xi
‖ui‖

: x ∈ im(A>)+, ‖x‖ = 1

}
.

Consequently, σIA ≤ ω̂U . Furthermore, if ‖ai‖ = 1 for all i ∈ [n], then also ω̂U/n ≤ σIA.

Proof. Since ‖UTy‖ = ‖y‖ for all y ∈ Rm, it follows that ω̂U = mini∈T ∗ max{xi/‖ui‖ :
x ∈ im(AT)+, ‖x‖ ≤ 1}. The bound σIA ≤ ω̂U follows from the definition of σIA, using
‖ui‖ ≤ 1, and that ‖x‖ ≤ ‖x‖1.

For the last part, we first show that if ‖ai‖ = 1 ∀i ∈ [n], then ‖ui‖ ≥ 1√
n

. For i ∈ [n],

note that
max

x∈im(AT),‖x‖=1
xi = max

y∈Rm,‖y‖=1
ui
>y = ‖ui‖ .

where the first equality follows since rows of U form an orthornormal basis of im(AT).
Using that each ai has norm 1, we also have that

max
x∈im(AT),‖x‖=1

xi ≥
ai
>ai

‖ATai‖
≥ 1√

n
,
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as needed. The last part now follows combining the fact that ‖ui‖ ≥ 1√
n

, ∀i ∈ [n], and

that ‖x‖1 ≤
√
n‖x‖ ∀x ∈ Rn.

Hence, while it is not possible to lower-bound on ω̂A only in terms of σIA and n,
choosing an orthonormal basis U guarantees that ω̂U is no worse than σIA.

Based on the previous bounds, we can bound the running time of all our algorithms
in terms of n, m, and the single condition number χ̄A, if an orthonormal preconditioning
is applied.

Theorem 4.7. Let A be a matrix and U be a matrix whose rows form an orthonormal basis
for im(AT). If we apply Algorithm 2 to U , the algorithm returns a maximum-support point
in ker(A)+ in O

(
(m3n+mn2) log(nχ̄A)

)
arithmetic operations. If we apply Algorithm 6

to U , the algorithm returns a maximum-support point in im(AT)+ in O
(
m2n2 log(χ̄A)

)
arithmetic operations.

Proof. Vavasis and Ye [36, Theorem 5] showed that σKA , σ
I
A ≥ 1/(χ̄A + 1). Hence we have

θU ≥ 1/(χ̄A + 1) (by Claim 4.1), ρ∗U ≥ 1/(
√
nχ̄A) (by Claim 4.4), and ω̂U ≥ 1/(χ̄A + 1)

(by Claim 4.6). The bounds now follow by Theorems 2.8 and 3.11.

The measure ρA and the full support kernel algorithm. We now focus on
ρA. We assume that either S∗ = [n] or T ∗ = [n], as otherwise ρA = 0. For the full sup-
port kernel case S∗ = [n], we show that orthonormal preconditioning leads to important
conceptual improvements of the algorithm. In particular, we can bound the running time
in terms of the larger condition number |ρ̂U |. The next lemma shows that, again, ρU is
independent of the choice of the orthonormal U , and that choosing an orthonormal matrix
is optimal up to a factor

√
n with respect to this condition measure, verifying the second

part of (17).

Lemma 4.8. We have
ρU = max

x∈im(AT)\{0}
min
i∈[n]

xi
‖x‖

.

Furthermore, if ‖ai‖ ≤ 1 for all i ∈ [n], then |ρU | ≥ |ρA|/
√
n.

Proof. The first statement follows immediately from the definition of ρU and the fact that
im(AT) = im(UT) and that ‖y‖ = ‖UTy‖ for ever y ∈ Rm.

For the second statement, assume first that T ∗ = [n], and hence that both ρA, ρU > 0.
Now consider ȳ ∈ im(A) such that ‖ȳ‖ = 1 and ρA = mini∈[n] a

T
i ȳ, and let x̄ = ATȳ. Note

that ρA = mini∈[n] x̄i > 0 and that ‖x̄‖ ≤
√
n since ‖ai‖ ≤ 1 for all i ∈ [n]. Thus,

ρU ≥ min
i∈[n]

x̄i/‖x̄‖ ≥ ρA/
√
n > 0 .

Now assume that S∗ = [n] and hence ρU , ρA < 0. Now choose x̄ ∈ im(AT), ‖x̄‖ = 1,
such that ρU = mini∈[n] x̄i. By definition, there exists ȳ ∈ im(A) s.t. x̄ = ATȳ. Again as
above, 1 = ‖x̄‖ ≤

√
n‖ȳ‖. Thus, we have that

0 > ρA ≥ min
i∈[n]

x̄i/‖ȳ‖ ≥
√
nmin
i∈[n]

x̄i =
√
nρU .

Taking absolute values, we get |ρA| ≤
√
n|ρU | as needed.

Next we focus on the relationship between ρU and σIA, σKA , in the cases S∗ = [n] or
T ∗ = [n].

Lemma 4.9.
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• If T ∗ = [n], then
1√
n
ρU ≤ σIA ≤ nρU

• If S∗ = [n], then
|ρU |
|ρU |+ 1

≤ σKA ≤ n|ρU | .

Proof. (i). The proof follows the same lines as the proof of Claim 1.3. The direction
ρU ≤

√
nσIA is straightforward by Lemma 4.8 and the definition of σIA, and using that

‖x‖1 ≤
√
n‖x‖. For the other direction, let x(i) := arg max{xi : x ∈ im(A>)+, ‖x‖1 = 1}

for all i ∈ [n]; hence σIA = mini∈[n] x
(i)
i . We let x̄ =

∑n
i=1 x

(i)/n; clearly, ‖x̄‖1 = 1, and

therefore ‖x̄‖ ≤ ‖x̄‖1 = 1. Thus ρU ≥ σIA/n.

(ii). We first prove σKA ≤ n|ρU |. The statement will follow from the following stronger
bound.

Claim 4.10. Assume S∗ = [n]. For every z ∈ ker(A)+ with ‖z‖1 = 1, and every x ∈
im(AT) with ‖x‖2 = 1, there exists k ∈ [n] such that xk ≥ mini∈[n] zi.

Proof. Let τ = mini∈[n] zi and suppose by contradiction that xi < τ for all i ∈ [n]. Since
T ∗ = ∅, it follows that x has at least one negative component. Then

∑
i :xi>0 xizi <

(1− τ)τ . On the other hand, since
∑n

i=1 xizi = 0,

∑
i :xi>0

xizi =
∑
i :xi<0

|xi|zi ≥ τ
√ ∑
i :xi<0

x2
i = τ

√
1−

∑
i :xi>0

x2
i > τ

√
1− (n− 1)τ2.

It follows that 1−(n−1)τ2 < (1−τ)2, which immediately implies τ > 2/n, a contradiction
since τ ≤ 1/n.

To show |ρU | ≥ σKA /n, let z(i) := arg max{zi : z ∈ ker(A)+, ‖z‖1 = 1} for every

i ∈ [n], so that σKA = mini∈[n] z
(i)
i . Let z = 1

n

∑n
i=1 z

(i), so that z ∈ ker(A)+, ‖z‖1 = 1,

and zi ≥ σKA /n for all i ∈ [n]. Now for any x ∈ im(AT), ‖x‖ = 1, applying Lemma 4.8
to −x we must have that mini∈[n] xi ≤ −mini∈[n] zi ≤ −σKA /n < 0. It then follows that

|ρU | ≥ σKA /n.

We now show that σKA ≥
|ρU |
|ρU |+1 . Firstly, by Claim 4.1, σKA = θA

θA+1 . Next, we recall

that θA = θU since ker(A) = ker(U). Lastly, by Claim 4.2, noting that ρU < 0 and

maxi∈[n] ‖ui‖ ≤ 1, we have that θU ≥ |ρU | and hence θU
θU+1 ≥

|ρU |
|ρU |+1 . The claim thus

follows.

Finally, we show that, for the case S∗ = [n], if we apply Algorithm 1 with U as an input
matrix, then the algorithm will terminate with a positive solution as soon as the vector y
computed during the execution has norm less than 1. This is a substantial improvement
over the original analysis, where we can only conclude this once ‖y‖ < |ρ(A,−A)|.

Claim 4.11. Given x ∈ Rn such that x ≥ ~e, let y = UTx. If ‖y‖ < 1, then πKA x > 0.

Proof. Since UUT = I, it follows that ΠI
A = UTU , thus ‖ΠI

Ax‖ = ‖y‖ < 1. Since x ≥ ~e,
it follows that ΠK

Ax = x−ΠI
Ax > 0.

Recall from the analysis of Algorithm 1 that the algorithm performs at mostm log3/2 |ρ̂U |−1

when applied to matrix U . Since, by the previous claim, the algorithm terminates as soon
as the vector y computed during the execution has norm less than 1, it follows that the
total number of DV updates depends on ρ̂U , rather than ρU . We summarize this in the
following corollary.
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Corollary 4.12. Let A be a matrix such that (K++) is feasible, and U be a matrix whose
rows form an orthonormal basis for im(AT). Algorithm 1 applied to matrix U finds a
feasible solution of (K++) in O(m2n log n+m3n log |ρ̂U |−1) arithmetic operations.

Recalling that ρ̂U ≥ ρU because all columns of U have norm at most 1, and recalling
that ρU ≥ ρA/n, it follows that the above running time is not worse than that given by
any choice of input matrix A. Although this does not give an improvement in terms of
the worst-case running time, it might be beneficial in practice.
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A Appendix

Lemma 1.2. |ρA| equals the distance of 0 from the relative boundary of conv(A). Further,

(i) ρA < 0 if and only if 0 is in the relative interior of conv(A), or equivalently, S∗ = [n].

(ii) ρA > 0 if and only if 0 is outside conv(A), or equivalently, T ∗ = [n]. In this case,
the Goffin measure ρ̂A equals the width of the image cone ΣA, that is, the radius of
the largest ball in Rm centered on the surface of the unit sphere and inscribed in ΣA.

Proof. By Lemma A.1 below, |ρA| is the distance of 0 from the relative boundary of
conv(A). (i) By Lemma A.1(ii), ρA < 0 if and only if 0 is in the relative interior of
conv(A), which is the case if and only if there exists x > 0 such that Ax = 0.

(ii) For any ȳ ∈ ΣA, ‖ȳ‖ = 1, the distance between ȳ and the hyperplane {y : aTj y = 0}
(j ∈ [n]) is âTj ȳ, therefore minj∈[n] â

T
j ȳ is the distance of ȳ from the boundary of ΣA, that

is, the radius of the largest ball centered at ȳ and contained in ΣA. The statement now
follows from the definition of ρ̂A.

Lemma A.1. Let A ∈ Rm×n. Let p be a point of minimum norm in the relative boundary
of conv(A).

(i) If 0 /∈ conv(A), then ‖p‖ = ρA = minj∈[n] a
T
j p̂.

(ii) If 0 is in the relative interior of conv(A), then p is in the relative interior of some
facet of conv(A) and ‖p‖ = −ρA = maxj∈[n] a

T
j p̂.

Proof. (i) Assume 0 /∈ conv(A). Then p is a point of minimum norm in conv(A). It
follows that pTz ≥ ‖p‖2 for every z ∈ conv(A), implying that ‖p‖ ≤ minj∈[n] a

T
j p̂ ≤ ρA.

We now show that ρA ≤ ‖p‖. If not, then there exists y ∈ im(A) such that ‖y‖ = 1 and
minj∈[n] a

T
j y > ‖p‖. In particular, this implies that every point in conv(A) has distance

greater than ‖p‖ from the origin, contradicting our choice of p ∈ conv(A).

(ii) Assume 0 is in the relative boundary of conv(A). By our choice of p, for any
y ∈ im(A), ‖y‖ = 1, we have ‖p‖y ∈ conv(A), thus there exist x ≥ 0 such that ~eTx = 1
and ‖p‖y = Ax. It follows that ‖p‖ =

∑n
j=1 xja

T
j y, therefore there exists j ∈ [n] such

that aTj y ≥ ‖p‖. This shows −ρA ≥ ‖p‖.
Consider now the minimal face F of conv(A) containing p, and let J = {j ∈ [n] :

aj ∈ F}. Then p =
∑

j∈J ajλj where λj > 0, and
∑

j∈J λj = 1. Thus every y ∈ F

satisfies pTy = ‖p‖2. We argue that F is a facet of conv(A). Suppose not. Then there
exists a facet F ′ strictly containing F . Furthermore, there exists some j ∈ [n] such that
pTaj < ‖p‖2 because 0 ∈ conv(A), therefore we may choose F ′ such that there exists
k ∈ [n] with ak ∈ F ′ and aTk p < ‖p‖2. Consider the point p′ = λak + (1− λ)p where λ =
pT(p−ak)/‖p−ak‖2. Note that λ > 0 because pTak < ‖p‖2, furthermore, since ‖ak‖ ≥ ‖p‖
(otherwise ak would be a point on the relative boundary of conv(A) with smaller norm) we
also have pTak ≤ ‖ak‖2, which implies λ < 1. It follows that p′ is a convex combination of
two points in F ′, therefore p′ ∈ F ′. Moreover, ‖p′‖2 = ‖p‖2−λ2‖p−ak‖2 < ‖p‖2, therefore
p′ is a point on the relative boundary of conv(A) with smaller norm, a contradiction.

This implies that p is in the relative interior of a facet F of conv(A), therefore pTy ≤
‖p‖2 is a valid inequality for conv(A) and F = conv(A) ∩ {y : pTy = ‖p2‖}. This implies
that aTj p̂ ≤ ‖p‖ for all j ∈ [n]. On the other hand, F contains at least one element ak,

k ∈ [n], therefore aTk p̂ = ‖p‖. It follows that ‖p‖ = maxj∈[n] a
T
j p̂.
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For the purpose of proving Lemma 1.4, when estimating the bit complexity of a matrix
A with integer entries and encoding size L, we will refer to the quantity

∆A = max
B

∏
j∈B
‖aj‖,

where B ⊆ [n] ranges over all sets such that |B| = rk(A) and the columns of AB are
linearly independent. It can be easily shown that ∆A < 2L (see for example [19, Lemma
1.3.3]). By Hadamard’s bound, for every square submatrix A′ of A, | det(A′)| ≤ ∆A.

Lemma 1.4. Assume A ∈ Zm×n of total encoding length L. Then θA, ρ
∗
A, ω̂A ≥ 2−O(L).

If ρA 6= 0, then |ρA|, |ρ̂A| ≥ 2−O(L).

Proof. Let S∗, T ∗ be defined as in (1).

Claim A.2. If T ∗ 6= ∅, then max
y∈ΣA\{0}

min
j∈T ∗

aTj ŷ ≥
1

m∆A
.

Let (y∗, s∗) ∈ R2m be an optimal solution of the following linear program:

min ~eTs
AT
T ∗y ≥ ~e

AT
S∗y = 0

s− y ≥ 0
s+ y ≥ 0

This LP is feasible by the definition of T ∗; the optimal value equals ‖y∗‖1. The vector y∗

is a basic solution of the system AT
T ∗y ≥ ~e, AT

S∗y = 0, therefore |y∗j | ≤ ∆A for all j ∈ [n],
so ‖y∗‖1 ≤

√
m∆A.

Since by construction y∗ ∈ H \ {0}, the statement follows from the fact that

min
j∈T ∗

aTj
y∗

‖y∗‖2
=

1

‖y∗‖2
≥ 1√

m‖y∗‖1
≥ 1

m∆A
.

This concludes the proof of the claim.

Observe that, if we let α := maxi∈T ∗ ‖ai‖, we have

ω̂A = min
j∈T ∗

max
y∈ΣA\{0}

âTj ŷ ≥ α−1 min
j∈T ∗

max
y∈ΣA\{0}

aTj ŷ ≥ α−1 max
y∈ΣA\{0}

min
j∈T ∗

aTj ŷ ≥
1

m∆2
A

,

where the last inequality follows from α ≤ ∆A and Claim A.2. It follows that ω̂A ≥ 2−O(L).

Claim A.3. If ρA 6= 0, then |ρA| ≥
1

mm∆A
.

If 0 /∈ conv(A), then Claim A.2 is applicable with S∗ = ∅ and H = Rm, hence we get
the stronger ρA ≥ 1/(m∆A). Assume now that 0 is in the relative interior of conv(A).
Let r := rk(A). By ρA 6= 0, 0 must be in the relative interior of conv(A) and therefore
Lemma A.1(ii) is applicable. Consider a point p of minimum norm in the relative boundary
of conv(A). Then |ρA| = ‖p‖, and p is in the relative interior of a facet F of conv(A),
where F is defined by the valid inequality pTy ≤ ‖p‖2. Thus, given an m × r submatrix
B of A whose columns are linearly independent elements of F , it follows that p is the
point of minimum norm in the hyperplane H of im(A) affinely generated by B, that is,
H = {y : y = Bz, ∃z ∈ Rr, ~eTz = 1}. This shows that p = ‖p2‖B(BTB)−1~e, therefore
‖p‖2 = (~eT(BTB)−1~e)−1.

Let M := BTB. Given P,Q ⊆ [r], we denote by MP,Q the submatrix of M defined by
the rows indexed by P and by the columns indexed by Q. By the Cauchy-Binet formula,
for every 1 ≤ t ≤ r and every choice of P,Q ⊆ [r] such that |P | = |Q| = t

det(MP,Q)2 =
∑
U⊆[m]

|U |=t

det(BP,U ) det(BQ,U ) ≤
(
m

t

)
∆2
A ≤ mt∆2

A.
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By Cramer’s rule, for every i, j ∈ [r], M−1
ij = (−1)i+j

det(M[r]\{i},[r]\{j})

det(M)
. It follows

that |M−1
ij | ≤ |det(M[r]\{i},[r]\{j})| ≤ mr/2∆A, therefore

ρA =
1√

~eTM−1~e
≥ 1√

r2
√
mr/2∆A

≥ 1

mm
√

∆A
.

This concludes the proof of the claim.

If follows from Claim A.3 that |ρA| ≥ 2−O(L) if ρA 6= 0. Also, since |ρ̂A| ≥ |ρA|/(maxj∈[n] ‖aj‖)
and maxj∈[n] ‖aj‖ ≤ ∆A, we have |ρ̂A| ≥ 2−O(L) if ρA 6= 0. Furthermore, note that, for
every S ⊆ [n], ∆(AS ,−AS) ≤ ∆A, therefore Claim A.3 also implies that ρ∗A ≥ 1/(mm∆A),

and thus ρ∗A ≥ 2−O(L).
To bound θA, observe that conv(A) ∩ im(AS∗) ⊇ conv(AS∗), and by Lemma 1.2

conv(AS∗) contains the ball (|ρAS∗ |)Bm ∩ im(AS∗). It then follows from the definition
of θA that θA ≥ (mini∈S∗ ‖ai‖)|ρAS∗ |, thus θA ≥ 1/(mm∆2

AS∗
) ≥ 1/(mm∆2

A) if S∗ 6= ∅. In

particular, θA ≥ 2−O(L) if S∗ 6= ∅.

Lemma 2.1. Let A ∈ Rm×n and S∗ = S∗A. Then span(PA) = im(AS∗), and PA = PAS∗ .

Proof. We first show PA = PAS∗ . The inclusion PAS∗ ⊆ PA is obvious. For the reverse

inclusion, consider y ∈ PA and let x, z ∈ Rn+ such that ~eTx = ~eTz = 1 and y = Âx = −Âz.
Then Â(x+ z) = 0, x+ z ≥ 0, which implies xi = zi = 0 for all i ∈ [n] \ S∗, which shows
that y ∈ PAS∗ .

We show span(PA) = im(AS∗). It suffices to show that span(PAS∗ ) = im(AS∗) because
PA = PAS∗ . The inclusion span(PAS∗ ) ⊆ im(AS) is obvious. For the reverse inclusion, it
suffices to show that, for every i ∈ S, there exists α 6= 0 such that αai ∈ PAS∗ . Consider

λ ∈ R|S
∗|

++ such that ÂS∗λ = 0, and assume without loss of generality that
∑

j∈S∗\{i} λj = 1.
Then −λiâi =

∑
j∈S∗\{i} λj âj , which implies −λiâi ∈ PAS∗ .

Lemma 2.5. Let X ∈ R be a random variable supported on the interval [−ε, η], where
0 ≤ ε ≤ η, satisfying E[X] = µ. Then for c ≥ 0, we have that

E[
√

1 + cX2] ≤
√

1 + cη(ε+ |µ|)

Proof. Let l(x) = η−x
η+ε

√
1 + cε2 + x+ε

η+ε

√
1 + cη2 denote the unique affine interpolation of√

1 + cx2 through the points {−ε, η}. By convexity of
√

1 + cx2, we have that l(x) ≥√
1 + cx2 for all x ∈ [−ε, η]. Hence, we see that

E[
√

1 + cX2] ≤ E[l(X)] (since X is supported on [−ε, η])

= l(E[X]) = l(µ) (since l is affine) .

From here, we get that

l(µ) =
η − µ
η + ε

√
1 + cε2 +

µ+ ε

η + ε

√
1 + cη2

≤

√
1 + c

(
η − µ
η + ε

ε2 +
µ+ ε

η + ε
η2

) (
by concavity of

√
x
)

=
√

1 + c (ηε+ (η − ε)µ) ≤
√

1 + cη(ε+ |µ|) (since ε ≤ η) ,

as needed.
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