
Permutations in the factorization of simplex bases

Ricardo Fukasawa, Laurent Poirrier

{rfukasawa,lpoirrier}@uwaterloo.ca ∗

December 13, 2016

Abstract

The basis matrices corresponding to consecutive iterations of the simplex method only differ in a single

column. This fact is commonly exploited in current LP solvers to avoid having to compute a new factorization

of the basis at every iteration. Instead, a previous factorization is updated to reflect the modified column.

Several methods are known for performing the update, most prominently the Forrest-Tomlin method. We

present an alternative algorithm for the special case where the update can be performed purely by permuting

rows and columns of the factors. In our experiments, this occurred for about half of the basis updates, and

the new algorithm provides a modest reduction in computation time for the dual simplex method.

1 Introduction

Let a linear programming problem be given as

min cTx

s.t. Ax = b

x ∈ Rn+,
(1)

where c ∈ Rn, A ∈ Rm×n and b ∈ Rm. The simplex method finds a finite optimal solution x∗ to (1) if such

a solution exists. It exploits two central results from linear programming theory. First, the feasible region

P := {x ∈ Rn+ : Ax = b} is a polyhedron, and if the optimum is finite, then at least one vertex of P is an

optimal solution. Secondly, every vertex of P is a basic feasible solution of (1), i.e. it can be obtained through a

basis of (1). A basis B of (1) is a subset of size m of the column indices {1, . . . , n}, such that the corresponding

columns of A form an invertible matrix B. Note that the term basis is often used to designate both B and B.

We do not describe the simplex method here, and instead focus on a few aspects (sometimes called numerical

kernels) of the linear algebra involved in the steps of the algorithm. We refer the interested reader to Chvátal [3]

∗Partially supported by NSERC Discovery Grant RGPIN-05623 and MRI’s Early Researcher Award ER11-08-174

1

for a comprehensive introduction to the simplex method, and to Maros [17] for a detailed description of its

implementation details.

A central requirement of the simplex method is the ability to solve determined linear systems involving a linear

programming basis. These systems are usually solved by computing an LU factorization of B, i.e. LU = B

where L is lower triangular and U is upper triangular.

At a given iteration t+1 of the simplex method, the current basis B(t+1) differs from the previous one B(t) in only

one column. This fact can be exploited to modify the factorization B(t) = L(t)U (t) and obtain a factorization

of B(t+1) that can be used to solve linear systems. The objective is to solve the linear systems involving B(t+1)

at a lower computational cost than would be incurred with a fresh LU factorization of B(t+1).

There are multiple known methods to build such an updated factorization. As a first step, one can easily obtain

a factorization of the new basis where one of the factors remains unchanged, while the other loses triangularity

(see e.g. [4, 23]). The various update methods differ in the structure of the nontriangular factor and in how

to restore its triangularity. We propose a method that finds a permutation of its rows and columns that is

triangular, whenever such a permutation exists. As such, our approach is less general than existing ones: it fails

when no triangular permutation exists, in which case we must fall back on one of the other methods. However,

basis matrices are known to have a special structure where permutations of rows and columns can almost yield

triangularity. We will show that, because of this, a triangular permutation does indeed often exist.

The outline of the paper is as follows. In Section 2, we describe this structure and we explain how it is currently

exploited by linear programming solvers. Though this is part of the folklore in linear programming, to the

best of our knowledge, the results presented in this section were never formalized. We discuss them in order

to introduce some further concepts and for the sake of clarity. In Section 3, we present previous approaches to

obtaining updated factorizations and then present our algorithm, whose particularity is that it takes advantage

of the sparsity of the factors. As a consequence, it can have a very limited computational cost, given a careful

implementation (described in Section 4). Finally, Section 5 presents our computational results. There, we

confirm that (a) our method applies to many simplex iterations, (b) its computational cost is indeed small, and

(c) it has a beneficial impact on the execution speed of the simplex method overall.

2 Factorizing with small nuclei

Since computing the factorization is an important step of the simplex method, problem structure is exploited to

speed up its implementation. For instance, in the overwhelming majority of linear programming formulations

encountered in practice, the matrix A is sparse. As an example, the average nonzero density of the 87 problems

in the MIPLIB 2010 [15] benchmark set is 1.62% (all but 5 of the instances have a density below 5%, and those

5 instances all have fewer than 50000 nonzeros, while the overall average is above ten times more). Since basis

matrices are formed of a subset of the columns of A, they are typically sparse as well.

Moreover, linear programming bases have one interesting property that separates them from the sparse matrices

2

usually found in other scientific applications. Let us consider a permutation of the rows and columns of B that

takes the form

PTBQ =

 U ∗ ∗
0 L 0

0 ∗ G

 (2)

where U is upper triangular, L is lower triangular, and P and Q are permutation matrices. The parts of the

matrix marked with a ∗ can have any structure. The remaining non-triangular part G is called the nucleus.

We call this form pseudo triangular. In order to obtain an LU factorization of a matrix of the form (2), it is

sufficient to factorize the nucleus, i.e. compute LGUG = G by regular Gaussian elimination. Then,

PTBQ =

 U U ′ U ′′

0 L 0

0 L′ G

 =

 I 0 0

0 L 0

0 L′ LG

 ·
 U U ′ U ′′

0 I 0

0 0 UG

 . (3)

It is part of the folklore among simplex practitioners that one can typically find permutations P and Q such that

the nucleus G is extremely small. This fact was known to Orchard-Hayes as early as 1968 [19], and Suhl and

Suhl describe the implementation details of a procedure to exploit it [24]. The scientific literature on the subject

is relatively scarce however, and there was little numerical data on the topic, until a recent computational survey

by Luce et al. [16].

Luce et al. [16] quantify the numerical properties of the basis matrices occurring in the resolution of a large

collection of LP instances. They use the Soplex code [26] both as a simplex solver (to sample simplex bases),

and as a reference implementation for the factorization. As every modern simplex code, Soplex implements a

sparse direct LU factorization with some variant of Markowitz pivoting [26]. The intent of Luce et al. [16] is

to compare the traditional (in the context of linear programming) LU factorizer of Soplex with several state-

of-the-art generic methods. Their results provide rigorous data that confirm the “folklore wisdom” in the field.

Basis matrices are indeed typically sparse, and so are the L and U factors. Also, nuclei are small, especially

for larger problems: for every single instance from their testset with more than 300000 constraints, the average

nucleus size (over all bases factorized) was less than 4% of the basis size. They further show that the relative

fill-in of factors obtained with Soplex is close to minimal. In other words, dynamic Markowitz pivoting generates

factors that are almost as sparse as the sparsest possible factors (note that while even a dense factorization

can be performed in O(m3) operations, finding the sparsest one is NP-hard [27]). As a consequence, for basis

matrices, the traditional factorizer included in Soplex consistently outperforms even the most elaborated generic

LU codes.

We now show how the permutations P and Q are found, and what guarantees they offer when constructed

appropriately. All the results in this section are direct and well known among simplex practitioners, but we

need to introduce some formalism in order to clarify the subsequent exposition.

3

Definition 1. A square matrix H ∈ Rm×m is said to be in pseudo triangular form if

H =

 U ∗ ∗
0 L 0

0 ∗ G

 (4)

where U is a square upper triangular matrix, L is a square lower triangular matrix and G is a square matrix.

We call G the nucleus of H.

Note that any matrix is immediately in pseudo triangular form, since we allow the U and L block submatrices

to be empty, in which case H = G. However, as mentioned previously, we are interested in writing matrices in

pseudo triangular form with nuclei of small sizes.

In this paper, we exclusively consider the factorization of invertible matrices, since basis matrices are always

nonsingular. For such matrices, we can use the following property.

Lemma 1. Let H be a pseudo triangular matrix partitioned as in (4). Then, det(H) = det(U) det(L) det(G).

In particular, if H is nonsingular, then so are U , L and G. Moreover, this implies that all diagonal elements

of U and L are nonzero.

Proof. Observe the LU factorization of a pseudo triangular matrix given in (3). Both factors are block triangular.

Their determinant is therefore the product of the determinants of the diagonal blocks, yielding det(H) =

det(I) det(L) det(LG) det(U) det(I) det(UG) where G = LGUG. Since det(LG) det(UG) = det(G), the result

follows.

Definition 2. Let H be an m×m matrix. The element Hij 6= 0 is called a column-singleton if Hlj = 0 for all

l 6= i, i.e. if Hij is the only nonzero element in its column. Column j of H is then said to be a singleton-column.

Similarly, Hij is a row-singleton if Hik = 0 for all k 6= j, in which case row i is a singleton-row.

Finding a pseudo triangular permutation is straightforward. It simply consists in moving all column- and

row-singletons to the front of the matrix. For instance, given a matrix H that has a column-singleton Hij

(Figure 1a), we can in slide column j is into the first position, moving columns 1, . . . , j − 1 to the right by one

place (Figure 1b), then slide row i into the first position, moving rows 1, . . . , i− 1 down one place (Figure 1c).

The resulting matrix H ′ has a column-singleton in the first position H ′11. It is thus pseudo triangular with an

upper triangular part of size 1. The process can then be iterated by eliminating the first row and column and

considering the remaining submatrix. Remark that while one column-singleton is eliminated at every iteration,

all other column-singletons in H remain column-singletons in H ′. Moreover, the elimination of one row from

H may create new column-singletons in the remaining submatrix. Algorithm 1 formalizes this method.

Algorithm 1. Permutation of the rows and columns of a matrix into a pseudo triangular form.

Input: B ∈ Rm×m nonsingular.

Initialize: Set B(0) := B and k := 0.

4

i

j

i

1

1

1

(a) (b) (c)

Figure 1: Sliding a column-singleton into Up.

Step 1: Let B(k) be partitioned into

B(k) =

(
U (k) ∗

0 G(k)

)
,

where U (k) ∈ Rk×k. If G(k) has no column-singleton, then set κ := k and go to Step 2. Otherwise, let G
(k)
ij be

the only nonzero in column j of G(k), and set

B(k+1) :=

(
U (k) ∗

0 F

)
,

where F = PTG(k)Q, P = (ei|e1| . . . |ei−1|ei+1| . . . |em−k), and Q = (ej |e1| . . . |ej−1|ej+1| . . . |em−k). Clearly,

Fi1 = 0 for all i ≥ 2, so the partition of B(k+1) at the next iteration of Step 1 will have the appropriate structure

(i.e. zeros below U (k+1)). Set k := k + 1 and go to Step 1.

Step 2: Let B(k) be partitioned into

B(k) =

 U (κ) ∗ ∗
0 L(k) 0

0 ∗ G(k)

 ,

where L(k) ∈ R(k−κ)×(k−κ). If G(k) has no row-singleton, then set λ := k and go to Step 3. Otherwise, let G
(k)
ij

be the only nonzero in row i of G(k), and set

B(k+1) :=

 U (κ) ∗ ∗
0 L(k) 0

0 ∗ F

 ,

where F = PTG(k)Q, P = (ei|e1| . . . |ei−1|ei+1| . . . |em−k), and Q = (ej |e1| . . . |ej−1|ej+1| . . . |em−k). Again,

F1j = 0 for all j ≥ 2, so the partition of B(k+1) at the next iteration of Step 2 will have the appropriate

structure (i.e. zeros right of L(k+1)). Set k := k + 1 and go to Step 2.

Step 3: The result is B(λ), a pseudo triangular matrix with an upper triangular part of size κ × κ, a lower

triangular part of size (λ− κ)× (λ− κ), and a nucleus of size (m− λ)× (m− λ).

5

From a computational perspective, Step 1 of Algorithm 1 may be implemented as described in Pseudocode 1.

The process is symmetric for Step 2, eliminating singleton-rows from the matrix. We finish this section by

showing that Algorithm 1 indeed computes the smallest possible nucleus. To the best of our knowledge, we

provide the first formal proof of this result, although the result itself is widely known and exploited.

For all j, compute nz[j], the number of nonzeros in column Bj .
Compute the set S := {j : nz[j] = 1} of column-singleton indices in B
k := 0
while S is not empty {

Let j ∈ S, and i be such that Bij is the nonzero of Bj
S := S \ {j}
row bwd[k] := i
col bwd[k] := j
k := k + 1
for every nonzero Bil in row i of B {

nz[l] := nz[l]− 1
if nz[l] = 1 then S := S ∪ {l};

}
}
Form U (k) with rows row bwd[1, . . . , k] and columns col bwd[1, . . . , k] of B.

Pseudocode 1: Permuting B into a pseudo triangular form (Step 1).

Theorem 1. Given a square nonsingular matrix B, Algorithm 1 yields a pseudo triangular permutation B(λ)

of B with a nucleus of minimum size.

Proof. We apply Algorithm 1 on B and obtain the matrix B(λ). For conciseness, we denote by U , L and G the

index subsets corresponding to the upper triangular, lower triangular, and nucleus parts of B(λ), respectively,

i.e. U := {1, . . . , κ}, L := {κ+1, . . . , λ} and G := {λ+1, . . . ,m}. Let B∗ be a pseudo triangular permutation of

B with a nucleus of minimum size. The sets U∗, L∗, and G∗ are defined for B∗ similarly to their counterparts

for B. Note that, for U∗ fixed, L∗ is maximal i.e. there are no singleton-rows in the submatrix formed with

rows and columns G∗ of B∗. The contrary would immediately contradict the assumption that G∗ is minimum.

Furthermore, we may assume without loss of generality that U∗ is maximal too, i.e. there are no singleton-

columns in the submatrix formed with rows and columns L∗ ∪ G∗ of B∗. Indeed, any such singleton-column

can be moved to U∗ without affecting the size of G∗. Algorithm 1 ensures that U and L are also maximal in

the same sense. We then define the functions r∗, c∗ : {1, . . . ,m} → {1, . . . ,m}, such that the row r∗(i) of B∗

corresponds to the row i of B, and the column c∗(j) of B∗ corresponds to the column j of B. Recall that by

Lemma 1, every diagonal element in the triangular blocks of B(λ) and B∗ is nonzero. Thus, in the following,

“diagonal” will always imply “nonzero”. The proof works in three steps.

(i) We show that every column in L∪G maps to a column in L∗∪G∗, i.e. j ∈ L∪G implies c∗(j) ∈ L∗∪G∗. Let

ja = argminj∈L∪G c
∗(j). Suppose that the claim is not true, i.e. suppose that there exists j ∈ L ∪ G such that

c∗(j) ∈ U∗. Then, c∗(ja) ∈ U∗ (Figure 2). Since ja ∈ L ∪ G and U is maximal, there are at least two nonzero

elements in column ja of B(λ). All of them correspond to elements of U∗, so at least one lies above the diagonal

of U∗. Let that element be in row ia of B(λ), corresponding to the element of B∗ in row r∗(ia) and column

c∗(ja), with r∗(ia) < c∗(ja). The diagonal element in that row of U∗ is in column c∗(jb) = r∗(ia) for some jb.

6

Figure 2: Proof of Theorem 1, step (i).

Figure 3: Proof of Theorem 1, step (iii).

Since it is a nonzero in the row ia of B(λ), we know that jb ∈ L∪G. However, because c∗(jb) = r∗(ia) < c∗(ja),

this contradicts the construction of ja as argminj∈L∪G c
∗(j).

(ii) We can reverse the roles of B(λ) and B∗ in the proof of (i). Therefore, every column in L∗ ∪ G∗ maps to a

column in L ∪ G, i.e. c∗(j) ∈ L∗ ∪ G∗ implies j ∈ L ∪ G. Together, (i) and (ii) prove that U is a permutation of

U∗.

(iii) We transpose the reasoning that led to (i) and (ii) and apply it to the submatrices formed with the columns

L∗ ∪ G∗ of B∗ and L ∪ G of B(λ) (Figure 3). This yields |L| = |L∗| and hence |G| = |G∗|, completing our

proof.

Corollary 1. If there exists a permutation of the rows and columns of B that is upper triangular, then Algo-

rithm 1 finds such a permutation B(m) when it reaches Step 2.

7

Operation Time (% of overall solution
time, average over instances)

Simplex method 100%
- LU factorization 58.01%

- Permutation 25.20%
- Gaussian elimination 20.10%
- other 12.71%

Table 1: Refactorization at every iteration in our code.

Proof. By Theorem 1, Algorithm 1 yields a pseudo triangular matrix B(m) with no nucleus. Assume that κ < m

when the algorithm starts Step 2. Then it means that G(κ) does not contain a column-singleton. However,

since the final result B(m) has no nucleus, there exists a permutation L(m) of G(κ) that is lower triangular,

contradicting the absence of a column-singleton in G(κ). Hence κ < m is impossible.

3 Exploiting basis changes and updating a factorization

In this section we present our main contribution, which is a new method to exploit the particular structure of

basis updates in the simplex algorithm. We start by presenting what was previously done and then present our

idea.

3.1 Background and previous work

The method presented in the previous section is conceptually very simple, but it is applied to the whole basis

matrix, while Gaussian elimination is only performed on the nucleus. As a result, it represents a sizable portion

of the computational effort dedicated to the LU factorization, as shown on Table 1 (the complete data are

presented in Table 6 and the conditions of the experiment are discussed in Section 5). When we force our code

to compute a new factorization at each iteration, it spends 58.01% of the solution time computing factorizations,

on average over the set of LP instances. This includes 25.20% of the overall solution time spent computing

pseudo triangular permutations, despite the simplicity of Pseudocode 1, and only 20.10% of the overall time

spent performing comparatively much more complex Gaussian eliminations.

On the other hand, from one iteration of the simplex method to the next, only one column of the basis matrix is

modified. Several methods have been proposed to exploit this fact and update the factorization across consecutive

iterations. These factorization updates are key to a successful implementation of the simplex method. This is

emphasized in Table 2, which shows that forcing the CPLEX solver to recompute a new LU factorization at

every iteration slows it down by a factor 3 to 4 (complete data in Table 5). The full LU factorization, despite

being mostly performed via permutation, is not cheap enough to be computed at every iteration of the simplex

method. This is somewhat counter-intuitive given the simplicity of the permuting process. But once an effective

update method is implemented, the factorization becomes so much faster that it is not the bottleneck anymore.

Then, more time is typically spent in the triangular solves.

8

Factorization Iterations Time (s) Time per iteration (ms)
update (geometric mean) (geometric mean, (geometric mean,
method shift = 10s) shift = 10ms)
none (refactor) 1165.832 9.598 2.749
automatic 1220.191 2.894 0.595

Table 2: The impact of factorization update on CPLEX 12.6

Figure 4: Pivoting Wii in the Forrest-Tomlin update.

Figure 5: Pivoting Wii in the Suhl-Suhl update.

The first update method for the LU factorization was proposed by Bartels and Golub in 1969 [1]. Subsequent

alternatives were proposed by Forrest and Tomlin in 1972 [4], Saunders in 1976 [21, 22], Reid in 1982 [20],

Suhl and Suhl in 1993 [23], and Huangfu and Hall in 2014 [11]. Update methods are also available for other

representations of the basis inverse (e.g. for the product-form inverse [11]). As a result of his computational

experience with CPLEX [25] and Gurobi [8], Bixby recommended the use of “some variant” of the Forrest-

Tomlin update in 2009 [2]. We thus only focus on the Forrest-Tomlin update here, and its Suhl-Suhl refinement

(the former can be seen as a simplified version of the latter). A good overview of all the different methods is

provided by Chvátal [3], and recent updates on the implementation details of the Forrest-Tomlin and Suhl-Suhl

updates are provided by Hall [9], Maros [17], Koberstein [13, 14] and Huangfu [10].

The Forrest-Tomlin approach starts with the following observation. Let B be the basis matrix at a given

iteration. Assume that we have a factorization B = LU of that matrix. At the next iteration, the basis matrix

9

= ·

Figure 6: Factorization W ′ = η′Ū ′ via Gaussian elimination.

B1 is the same as B except in column i, which is replaced by the entering column vector aj . We can write

B1 = B − Beie
T
i + aje

T
i

= LU − LUeie
T
i + aje

T
i

= L
(
U − Ueie

T
i + L−1aje

T
i

)
= L W

where W = U − UeieTi + L−1aje
T
i is, by construction, upper triangular except in column i. The ith column of

W is called the spike, and W is thus called a spiked upper triangular matrix. The first operation we perform

on W is to pivot the diagonal element of the spike to the back of the matrix (Figure 4). It is here that the

Suhl-Suhl update refines Forrest-Tomlin, by only considering the diagonal submatrix that fully contains the

spike as its leftmost column (Figure 5). We obtain a matrix W ′ = PTWQ that is upper triangular with a row

spike (if P and Q are the appropriate permutation matrices). The row spike is then eliminated by Gaussian

elimination, providing the factorization W ′ = η′Ū ′ (Figure 6) where Ū ′ is upper triangular and η′ is diagonal

except in one row (matrices of that form are commonly referred to as “row eta matrices”). We now consider

the matrices η := Pη′ and Ū := Ū ′QT . It is easy to see that W = ηŪ . A factorization of B1 is thus given by

B1 = LηŪ .

The matrix Ū is not upper triangular, but we know that it can be permuted into a triangular matrix, and we

keep track of the corresponding permutation matrices P and Q. That is enough to permit forward or backward

substitution (FTRAN or BTRAN) and solve linear systems. Similarly, it is easy to solve with a permuted row

eta matrix such as η. As will be clear below, performing the pivot is necessary in order to obtain a row spike,

which can be eliminated through premultiplication by an eta matrix (postmultiplication would not allow us to

iterate on the Forrest-Tomlin formula).

The process can be generalized to multiple consecutive iterations. Let Hk := η1 · · · ηk and assume that Bk =

LHkUk. The first basis in the sequence is obtained by computing a factorization of B0 = LU0 as described in

the previous section. We keep track of the permutation matrices P k and Qk that are such that P k
T
UkQk is

10

upper triangular. We start with P 0 := I, Q0 := I and H0 := I. We obtain the relations

Bk+1 = Bk − Bkeie
T
i + aje

T
i

= LHkUk − LHkUkeie
T
i + aje

T
i

= LHk
(
Uk − Ukeie

T
i + Hk−1

L−1aje
T
i

)
= LHk W k

= LHkηk+1Uk+1

= LHk+1Uk+1

where ηk+1Uk+1 is a factorization of W k = Uk − Ukeie
T
i + Hk−1

L−1aje
T
i . Specifically, we start with the

column-spiked matrix P k
T
W kQk and pivot the diagonal element of the spike to the back. We obtain the

row-spiked P k+1TW kQk+1, on which we perform Gaussian elimination to obtain P k+1TW kQk+1 = η′Ū ′. We

finally let ηk+1 := P k+1η′ and Uk+1 := Ū ′Qk+1T , and verify that ηk+1Uk+1 = W k.

The different update methods let us avoid the computation of a fresh LU factorization at each iteration of the

simplex method. We instead perform algebraic operations that are much less expensive computationally. The

drawback is the accumulation of eta matrices in the factorization of the basis. This increases the time required

to solve linear systems and decreases the numerical accuracy of the solutions to those systems. To compensate

for this, simplex codes regularly perform fresh refactorizations of the basis matrix. That way, the number of

eta matrices stays limited.

3.2 Exploiting sparsity

The objective of this paper is to detect when the spiked matrix W k is actually upper triangular already, up to

a permutation of its rows and columns. In such a case, the Forrest-Tomlin procedure can be skipped altogether

for the current iteration, and no additional eta matrix has to be included in the factorization.

We described a method for detecting such occurrence in the previous section: we could simply slide all column-

singletons to the front of the matrix, yielding a triangular permutation of W k whenever one exists. This idea

is not novel. Reid [20] proposed it as a first step to its method. We implemented this approach, but as shown

in Table 3, it is not a practical one (details on Table 6). This result is to be expected in light of the previous

experiments: A code computing an LU factorization at every iteration spends about 25.20% of its time just

for finding a pseudo triangular permutation of basis matrices (Table 1), and only 20.10% performing Gaussian

elimination. On the other hand, employing an LU update method makes the solver around 3 to 4 times faster

overall (Table 2). It is thus natural that looking for a triangular permutation at every iteration using the same

method is prohibitively slow. However, one surprising result arises from this experiment: On average, in our

test, 53.897% of the W k matrices could be permuted into a triangular matrix.

As opposed to a renewed application of Pseudocode 1, we propose an approach that exploits the sparsity of the

basis matrices. To introduce the approach, let us first introduce a few definitions and provide some theoretical

11

Factorization Iterations Time (s) Time per iteration (ms)
update method (geometric mean) (geometric mean, (geometric mean,

shift = 10s) shift = 10ms)
none (refactor) 1213.276 11.853 4.003
Suhl-Suhl 1229.210 4.014 0.797
Reid + Suhl-Suhl 1202.992 4.880 1.119

Table 3: The impact of factorization update in our code.

Figure 7: The submatrix E of W k

results.

To start, note that since B is a basis, it is not singular. Neither are its factors in any given factorization,

because det(B) is equal to the product of the determinant of its factors. Let E ∈ Rs×s be the square diagonal

submatrix of W k such that its leftmost column is the spike (Figure 7). Despite not being triangular, W k can

be written in the block-triangular form

W k =

 U11 U12 U13

0 E U23

0 0 U33

 , (5)

where U11 and U33 are upper triangular. It is then easy to see that E is an N-matrix, as defined in Definition 3.

Definition 3. A nonsingular matrix E is an N-matrix if Eij = 0 for all 1 < j < i and Eii 6= 0 for all 1 < i.

Lemma 2 then shows that E is invertible, and that a triangular permutation of W k exists if and only if one

exists for E.

Lemma 2. Let H ∈ Rm×m be a nonsingular block upper triangular matrix of the form
H11 H12 · · · H1ν

0 H22 · · · H2ν

...
...

. . .
...

0 0 · · · Hνν

 (6)

where Htt are square matrices for all t ∈ {1, . . . , ν}. Then, H can be permuted into an upper triangular matrix

12

Figure 8: An N-matrix and its N-graph.

if and only if Htt can be permuted into an upper triangular matrix for all t ∈ {1, . . . , ν}.

Proof. If: direct. Only if: Let H∗ be a permutation of the rows and columns of H that is upper tri-

angular. There exist permutation matrices P and Q such that H = PTH∗Q. Observe that |det(H)| =

|det(P) det(H∗) det(Q)| = |det(H∗)|. Furthermore, det(H) =
∏ν
t=1 det(Htt) and det(H∗) =

∏m
k=1H

∗
kk. The

proof proceeds in two steps.

(i) We show that every diagonal element H∗kk of H∗ corresponds to an element in a diagonal block Htt of H

for some t. This is a property of the permutation matrices P and Q, and it can be proven as follows. We

construct the matrix Hµ := H∗ ◦ µekeTk , where ◦ denotes the Schur product and ek is the kth column of the

m×m identity matrix. Since Hµ is triangular, det(Hµ) =
∏m
k=1H

µ
kk = µdet(H∗) for any value of µ ∈ R. The

matrix Hµ also has zeros wherever H∗ has, so PTHµQ has the same block triangular structure as H. Suppose

that H∗kk does not correspond to an element in a diagonal block of H. Then |det(Hµ)| = |det(PTHµQ)| =

|
∏ν
t=1 det(Htt)| = |det(H)|. Therefore, |µdet(H)| = |det(H)| for all µ ∈ R. This implies det(H) = 0, which is

a contradiction.

(ii) For any τ ∈ {1, . . . , ν}, we construct a triangular matrix H∗ττ that is a permutation of the rows and columns

of Hττ . Observe that one can remove row k and column k from a triangular matrix and obtain a new triangular

matrix. By (i), we know that every diagonal element H∗kk of H∗ corresponds to an element of Htt for some

t. For every k such that t 6= τ , we remove row k and column k from H∗. The resulting matrix is the desired

matrix H∗ττ . Indeed, we removed from H∗ exactly all the rows and columns that do not correspond to rows

and columns of Hττ . It is thus a permutation of the rows and columns of Hττ . Furthermore, as mentioned

earlier, H∗ττ is triangular by construction.

We now focus on finding an upper triangular permutation of E and start by defining the N-graph on the nonzeros

of E. An example of an N-matrix and its N-graph is given on Figure 8. Note that distinct nodes of the N-graph

may share a same label.

Definition 4. Let E be an N-matrix. The N-graph of E is a directed tree constructed in the following way:

The root node is a special element labeled 1. If a node labeled 1 is not the root node, then it is a leaf node, and

it is called a spike leaf node. Otherwise, a node labeled i has one child for every nondiagonal nonzero element

13

(a) (b)

Figure 9: Ejj is a column-singleton that is pivoted to the front.

in row i of E, and each child is labeled with the corresponding column index, i.e. the children correspond to

{j : Eij 6= 0, i 6= j}.

Theorem 2 shows that a simple depth-first search on the N-graph of E is enough to find a triangular permutation

of E whenever one exists. The proof is constructive and Pseudocode 2 shows how to build the permutation

of the rows and columns. We claim that the method is superior to Pseudocode 1 because the N-graph is a

sparse structure. It lets us consider only the row-singletons that we need to pivot in order to find a triangular

permutation, as opposed to iteratively pivoting out all of them.

Theorem 2. Let E ∈ Rs×s be an N-matrix that is not in upper triangular form. Then E admits an upper

triangular permutation if and only if its N-graph has exactly one spike leaf node.

We first show in Lemma 3 that we may ignore rows and columns of E that are not covered by any label of its

N-graph. Then, Lemma 4 shows that we can also ignore subtrees of the N-graph that do not contain spike leaf

nodes, and all the rows and columns corresponding to the associated labels.

Lemma 3. If there is no node labeled i in the N-graph of E, then row i and column i can be pivoted out of E.

More precisely, there exists a permutation of the rows and columns of W k yielding a partition of the form (5)

where E ∈ Rs×s and every index i ∈ {1, . . . , s} appears in the labels of its N-graph.

Proof. Let I be the set of all labels among {1, . . . , s} that do not appear in the N-graph of E. We find the

minimum element j of I, i.e. j := min{i ∈ I}. Note that since the root node is labeled 1, 1 /∈ I so j > 1.

Suppose that there exists a nonzero element Eij in column j with i 6= j. Because j > 1 and E is an N-matrix,

we know that i < j. Thus i /∈ I, so there is a node labeled i in the N-graph of E. But given that Eij 6= 0 and

i 6= j, by Definition 4, that node has a child labeled j, contradicting j ∈ I. Therefore, Ejj is a column-singleton

and we can pivot it to the front of E (Figure 9). We then set I := I \ {j} and proceed until I is empty.

Lemma 4. Let T be a subtree of the N-graph of E rooted at a node labeled r > 1, consisting of r and all its

descendants. If T has no spike leaf node, then row r and column r can be pivoted out of E. In other words,

there exists a permutation of the rows and columns of W k yielding a partition of the form (5) where all the leaf

nodes in the N-graph of E are spike leaf nodes.

14

(a) (b)

Figure 10: Eii is a row-singleton that is pivoted to the back.

Proof. Pick a leaf node of T . Since it is not a spike leaf node, it has a label i > 1. The element Eii is a

row-singleton, and we can pivot it to the back of E (Figure 10), eliminating row i and column i. We then

update E and its N-graph. Note that this does not create any new spike leaf nodes, so T will still have no spike

leaf node. We may proceed until all rows and columns corresponding to labels of T are permuted out. Repeated

application of the latter procedure for every non-spike leaf node proves the lemma.

Corollary 2. The N-graph of an N-matrix has at least one spike leaf node.

Proof. Let E be an N-matrix. If there is no spike leaf node, then E11 = 0 and by Lemma 4, all the nondiagonal

nonzero elements of the first row of E can be pivoted out. This contradicts the assumption that E is nonsingular.

Proof of Theorem 2. The proof is constructive. First, we use Lemma 4 to permute out every subtree of the

N-graph that does not contain a spike leaf node. We may now assume that every leaf node of the N-graph of

E is a spike leaf node. If there is exactly one spike leaf node, then the N-graph is a path, otherwise it is a tree.

(i) We first assume that the root node has exactly one child. This is the case e.g. if the N-graph is a path.

Let that child be labeled i. The element E1i 6= 0 is a row-singleton in the first row. If the child is a spike leaf

node, then i = 1 and we can slide E11 into the bottom-right position, directly obtaining a triangular matrix

(Figure 11). Otherwise, we slide E1i into the bottom-right position, then slide the spike column into position

i− 1 (Figure 12). The resulting permuted matrix takes the form

PTEQ =


V (1) ∗ ∗

0 E(1)
Eii

0

0T 0T E1i


where P and Q are permutation matrices, and V (1) is upper triangular. By construction, E(1) is an N-matrix

of dimension (s − i + 1) × (s − i + 1). Furthermore, its first row corresponds to the ith row of E, minus the

diagonal element Eii. Therefore, the N-graph of E(1) is the subtree of the N-graph of E rooted at our initial

15

(a) (b)

Figure 11: E11 is a row-singleton.

(a) (b) (c)

Figure 12: E1i is a row-singleton.

child node labeled i (with nodes relabeled to follow the new indexing). By Lemma 2, there is a triangular

permutation for E if and only if there is one for E(1). Proceeding with E(1), we obtain a finite sequence of

matrices E = E(0), E(1), E(2), . . . , E(τ) of strictly decreasing size. If the N-graph of E is a path, then the root

of the N-graph of E(τ) has one child labeled 1, and we obtain a triangular permutation of E.

(ii) Otherwise, if the N-graph of E is a tree, then the root node of E(τ) has two children, for some τ ≥ 0. We

then use Lemma 3 to permute out every row and column i of E(τ) that is absent from the labels of the N-graph

of E(τ), obtaining

P ′
T
EQ′ =

 V ′ ∗ ∗
0 E′ ∗
0 0 U ′


where P ′ and Q′ are permutation matrices, V ′ and U ′ are upper triangular, and E′ ∈ Rs′×s′ has the same

N-graph structure as E(τ). By our use of Lemma 3, all the rows {2, . . . , s′} of E′ have an associated label in its

N-graph, and because we initially applied Lemma 4, all leaf nodes are spike leaf nodes. Therefore, E′ has no

singleton-row, so by Lemma 2, there is no triangular permutation of E.

The discussion in the proof of Theorem 2 directly yields an algorithm for finding the triangular permutation of

E if such a permutation exists. An example implementation is described by Pseudocode 2. Calling subtree(E,

1) is equivalent to performing a depth-first search on the N-graph of E. It returns the number of spike leaf

nodes and two lists of pivots P 0 and P 1. The pivots in P 0 correspond to the subtrees containing no spike

16

leaf nodes, while the pivots in P 1 correspond to the path from the root to the spike leaf node, if unique. If

there is exactly one spike leaf node, pivoting the elements in P 0 ∪ P 1 to the back of the matrix performs the

appropriate permutation. Note that the pivot lists are ordered, so we use the operator ∪ to designate an ordered

concatenation that discards duplicate pivots from its right-hand side.

Pseudocode 2 exploits the sparsity of E by ignoring all the rows that have no label in its N-graph. In this sense,

it does not use Lemma 3, which we only use as a theoretical tool to prove Theorem 2.

function (spike, P 1, P 0) = subtree(E, i)
{

spike = 0
P 0 = ∅
P 1 = ∅
for j : Eij 6= 0 {

if j = 1 {
spike = spike + 1
P 1 = {(i, j)}

} else if j > i {
(sub, S1, S0) = subtree(E, j)
P 0 = P 0 ∪ S0

if sub ≥ 1 {
P 1 = {(i, j)} ∪ S1

spike = spike + sub

}
}

}
if spike = 0 {

P 0 = P 0 ∪ {(i, i)}
}
return((spike, P 1, P 0))

}

Pseudocode 2: Finding a triangular permutation of an N-matrix E.

4 Implementation issues

Our code follows directly from the previous exposition. As Pseudocode 2 describes, we perform a depth-

first search on the N-graph of the N-matrix E. The graph is not explicitly stored in memory but instead

arises implicitly from a packed sparse representation of the rows of E. We deviate from a straightforward

implementation in that row i is maked as “explored” just before subtree(E, i) returns. This way, a row (and

the corresponding subtree) is never traversed twice.

In practice, the simplest way to store the permutation of the U factor that yields a triangular matrix U ′ is

to use four arrays of integers: If row i of U corresponds to row k of U ′, then row fwd[i] = k and row bwd[k]

= i. Similarly, if column j of U corresponds to column k of U ′, then col fwd[j] = k and col bwd[k] = j.

The output of our implementation of Pseudocode 2 is two ordered lists of pivots. The pivots can then be

17

Figure 13: Performing p = 3 pivot on row bwd is O(n+ p).

Figure 14: Inserting and labeling p = 3 elements in a linked list.

performed on row bwd and col bwd, while row fwd and col fwd are updated accordingly to reflect the change.

As illustrated on Figure 13, p pivots can be performed simultaneously in O(n + p) operations. However, this

is a dense operation, and despite its apparent simplicity, it can be computationally expensive (especially for

updating the row fwd and col fwd arrays, whose access pattern is not cache-friendly during the operation).

Moreover, with the Forrest-Tomlin or Suhl-Suhl updates, only symmetric permutations are performed. The

corresponding vectors row * and col * would always contain the same data, so in practice only one of them

is used. As a consequence, whatever time is spent updating the permutation vectors in the Suhl-Suhl update,

double that time would be spent with our method.

The computational cost of updating these dense row (and/or column) mappings is a known problem. Kober-

stein [14] mentions that the Coin-Clp code [5] features a method for doing it in constant time for the Forrest-

Tomlin update, but it also states that whether an analogous method exists for the Suhl-Suhl update is an open

question.

To mitigate this issue, we introduce a datastructure that represents * bwd as a doubly-linked list. That way,

deletions and insertions can be performed in constant time. One operation that is not O(1) with linked lists is

order comparison: given two list elements A and B, tell whether A is before B or B is before A in the list. This

operation is necessary to implement sparse triangular solves. However, we can compensate for this shortcoming

by adding a numeric label to each element. Whenever an element is inserted, it gets assigned a label that is

strictly greater than that of the previous element, and strictly smaller than that of the next. When no such

label exists (because of our representation of numbers with a finite number of bits), we need to relabel the whole

18

list. Specifically, when inserting p elements, we divide the label range between the element preceding them and

the one following them into p+ 1 intervals (Figure 14). In the worst case, we insert elements at the same place

at every iteration of the simplex method, exploiting every time log(p) more bits in the representation of the

labels. Assuming that we use 64-bit integers, that means relabeling every (64− log(n))/ log(p) iterations, where

log(p) and log(n) are much smaller than 64, even for the largest instances. This is in the worst case though,

and in practice, we will show that performing the pivots on this datastructure takes a very small fraction of the

overall solution time.

A final refinement is that we store col * and row * information together in a single array of structures, described

in Pseudocode 3. This should not improve performance in any significant way, but it simplifies some bookkeeping.

Each struct element corresponds to a diagonal element; its members i and j indicate where to find it in U ,

the equivalent of row bwd[] and col bwd[] previously. Rows and columns can be enumerated in the order of

U ′ (i.e. in the triangular order) by following the linked list, starting from head or tail. Rows (resp. columns)

of U can be associated to elements of the linked list by using row fwd (resp. col fwd). Then, they can be

compared to each other using their label member. Note that the exact indices of rows and columns of U ′ can

not be obtained or used directly, but label, prev and next together fill that role.

struct permutation {
struct element *head, *tail;

struct element **row fwd;

struct element **col fwd;

};

struct element {
int i, j;

unsigned long label;

struct element *prev, *next;

};

Pseudocode 3: Datastructures for the representation of permutations.

This representation could be simplified if we adopt a small restriction consisting in always performing insertions

at the end of the matrix, akin to what is done in the Forrest-Tomlin update. Then the label member of newly

inserted elements could just be incremented from n. This would yield truly O(1) insertions, at the cost of

considering larger E matrices and performing more pivots. Having small integer values for label has further

advantages, in particular in the implementation of the sparse triangular solves, but their discussion is beyond

the scope of this paper.

5 Results

We perform our computational experiments on two sets of instances. First, we consider the root node LPs of

problems in the MIPLIB 2010 [15] benchmark set. Because they are relevant in the context of the branch-and-

bound method for mixed-integer programming, we first preprocess every instance using the MIP presolver of

CPLEX 12.6 [25], then drop all integrality constraints. The second set is composed of various LP instances

gathered by Mittelmann [18] for benchmarking purposes. The Mittelmann instances are harder to solve, so we

use them only for confirming our final results on bigger instances (their solution times are typically a couple of

orders of magnitude larger than the solution times for preprocessed MIPLIB 2010 instances).

19

We run our own implementation of the dual simplex method, with steepest-edge pricing (“dual algorithm 1” [6])

and a variant of the bound-flipping ratio test [12, 7]. No LP preprocessing was applied to the instances. Where

possible, we also run the LP solver of CPLEX 12.6 to ensure that our conclusions are not particular to our

code (Table 5). There, we use the dual simplex implementation of CPLEX with LP preprocessing disabled; all

other parameters are kept to their defaults. All tests are performed on a computer with an Intel Core i5-3210M

processor clocked at 2.50 GHz clock and 8 Gb of RAM. All running times shown for instances in the MIPLIB

2010 [15] benchmark set are averaged over three runs.

Across all tables, the label it denotes the number of iterations, time the total solution time in seconds, and

t/it the time per iteration, in milliseconds. For time and t/it, the geometric means presented are shifted by a

constant s, i.e.

geom.mean(t1, . . . , tn) :=

(
n∏
i=1

(ti + s)

)1/n

− s.

The value of s is 10 in both cases: 10 seconds for time and 10 milliseconds for t/it.

Usefulness of factorization update methods. In Section 3, we discussed the computational cost of existing

factorization update methods, with the support of aggregate experimental results in Tables 1, 2 and 3. We now

present the details of these experiments, in Tables 5 and 6. They include only MIPLIB 2010 instances. Two

variants of the CPLEX code are compared on Table 5: CPLEX (refactor) gives results for CPLEX with the

maximum interval between refactorizations fixed to 1, effectively disabling the Forrest-Tomlin update, while

CPLEX (update) corresponds to CPLEX in its default configuration. The main observation is that enabling the

factorization update yields a dramatic drop in time per iteration, from 2.749ms to 0.595ms in shifted geometric

mean. Table 6 shows similar outcomes with three variants of our code: in the first, refactor, there is no

factorization update; the second, Suhl-Suhl update, is the default configuration; and the third, Reid + Suhl-Suhl

update, attempts to find a triangular permutation of U by using the dense method proposed as a first step by

Reid [20]. Because we can instrument our code, we have more details here:

• The columns labeled %factor indicate, for each instance, the percentage of time spent computing or

updating the basis factorization. It is broken down into

• %b, the percentage of time spent building fresh LU factorizations. In refactor, %factor = %b and it

is further broken down into

• %p, the time taken to find pseudo-triangular parts of the basis matrix, and

• %G, the time spent performing Gaussian elimination.

• %∆, the percentage of time spent looking for triangular permutation updates, and

• %S, the time required to perform the Suhl-Suhl update.

• The columns labeled %solve indicate the percentage of time spend solving systems of the type Bx = b or

BT y = e, given a factorization of B (i.e., the cost of computing a factorization of B is not included).

20

Whenever multiple columns are grouped under a single category (for example, %p and %G grouped under %b),

a column labeled + indicates the total for the parent category (in the example, %b).

As noted previously, enabling the factorization update yields a drop in time per iteration, from 4.003ms to

0.797ms. However, attempting to skip some of the Suhl-Suhl updates by finding triangular permutations with

the first step of Reid’s update [20] makes the time per iteration rise again, to 1.119ms.

Then, we answer two computational questions that arise from our developments.

Success rate of our algorithm. The first question is related more to the nature of LP bases than to our

method specifically: How often can a spiked upper triangular factor be permuted into a triangular matrix? As

mentioned in Section 3, we already answered this question using the naive method inspired by Reid’s update. On

average, 53.897% of the spiked matrices can be permuted into a triangular one. We give more detailed results,

obtained with our new method, in Tables 7 and 8. At each iteration, a basis factorization is needed. If we have

one from the previous iteration, then we compute the spiked upper triangular factor W k. The columns labeled

permute indicate the number of iterations for which there exists a triangular permutation of W k, and such a

permutation is found by our method (it is the raw number of times this happens, and % gives that number as

a percentage of the overall number of iterations). When this fails, we fall back on the Suhl-Suhl update method

(columns labeled Suhl-Suhl). When this fails too, we compute from scratch a fresh LU factorization of the basis

matrix (refactor). These three possibilities sum up to roughly 100%, but not necessarily exactly 100%, as the

simplex code can decide to compute a fresh factorization, even after an update was successfully computed.

Note that both update methods (permute and Suhl-Suhl) may fail for an additional reason, besides the obvious

ones (no previous factorization exists, or no triangular permutation exists). We enforce a Markowitz-type

condition on the U factor: the diagonal elements of U must not be too small compared to the other elements in

their row. In practice, we impose |Uii| > 0.001 ·maxj |Uij | for all i. Whenever an update would yield a U factor

that would violate this condition, we abort the attempt. For a new factorization, the Markowitz threshold is

0.01.

Tables 7 and 8 indicate that our method succeeded in permuting W k into a triangular matrix that satisfied

the Markowitz condition in 56.354% of the iterations, on average over MIPLIB 2010 instances. This number

differs slightly from the one mentioned previously (53.897% with Reid’s update) simply because of the varying

solution paths encountered. In every such occurrence, there is no need to perform Gaussian elimination and add

an η-matrix to the factorization. In most of the remaining cases (43.207%), a Suhl-Suhl update is performed.

With the Mittelmann test set, the percentages are 42.124% and 54.321%, respectively.

Computational cost of the algorithm. The second question is: Does our method make the dual simplex

method faster overall? Table 4 summarizes the results of our experiments (details on Tables 9 and 10). It

suggests that with our method enabled, we can solve MIPLIB 2010 problems around 5% faster, and Mittelmann

problems around 14% faster, in geometric mean. If we consider the time per iteration, to account for varying

iteration counts, the improvements become 2% and 6%, respectively. For most MIPLIB 2010 instances, 2% is

21

Factorization it time (s) t/it (ms) %∆ %S %[] %solve
update method (geometric (geometric (geometric (avg) (avg) (avg) (avg)

mean) mean, mean,
shift = 10s) shift = 10ms)

Miplib 2010:
Suhl-Suhl 1229.210 4.014 0.797 0.00% 7.55% 0.34% 50.75%
permute + S.-S. 1217.246 3.830 0.778 0.75% 7.12% 0.36% 49.86%

Mittelmann:
Suhl-Suhl 72568.431 630.194 14.444 0.00% 4.03% 0.08% 38.29%
permute + S.-S. 66512.027 540.739 13.535 0.13% 3.72% 0.06% 38.91%

Table 4: Impact of the permutation method on running time.

below the relative standard deviation in running time from one run to another, and variations in the update

algorithms yield differing solution paths, creating even more noise in our measurements. Therefore, while our

method seems beneficial, it is difficult to conclude it, from these numbers, with absolute certainty. However,

the subsequent columns give us more information. The average percentage of time spent looking for triangular

permutations of W k (Pseudocode 2) is indicated in %∆, and the time spent applying the resulting pivots

(Figure 14) is indicated in %[]. As a comparison, %S denotes the Suhl-Suhl update, and %solve the triangular

solves. On MIPLIB 2010, only 0.75% of the solution time was dedicated to looking for a triangular permutation

of W k (recall that one was found in 56.354% of the cases), and 0.36% to applying the necessary pivots. The

numbers are even lower for Mittelmann problems (0.13% and 0.06%, respectively). We can thus be confident

that even when the gains we obtain (from avoiding Suhl-Suhl updates and lowering the number of η-matrices)

are small, they come with essentially negligible costs.

6 Conclusion

We present a new method for finding triangular permutations of spiked upper triangular matrices. It finds a

permutation if and only if one exists. While other methods have been presented previously for the same task,

our approach takes into account the sparsity of the matrix and performs only the pivots that are absolutely

necessary to build the permutation.

Surprisingly, our experiments show that around half of the spiked upper triangular matrices can be permuted

into a triangular one. Exploiting this fact only leads to modest gains in solving linear optimization problems,

but we show that it has no significant drawbacks.

References

[1] Richard H. Bartels and Gene H. Golub. The simplex method of linear programming using LU decomposi-

tion. Commun. ACM, 12(5):266–268, May 1969.

22

[2] Robert E. Bixby. Solving LPs in practice, 2009. Communication at the Combinatorial Optimization

at Work summer school, September 24th, 2009 http://co-at-work.zib.de/berlin2009/downloads/

2009-09-24/2009-09-24-1100-BB-Linear-Programming-2.pdf.

[3] Vašek Chvátal. Linear Programming. W. H. Freeman and Company, New York, 1983.

[4] J.J.H. Forrest and J.A. Tomlin. Updated triangular factors of the basis to maintain sparsity in the product

form simplex method. Mathematical Programming, 2(1):263–278, 1972.

[5] John Forrest, David de la Nuez, and Robin Lougee-Heimer. Coin-Clp user guide, 2004. http://www.

coin-or.org/Clp/userguide/index.html.

[6] John J. Forrest and Donald Goldfarb. Steepest-edge simplex algorithms for linear programming. Mathe-

matical Programming, 57(1):341–374, 1992.

[7] Robert Fourer. Notes on the dual simplex method. Draft report, 1994.

[8] Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2014.

[9] J.A.J. Hall. Sparse matrix algebra for active set methods in linear programming. PhD thesis, University of

Dundee Department of Mathematics and Computer Science, 1991.

[10] Qi Huangfu. High performance simplex solver. PhD thesis, University of Edinburgh, 2013.

[11] Qi Huangfu and J.A.Julian Hall. Novel update techniques for the revised simplex method. Computational

Optimization and Applications, pages 1–22, 2014.

[12] F.M. Kirillova, R. Gabasov, and O.I. Kostyukova. A method of solving general linear programming prob-

lems. Doklady AN BSSR, 23(3):197–200, 1979. (in Russian).

[13] Achim Koberstein. The Dual Simplex Method, Techniques for a fast and stable implementation. PhD thesis,

Fakultät für Wirtschaftswissenschaften der Universität Paderborn, 2005.

[14] Achim Koberstein. Progress in the dual simplex algorithm for solving large scale lp problems: techniques

for a fast and stable implementation. Computational Optimization and Applications, 41(2):185–204, 2008.

[15] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold, Robert E. Bixby,

Emilie Danna, Gerald Gamrath, Ambros M. Gleixner, Stefan Heinz, Andrea Lodi, Hans Mittelmann, Ted

Ralphs, Domenico Salvagnin, Daniel E. Steffy, and Kati Wolter. MIPLIB 2010. Mathematical Programming

Computation, 3(2):103–163, 2011.

[16] R. Luce, J. Duintjer Tebbens, Liesen, R. Nabben, M. Grötschel, T. Koch, and O. Schenk. On the factor-

ization of simplex basis matrices. ACM Transactions on Mathematical Software. ZIB-Report 09-24 (July

2009).

[17] István Maros. Computational Techniques of the Simplex Method. Kluwer Academic Publishers, Norwell,

MA, USA, 2003.

[18] Hans Mittelmann. Benchmarks for optimization software, 2016. http://plato.asu.edu/bench.html.

23

[19] William Orchard-Hayes. Advanced linear-programming computing techniques. McGraw-Hill, New York,

1968.

[20] J.K. Reid. A sparsity-exploiting variant of the Bartels—Golub decomposition for linear programming bases.

Mathematical Programming, 24(1):55–69, 1982.

[21] M.A. Saunders. The complexity of computational problem solving, chapter The complexity of LU updating

in the simplex method, pages 214–230. University of Queensland Press, St. Lucia, Queensland, 1976.

[22] M.A. Saunders. Sparse Matrix Computations, chapter A fast, stable implementation of the simplex method

using Bartels-Golub updating, pages 213–226. Academic Press, New York, 1976.

[23] Leena M. Suhl and Uwe H. Suhl. A fast LU update for linear programming. Annals of Operations Research,

43(1):33–47, 1993.

[24] Uwe H. Suhl and Leena M. Suhl. Computing sparse LU factorizations for large-scale linear programming

bases. ORSA Journal on Computing, 2(4):325–335, 1990.

[25] The International Business Machines Corporation. IBM ILOG CPLEX Optimizer, 2014.

[26] Roland Wunderling. Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Technische Uni-

versität Berlin, 1996. http://www.zib.de/Publications/abstracts/TR-96-09/.

[27] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal on Algebraic Discrete

Methods, 2(1):77–79, 1981.

24

CPLEX (refactor) CPLEX (update)
instance it time (s) t/it (ms) it time (s) t/it (ms)
30n20b8 1743 0.647 0.371 2447 0.200 0.082

acc-tight5 2045 1.793 0.877 2099 0.290 0.138
aflow40b 1303 0.240 0.184 1282 0.050 0.039

air04 3783 3.317 0.877 3795 0.543 0.143
app1-2 894 3.827 4.280 860 0.533 0.620

ash608gpia-3col 7944 37.250 4.689 7456 4.787 0.642
bab5 16672 20.813 1.248 17611 0.997 0.057

beasleyC3 712 0.110 0.154 729 0.040 0.055
biella1 6336 9.673 1.527 6618 1.250 0.189
bienst2 119 0.017 0.140 119 0.000 0.000

binkar10 1 764 0.123 0.161 769 0.017 0.022
bley xl1 44774 3600.040 80.405 178179 3600.083 20.205
bnatt350 930 0.597 0.642 932 0.110 0.118

core2536-691 16971 18.830 1.110 15404 2.323 0.151
cov1075 549 0.383 0.698 521 0.053 0.102

csched010 1975 0.293 0.149 1604 0.063 0.039
danoint 650 0.163 0.251 820 0.043 0.053

dfn-gwin-UUM 487 0.043 0.089 521 0.017 0.032
eil33-2 162 0.043 0.267 184 0.030 0.163
eilB101 515 0.130 0.252 447 0.047 0.104

enlight13 1 0.000 0.000 1 0.000 0.000
enlight14 1 0.000 0.000 1 0.000 0.000

ex9 20579 3600.333 174.952 340484 1977.483 5.808
glass4 36 0.000 0.000 36 0.000 0.000

gmu-35-40 300 0.050 0.167 294 0.010 0.034
iis-100-0-cov 385 0.460 1.195 383 0.090 0.235
iis-bupa-cov 867 1.483 1.711 915 0.240 0.262
iis-pima-cov 782 1.970 2.519 703 0.233 0.332

lectsched-4-obj 882 0.643 0.729 863 0.027 0.031
m100n500k4r1 429 0.047 0.109 365 0.017 0.046

macrophage 704 0.260 0.369 695 0.020 0.029
map18 28705 145.033 5.053 22809 3.227 0.141
map20 21943 109.020 4.968 16852 2.213 0.131

mcsched 3670 1.280 0.349 3349 0.200 0.060
mik-250-1-100-1 102 0.003 0.033 102 0.000 0.000

mine-166-5 1219 1.600 1.313 1199 0.187 0.156
mine-90-10 1837 1.777 0.967 1588 0.200 0.126

msc98-ip 27314 116.143 4.252 15030 4.360 0.290
mspp16 45 4.253 94.519 47 2.113 44.965
mzzv11 26321 88.717 3.371 20779 9.043 0.435

n3div36 299 0.257 0.858 477 0.150 0.314
n3seq24 3713 25.243 6.799 3406 4.800 1.409

n4-3 928 0.223 0.241 813 0.050 0.062
neos-1109824 139 0.133 0.959 138 0.010 0.072
neos-1337307 3577 3.997 1.117 3861 0.283 0.073
neos-1396125 2158 0.793 0.368 2332 0.150 0.064
neos-1601936 9905 25.253 2.550 10387 3.067 0.295
neos-476283 14277 185.310 12.980 9615 13.067 1.359
neos-686190 160 0.063 0.396 151 0.017 0.110
neos-849702 2453 2.223 0.906 2309 0.277 0.120
neos-916792 677 0.373 0.551 677 0.140 0.207
neos-934278 18451 52.107 2.824 16025 6.543 0.408

neos13 486 1.467 3.018 489 0.087 0.177
neos18 997 0.443 0.445 1047 0.087 0.083
net12 6028 16.303 2.705 5836 1.370 0.235

netdiversion 22823 415.517 18.206 20377 6.863 0.337
newdano 119 0.017 0.140 119 0.000 0.000
noswot 64 0.003 0.052 64 0.000 0.000

ns1208400 4560 7.840 1.719 4978 1.133 0.228
ns1688347 1238 1.147 0.926 1418 0.207 0.146
ns1758913 48340 2474.690 51.193 67596 131.643 1.948
ns1766074 44 0.000 0.000 44 0.000 0.000
ns1830653 977 0.753 0.771 1037 0.133 0.129

opm2-z7-s2 5069 25.250 4.981 5459 2.833 0.519
pg5 34 335 0.037 0.109 328 0.007 0.020

pigeon-10 223 0.030 0.135 212 0.010 0.047
pw-myciel4 1489 0.550 0.369 1575 0.120 0.076

qiu 1033 0.227 0.219 1057 0.037 0.035
rail507 3444 2.467 0.716 3792 0.763 0.201

ran16x16 333 0.013 0.040 328 0.010 0.030
reblock67 1008 0.497 0.493 1027 0.077 0.075

rmatr100-p10 1476 1.233 0.836 1940 0.237 0.122
rmatr100-p5 2719 2.710 0.997 3556 0.467 0.131

rmine6 1196 1.113 0.931 1223 0.140 0.114
rocII-4-11 243 0.240 0.988 246 0.030 0.122

rococoC10-001000 1278 0.193 0.151 1363 0.057 0.042
roll3000 650 0.260 0.400 759 0.047 0.061

satellites1-25 5702 10.050 1.763 5012 1.177 0.235
sp98ic 642 0.370 0.576 667 0.167 0.250
sp98ir 686 0.280 0.408 843 0.087 0.103

tanglegram1 333 3.203 9.620 321 0.290 0.903
tanglegram2 165 0.207 1.253 172 0.040 0.233

timtab1 21 0.000 0.000 21 0.000 0.000
triptim1 32649 340.553 10.431 31699 27.760 0.876
unitcal 7 19643 89.690 4.566 19986 0.643 0.032
vpphard 7213 38.917 5.395 6172 7.027 1.138

zib54-UUE 3447 1.613 0.468 3573 0.210 0.059
average 5504 132.244 6.328 10499 66.936 1.026

geom. mean 1166 9.598 2.749 1220 2.894 0.595

Table 5: CPLEX running time

25

instance refactor Suhl-Suhl update Reid + Suhl-Suhl update
it time (s) t/it (ms) %b %solve it time (s) t/it (ms) %factor %solve it time (s) t/it (ms) %factor %solve

%p %G + %b %S + %b %∆ %S +
30n20b8 2330 0.971 0.417 11 28 47 6 2160 0.207 0.096 3 3 7 29 2268 0.238 0.105 2 11 3 18 28

acc-tight5 2359 3.448 1.462 14 56 79 6 1720 0.478 0.278 2 20 24 57 1735 0.707 0.408 1 27 14 46 41
aflow40b 1493 0.400 0.268 31 0 48 8 1576 0.085 0.054 1 4 8 63 1465 0.119 0.081 1 31 2 41 35

air04 2827 2.771 0.980 8 45 58 5 3013 0.648 0.215 2 6 10 30 2964 0.715 0.241 2 11 5 20 26
app1-2 1041 6.838 6.569 40 0 59 10 1035 1.238 1.197 2 4 9 57 1029 1.795 1.745 1 31 3 37 41

ash608gpia-3col 6410 49.741 7.760 28 35 76 4 6878 19.396 2.820 1 23 24 53 8018 35.684 4.451 0 33 13 47 36
bab5 16560 41.684 2.517 23 37 68 3 14003 2.806 0.200 1 11 13 60 14018 5.087 0.363 0 40 7 51 34

beasleyC3 835 0.192 0.230 31 0 47 12 845 0.067 0.079 1 7 11 65 851 0.076 0.089 1 30 0 38 42
biella1 6920 12.167 1.758 12 46 66 6 7039 2.096 0.298 3 6 10 42 6447 2.346 0.364 2 15 5 23 37
bienst2 231 0.030 0.128 28 9 54 9 409 0.021 0.051 4 4 12 58 365 0.012 0.034 3 19 4 32 45

binkar10 1 1048 0.172 0.164 32 0 49 3 1031 0.019 0.019 3 3 10 48 1029 0.026 0.026 2 31 3 44 27
bley xl1 18536 3600.110 194.226 15 65 87 4 116684 2018.235 17.297 6 2 8 60 55369 1357.463 24.517 8 32 1 42 38
bnatt350 1248 0.659 0.528 38 1 60 4 1049 0.251 0.239 2 18 21 62 1013 0.252 0.249 1 36 6 47 40

core2536-691 21738 57.695 2.654 12 53 70 5 18536 6.801 0.367 1 6 9 49 22825 11.367 0.498 1 17 4 23 41
cov1075 440 0.286 0.650 20 47 77 8 647 0.109 0.168 7 14 24 56 673 0.138 0.204 5 20 12 39 47

csched010 2485 0.446 0.179 14 28 50 8 2369 0.113 0.048 3 5 10 42 2220 0.129 0.058 2 15 5 24 38
danoint 857 0.190 0.222 20 31 63 10 829 0.053 0.064 3 10 16 55 720 0.075 0.104 2 17 8 30 45

dfn-gwin-UUM 517 0.040 0.078 18 13 40 9 545 0.012 0.021 5 4 12 34 531 0.022 0.042 4 13 3 23 29
eil33-2 173 0.064 0.368 2 7 10 2 175 0.030 0.171 3 1 4 3 192 0.045 0.235 3 1 1 5 3
eilB101 435 0.109 0.252 5 25 35 4 459 0.054 0.117 5 2 8 12 459 0.058 0.127 4 4 2 11 11

enlight13 3 0.000 0.057 25 0 41 8 5 0.000 0.057 34 2 44 11 5 0.000 0.046 42 1 0 44 10
enlight14 3 0.000 0.152 27 0 42 8 5 0.000 0.066 35 3 43 10 5 0.000 0.065 41 1 0 43 10

ex9 11563 3600.338 311.358 2 94 97 1 70143 1426.987 20.344 52 7 59 27 71358 1981.369 27.767 54 16 3 73 17
glass4 72 0.004 0.056 32 0 52 2 72 0.001 0.010 25 2 32 14 72 0.001 0.015 29 5 0 37 11

gmu-35-40 198 0.028 0.139 25 1 40 11 208 0.008 0.039 5 3 12 51 190 0.007 0.037 4 19 2 31 36
iis-100-0-cov 347 0.477 1.375 38 8 65 11 342 0.176 0.515 2 21 25 58 350 0.227 0.649 2 26 14 44 44
iis-bupa-cov 822 1.615 1.965 37 12 66 11 790 0.352 0.445 3 12 17 63 817 0.539 0.660 2 28 10 42 44
iis-pima-cov 824 2.202 2.672 40 5 64 12 788 0.437 0.555 3 6 12 64 814 0.746 0.917 2 31 7 42 43

lectsched-4-obj 1225 0.898 0.733 39 0 59 2 951 0.090 0.094 4 1 7 65 950 0.187 0.197 2 49 0 61 27
m100n500k4r1 553 0.065 0.118 7 50 64 8 490 0.026 0.052 11 7 21 34 470 0.026 0.054 10 10 6 29 31

macrophage 727 0.374 0.514 42 1 63 2 725 0.023 0.032 11 1 14 33 725 0.080 0.111 3 60 0 76 9
map18 14810 109.168 7.371 50 1 66 6 13463 9.894 0.735 1 1 2 86 14134 24.079 1.704 0 46 0 51 43
map20 14509 106.739 7.357 50 1 67 6 13062 8.932 0.684 1 1 2 86 12809 17.789 1.389 0 45 0 51 43

mcsched 3509 1.674 0.477 33 9 57 14 3602 0.526 0.146 1 12 14 66 3435 0.697 0.203 1 26 11 40 47
mik-250-1-100-1 102 0.003 0.031 16 0 26 3 102 0.001 0.009 8 3 18 17 102 0.001 0.008 11 3 0 19 17

mine-166-5 1161 2.080 1.792 41 4 64 9 1123 0.449 0.399 1 23 27 56 1151 1.042 0.905 1 42 14 62 30
mine-90-10 1864 3.497 1.876 28 31 72 8 1717 0.746 0.434 1 24 28 58 1686 1.440 0.854 1 36 16 56 36

msc98-ip 19188 159.128 8.293 28 36 75 6 22552 30.655 1.359 1 10 12 69 17344 30.250 1.744 1 41 4 48 42
mspp16 41 6.552 159.813 16 0 27 0 51 0.500 9.812 28 0 29 1 51 0.544 10.671 30 3 0 33 1
mzzv11 25220 252.021 9.993 13 64 83 5 30077 32.721 1.088 2 7 9 64 10293 10.929 1.062 1 37 5 45 40

n3div36 201 0.266 1.324 15 1 24 1 196 0.082 0.417 2 0 2 5 191 0.086 0.451 2 4 0 7 4
n3seq24 2896 19.352 6.682 5 1 8 1 3704 12.615 3.406 0 0 1 5 3626 12.939 3.569 0 2 0 3 4

n4-3 990 0.318 0.322 26 7 46 8 1018 0.096 0.095 1 7 10 45 907 0.117 0.129 1 27 9 40 31
neos-1109824 150 0.207 1.382 39 1 61 5 141 0.026 0.186 18 1 21 44 141 0.065 0.461 7 51 0 72 15
neos-1337307 4111 6.930 1.686 39 14 69 7 3840 1.083 0.282 1 19 23 61 4097 1.941 0.474 1 40 6 52 37
neos-1396125 2516 1.243 0.494 25 26 63 13 2348 0.289 0.123 2 10 13 66 2249 0.359 0.160 2 27 6 38 46
neos-1601936 9251 45.032 4.868 10 66 83 4 4087 1.939 0.474 2 12 16 51 3956 2.544 0.643 2 19 10 33 42
neos-476283 9802 134.041 13.675 26 9 47 5 10258 14.534 1.417 7 1 9 52 9254 18.036 1.949 5 25 1 33 37
neos-686190 266 0.158 0.593 31 2 51 7 295 0.043 0.145 5 6 13 47 296 0.045 0.152 3 30 3 45 29
neos-849702 3378 5.124 1.517 8 67 81 5 1344 0.288 0.214 2 17 21 50 1417 0.351 0.248 2 18 14 36 41
neos-916792 552 0.390 0.707 20 14 45 10 552 0.091 0.166 3 8 15 45 552 0.108 0.195 3 15 6 28 38
neos-934278 17366 488.826 28.148 4 89 95 1 17881 33.288 1.862 3 20 24 54 17794 42.078 2.365 3 25 13 42 40

neos13 395 1.696 4.294 40 0 61 8 389 0.167 0.430 7 0 19 65 389 0.162 0.416 7 6 0 15 69
neos18 1346 0.769 0.571 41 2 63 8 1183 0.154 0.130 1 13 16 65 1173 0.213 0.182 1 50 4 62 29
net12 6521 26.576 4.075 37 11 64 10 3366 2.387 0.709 1 4 6 79 4397 4.859 1.105 0 29 4 35 54

netdiversion 43386 3600.084 82.979 15 69 89 1 45217 149.291 3.302 0 2 3 91 45111 442.350 9.806 0 58 0 63 35
newdano 231 0.039 0.167 28 9 54 9 409 0.015 0.038 4 4 12 58 365 0.026 0.070 3 20 4 32 45
noswot 40 0.002 0.052 28 1 45 9 42 0.001 0.019 20 3 30 33 42 0.001 0.023 20 13 1 41 28

ns1208400 5147 11.775 2.288 15 52 75 6 2080 0.624 0.300 2 13 17 53 4547 2.091 0.460 3 19 8 32 43
ns1688347 709 0.582 0.821 28 14 57 9 1282 0.496 0.387 2 17 22 61 1264 0.558 0.442 2 37 7 50 35
ns1758913 4918 34.798 7.076 35 7 58 6 12069 21.489 1.781 1 8 10 73 10449 30.165 2.887 1 41 3 47 43
ns1766074 33 0.001 0.029 25 0 42 9 32 0.001 0.018 21 3 33 27 32 0.001 0.022 18 19 0 48 20
ns1830653 1350 1.096 0.812 28 21 65 11 1101 0.231 0.209 2 13 18 64 1343 0.360 0.268 1 23 10 37 49

opm2-z7-s2 3921 33.772 8.613 44 9 68 10 3783 10.215 2.700 1 26 29 55 3989 29.182 7.316 0 39 18 60 34
pg5 34 334 0.044 0.131 13 0 20 5 307 0.008 0.027 2 1 7 45 307 0.006 0.020 2 15 0 22 31

pigeon-10 311 0.050 0.162 35 3 56 12 264 0.011 0.043 7 3 13 66 266 0.016 0.061 4 29 2 39 47
pw-myciel4 1387 0.865 0.624 16 48 72 8 1377 0.199 0.145 2 15 19 59 1315 0.225 0.171 1 22 12 38 45

qiu 1089 0.296 0.272 30 20 66 7 1113 0.048 0.043 4 5 10 67 1118 0.101 0.090 3 37 8 53 37
rail507 3474 4.058 1.168 6 17 26 3 3180 1.249 0.393 1 2 3 11 3039 1.272 0.418 1 4 2 7 11

ran16x16 327 0.028 0.086 27 0 43 10 331 0.006 0.019 4 3 12 61 331 0.004 0.012 4 23 0 33 39
reblock67 1019 1.045 1.026 19 50 79 6 1018 0.173 0.170 2 19 23 61 1027 0.251 0.244 2 39 9 55 35

rmatr100-p10 1181 1.629 1.380 34 6 55 12 1183 0.362 0.306 2 4 7 72 1249 0.508 0.407 1 24 4 32 53
rmatr100-p5 2372 4.209 1.775 33 9 56 13 2365 0.925 0.391 1 5 7 72 2323 1.163 0.500 1 25 3 32 52

rmine6 1202 1.620 1.348 39 7 64 8 1167 0.280 0.240 1 21 24 58 1179 0.572 0.485 1 54 7 68 24
rocII-4-11 362 0.445 1.230 39 1 61 7 426 0.061 0.144 9 2 15 58 422 0.111 0.264 5 48 1 61 26

rococoC10-001000 1086 0.188 0.173 24 9 45 10 1053 0.040 0.038 2 8 12 60 1018 0.071 0.070 1 29 5 40 43
roll3000 897 0.368 0.410 33 13 61 10 948 0.089 0.094 3 8 14 66 862 0.115 0.133 2 35 6 47 41

satellites1-25 10886 69.090 6.347 10 72 86 4 5040 4.185 0.830 1 20 23 57 4712 4.718 1.001 1 27 11 41 41
sp98ic 557 0.552 0.990 7 5 16 3 577 0.170 0.295 1 2 4 13 485 0.137 0.282 1 4 2 8 12
sp98ir 524 0.263 0.501 26 11 49 10 561 0.092 0.165 3 7 12 50 529 0.113 0.213 2 23 7 37 37

tanglegram1 518 7.236 13.969 36 0 59 10 362 0.620 1.713 6 0 7 70 373 1.071 2.871 3 29 0 39 45
tanglegram2 172 0.271 1.573 35 0 57 14 184 0.064 0.347 10 0 12 69 184 0.074 0.403 8 23 0 38 49

timtab1 177 0.010 0.055 25 0 40 6 178 0.002 0.011 9 3 18 36 178 0.001 0.007 9 11 0 28 30
triptim1 47743 3051.189 63.909 7 85 94 1 43642 112.778 2.584 4 10 14 62 46390 185.256 3.993 3 34 5 43 43
unitcal 7 15500 104.492 6.741 47 0 65 1 15686 1.357 0.086 10 0 12 71 15503 7.601 0.490 2 72 0 83 13
vpphard 4478 39.413 8.802 26 24 63 7 1583 2.354 1.487 1 10 13 57 1450 3.408 2.350 1 31 7 42 40

zib54-UUE 4963 3.550 0.715 23 31 63 8 4492 0.456 0.101 5 3 9 60 4178 0.512 0.123 3 20 4 29 47
average 4658 180.792 11.771 25 20 58 7 6263 45.290 1.025 6 8 15 51 5367 49.221 1.510 5 26 5 39 34

geom. mean 1213 11.853 4.003 1229 4.014 0.797 1203 4.880 1.119

Table 6: Running time: refactor, Suhl-Suhl, Reid

26

instance it refactor permute Suhl-Suhl
it % it % it %

30n20b8 2457 23 0.94 939 38.22 1499 61.01
acc-tight5 1682 8 0.48 627 37.28 1051 62.49

aflow40b 1465 3 0.20 1428 97.47 37 2.53
air04 3043 20 0.66 812 26.68 2213 72.72

app1-2 1047 5 0.48 310 29.61 735 70.20
ash608gpia-3col 7634 10 0.13 2927 38.34 4703 61.61

bab5 13667 11 0.08 10643 77.87 3022 22.11
beasleyC3 851 3 0.35 851 100.00 0 0.00

biella1 6684 36 0.54 1855 27.75 4794 71.72
bienst2 351 3 0.85 229 65.24 122 34.76

binkar10 1 1035 3 0.29 997 96.33 38 3.67
bley xl1 85616 1709 2.00 8482 9.91 75430 88.10
bnatt350 1111 5 0.45 508 45.72 602 54.19

core2536-691 20361 35 0.17 10407 51.11 9921 48.73
cov1075 578 7 1.21 16 2.77 558 96.54

csched010 2419 21 0.87 1199 49.57 1203 49.73
danoint 867 10 1.15 203 23.41 657 75.78

dfn-gwin-UUM 546 13 2.38 288 52.75 248 45.42
eil33-2 192 22 11.46 17 8.85 156 81.25
eilB101 459 19 4.14 42 9.15 401 87.36

enlight13 5 3 60.00 5 100.00 0 0.00
enlight14 5 3 60.00 5 100.00 0 0.00

ex9 70972 1265 1.78 3232 4.55 66482 93.67
glass4 72 3 4.17 72 100.00 0 0.00

gmu-35-40 194 3 1.55 164 84.54 30 15.46
iis-100-0-cov 328 3 0.91 29 8.84 299 91.16
iis-bupa-cov 719 5 0.70 51 7.09 666 92.63
iis-pima-cov 862 7 0.81 46 5.34 812 94.20

lectsched-4-obj 950 4 0.42 932 98.11 18 1.89
m100n500k4r1 489 17 3.48 114 23.31 361 73.82

macrophage 725 4 0.55 643 88.69 82 11.31
map18 14128 11 0.08 12122 85.80 2005 14.19
map20 13184 10 0.08 11559 87.67 1625 12.33

mcsched 3587 13 0.36 1641 45.75 1936 53.97
mik-250-1-100-1 102 2 1.96 102 100.00 0 0.00

mine-166-5 1144 2 0.17 803 70.19 341 29.81
mine-90-10 1651 4 0.24 929 56.27 720 43.61

msc98-ip 20710 40 0.19 8032 38.78 12659 61.13
mspp16 51 3 5.88 51 100.00 0 0.00
mzzv11 33250 105 0.32 11495 34.57 21652 65.12

n3div36 232 3 1.29 54 23.28 177 76.29
n3seq24 3389 12 0.35 1742 51.40 1639 48.36

n4-3 919 5 0.54 732 79.65 185 20.13
neos-1109824 143 3 2.10 92 64.34 51 35.66
neos-1337307 3837 8 0.21 3042 79.28 791 20.62
neos-1396125 2830 21 0.74 1170 41.34 1643 58.06
neos-1601936 3682 17 0.46 654 17.76 3014 81.86
neos-476283 8037 147 1.83 3258 40.54 4635 57.67
neos-686190 301 3 1.00 128 42.52 173 57.48
neos-849702 1450 9 0.62 294 20.28 1151 79.38
neos-916792 552 10 1.81 84 15.22 461 83.51
neos-934278 18272 35 0.19 6573 35.97 11667 63.85

neos13 389 4 1.03 385 98.97 4 1.03
neos18 1168 4 0.34 863 73.89 305 26.11
net12 4447 6 0.13 2576 57.93 1869 42.03

netdiversion 44148 26 0.06 35399 80.18 8749 19.82
newdano 351 3 0.85 229 65.24 122 34.76
noswot 42 3 7.14 37 88.10 5 11.90

ns1208400 2256 15 0.66 360 15.96 1885 83.55
ns1688347 1220 4 0.33 649 53.20 571 46.80
ns1758913 8341 15 0.18 4582 54.93 3749 44.95
ns1766074 32 3 9.38 32 100.00 0 0.00
ns1830653 980 5 0.51 245 25.00 733 74.80

opm2-z7-s2 4176 5 0.12 2463 58.98 1711 40.97
pg5 34 307 2 0.65 307 100.00 0 0.00

pigeon-10 266 4 1.50 215 80.83 51 19.17
pw-myciel4 1235 7 0.57 405 32.79 827 66.96

qiu 1311 4 0.31 991 75.59 319 24.33
rail507 2940 18 0.61 1201 40.85 1724 58.64

ran16x16 331 3 0.91 331 100.00 0 0.00
reblock67 1051 3 0.29 521 49.57 529 50.33

rmatr100-p10 1226 6 0.49 523 42.66 700 57.10
rmatr100-p5 2318 8 0.35 987 42.58 1326 57.20

rmine6 1160 2 0.17 750 64.66 410 35.34
rocII-4-11 421 4 0.95 295 70.07 126 29.93

rococoC10-001000 1112 5 0.45 865 77.79 246 22.12
roll3000 945 4 0.42 494 52.28 450 47.62

satellites1-25 4573 10 0.22 2233 48.83 2334 51.04
sp98ic 591 9 1.52 136 23.01 451 76.31
sp98ir 516 4 0.78 244 47.29 271 52.52

tanglegram1 369 4 1.08 345 93.50 24 6.50
tanglegram2 184 4 2.17 176 95.65 8 4.35

timtab1 178 3 1.69 178 100.00 0 0.00
triptim1 44006 64 0.15 15847 36.01 28098 63.85
unitcal 7 15502 25 0.16 14729 95.01 756 4.88
vpphard 1510 5 0.33 538 35.63 971 64.30

zib54-UUE 3757 30 0.80 3256 86.66 475 12.64
average 2.54 56.35 43.21

Table 7: Use of each update method (Miplib 2010 preprocessed)

27

instance it refactor permute Suhl-Suhl
it % it % it %

L1 sixm250obs 86485 44 0.05 79897 92.38 6588 7.62
Linf 520c 32466 589 1.81 19218 59.19 12671 39.03

buildingenergy 116101 63 0.05 107045 92.20 9055 7.80
cont1 45022 355 0.79 3468 7.70 41227 91.57

cont11 84525 137 0.16 40539 47.96 43893 51.93
cont4 40803 59 0.14 801 1.96 39965 97.95

dano3mip 24494 455 1.86 6556 26.77 17489 71.40
dbic1 116330 9726 8.36 76049 65.37 30562 26.27

dfl001 24518 62 0.25 10876 44.36 13584 55.40
ds-big 42179 552 1.31 8137 19.29 33461 79.33
fome12 97219 211 0.22 43373 44.61 53648 55.18
fome13 236861 546 0.23 99610 42.05 136735 57.73

gen4 866 15 1.73 8 0.92 845 97.58
ken-18 118434 63 0.05 117612 99.31 822 0.69

l30 11664 121 1.04 343 2.94 11206 96.07
lp22 20260 201 0.99 3853 19.02 16209 80.00
mod2 44185 302 0.68 25018 56.62 18865 42.70
neos 111552 62 0.06 78083 70.00 33460 29.99

neos1 47658 30 0.06 3396 7.13 44255 92.86
neos2 59135 49 0.08 2856 4.83 56245 95.11
neos3 34975 18 0.05 417 1.19 34558 98.81

ns1644855 69877 185 0.26 31633 45.27 38075 54.49
ns1687037 13357 1760 13.18 6914 51.76 4838 36.22
ns1688926 85364 84375 98.84 451 0.53 547 0.64
nug08-3rd 29543 100 0.34 6016 20.36 23433 79.32

nug15 552483 5917 1.07 23166 4.19 523402 94.74
pds-100 277868 152 0.05 242936 87.43 34898 12.56
pds-40 117622 77 0.07 93104 79.16 24481 20.81
qap12 126126 1490 1.18 7272 5.77 117368 93.06
qap15 550514 6309 1.15 24412 4.43 519797 94.42

rail4284 36523 122 0.33 13785 37.74 22617 61.93
self 57127 3254 5.70 4459 7.81 49423 86.51

sgpf5y6 256406 137 0.05 229990 89.70 26416 10.30
stat96v1 16534 151 0.91 2305 13.94 14084 85.18
stat96v4 39574 207 0.52 12180 30.78 27192 68.71

stormG2-125 101052 53 0.05 94900 93.91 6152 6.09
stormG2 1000 803485 404 0.05 758446 94.39 45039 5.61

stp3d 102296 88 0.09 77583 75.84 24656 24.10
watson 2 478328 340 0.07 380017 79.45 98154 20.52

world 49651 370 0.75 28140 56.68 21145 42.59
average 3.62 42.12 54.32

Table 8: Use of each update method (Mittelmann testset)

28

instance Suhl-Suhl update permute + Suhl-Suhl update
it time (s) t/it (ms) %factor %solve it time (s) t/it (ms) %factor %solve

%b %S %[] + %b %∆ %S %[] +
30n20b8 2160 0.207 0.096 2.71 3.27 0.06 7.46 28.58 2457 0.213 0.087 2.63 0.62 3.16 0.06 7.83 29.05

acc-tight5 1720 0.478 0.278 1.84 19.55 0.05 23.77 57.20 1682 0.480 0.285 2.09 0.62 20.63 0.05 25.41 55.75
aflow40b 1576 0.085 0.054 1.02 3.72 0.14 7.60 62.92 1465 0.079 0.054 0.87 2.70 3.90 0.32 9.07 55.34

air04 3013 0.648 0.215 2.22 6.25 0.03 9.53 29.82 3043 0.649 0.213 2.29 0.43 6.33 0.03 10.08 29.26
app1-2 1035 1.238 1.197 1.52 4.20 0.15 8.88 57.48 1047 1.265 1.208 1.57 0.72 2.78 0.14 7.58 55.98

ash608gpia-3col 6878 19.396 2.820 0.56 22.70 0.04 24.08 53.21 7634 19.997 2.619 0.61 0.44 18.77 0.04 20.72 53.47
bab5 14003 2.806 0.200 0.78 11.10 0.04 13.04 59.64 13667 2.431 0.178 0.73 0.86 13.84 0.05 16.70 58.81

beasleyC3 845 0.067 0.079 1.35 6.86 0.17 10.84 65.08 851 0.062 0.073 1.14 4.46 0.00 0.57 6.80 63.11
biella1 7039 2.096 0.298 2.50 6.03 0.03 9.68 41.54 6684 1.971 0.295 2.73 0.38 6.30 0.03 10.65 41.77
bienst2 409 0.021 0.051 4.01 4.38 0.30 11.68 58.02 351 0.012 0.035 2.94 1.41 5.49 0.31 13.60 57.78

binkar10 1 1031 0.019 0.019 3.31 3.47 0.44 10.12 48.05 1035 0.017 0.017 3.36 2.00 5.23 0.59 13.74 43.56
bley xl1 116684 2018.235 17.297 6.06 1.58 0.12 7.76 59.95 85616 1408.438 16.451 7.79 0.06 1.26 0.14 9.27 60.17
bnatt350 1049 0.251 0.239 1.58 18.05 0.10 21.21 62.15 1111 0.236 0.212 1.57 0.63 15.34 0.13 18.96 61.87

core2536-691 18536 6.801 0.367 1.06 6.40 0.02 8.63 49.33 20361 8.014 0.394 0.97 0.46 5.61 0.02 8.01 48.15
cov1075 647 0.109 0.168 7.43 13.91 0.08 24.45 56.49 578 0.100 0.172 6.89 0.65 14.96 0.08 25.75 55.79

csched010 2369 0.113 0.048 2.70 5.17 0.09 10.02 41.55 2419 0.137 0.057 2.30 1.00 4.98 0.11 10.74 44.92
danoint 829 0.053 0.064 2.97 9.76 0.12 15.78 55.25 867 0.066 0.076 3.80 1.15 7.72 0.14 15.40 52.53

dfn-gwin-UUM 545 0.012 0.021 4.86 4.01 0.25 11.54 34.05 546 0.019 0.035 4.07 1.71 4.25 0.32 13.09 34.72
eil33-2 175 0.030 0.171 2.65 0.57 0.04 3.84 3.13 192 0.038 0.197 2.83 0.17 0.52 0.04 4.17 2.98
eilB101 459 0.054 0.117 4.70 2.23 0.06 8.04 11.92 459 0.047 0.102 4.56 0.43 2.05 0.06 8.22 11.83

enlight13 5 0.000 0.057 33.94 2.33 3.03 43.50 10.85 5 0.000 0.055 35.62 1.59 0.00 2.68 43.06 9.39
enlight14 5 0.000 0.066 34.97 3.04 3.75 43.08 9.63 5 0.000 0.068 32.74 1.38 0.00 3.25 39.74 8.38

ex9 70143 1426.987 20.344 52.15 6.64 0.02 59.04 27.02 70972 1700.475 23.960 62.60 0.07 3.85 0.02 66.70 21.27
glass4 72 0.001 0.010 25.21 2.24 2.29 32.13 14.21 72 0.001 0.011 27.13 1.62 0.00 2.36 33.22 12.55

gmu-35-40 208 0.008 0.039 4.74 2.88 0.38 11.80 51.31 194 0.006 0.032 4.93 1.48 2.25 0.49 12.73 46.15
iis-100-0-cov 342 0.176 0.515 2.14 20.73 0.13 25.28 57.78 328 0.162 0.494 2.36 1.04 18.44 0.13 24.40 57.75
iis-bupa-cov 790 0.352 0.445 2.87 12.15 0.11 17.13 62.87 719 0.365 0.508 2.44 0.59 15.50 0.10 20.50 61.00
iis-pima-cov 788 0.437 0.555 3.33 6.40 0.14 12.00 63.88 862 0.478 0.555 3.28 0.53 7.82 0.13 13.68 63.02

lectsched-4-obj 951 0.090 0.094 4.03 0.93 0.28 6.55 64.75 950 0.058 0.061 4.70 0.27 0.02 0.31 6.31 63.65
m100n500k4r1 490 0.026 0.052 11.14 6.74 0.15 20.88 34.33 489 0.022 0.045 11.27 1.10 6.30 0.16 22.04 34.31

macrophage 725 0.023 0.032 10.60 0.62 0.76 13.98 32.99 725 0.022 0.030 10.77 0.46 0.13 0.79 14.17 31.42
map18 13463 9.894 0.735 0.67 0.95 0.04 2.13 85.52 14128 11.805 0.836 0.57 0.18 0.65 0.03 1.95 84.79
map20 13062 8.932 0.684 0.62 1.16 0.04 2.25 85.90 13184 8.197 0.622 0.66 0.24 0.63 0.03 1.96 86.26

mcsched 3602 0.526 0.146 1.06 11.77 0.06 13.79 66.09 3587 0.541 0.151 0.94 0.55 13.70 0.07 16.02 64.55
mik-250-1-100-1 102 0.001 0.009 7.87 3.22 1.10 18.12 17.32 102 0.001 0.006 8.37 1.14 0.00 1.20 16.37 17.13

mine-166-5 1123 0.449 0.399 1.18 23.43 0.09 26.67 55.62 1144 0.417 0.365 1.28 0.47 24.27 0.10 27.91 54.35
mine-90-10 1717 0.746 0.434 0.81 24.47 0.06 27.64 58.03 1651 0.571 0.346 1.01 0.55 16.02 0.07 19.53 62.02

msc98-ip 22552 30.655 1.359 1.47 9.54 0.04 11.94 69.21 20710 25.334 1.223 1.48 0.34 9.47 0.05 12.37 66.10
mspp16 51 0.500 9.812 27.79 0.00 2.33 28.90 1.14 51 0.485 9.506 28.47 0.00 0.00 2.36 29.24 1.16
mzzv11 30077 32.721 1.088 1.51 6.53 0.03 8.96 64.37 33250 32.193 0.968 2.34 0.36 5.50 0.04 9.11 60.63

n3div36 196 0.082 0.417 1.58 0.26 0.14 2.43 4.56 232 0.106 0.458 1.22 0.11 0.20 0.14 2.16 4.64
n3seq24 3704 12.615 3.406 0.09 0.41 0.01 0.67 4.50 3389 11.138 3.287 0.10 0.05 0.34 0.01 0.65 4.11

n4-3 1018 0.096 0.095 1.39 6.52 0.13 10.41 44.98 919 0.080 0.087 1.22 0.93 11.67 0.13 15.43 41.71
neos-1109824 141 0.026 0.186 18.39 0.51 1.56 21.03 43.72 143 0.025 0.178 18.42 0.38 0.57 1.55 21.54 42.73
neos-1337307 3840 1.083 0.282 1.49 19.20 0.12 23.07 60.99 3837 0.836 0.218 2.70 0.49 13.63 0.15 19.31 62.78
neos-1396125 2348 0.289 0.123 1.61 9.91 0.07 13.25 65.75 2830 0.314 0.111 2.67 0.71 8.29 0.08 13.14 64.05
neos-1601936 4087 1.939 0.474 2.40 11.85 0.04 15.76 51.03 3682 1.928 0.524 2.14 0.43 14.76 0.04 18.89 51.14
neos-476283 10258 14.534 1.417 6.50 1.40 0.08 9.39 51.91 8037 10.575 1.316 6.49 0.18 1.25 0.09 9.41 51.10
neos-686190 295 0.043 0.145 4.62 5.96 0.40 12.74 46.55 301 0.045 0.151 3.73 0.61 5.79 0.38 12.43 46.89
neos-849702 1344 0.288 0.214 2.40 16.82 0.05 21.15 49.61 1450 0.313 0.216 2.35 0.53 17.14 0.05 21.97 49.61
neos-916792 552 0.091 0.166 3.33 7.75 0.13 14.97 45.12 552 0.079 0.143 3.51 0.45 7.28 0.13 15.00 44.56
neos-934278 17881 33.288 1.862 2.86 19.96 0.02 23.97 53.77 18272 30.377 1.662 3.87 0.37 17.36 0.02 22.68 52.30

neos13 389 0.167 0.430 6.52 0.21 0.45 18.58 65.46 389 0.146 0.375 7.23 0.08 0.01 0.49 9.22 73.18
neos18 1183 0.154 0.130 1.45 13.37 0.14 15.94 64.63 1168 0.118 0.101 1.77 0.90 9.58 0.16 13.51 64.09
net12 3366 2.387 0.709 0.78 4.27 0.04 6.00 79.42 4447 3.651 0.821 0.55 0.33 5.65 0.03 7.25 78.67

netdiversion 45217 149.291 3.302 0.35 1.57 0.09 3.18 90.77 44148 142.726 3.233 0.37 0.16 0.90 0.07 2.61 91.14
newdano 409 0.015 0.038 3.99 4.39 0.27 11.66 58.23 351 0.016 0.045 2.88 1.38 5.41 0.30 13.44 57.65
noswot 42 0.001 0.019 20.05 2.69 1.38 30.33 32.56 42 0.001 0.021 20.84 1.92 1.59 1.66 31.47 30.44

ns1208400 2080 0.624 0.300 2.35 13.17 0.05 17.20 52.71 2256 0.760 0.337 2.52 0.43 13.47 0.05 18.37 52.31
ns1688347 1282 0.496 0.387 1.69 16.96 0.07 21.81 61.40 1220 0.424 0.348 1.36 0.48 16.94 0.06 21.70 61.61
ns1758913 12069 21.489 1.781 0.91 7.71 0.04 9.87 72.51 8341 11.446 1.372 1.24 0.42 5.96 0.04 8.68 72.54
ns1766074 32 0.001 0.018 21.36 3.21 1.61 32.72 26.54 32 0.000 0.011 21.82 1.88 0.00 1.79 31.94 24.70
ns1830653 1101 0.231 0.209 1.86 13.37 0.06 18.18 63.59 980 0.212 0.216 1.62 0.46 14.54 0.05 19.44 63.27

opm2-z7-s2 3783 10.215 2.700 0.82 26.34 0.05 29.05 54.77 4176 8.211 1.966 1.01 0.26 16.56 0.05 19.73 61.17
pg5 34 307 0.008 0.027 2.18 1.22 0.35 6.58 45.27 307 0.007 0.021 2.02 0.87 0.00 0.49 5.74 38.37

pigeon-10 264 0.011 0.043 7.00 2.72 0.35 13.18 66.25 266 0.013 0.050 6.04 1.20 2.65 0.37 12.82 66.55
pw-myciel4 1377 0.199 0.145 1.75 15.03 0.07 18.98 59.26 1235 0.179 0.145 1.62 0.65 17.19 0.08 21.57 57.85

qiu 1113 0.048 0.043 3.85 4.51 0.19 10.39 66.65 1311 0.080 0.061 2.61 1.42 18.65 0.12 24.22 62.08
rail507 3180 1.249 0.393 0.67 1.71 0.02 2.92 11.36 2940 1.169 0.397 0.56 0.24 1.67 0.01 3.05 11.60

ran16x16 331 0.006 0.019 3.63 3.31 0.42 11.69 61.14 331 0.005 0.015 4.03 3.28 0.00 0.87 11.28 51.81
reblock67 1018 0.173 0.170 2.29 18.52 0.09 22.86 61.25 1051 0.200 0.191 1.60 0.72 24.97 0.08 29.06 57.11

rmatr100-p10 1183 0.362 0.306 1.57 4.19 0.15 6.99 71.73 1226 0.361 0.294 1.80 0.33 4.58 0.14 7.78 70.69
rmatr100-p5 2365 0.925 0.391 1.40 5.09 0.12 7.18 71.82 2318 0.909 0.392 1.21 0.31 5.18 0.09 7.45 72.27

rmine6 1167 0.280 0.240 0.99 21.10 0.12 24.43 58.31 1160 0.214 0.184 1.22 0.62 17.30 0.13 21.94 59.71
rocII-4-11 426 0.061 0.144 9.16 1.58 0.44 14.53 58.19 421 0.056 0.132 9.78 0.49 0.96 0.48 15.14 57.94

rococoC10-001000 1053 0.040 0.038 1.78 7.57 0.15 11.95 60.18 1112 0.048 0.043 1.18 1.31 8.18 0.17 13.91 62.00
roll3000 948 0.089 0.094 2.54 8.46 0.11 13.69 66.11 945 0.077 0.082 2.11 0.91 7.87 0.10 13.63 66.98

satellites1-25 5040 4.185 0.830 0.81 20.39 0.03 22.85 56.72 4573 3.060 0.669 1.17 0.48 17.00 0.03 20.04 55.12
sp98ic 577 0.170 0.295 0.72 1.84 0.03 3.60 13.21 591 0.167 0.283 1.10 0.27 1.90 0.04 4.24 12.30
sp98ir 561 0.092 0.165 2.65 6.76 0.11 12.26 49.81 516 0.079 0.153 2.40 0.65 8.88 0.10 15.07 50.08

tanglegram1 362 0.620 1.713 5.67 0.16 0.32 7.34 69.78 369 0.642 1.739 5.52 0.04 0.01 0.30 6.46 71.41
tanglegram2 184 0.064 0.347 10.38 0.23 0.68 12.48 69.06 184 0.057 0.312 10.58 0.07 0.03 0.67 12.31 69.04

timtab1 178 0.002 0.011 8.59 2.54 1.08 18.19 36.27 178 0.002 0.010 8.98 1.34 0.00 1.05 17.52 33.84
triptim1 43642 112.778 2.584 3.83 9.80 0.02 14.17 61.51 44006 114.450 2.601 4.01 0.22 9.31 0.02 14.08 61.54
unitcal 7 15686 1.357 0.086 9.88 0.43 0.40 11.70 71.02 15502 1.153 0.074 13.64 0.33 0.13 0.55 15.49 65.22
vpphard 1583 2.354 1.487 1.22 10.06 0.08 12.78 57.27 1510 2.046 1.355 1.13 0.35 10.06 0.08 13.17 57.20

zib54-UUE 4492 0.456 0.101 4.97 2.89 0.12 8.88 60.24 3757 0.343 0.091 3.51 0.52 6.63 0.15 11.77 57.92
average 6263 45.290 1.025 5.52 7.55 0.34 15.48 50.75 5887 41.083 1.024 5.73 0.75 7.12 0.36 15.80 49.86

geom. mean 1229 4.014 0.797 1217 3.830 0.778

Table 9: Running time: with and without of our permutation method (Miplib 2010 preprocessed)

29

instance Suhl-Suhl update permute + Suhl-Suhl update
it time (s) t/it (ms) %factor %solve it time (s) t/it (ms) %factor %solve

%b %S %[] + %b %∆ %S %[] +
L1 sixm250obs 79738 3600.014 45.148 0.83 1.11 0.08 2.09 69.58 86485 3600.010 41.626 0.83 0.01 0.24 0.03 1.15 69.46

Linf 520c 32763 3600.572 109.897 87.75 0.72 0.01 88.50 6.44 32466 3603.924 111.006 89.32 0.01 0.51 0.01 89.85 5.39
buildingenergy 116212 832.834 7.167 0.46 0.07 0.05 0.61 95.49 116101 806.953 6.950 0.50 0.02 0.00 0.02 0.62 95.32

cont1 61230 3602.617 58.837 81.58 0.51 0.03 82.13 13.96 45022 3606.514 80.106 70.21 0.02 0.80 0.02 71.09 22.67
cont11 84648 3613.832 42.692 99.79 0.00 0.00 99.80 0.13 84525 3608.450 42.691 99.80 0.00 0.00 0.00 99.81 0.12
cont4 40803 3633.487 89.050 75.58 1.70 0.01 77.32 17.97 40803 3606.284 88.383 75.35 0.03 1.72 0.01 77.16 18.10

dano3mip 26355 25.354 0.962 10.66 4.24 0.05 16.01 24.11 24494 23.093 0.943 12.36 0.33 3.16 0.05 16.68 24.96
dbic1 90471 2543.061 28.109 65.82 0.01 0.20 65.84 4.98 116330 1933.765 16.623 45.33 0.01 0.01 0.12 45.38 10.02

dfl001 28257 31.834 1.127 4.50 9.45 0.03 15.06 43.94 24518 24.428 0.996 5.09 0.44 6.04 0.03 12.48 42.86
ds-big 62641 535.890 8.555 4.92 0.80 0.00 5.90 4.78 42179 352.378 8.354 3.92 0.04 0.75 0.00 4.88 4.17
fome12 464998 1467.467 3.156 33.71 1.66 0.05 35.80 34.92 97219 219.595 2.259 23.93 0.21 2.32 0.03 26.93 41.47
fome13 635128 3079.132 4.848 51.12 1.37 0.05 52.79 27.27 236861 843.338 3.560 42.09 0.14 1.39 0.04 43.96 34.12

gen4 871 5.555 6.377 78.12 6.85 0.01 85.47 11.09 866 7.109 8.209 83.55 0.12 5.02 0.00 89.04 8.31
ken-18 118347 11.785 0.100 13.23 1.87 0.80 16.66 52.96 118434 10.713 0.090 14.36 0.35 0.62 0.74 16.97 50.69

l30 11180 10.606 0.949 24.13 10.34 0.04 35.20 33.27 11664 11.777 1.010 26.19 0.54 10.32 0.04 37.88 32.27
lp22 18963 16.833 0.888 11.43 6.55 0.04 18.66 31.62 20260 18.415 0.909 13.58 0.35 6.21 0.04 20.83 30.53
mod2 44263 108.954 2.462 7.73 1.13 0.07 9.24 56.62 44185 106.075 2.401 10.02 0.15 0.95 0.08 11.45 52.45
neos 115699 2302.549 19.901 0.39 1.16 0.05 1.61 87.26 111552 2140.019 19.184 0.42 0.05 1.29 0.04 1.84 87.68

neos1 43169 1028.134 23.816 0.17 22.47 0.03 22.83 55.29 47658 1142.626 23.976 0.19 0.18 22.45 0.03 23.03 54.77
neos2 78832 2023.284 25.666 0.21 21.19 0.03 21.58 55.56 59135 1457.918 24.654 0.26 0.14 19.60 0.04 20.23 55.67
neos3 36759 3600.037 97.936 0.24 21.72 0.04 22.13 48.31 34975 3600.076 102.933 0.23 0.07 20.62 0.04 21.13 51.20

ns1644855 83255 517.098 6.211 6.20 1.45 0.05 8.04 59.11 69877 438.624 6.277 3.04 0.13 1.40 0.03 4.89 71.01
ns1687037 5913 3600.669 608.941 97.62 0.26 0.01 97.90 1.33 13357 3601.863 269.661 95.37 0.01 0.46 0.01 95.89 3.05
ns1688926 88986 3600.003 40.456 66.02 0.06 0.45 66.09 6.38 85364 3600.017 42.173 65.58 0.01 0.05 0.43 65.66 6.53
nug08-3rd 33032 735.288 22.260 58.21 10.62 0.01 69.08 19.49 29543 586.104 19.839 53.24 0.11 11.23 0.01 64.84 22.63

nug15 637187 3600.000 5.650 57.40 5.24 0.01 63.09 25.31 552483 3600.311 6.517 61.37 0.15 5.32 0.01 67.20 22.66
pds-100 265946 978.883 3.681 0.80 1.67 0.12 2.85 49.86 277868 1131.143 4.071 0.79 0.08 1.10 0.06 2.18 45.65
pds-40 122238 389.029 3.183 0.48 3.54 0.05 4.52 44.69 117622 352.594 2.998 0.52 0.12 3.17 0.03 4.14 43.46
qap12 107549 158.418 1.473 31.81 10.31 0.02 42.95 38.60 126126 230.702 1.829 42.71 0.40 8.60 0.02 52.36 32.59
qap15 408397 3600.216 8.815 71.08 4.21 0.01 75.55 16.62 550514 3600.064 6.539 61.68 0.12 4.85 0.01 67.01 22.90

rail4284 35245 3600.032 102.143 0.04 0.07 0.00 0.13 0.47 36523 3600.005 98.568 0.05 0.01 0.06 0.00 0.13 0.48
self 29770 1021.038 34.298 90.92 0.84 0.00 91.88 2.97 57127 1380.330 24.162 87.32 0.01 1.17 0.00 88.70 4.31

sgpf5y6 254527 983.087 3.862 0.93 0.94 0.13 1.97 90.74 256406 1034.897 4.036 0.92 0.08 1.24 0.05 2.35 87.11
stat96v1 17359 79.193 4.562 22.92 1.22 0.02 24.38 11.13 16534 74.303 4.494 19.28 0.13 1.32 0.02 21.00 13.03
stat96v4 42461 75.087 1.768 6.58 0.80 0.01 7.68 24.29 39574 70.925 1.792 5.69 0.10 0.67 0.01 6.76 22.91

stormG2-125 101300 18.830 0.186 4.16 0.24 0.14 4.83 85.14 101052 17.706 0.175 4.43 0.15 0.05 0.13 5.09 84.23
stormG2 1000 802907 1491.448 1.858 5.58 0.06 0.10 5.72 87.36 803485 1471.501 1.831 5.51 0.03 0.01 0.09 5.64 87.11

stp3d 99833 565.454 5.664 2.00 1.53 0.05 3.67 61.83 102296 597.167 5.838 1.99 0.08 1.33 0.04 3.55 62.62
watson 2 478937 3143.706 6.564 2.77 2.17 0.20 5.12 84.26 478328 2892.521 6.047 3.67 0.07 1.98 0.06 5.86 81.38

world 238315 935.109 3.924 12.13 0.92 0.07 13.38 46.68 49651 129.860 2.615 9.81 0.13 0.90 0.08 11.18 50.34
average 151112 1619.160 36.079 29.75 4.03 0.08 34.10 38.29 128987 1478.353 27.408 28.51 0.13 3.72 0.06 32.67 38.91

geom. mean 72568 630.194 14.444 66512 540.739 13.535

Table 10: Running time: with and without of our permutation method (Mittelmann testset)

30

