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Abstract

The infinite models in integer programming can be described as the convex hull of
some points or as the intersection of half-spaces derived from valid functions. In this paper
we study the relationships between these two descriptions. Our results have implications
for finite dimensional corner polyhedra. One consequence is that nonnegative continuous
functions suffice to describe finite dimensional corner polyhedra with rational data. We
also discover new facts about corner polyhedra with non-rational data.

1 Introduction

Let b ∈ Rn \ Zn. The mixed-integer infinite group relaxation Mb is the set of all pairs
of functions (s, y) with s : Rn → R+ and y : Rn → Z+ having finite support (that is,
{r : s(r) > 0} and {p : y(p) > 0} are finite sets) satisfying∑

r∈Rn

rs(r) +
∑
p∈Rn

py(p) ∈ b+ Zn. (1.1)

Mb is a subset of the infinite-dimensional vector space R(Rn)×R(Rn), where R(Rn) denotes

the set of finite support functions from Rn to R. (Similarly, R(Rn)
+ will denote the set of finite

support functions from Rn to R that are nonnegative.) We will work with this vector space
throughout the paper. A tuple (ψ, π, α), where ψ, π : Rn → R and α ∈ R, is a valid tuple for
Mb if ∑

r∈Rn

ψ(r)s(r) +
∑
p∈Rn

π(p)y(p) ≥ α for every (s, y) ∈Mb. (1.2)

Since for λ > 0 the inequalities (1.2) associated with (ψ, π, α) and (λψ, λπ, λα) are equivalent,
from now on we assume α ∈ {−1, 0, 1}.

The set of functions y : Rn → Z+ such that (0, y) ∈ Mb will be called the pure integer
infinite group relaxation Ib. In other words, Ib = {y : (0, y) ∈Mb}. By definition, Ib ⊆ R(Rn).
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However, when convenient we will see Ib as a subset of Mb. A tuple (π, α), where π : Rn → R
and α ∈ R, is called a valid tuple for Ib if∑

p∈Rn

π(p)y(p) ≥ α for every y ∈ Ib. (1.3)

Again, we will assume α ∈ {−1, 0, 1}.
Models Mb and Ib were defined by Gomory and Johnson in a series of papers [11–13, 16]

as a template to generate valid inequalities, derived from (1.2) and (1.3), for general integer
programs. They have been the focus of extensive research, as summarized, e.g., in [3, 4], [6,
Chapter 6].

Our Results. One would expect that the intersection of all valid tuples for Mb would be
equal to conv(Mb), where conv(·) denotes the convex hull operator. However, this is not true:
this intersection is a strict superset of conv(Mb). One of our main results (Theorem 2.14)
shows that the intersection of all valid tuples for Mb is, in fact, the closure of conv(Mb) under
a norm topology on R(Rn) × R(Rn) that was first defined by Basu et al. [2]. We then give an

explict characterization that shows that this closure coincides with conv(Mb)+(R(Rn)
+ ×R(Rn)

+ ).
A similar phenomenon happens for Ib (Theorem 2.15).

A valid tuple (ψ, π, α) for Mb is minimal if there does not exist a pair of functions (ψ′, π′)
different from (ψ, π), with (ψ′, π′) ≤ (ψ, π), such that (ψ′, π′, α) is a valid tuple for Mb. Our
main tool is a characterization of the minimal tuples (Theorem 2.4) that extends a result of
Johnson (see, e.g., Theorem 6.34 in [6]), that was obtained under the assumption that π ≥ 0.
The main novelty of our result over Johnson’s is that minimality of a valid tuple (ψ, π, α)
implies nonnegativity of π (no need to assume it). Moreover, π has to be continuous (in fact,
it is Lipschitz continuous.)

Most of the prior literature on valid tuples (π, α) for Ib proceeds under the restrictive
assumption that π is nonnegative (in fact, Gomory and Johnson included the assumption
π ≥ 0 in their original definition of valid tuple for Ib). This assumption has been criticized in
more recent work on Ib, as there are valid functions not satisfying π ≥ 0. In this paper, we
prove that every valid tuple for Ib has an equivalent representation (π, α) where π ≥ 0. More
specifically, we show that for every valid tuple (π, α), there exist θ : Rn → R and β ∈ R such
that both (θ, β), (−θ,−β) are valid tuples and the valid tuple (π′, α′) = (π+θ, α+β) satisfies
π′ ≥ 0 (Theorem 3.7). This settles an open question in [3, Open Question 2.5]. Being able to
restrict to nonnegative valid tuples without loss has the added advantage that nonnegative
valid tuples form a compact, convex set under the natural product topology on functions.
Thus, one approach to understanding valid tuples is to understand the extreme points of this
compact convex set, which are termed extreme functions/tuples in the literature. While this
approach was standard for the area, our result about nonnegative valid tuples now gives a
rigorous justification for this.

A valid tuple (π, α) for Ib is liftable if there there exists ψ : Rn → R such that (ψ, π, α) is
a valid tuple for Mb. Minimal valid tuples (π, α) that are liftable are a strict subset of valid
tuples, as we show that such π have to be nonnegative and Lipschitz continuous (Proposition
2.6 and Remark 2.7). This has some consequences for finite-dimensional corner polyhedra that
have rational data, which are sets of the form conv(Ib)∩{yr = 0, r ∈ Rn\P}, where P ∪{b} is
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a finite subset of Qn. Theorem 4.3 shows that inequalities (1.3) associated with liftable tuples,
when restricted to the space {yr = 0, r ∈ Rn \ P}, suffice to provide a complete inequality
description for such corner polyhedra. Literature on valid tuples contains constructions of
families of extreme valid tuples (π, α) such that π is discontinuous [8, 9, 14, 17, 19, 20] (or
continuous but not Lipschitz continuous [17]). Our result above shows that such functions
may be disregarded, if one is interested in valid inequalities or facets of rational corner
polyhedra. Similarly, valid tuples (π, α) where π 6≥ 0 are also superfluous for such polyhedra.
This is interesting, in our opinion, because it shows that such extreme tuples are redundant
within the set of valid tuples, as far as rational corner polyhedra are concerned.

Crucial to the proof of the above result on rational corner polyhedra, is our characteriza-
tion of the equations defining the affine hull of conv(Ib), which extends a result in [3]. This
characterization is also essential in understanding the recession cone of conv(Ib)∩{yr = 0, r ∈
Rn \ P}, where P is a finite subset of Rn. We use this to prove that conv(Ib) ∩ {yr = 0, r ∈
Rn \ P} is a polyhedron, even if P ∪ {b} contains non-rational vectors (Theorem 4.2).

2 The structure of conv(Mb) and conv(Ib)

A valid tuple (ψ, π, α) for Mb is said to be minimal if there does not exist a pair of functions
(ψ′, π′) different from (ψ, π), with (ψ′, π′) ≤ (ψ, π), such that (ψ′, π′, α) is a valid tuple for
Mb. Similarly, we say that a valid tuple (π, α) for Ib is minimal if there does not exist a
function π′ different from π, with π′ ≤ π, such that (π′, α) is a valid tuple for Ib.

Remark 2.1. An application of Zorn’s lemma (see, e.g., [5, Proposition A.1]) shows that,
given a valid tuple (ψ, π, α) for Mb, there exists a minimal valid tuple (ψ′, π′, α) for Mb with
ψ′ ≤ ψ and π′ ≤ π. Similarly, given a valid tuple (π, α) for Ib, there exists a minimal valid
tuple (π′, α) for Ib with π′ ≤ π. We will use this throughout the paper.

Given a tuple (ψ, π, α), we define

Hψ,π,α =

{
(s, y) ∈ R(Rn) × R(Rn) :

∑
r∈Rn

ψ(r)s(r) +
∑
p∈Rn

π(p)y(p) ≥ α
}
.

A valid tuple (ψ, π, α) for Mb is trivial if R(Rn)
+ × R(Rn)

+ ⊆ Hψ,π,α. This happens if and
only if ψ ≥ 0, π ≥ 0 and α ∈ {0,−1}. Similarly, a valid tuple (π, α) for Ib is trivial if π ≥ 0
and α ∈ {0,−1}.

A function φ : Rn → R is subadditive if φ(r1) + φ(r2) ≥ φ(r1 + r2) for every r1, r2 ∈ Rn,
and is positively homogenous if φ(λr) = λφ(r) for every r ∈ Rn and λ ≥ 0. If φ is subadditive
and positive homogenous, then φ is called sublinear. The following proposition is well-known
and its proof is relegated to the Appendix.

Proposition 2.2. Let (ψ, π, α) be a minimal valid tuple for Mb. Then ψ is sublinear and
π ≤ ψ.

Lemma 2.3. Suppose π : Rn → R is subadditive and supε>0
π(εr)
ε <∞ for all r ∈ Rn. Define

ψ(r) = supε>0
π(εr)
ε . Then ψ is sublinear and π ≤ ψ.
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Proof. Since π is subadditive, ψ is readily checked to be subadditive as well. The fact that
π ≤ ψ follows by taking ε = 1. Finally, positive homogeneity of ψ follows from the definition
of ψ.

The following theorem follows from the more general Theorem 37 in [21]. For complete-
ness, we provide an alternate proof in the Appendix.

Theorem 2.4. Let ψ : Rn → R, π : Rn → R be any functions, and α ∈ {−1, 0, 1}. Then
(ψ, π, α) is a nontrivial minimal valid tuple for Mb if and only if the following hold:

(a) π is subadditive;

(b) ψ(r) = supε>0
π(εr)
ε = limε→0+

π(εr)
ε = lim supε→0+

π(εr)
ε for every r ∈ Rn;

(c) π is Lipschitz continuous with Lipschitz constant L := max‖r‖=1 ψ(r);

(d) π ≥ 0, π(z) = 0 for every z ∈ Zn, and α = 1;

(e) (symmetry condition) π satisfies π(r) + π(b− r) = 1 for all r ∈ Rn.

Corollary 2.5. Let (π, α) be a nontrivial minimal valid tuple for Ib such that supε>0
π(εr)
ε <

∞ for every r ∈ Rn. Define ψ(r) = supε>0
π(εr)
ε . Then (ψ, π, α) satisfies conditions (a)–(e)

of Theorem 2.4 and therefore is a nontrivial minimal valid tuple for Mb.
Conversely, if (ψ, π, α) is a nontrivial minimal valid tuple for Mb, then (π, α) is a non-

trivial minimal valid tuple for Ib.

Proof. Since (π, α) is minimal, the same argument as in the proof of Proposition 2.2 shows
that π is subadditive. Let ψ be defined as above. Following the proof of Theorem 2.4 it can
be checked that minimality and nontriviality of (π, α) suffice to show that (ψ, π, α) satisfies
(a)–(e), and therefore (ψ, π, α) is a nontrivial minimal valid tuple for Mb.

For the converse, we use a theorem of Gomory and Johnson (see, e.g., [6, Theorem 6.22])
stating that if (π, 1) is a nontrivial valid tuple with π ≥ 0, then (π, 1) is minimal if and only
if π is subadditive, π(z) = 0 for every z ∈ Zn, and π satisfies the symmetry condition. Let
(ψ, π, α) be a nontrivial minimal valid tuple for Mb. By Theorem 2.4, π ≥ 0, α = 1, π is
subadditive, π(z) = 0 for every z ∈ Zn, and π satisfies the symmetry condition. Therefore,
by the above theorem, (π, α) is a nontrivial minimal valid tuple for Ib.

A valid tuple (π, α) for Ib is called liftable if there exists a function ψ : Rn → R such that
(ψ, π, α) is a valid tuple for Mb.

Proposition 2.6. Let (π, α) be a nontrivial valid tuple for Ib. Then (π, α) is liftable if and

only if there exists a minimal valid tuple (π′, α) such that π′ ≤ π and supε>0
π′(εr)
ε < ∞ for

every r ∈ Rn. In this case, defining ψ(r) = supε>0
π′(εr)
ε gives a valid tuple (ψ, π′, α) for Mb

satisfying conditions (a)–(e) of Theorem 2.4.

Proof. If (π, α) is nontrivial and liftable, then there exists ψ such that (ψ, π, α) is a valid
tuple for Mb. Let (ψ′, π′, α) be a minimal valid tuple with ψ′ ≤ ψ and π′ ≤ π. Since (π, α) is

nontrivial, so is (ψ′, π′, α). By Theorem 2.4, α = 1, π′ ≥ 0, and supε>0
π′(εr)
ε < ∞ for every

r ∈ Rn. By Corollary 2.5, (π′, α) is minimal.
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Conversely, let (π, α) be a nontrivial valid tuple for Ib, and let π′ ≤ π be such that (π′, α)

is minimal (and nontrivial) and ψ(r) := supε>0
π′(εr)
ε is finite for every r ∈ Rn. By Corollary

2.5, (ψ, π′, α) is a nontrivial minimal valid tuple for Mb, and therefore (π′, α) is liftable. Since
π ≥ π′, (π, α) is liftable as well.

Remark 2.7. Let (π, α) be a nontrivial minimal valid tuple for Ib that is liftable. It follows

from Proposition 2.6 (with π′ = π) that ψ(r) := supε>0
π(εr)
ε is finite for all r ∈ Rn, and

(ψ, π, α) is a minimal valid tuple for Mb that satisfies conditions (a)–(e) of Theorem 2.4.
Therefore π is Lipschitz continuous and π ≥ 0. There are nontrivial minimal valid tuples
(π, α) for Ib for which π is not continuous, or π is continuous but not Lipschitz continuous,
see the construction in [17, Section 5]. There are also nontrivial minimal valid tuples (π, α)
for Ib with π 6≥ 0. None of these minimal tuples is liftable.

2.1 The closure of conv(Mb)

Lemma 2.8. The following sets coincide:

(a)
(
R(Rn)

+ × R(Rn)
+

)
∩
⋂
{Hψ,π,α : (ψ, π, α) valid tuple}

(b)
(
R(Rn)

+ × R(Rn)
+

)
∩
⋂
{Hψ,π,α : (ψ, π, α) nontrivial valid tuple}

(c)
(
R(Rn)

+ × R(Rn)
+

)
∩
⋂
{Hψ,π,α : (ψ, π, α) minimal nontrivial valid tuple}

(d)
(
R(Rn)

+ × R(Rn)
+

)
∩
⋂
{Hψ,π,α : (ψ, π, α) minimal nontrivial valid tuple, ψ, π ≥ 0, α = 1}

Proof. The equivalence of (a) and (b) follows from the definition of nontrivial valid tuple.
The sets (b) and (c) coincide by Remark 2.1. Finally, Theorem 2.4 shows that (c) is equal to
(d).

From now on, we denote by Qb the set(s) of Lemma 2.8.

While conv(Mb) ⊆ Qb, this containment is strict, as shown in Remark 4.5. However,
Theorem 2.14 below proves that, under an appropriate topology, the closure of conv(Mb)
is exactly Qb. In order to show this result, we need the following lemma, that may be of
independent interest.

Lemma 2.9. If C ⊆ Rn+ is closed, then so is conv(C) + Rn+.

Proof. Let (xi)i∈N be a sequence of points in conv(C) + Rn+ that converges to some x̄ ∈ Rn.
We need to show that x̄ ∈ conv(C) + Rn+.

By Carathéodory theorem, for every i ∈ N we can write

xi =
∑n+1

t=1 λ
t
ix
t
i + ri, (2.1)

where xti ∈ C for all t, λti ≥ 0 for all t,
∑

t λ
t
i = 1, and ri ∈ Rn+.

Since C is a closed set, by repeatedly taking subsequences of the original sequence (xi)i∈N,
we can assume that for every t = 1, . . . , n+ 1 the following conditions hold:

(a) either the sequence (xti)i∈N is unbounded or it converges to some x̄t ∈ C;
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(b) the sequence (λti)i∈N converges to some number λ̄t ∈ [0, 1].

Note that
∑n

t=1 λ̄t = 1.
Let T1 ⊆ {1, . . . , n+ 1} be the set of indices such that the sequence (xti)i∈N converges to

x̄t, and let T2 = {1, . . . , n+ 1} \ T1. For i ∈ N we rewrite (2.1) as

xi −
∑

t∈T1 λ
t
ix
t
i =

∑
t∈T2 λ

t
ix
t
i + ri. (2.2)

Since the left-hand side of (2.2) converges to

r̄ := x̄−
∑

t∈T1 λ̄
tx̄t, (2.3)

the right-hand side must also converge to r̄. Note that r̄ ∈ Rn+, as the right-hand side of
(2.2) is a nonnegative vector for all i ∈ N. Furthermore, λ̄t = 0 for every t ∈ T2, otherwise
the right-hand side of (2.2) would not converge. This implies that

∑
t∈T1 λ̄

t = 1 and thus
equation (2.3) proves that x̄ ∈ conv(C) + Rn+.

Define the following norm on R(Rn) × R(Rn), which was first introduced in [2]:

|(s, y)|∗ := |s(0)|+
∑
r∈Rn

‖r‖|s(r)|+ |y(0)|+
∑
p∈Rn

‖p‖|y(p)|.

For any two functions ψ : Rn → R, π : Rn → R, we define a linear functional Fψ,π on the
space R(Rn) × R(Rn) as follows:

Fψ,π(s, y) =
∑
r∈Rn

ψ(r)s(r) +
∑
p∈Rn

π(p)y(p). (2.4)

Lemma 2.10. Under the |(·, ·)|∗ norm, the linear functional Fψ,π is continuous if (ψ, π, 1) is
a nontrivial minimal valid tuple for Mb.

Proof. Since (ψ, π, 1) is a nontrivial minimal valid tuple for Mb, conditions (a)–(e) of Theorem
2.4 are satisfied. In order to show that Fψ,π is continuous, it is equivalent to show that Fψ,π
is bounded, i.e., there exists a number M such that |Fψ,π(s, y)| ≤ M for all (s, y) satisfying
|(s, y)|∗ = 1 (see Conway [7]).

We claim that M can be chosen to be max‖r‖=1 ψ(r). (The maximum exists because by
condition (a) in Theorem 2.4, ψ is sublinear and therefore continuous on Rn.) Consider (s, y)
such that |(s, y)|∗ = 1. Using π ≤ ψ (Proposition 2.2) and ψ ≥ 0 (Theorem 2.4), we have

|Fψ,π(s, y)| =
∣∣∣∑r∈Rn ψ(r)s(r) +

∑
p∈Rn π(p)y(p)

∣∣∣
≤
∑

r∈Rn ψ(r)|s(r)|+
∑

p∈Rn ψ(p)|y(p)|

=
∑

r∈Rn ψ
(

r
‖r‖

)
‖r‖|s(r)|+

∑
p∈Rn ψ

(
p
‖p‖

)
‖p‖|y(p)|

≤M
(∑

r∈Rn ‖r‖|s(r)|+
∑

p∈Rn ‖p‖|y(p)|
)

≤M
(
|s(0)|+

∑
r∈Rn ‖r‖|s(r)|+ |y(0)|+

∑
p∈Rn ‖p‖|y(p)|

)
= M.

6



Lemma 2.11. Under the |(·, ·)|∗ norm, the linear functional Fψ,π is continuous if ψ and π
have finite support.

Proof. Let R,P ⊆ Rn be the supports of ψ, π respectively. Define

N = max

{
max

r∈R\{0}

1

‖r‖
, max
p∈P\{0}

1

‖p‖

}
, L = max

{
max
r∈R
|ψ(r)|, max

p∈P
|π(p)|

}
,

and M = N · L. One now checks that

|Fψ,π(s, y)| =
∣∣∣∑r∈R ψ(r)s(r) +

∑
p∈P π(p)y(p)

∣∣∣
≤ L

(∑
r∈R |s(r)|+

∑
p∈P |y(p)|

)
≤ LN

(
|s(0)|+

∑
r∈R\{0} ‖r‖|s(r)|+ |y(0)|+

∑
p∈P\{0} ‖p‖|y(p)|

)
= M |(s, y)|∗.

This shows that Fψ,π is a bounded linear functional, and hence continuous.

Define cl(·) as the closure operator with respect to the topology induced by |(·, ·)|∗.

Lemma 2.12. Under the topology induced by |(·, ·)|∗, the set Qb is closed.

Proof. Since R(Rn)
+ × R(Rn)

+ is defined by a family of halfspaces with finite support, by
Lemma 2.11, this set is closed. Furthermore, Lemma 2.10 implies that the set Hψ,π,1 is
closed whenever (ψ, π, 1) is a minimal valid tuple for Mb. The thesis now follows as Qb can
be defined as set (d) in Lemma 2.8.

For any subsets R,P ⊆ Rn, define

VR,P =
{

(s, y) ∈ R(Rn) × R(Rn) : s(r) = 0 ∀r 6∈ R, y(p) = 0 ∀p 6∈ P
}
.

When convenient, we will see VR,P as a subset of RR×RP by dropping the variables set to 0.

Lemma 2.13. For any R,P ⊆ Rn, VR,P is a closed subspace of R(Rn) × R(Rn).

Proof. For every r ∈ Rn, define the subspace Xr = {(s, y) : s(r) = 0}. Similarly, for p ∈ Rn
define Yp = {(s, y) : y(p) = 0}. For any fixed r̄ ∈ Rn, by defining ψ(r̄) = 1 and ψ(r) = 0
for all r 6= r̄, and defining π = 0, we observe that Xr̄ is the kernel of Fψ,π and thus, by
Lemma 2.11, Xr̄ is closed. Similarly, each Yp is closed. The result now follows form the fact
that VR,P =

⋂
r 6∈RXr ∩

⋂
p6∈P Yp.

Theorem 2.14. Qb = cl(conv(Mb)) = conv(Mb) + (R(Rn)
+ × R(Rn)

+ ).

Proof. We first show that Qb ⊇ cl(conv(Mb)). Since, under the topology induced by |(·, ·)|∗,
Qb is a closed convex set by Lemma 2.12, it suffices to show that Qb ⊇Mb. This follows from

the fact that Mb ⊆ R(Rn)
+ × R(Rn)

+ and every inequality that defines Qb is valid for Mb.

We next show that Qb ⊆ cl(conv(Mb)). Consider a point (s, y) 6∈ cl(conv(Mb)). By the
Hahn-Banach theorem, there exists a continuous linear functional that separates (s, y) from
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cl(conv(Mb)). In other words, there exist two functions ψ, π : Rn → R and a real number α
such that Fψ,π(s, y) < α and cl(conv(Mb)) ⊆ Hψ,π,α, implying that (ψ, π, α) is a valid tuple
for Mb. Thus (s, y) /∈ Qb.

We now show that conv(Mb)+(R(Rn)
+ ×R(Rn)

+ ) ⊆ Qb. Consider any point (s1, y1)+(s2, y2),
where (s1, y1) ∈ conv(Mb) and s2 ≥ 0, y2 ≥ 0. SinceQb can be written as the set (d) in Lemma

2.8 and conv(Mb) ⊆ R(Rn)
+ × R(Rn)

+ , we just need to verify that (s1, y1) + (s2, y2) ∈ Hψ,π,1 for
all ψ, π ≥ 0. This follows because (s1, y1) ∈ Hψ,π,1 and (s2, y2) and ψ, π are all nonnegative.

We finally show that conv(Mb) + (R(Rn)
+ × R(Rn)

+ ) ⊇ Qb. Consider (s∗, y∗) 6∈ conv(Mb) +

(R(Rn)
+ × R(Rn)

+ ). We prove that (s∗, y∗) 6∈ Qb. This is obvious when (s∗, y∗) /∈ R(Rn)
+ × R(Rn)

+ .
Therefore we assume s∗ ≥ 0, y∗ ≥ 0. Let R ⊆ Rn be a finite set containing the support of
s∗ and satisfying cone(R) = Rn, and let P ⊆ Rn be a finite set containing the support of
y∗. Then (s∗, y∗) 6∈ conv(Mb ∩ VR,P ) + (RR+ × RP+). (We use the same notation (s∗, y∗) to
indicate the restriction of (s∗, y∗) to RR × RP .) Since Mb ∩ VR,P is the inverse image of the
closed set b + Zn under the linear transformation given by the matrix (R,P ), Mb ∩ VR,P is
closed in the usual finite dimensional topology of VR,P . Therefore, by Lemma 2.9, conv(Mb∩
VR,P ) + (RR+ × RP+) is closed as well. This implies that there exists a valid inequality in
RR ×RP separating (s∗, y∗) from conv(Mb ∩ VR,P ) + (RR+ ×RP+). Since the recession cone of
conv(Mb∩VR,P )+(RR+×RP+) contains (RR+×RP+) and because s∗, y∗ ≥ 0, this valid inequality
is of the form

∑
r∈R h(r)s(r) +

∑
p∈P d(p)y(p) ≥ 1 where h(r) ≥ 0 for r ∈ R and d(p) ≥ 0 for

p ∈ P .
Now define the functions

ψ(r) = inf
{∑

r′∈R h(r′)s(r′) : r =
∑

r′∈R r
′s(r′), s : R→ R+

}
,

π(r) = inf
{∑

r′∈R h(r′)s(r′) +
∑

p′∈P d(p′)y(p′) :

r =
∑

r′∈R r
′s(r′) +

∑
p′∈P p

′y(p′), s : R→ R+, y : P → Z+

}
.

Since cone(R) = Rn, ψ and π are well-defined functions. As the sum only involves nonnegative
terms, ψ, π ≥ 0. It can be checked that (ψ, π, 1) is a valid tuple for Mb, and since (s∗, y∗) /∈
Hψ,π,1, we have (s∗, y∗) 6∈ Qb.

2.2 The closure of conv(Ib)

In the following, we see R(Rn) as a topological vector subspace of the space R(Rn) × R(Rn)

endowed with the topology induced by the norm |(·, ·)|∗. With a slight abuse of notation, for
any y ∈ R(Rn), |y|∗ =

∑
p∈Rn ‖p‖|y(p)| + |y(0)|. Also, given π : Rn → R and α ∈ R, we let

Hπ,α =
{
y ∈ R(Rn) :

∑
p∈Rn π(p)y(p) ≥ α

}
.

We define Gb = {y ∈ R(Rn) : (0, y) ∈ Qb}. Since Qb can be written as the set (d) in
Lemma 2.8, by Corollary 2.5 we have that

Gb = R(Rn)
+ ∩

⋂
{Hπ,α : (π, α) minimal nontrivial liftable tuple}. (2.5)

Similar to the mixed-integer case, conv(Ib) ( Gb (this will be shown in Remark 3.5).
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Theorem 2.15. Gb = cl(conv(Ib)) = conv(Ib) + R(Rn)
+ .

Proof. By Theorem 2.14, Qb = conv(Mb) + (R(Rn)
+ × R(Rn)

+ ). Since the inequality s ≥ 0 is
valid for Mb, by taking the intersection with the subspace {(s, y) : s = 0} we obtain the

equality Gb = conv(Ib) + R(Rn)
+ . Furthermore, since Gb coincides with the intersection of

the closed set Qb with the closed subspace defined by s = 0 (this subspace is closed by

Lemma 2.13), Gb is a closed set. Therefore, conv(Ib) + R(Rn)
+ is a closed set, and we have

cl(conv(Ib)) ⊆ conv(Ib) + R(Rn)
+ .

It remains to show that conv(Ib) + R(Rn)
+ ⊆ cl(conv(Ib)). To prove this, it suffices to

show that for every ȳ ∈ Ib and r ∈ Rn, the point ȳ + ŷr, where ŷr(r) = 1 and ŷr(p) = 0 for
p 6= r, is the limit of a sequence of points in conv(Ib) with respect to our topology. So fix
ȳ ∈ Ib and r ∈ Rn. For every integer k ≥ 1, there exist qk ∈ Zn and a real number λk ≥ 1
such that ‖qk − λkr‖ < 1

k . Define yk by setting yk(r) = yk
( qk−λkr

λk

)
= 1, and yk(p) = 0 for

p 6= r. Since
∑

p∈Rn p · (λkyk(p)) = qk ∈ Zn, every point of the form ȳ + λkyk is in Ib. Since

λk ≥ 1 for every k ≥ 1, we have ȳ + yk = λk−1
λk

ȳ + 1
λk

(ȳ + λkyk) ∈ conv(Ib). Furthermore,

‖yk − ŷr‖∗ =
∥∥ qk−λkr

λk

∥∥ < 1
k . Therefore, the sequence of points ȳ + yk converges to ȳ + ŷr as

k →∞.

3 Hamel bases, affine hulls and nonnegative representation of
valid tuples

In finite dimensional spaces, the affine hull of any subset C can be equivalently described as
the set of affine combinations of points in C or the intersection of all hyperplanes containing C.
Lemma 3.1 (which is probably well known) shows that the same holds in infinite dimension.

Before stating and proving the lemma, we give a precise definition of hyperplane in infinite
dimensional vector spaces. Given a vector space V over a field F, a subset H ⊆ V is said to
be a hyperplane in V if there exist a linear functional F : V → F and a scalar δ ∈ F such that
H = {v ∈ V : F (v) = δ}.

Lemma 3.1. Let V be a vector space over a field F. For every C ⊆ V , the set of affine
combinations of points in C is equal to the intersection of all hyperplanes containing C.

Proof. By possibly translating C, we assume w.l.o.g. that L := aff(C) is a linear subspace.
If x ∈ C then x belongs to every hyperplane containing C, and therefore L is contained in
the intersection of all hyperplanes containing C.

For the reverse inclusion, let x̄ be a point not in L. By the axiom of choice, there exists
a basis B of V containing x̄ such that B ∩ L is a basis of L. Let F be the linear functional
that takes value 1 on x̄ and 0 on every element in B \ {x̄}. Then L ⊆ {x : F (x) = 0}, but
F (x̄) = 1.

The next proposition shows that there is no hyperplane containing Mb.

Proposition 3.2. aff(Mb) = R(Rn) × R(Rn).
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Proof. Assume by contradiction that aff(Mb) ( R(Rn)×R(Rn). By Lemma 3.1, there exists an
equation

∑
r∈Rn γ(r)s(r)+

∑
p∈Rn θ(p)y(p) = α satisfied by all points in Mb, where (γ, θ, α) 6=

(0, 0, 0). As R(Rn) ×R(Rn) is not contained in any hyperplane, either the valid tuple (γ, θ, α)
or the valid tuple (−γ,−θ,−α) is nontrivial. W.l.o.g., we assume that (γ, θ, α) is nontrivial.
Let (γ′, θ′, α) be a minimal valid tuple with γ′ ≤ γ and θ′ ≤ θ. Note that (γ′, θ′) 6= (0, 0), as
(γ′, θ′, α) is nontrivial. Since (γ′, θ′, α) is minimal and nontrivial, Theorem 2.4 implies that
γ′ and θ′ are continuous nonnegative functions. Therefore, as (γ′, θ′) 6= (0, 0), there exists
r̄ ∈ Qn such that γ′(r̄) > 0 or θ′(r̄) > 0. Assume γ′(r̄) > 0 (the other case is similar) and
let (s̄, ȳ) ∈ Mb. Then there exists an integer k > 0 such that the point (s′, ȳ) defined by
s′r̄ = s̄r̄ + k and s′r = 0 for r 6= r̄ is in Mb. Therefore∑

r∈Rn γ(r)s′(r) +
∑

p∈Rn θ(p)ȳ(p) ≥
∑

r∈Rn γ′(r)s′(r) +
∑

p∈Rn θ′(p)ȳ(p) > α,

contradicting the assumption that
∑

r∈Rn γ(r)s(r) +
∑

p∈Rn θ(p)y(p) = α for all (s, y) ∈
Mb.

The characterization of aff(Ib) is more involved and requires some preliminary notions.

3.1 Hamel bases and the solutions to Cauchy functional equation

A function θ : Rn → R is additive if it satisfies the following Cauchy functional equation in
Rn:

θ(u+ v) = θ(u) + θ(v) for all u, v ∈ Rn. (3.1)

Note that if θ is an additive function, then

θ(qx) = qθ(x) for every x ∈ Rn and q ∈ Q. (3.2)

Equation (3.1) has been extensively studied, see e.g. [1]. We summarize here the main
results that we will employ.

Given any c ∈ Rn, the linear function θ(x) = cTx is obviously a solution to the equation.
However, these are not the only solutions. Below we describe all solutions to the equation.

A Hamel basis for Rn is a basis of the vector space of Rn over the field Q. In other words
a Hamel basis is a subset B ⊆ Rn such that, for every x ∈ Rn, there exists a unique choice
of a finite subset {β1, . . . , βt} ⊆ B (where t depends on x) and nonzero rational numbers
λ1, . . . , λt such that

x =
∑t

i=1 λiβi. (3.3)

The existence of B is guaranteed under the axiom of choice.
For every β ∈ B, let c(β) be a real number. Define θ as follows: for every x ∈ Rn, if (3.3)

is the unique decomposition of x, set

θ(x) =
∑t

i=1 λic(βi). (3.4)

It is easy to check that a function of this type is additive. The following theorem proves that
all additive functions are of this form.

Theorem 3.3. Let B a Hamel basis of Rn. Then every additive function is of the form (3.4)
for some choice of real numbers c(β), β ∈ B.

10



3.2 The affine hull of Ib

The following result is an immediate extension of a result of Basu, Hildebrand and Köppe
(see [3, Propositions 2.2–2.3]).

Proposition 3.4. The affine hull of Ib is described by the equations∑
p∈Rn θ(p)y(p) = θ(b) (3.5)

for all additive functions θ : Rn → R such that θ(p) = 0 for every p ∈ Qn.

Proof. By Lemma 3.1, the affine hull of Ib is the intersection of all hyperplanes in R(Rn)

containing Ib.
We first show that any equation of the form (3.5) gives a hyperplane that contains Ib. If

y ∈ Ib, then there exists k ∈ Z such that
∑

p∈Rn pyp = b+ k. This implies that

∑
p∈Rn θ(p)y(p) = θ

(∑
p∈Rn py(p)

)
= θ(b+ k) = θ(b),

where the first equation comes from the additivity of θ and the integrality of y(p), and the
last equation from θ(k) = 0. This shows that every equation of the form (3.5) is valid for Ib.

Next, we show that any hyperplane in R(Rn) containing Ib has the form (3.5). Let∑
p∈Rn θ(p)y(p) = α be a hyperplane containing Ib. We show that θ is an additive func-

tion. Given p ∈ Rn, let ep denote the function such that ep(p) = 1 and ep(p
′) = 0 for p′ 6= p.

Given p1, p2 ∈ Rn, define y1 = ep1+p2+eb−p1−p2 and y2 = ep1+ep2+eb−p1−p2 . Since y1, y2 ∈ Ib,
α =

∑
p∈Rn θ(p)y1(p) =

∑
p∈Rn θ(p)y2(p). This shows that θ(p1 + p2) = θ(p1) + θ(p2). There-

fore θ is additive.
Since (θ, α) and (−θ,−α) are valid tuples, and valid tuples are nonnegative on the ra-

tionals, it follows that θ(p) = 0 for every p ∈ Qn. Finally, since eb ∈ Ib, we have that
α = θ(b).

Remark 3.5. Since, by the above proposition, conv(Ib) is contained in some hyperplane,

conv(Ib) ( conv(Ib) + R(Rn)
+ = Gb, where the equality follows from Theorem 2.15.

In the following, e1, . . . , en denote the vectors of the standard basis of Rn.

Proposition 3.6. Let P be a finite subset of Rn. Then aff(Ib) ∩ VP is a rational affine
subspace of RP , i.e., there exist a natural number m ≤ |P |, a rational matrix Θ ∈ Qm×|P |

and a vector d ∈ Rm such that aff(Ib)∩VP = {s ∈ RP : Θs = d}. Moreover, aff(Ib)∩VP = VP
if and only if P ⊆ Qn.

Proof. Let I = {p1, . . . , pk} be a maximal subset of vectors in P such that I ∪ {e1, . . . , en} is
linearly independent over Q, and let B a Hamel basis of Rn containing I ∪{e1, . . . , en}. Note
that I = ∅ if and only if P ⊆ Qn.

For every i = 1, . . . , k, let θi be the additive function defined by θi(pi) = 1 and θi(p) = 0
for every p ∈ B \ {pi}. Note that every θi is an additive function that takes value 0 on
the rationals, since {e1, . . . , en} ⊆ B. Moreover, θi(p) ∈ Q for all p ∈ P . Therefore, by
Proposition 3.4,

∑
p∈P θi(p)s(p) = θi(b) is an equation satisfied by aff(Ib) ∩ VP with rational

coefficients on the left hand side. Thus, again by Proposition 3.4, it suffices to show that for
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every additive function θ that takes value 0 on the rationals, there exist λ1, . . . , λk ∈ R such
that θ(p) =

∑k
i=1 λiθi(p) for every p ∈ P .

Let θ be an additive function that takes value 0 on the rationals, and define λi = θ(pi)
for i = 1, . . . , k. For every p ∈ P , there exist q̄ ∈ Qn and q1, . . . , qk ∈ Q such that p =
q̄ +

∑k
i=1 qipi. Then, since θi is additive and θi(q̄) = 0, we have θi(p) = θi(

∑k
j=1 qjpj) =∑k

j=1 qjθi(pj) = qi for every i = 1, . . . , k. It follows that

θ(p) = θ
(∑k

i=1 qipi

)
=
∑k

i=1 qiθ(pi) =
∑k

i=1 θi(p)λi.

We finally observe that in the above arguments, if I 6= ∅, then we get at least one non-
trivial equation corresponding to θi, i ∈ I. Therefore, aff(Ib) ∩ VP = VP if and only if I 6= ∅,
which is equivalent to P ⊆ Qn.

3.3 Sufficiency of nonnegative functions to describe conv(Ib)

As mentioned in the introduction, to the best of our knowledge the study of valid tuples for
Ib in prior literature is restricted to nonnegative valid tuples, with the exception of [4]. The
standard justification behind this assumption is the fact that valid tuples are nonnegative on
the rational vectors. Since in practice we are interested in finite dimensional faces of conv(Ib)
that correspond to rational vectors, such an assumption seems reasonable. However, no
mathematical evidence exists in the literature that a complete inequality description of these
faces can be obtained from the nonnegative valid tuples only.1 We prove below that any valid
tuple is equivalent to a nonnegative valid tuple, modulo the affine hull. This gives the first
proof of the above assertion and puts the nonnegativity assumption on a sound mathematical
foundation. Later we will show that even a smaller class of nonnegative valid tuples suffices
to describe the finite dimensional faces of conv(Ib) that correspond to rational vectors, in
particular the nontrivial minimal liftable tuples suffice.

Theorem 3.7. For every valid tuple (π, α) for Ib, there exists a unique additive function
θ : Rn → R such that θ(p) = 0 for ever p ∈ Qn and the valid tuple (π′, α′) = (π+ θ, α+ θ(b))
satisfies π′ ≥ 0.

This answers Open Question 2.5 in [3].
Note that if B is a Hamel basis of Rn such that ei ∈ B for all i ∈ [n] and θ is an additive

function as in (3.4), the requirement that θ(p) = 0 for every p ∈ Qn is equivalent to c(ei) = 0
for i ∈ [n]. Therefore, in order to prove the theorem, we show that given a valid tuple (π, α),
there exists a unique additive function θ such that θ(ei) = 0 for all i ∈ [n] and π + θ is a
nonnegative function.

We remark that it is sufficient to show the result for a minimal tuple (π, α). This is
because if (π, α) is a valid tuple, then there is a minimal valid tuple (π′, α) with π′ ≤ π. Now,
note that (π′ + θ, α + θ(b)) is still a minimal tuple, and if π′ + θ is nonnegative then so is
π + θ. Thus in the following we assume that (π, α) is minimal.

1Such results are obtainable in the case n = 1 by more elementary means such as interpolation. We are
unaware of a way to establish these results for general n ≥ 2 without using the technology developed in this
paper.
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Lemma 3.8. If (π, α) is a minimal valid tuple, then π is subadditive, π(z) = 0 for every
z ∈ Zn, and π is periodic modulo Zn.

Proof. Subadditivity can be shown as usual (the proof does not require the nonnegativity of
π). On the contrary, the usual proof that π(z) = 0 for every z ∈ Zn requires the nonnegativity
of π. However, one immediately observes that π must be nonnegative on the rationals (and
thus on the integers), and this is enough to apply the usual proof. Periodicity now follows as
usual.

Some useful results from [21] We will need some results of Yıldız and Cornuéjols [21],
which need to be slightly generalized, as only valid/minimal tuples with α = 1 are considered
in [21].

Let (π, 1) be a minimal tuple. By Lemma 12 in [21] (with f = −b and S = Zn), π satisfies
the generalized symmetry condition (equation (4) in [21]), which, by periodicity of π modulo
Zn, reads as follows:

π(p) = sup
k∈Z>0

{
1− π(b− kr)

k

}
for all p ∈ Rn. (3.6)

Then, by Proposition 17 in [21] (with f = −b, S = Zn, X = {0}), the supremum in (3.6) is
attained if and only if π(r) + π(b− r) = 1. Proposition 18 in [21] then implies the following:
if p ∈ Rn is such that π(p) + π(b− p) > 1, then

lim sup
k∈Z>0,k→∞

π(kp)

k
= lim sup

k∈Z>0,k→∞

−π(−kp)
k

.

One straightforwardly (and patiently) verifies that when (π, α) is a minimal tuple with α
not restricted to be 1, the above result generalizes as follows:

Proposition 3.9. Let (π, α) be a minimal valid tuple. If p ∈ Rn is such that π(p)+π(b−p) >
α, then

lim sup
k∈Z>0,k→∞

π(kp)

k
= lim sup

k∈Z>0,k→∞

−π(−kp)
k

.

Construction of θ Let B be a Hamel basis of Rn containing the unit vectors e1, . . . , en.
For every β ∈ B define

c(β) = inf
k∈Z>0

π(kβ)

k
. (3.7)

We will show that this is the correct choice for the constant c(β).

Lemma 3.10. The value of c(β) is finite and

c(β) = inf
k∈Z>0

π(kβ)

k
= sup

k∈Z>0

−π(−kβ)

k
.

Proof. We prove a sequence of claims.

Claim 3.11. The inequality “inf ≥ sup” holds and both terms are finite.

13



Proof of Claim. Let h, k be positive integers. Then, by subadditivity, hπ(kβ) + kπ(−hβ) ≥
π(0) = 0, thus π(kβ)

k ≥ −π(−hβ)
h . Since this holds for all positive integers h, k, the claim is

proven. �

We now assume by contradiction that

inf
k∈Z>0

π(kβ)

k
− sup
k∈Z>0

−π(−kβ)

k
≥ ε

for some ε > 0. In other words,

inf
k∈Z>0

π(kβ)

k
+ inf
k∈Z>0

π(−kβ)

k
≥ ε. (3.8)

Claim 3.12. The following equation holds:

inf
k∈Z>0

π(kβ)

k
+ inf
k∈Z>0

π(−kβ)

k
= inf

k∈Z>0

π(kβ) + π(−kβ)

k
. (3.9)

Proof of Claim. Since the inequality “≤” is obvious, we prove the reverse inequality. To do
so, it is sufficient to show that given positive integers h, k, there exists a positive integer `
such that

π(hβ)

h
+
π(−kβ)

k
≥ π(`β) + π(−`β)

`
. (3.10)

Choose ` = hk. Then, by subadditivity,

kπ(hβ) + hπ(−kβ) ≥ π(`β) + π(−`β).

After dividing by ` = hk, we obtain (3.10) and the claim is proven. �

By the previous claim, assumption (3.8) is equivalent to

π(kβ) + π(−kβ) ≥ εk for all positive integers k.

Claim 3.13. There exists a nonzero k ∈ Z such that π(kβ) + π(b− kβ) > α.

Proof of Claim. By subadditivity, for every integer k we have

π(b− kβ) ≥ π(−kβ)− π(−b), π(b+ kβ) ≥ π(kβ)− π(−b).

It follows that

π(kβ) + π(−kβ) + π(b− kβ) + π(b+ kβ) ≥ 2(π(kβ) + π(−kβ)− π(−b)) ≥ 2(εk − π(−b)).

The right-hand side is greater than 2α if k > α+π(−b)
ε . For this choice of k, we conclude that

either π(kβ) + π(b− kβ) > α or π(−kβ) + π(b+ kβ) > α (or both), and the claim is proven.
�
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Without loss of generality, we assume that π(k̄β) +π(b− k̄β) > α for some integer k̄ > 0.
(If k̄ < 0, one can replace β with −β in the Hamel basis.)

Define p = k̄β. Since π(p) + π(b− p) > α, by Proposition 3.9

lim sup
k∈Z>0,k→∞

π(kp)

k
= lim sup

k∈Z>0,k→∞

−π(−kp)
k

.

To conclude the proof of the lemma, it is sufficient to show the following:

Claim 3.14. The following equations hold:

lim sup
k∈Z>0,k→∞

π(kp)

k
= k̄ · inf

k∈Z>0

π(kβ)

k
, lim sup

k∈Z>0,k→∞

−π(−kp)
k

= k̄ · inf
k∈Z>0

−π(−kβ)

k

Proof of Claim. We only prove the first equation, as the other one is analogous. Note that
since the lim sup is always at least as large as the inf,

lim sup
k∈Z>0,k→∞

π(kp)

k
≥ inf

k∈Z>0

π(kp)

k
= k̄ · inf

k∈Z>0

π(kk̄β)

kk̄
≥ k̄ · inf

h∈Z>0

π(hβ)

h

and thus the inequality “≥” is verified.
In order show that the inequality “≤” holds, we prove that for every ε > 0 and every

integer k > 0 there exists an integer h > 0 such that

π(`p)

`
≤ k̄π(kβ)

k
+ ε for all ` ≥ h.

Choose

h =

⌈
max

m∈{0,...,k−1}

{
k̄π(mβ)

ε

}⌉
.

Given any ` ≥ h, write ` = tk +m, where t ∈ Z and m ∈ {0, . . . , k − 1}. Then

π(`p)

`
=
π(`k̄β)

`
≤ k̄π(`β)

`
=
k̄π((tk +m)β)

`
≤ k̄(π(tkβ) + π(mβ))

`

≤ k̄π(tkβ)

tk
+
k̄π(mβ)

`
≤ k̄π(kβ)

k
+
k̄π(mβ)

`
. (3.11)

The conclusion follows as k̄π(mβ)
` ≤ ε, since ` ≥ h. �

This concludes the proof of the lemma.

Now let θ be defined as in (3.4), where the constants c(β) for β ∈ B are chosen as in (3.7).
In the next two lemmas we prove that θ(ei) = 0 for all i ∈ [n] and π − θ is nonnegative.

Lemma 3.15. θ(ei) = 0 for all i ∈ [n].

Proof. Fix i ∈ [n]. Since ei ∈ B, it is sufficient to check that c(ei) = 0. By Lemma 3.10,

c(ei) = infk∈Z>0

π(kei)
k . Since π(kei) = 0 for all k ∈ Z, we immediately see that c(ei) = 0.
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Lemma 3.16. If θ is defined as in (3.4), with the constants c(β) given in (3.7), then the
function π − θ is nonnegative.

Proof. Let x ∈ Rn. Then there exist β1, . . . , βt ∈ B and nonzero rational numbers λ1, . . . , λt
such that x =

∑t
i=1 λiβi, and we have θ(x) =

∑t
i=1 λic(βi). We prove that π(x)− θ(x) ≥ 0.

For every i ∈ {1, . . . , t}, we can write λi = pi
qi

, where every pi is a nonzero integer and
every qi is a positive integer. Define Q = q1 · · · qt. Take arbitrary positive integers k1, . . . , kt
(these numbers will be fixed later) and define K = k1 · · · kt. Since Q

qi
and K

ki
are positive

integers for every i, by subadditivity we have

QKπ(x) +
t∑
i=1

QK

qiki
π(−kipiβi) ≥ π

(
QKx−

t∑
i=1

QKλiβi

)
= π(0) = 0.

This implies that

π(x) ≥
t∑
i=1

λi
−π(−kipiβi)

kipi
. (3.12)

Now fix ε > 0. If i is an index such that pi > 0, by Lemma 3.10 we can choose ki such
that −π(−kiβi)

ki
≥ c(βi)− ε. Then by subadditivity

−π(−kipiβi)
kipi

≥ −π(−kiβi)
ki

≥ c(βi)− ε.

If i is an index such that pi < 0, by Lemma 3.10 we can choose ki such that π(kiβi)
ki
≤ c(βi)+ε.

Then by subadditivity
−π(−kipiβi)

kipi
≤ π(kiβi)

ki
≤ c(βi) + ε.

Then, rembering that λi > 0 if and only if pi > 0, equation (3.12) gives π(x) ≥
∑t

i=1 λic(βi)−
tε. Since this holds for every ε > 0, we have π(x) ≥

∑t
i=1 λic(βi) and thus π(x)−θ(x) ≥ 0.

This concludes the proof of the existence of θ. One easily verifies that in the above proof
the choice of θ is unique, thus the proof of Theorem 3.7 is complete.

4 Recession cones and canonical faces

A canonical face of conv(Mb) is a face of the form F = conv(Mb)∩VR,P for some R,P ⊆ Rn.
If R and P are finite, F is a finite canonical face of conv(Mb). The same definitions can
be given for conv(Ib). The corner polyhedra defined by Gomory and Johnson [11–13] are
precisely the finite canonical faces of conv(Ib).

The notion of recession cone of a closed convex set is standard (see, e.g., [18]). We
extend it to general convex sets in general vector spaces (possibly infinite-dimensional) in the
following way. Let V be a vector space and let C ⊆ V be a convex set. For any x ∈ C, define

C∞(x) = {r ∈ V : x+ λr ∈ C for all λ ≥ 0}.2

2Using the Hahn-Banach separation theorem, it can be shown that if V is a topological vector space and
C is a closed convex subset, then C∞(x) = C∞(x′) for all x, x′ ∈ C.
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We define the recession cone of C as rec(C) =
⋂
x∈C C∞(x). Theorem 2.14 yields the following

result.

Corollary 4.1. Let F = conv(Mb)∩VR,P be a canonical face of conv(Mb). Then F is a face
of cl(conv(Mb)) if and only if F + (RR+ × RP+) = F , i.e., rec(F ) is the nonnegative orthant.

Proof. By Theorem 2.14,

cl(conv(Mb)) ∩ VR,P =
(

conv(Mb) + (R(Rn)
+ × R(Rn)

+ )
)
∩ VR,P

= (conv(Mb) ∩ VR,P ) + (RR+ × RP+)
= F + (RR+ × RP+)

The results follows from the observation that F is a face of cl(conv(Mb)) if and only if
F = cl(conv(Mb) ∩ VR,P .

Define L to be the linear space parallel to the affine hull of conv(Ib); Proposition 3.4
shows that L is the set of all y ∈ R(Rn) that satisfy

∑
p∈Rn θ(p)y(p) = 0 for all additive

functions θ : Rn → R such that θ(p) = 0 for all p ∈ Qn. For any P ⊆ Rn, define the face
CP = conv(Ib) ∩ VP of conv(Ib).

Theorem 4.2. For every finite subset P ⊆ Rn, the following are all true:

(a) the face CP = conv(Ib) ∩ VP is a rational polyhedron in RP ;

(b) every extreme ray of CP is spanned by some r ∈ ZP+ such that
∑

p∈P pr(p) ∈ Zn;

(c) rec(CP ) = L ∩ R(Rn)
+ ∩ VP = (L ∩ VP ) ∩ RP+.

Proof. By dropping variables set to zero, Ib ∩ VP is the set of vectors y ∈ ZP+ such that∑
p∈P py(p) ∈ b + Zn. We say that a feasible point y ∈ Ib ∩ VP is minimal if there is no

feasible point y′ 6= y such that y′ ≤ y. Every vector d ∈ ZP+ such that
∑

p∈P pd(p) ∈ Zn is
called a ray. A ray d is minimal if there is no ray d′ 6= d such that d′ ≤ d.

We claim that every feasible point y is the sum of a minimal feasible point and a nonneg-
ative integer combination of minimal rays. To see this, as long as there is a ray d such that
d ≤ y, replace y with y − d. Note that this operation can be repeated only a finite number
of times. Denote by ȳ the feasible point obtained at the end of this procedure. Then y is the
sum of ȳ and a nonnegative integer combination of rays. We observe that ȳ is minimal: if
not, there would exist a feasible point y′ 6= ȳ such that y′ ≤ ȳ; but then the vector d := ȳ−y′
would be a ray satisfying d ≤ ȳ, contradicting the fact that the procedure has terminated.
Therefore y is the sum of a minimal feasible point ȳ and a nonnegative integer combination
of rays. Since every ray is a nonnegative integer combination of minimal rays (argue as
above), we conclude that y is the sum of a minimal feasible point and a nonnegative integer
combination of minimal rays.

By Gordon–Dickson lemma (see, e.g., [10]), the set of minimal feasible points and the set
of minimal rays are both finite. Let Y be the set of points that are the sum of a minimal
feasible point and a nonnegative integer combination of minimal rays. Thus, there exist
finite sets E ⊆ ZP+ and R ⊆ ZP+ such that Y = E + integ . cone(R), where integ . cone(R)
denotes the set of all nonnegative integer combinations of vectors in R. So conv(Y ) =
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conv(E + integ . cone(R)) = conv(E) + conv(integ . cone(R)) = conv(E) + cone(R), where
cone(R) denotes the conical hull of R. Hence, conv(Y ) is a rational polyhedron, by the
Minkowski-Weyl Theorem [6, Theorem 3.13]. The above observation proves that Ib∩VP ⊆ Y .
On the other hand, by using the fact that if y is a feasible point and d is a ray then y + d
is a feasible point, one readily verifies that Y ⊆ Ib ∩ VP . Then Ib ∩ VP = Y and therefore
conv(Ib) ∩ VP = conv(Ib ∩ VP ) = conv(Y ). Hence, conv(Ib) ∩ VP is a rational polyhedron.

The above analysis proves (a) and (b) simultaneously. We now prove (c).

We first show that rec(CP ) ⊆ L ∩ R(Rn)
+ ∩ VP . Consider any d̄ ∈ rec(CP ). By part (ii),

d̄ is a nonnegative combination of vectors d ∈ ZP+ such that
∑

p∈P pr(p) ∈ Zn. Observe that

each such d ∈ L. Thus, d̄ ∈ L since L is a linear space. Therefore, rec(CP ) ⊆ L∩R(Rn)
+ ∩VP .

We now want to establish that L ∩ R(Rn)
+ ∩ VP ⊆ rec(CP ). First, consider any d ∈

L∩R(Rn)
+ ∩VP such that d ∈ QP , i.e., d has only rational coordinates. Let λ > 0 be such that

d̄ = λd ∈ ZP+. We claim that
∑

p∈P pd̄(p) ∈ Qn. Otherwise, there exists3 an additive function

θ : Rn → R such that 0 6= θ(
∑

p∈P pd̄(p)) =
∑

p∈P θ(p)d̄(p) = λ
∑

p∈P θ(p)d(p), which violates

the hypothesis that d ∈ L. Since
∑

p∈P pd̄(p) ∈ Qn, this implies that there exists a positive

scaling d̃ of d such that
∑

p∈P pd̃(p) ∈ Zn. It is easy to verify that d̃ ∈ rec(CP ) and therefore

d ∈ rec(CP ). This shows that all rational vectors in L∩R(Rn)
+ ∩VP are in rec(CP ). Since, by

Proposition 3.6, L ∩ VP is a rational subspace, L ∩ R(Rn)
+ ∩ VP ⊆ rec(CP ).

Theorem 4.3. Let P ⊆ Rn be finite. Then the following are equivalent:

(a) P ⊆ Qn;

(b) rec(CP ) = RP+;

(c) the dimension of CP is |P |;

(d) CP = Gb ∩ VP .

Proof. (a) is equivalent to (b) by Proposition 3.6 and Theorem 4.2. (b) is equivalent to (c)
by Proposition 3.6. The equivalence of (a) and (d) follows from the equivalence of (a) and
(b), Corollary 4.1 and Theorem 2.15.

By (2.5), condition (d) in the above theorem states that the finite dimensional corner
polyhedron CP has a complete inequality description given by the restriction of liftable valid
tuples.

Example 4.4. There are finite dimensional faces of conv(Mb) that are not closed. Let n = 1,
b ∈ Q, ω ∈ R \ Q, R = {−1}, P = {b, ω}. Consider the point (s̄, ȳ) defined by s̄(−1) = 0
and ȳ(b) = ȳ(ω) = 1. Note that (s̄, ȳ) /∈ conv(Mb) ∩ VR,P , as the only point in Mb satisfying
s(−1) = 0 and y(b) ≤ 1 has y(b) = 1, y(ω) = 0.

We now show that (s̄, ȳ) ∈ cl(conv(Mb)∩VR,P ) by constructing for every ε > 0 a point in
conv(Mb) ∩ VR,P whose Euclidean distance from (s̄, ȳ) is at most ε. So fix ε > 0. Let ŷ(ω)

3Such an additive function can be constructed by first constructing a Hamel basis of Rn over Q containing∑
p∈P pd̄(p), e1, . . . , en, and setting θ to be 1 on

∑
p∈P pd̄(p) and 0 everywhere else on this basis.
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be a positive integer such that the fractional part of ωŷ(ω) is at most ε. Let ŝ(−1) be equal
to this fractional part, and ŷ(b) = 1. Then (ŝ, ŷ) ∈ Mb ∩ VR,P . By taking a suitable convex
combination of (ŝ, ŷ) and the point of Mb ∩ VR,P defined by y(b) = 1, s(−1) = y(ω) = 0, we
find a point in conv(Mb) ∩ VR,P whose distance from (s̄, ȳ) is at most ε.

Remark 4.5. Since Qb = cl(conv(Mb)) by Theorem 2.14, for every R,P ⊆ Rn the set Qb ∩
VR,P is closed by Lemma 2.13. The previous example gives sets R,P such that conv(Mb)∩VR,P
is not closed. Thus conv(Mb) is a strict subset of Qb.

Corollary 4.6. conv(Ib)∞(x) = L∩R(Rn)
+ for every x ∈ conv(Ib). Consequently, rec(conv(Ib)) =

L ∩ R(Rn)
+ .

Proof. Given any x ∈ conv(Ib), we show that conv(Ib)∞(x) = L ∩ R(Rn)
+ .

(⊆) Consider any vector y ∈ conv(Ib)∞(x). Let P denote the union of the support of x, y.

This implies that y ∈ rec(CP ) and by Theorem 4.2, y ∈ L ∩ R(Rn)
+ ∩ VP ⊆ L ∩ R(Rn)

+ .

(⊇) Consider any y ∈ L ∩ R(Rn)
+ . Let P denote the union of the support of x, y. Then

y ∈ L ∩ R(Rn)
+ ∩ VP . By Theorem 4.2 (c), we obtain that y ∈ CP∞(x). This implies that

y ∈ conv(Ib)∞(x).
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A Missing proofs

Proof of Proposition 2.2. Assume that ψ is not subadditive. Then ψ(r1 +r2) > ψ(r1)+ψ(r2)
for some r1, r2 ∈ Rn. Let ψ′ : Rn → R be defined as ψ′(r1 + r2) = ψ(r1) + ψ(r2) and
ψ′(r) = ψ(r) for every r 6= r1 + r2. Then (ψ′, π, α) is easily seen to be a valid tuple, a
contradiction to the minimality of (ψ, π, α).

Now assume that ψ is not positively homogenous. Then ψ(λr1) < λψ(r1) for some r1 ∈ Rn

and λ > 0. Let ψ′ : Rn → R be defined as ψ′(r1) = ψ(λr1)
λ and ψ′(r) = ψ(r) for every r 6= r1.

Again, (ψ′, π, α) is a valid tuple, a contradiction to the minimality of (ψ, π, α). Thus ψ is
sublinear.
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Finally, assume that π(r1) > ψ(r1) for some r1 ∈ Rn. Let π′ : Rn → R be defined as
π′(r1) = ψ(r1) and π′(r) = π(r) for every r 6= r1. The tuple (ψ, π′, α) is valid, and this shows
that π ≤ ψ.

Proof of Theorem 2.4. (⇐) Theorem 6.34 in [6] shows that if conditions (a)–(e) are satisfied,
then (ψ, π, α) is a minimal valid tuple for Mb. Since α = 1, the tuple is nontrivial.

(⇒) Suppose that (ψ, π, α) is a nontrivial minimal valid tuple for Mb.

(a) This proof is the same as the subadditivity proof in Proposition 2.2.

(b) We first establish the following claim.

Claim A.1. ψ(r) ≥ supε>0
π(εr)
ε = limε→0+

π(εr)
ε = lim supε→0+

π(εr)
ε .

Proof of Claim. Since (ψ, π, α) is minimal, from Proposition 2.2 ψ is sublinear and

π ≤ ψ. Hence for ε > 0 and r ∈ Rn we have that π(εr)
ε ≤ ψ(εr)

ε = ψ(r). Thus,

supε>0
π(εr)
ε ≤ ψ(r) and this implies that supε>0

π(εr)
ε is a finite real number. By Theorem

7.11.1 in [15] and the subadditivity of π, this implies that supε>0
π(εr)
ε = limε→0+

π(εr)
ε =

lim supε→0+
π(εr)
ε . �

The above claim shows that the function ψ′(r) := limε→0+
π(εr)
ε is well defined, and

ψ′ ≤ ψ. Furthermore, by Lemma 2.3, ψ′ is sublinear. We prove below that (ψ′, π, α) is
a valid tuple. Therefore, since (ψ, π, α) is minimal, validity of (ψ′, π, α) will imply that
ψ = ψ′.

Assume by contradiction that (ψ′, π, α) is not valid. Then there exists (s, y) ∈ Mb such
that ∑

r∈Rn

ψ′(r)sr +
∑
p∈Rn

π(p)yp = α− δ

for some δ > 0. Define r̃ =
∑

r∈Rn rsr. Since ψ′(r) = limε→0+
π(εr)
ε , there exists some

β > 0 such that
π(εr̃)

ε
< ψ′(r̃) + δ for all 0 < ε < β.

Let D ∈ Z>0 be such that 1/D ≤ β and define ỹ to be

ỹr =

{
yr +D if r = r̃/D,

yr if r 6= r̃/D.

Note that ∑
r∈Rn

rỹr =
∑
r∈Rn

rsr +
∑
p∈Rn

pyp ∈ b+ Zn,
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and so (0, ỹ) ∈Mb. Hence
∑

p∈Rn π(p)ỹp ≥ α. However,

∑
p∈Rn

π(p)ỹp =
π(r̃/D)

1/D
+
∑
p∈Rn

π(p)yp

< ψ′(r̃) + δ +
∑
p∈Rn

π(p)yp by definition of δ

≤
∑
r∈Rn

ψ′(r)sr + δ +
∑
p∈Rn

π(p)yp by sublinearity of ψ′

= α,

which is a contradiction.

(c) We now show that π is Lipschitz continuous with Lipschitz constant L := max‖r‖=1 ψ(r).
By Proposition 2.2, ψ is sublinear; thus, it is continuous. Therefore max‖r‖=1 ψ(r) is
attained. Moreover, by subadditivity of π, we obtain that π(x)− π(y) ≤ π(x− y) for all
x, y ∈ Rn. Therefore, |π(x)− π(y)| ≤ max{π(x− y), π(y − x)}. Thus, for all x 6= y,

|π(x)− π(y)|
‖x− y‖

≤ max{π(x− y), π(y − x)}
‖x− y‖

≤ max{ψ(x− y), ψ(y − x)}
‖x− y‖

≤ L,

where the second inequality follows from Proposition 2.2.

(d) We prove this with a sequence of claims.

Claim A.2. π(r) ≥ 0 for all r ∈ Rn.

Proof of Claim. Let p∗ ∈ Qn. Then there exists D ∈ Z>0 such that Dp∗ ∈ Zn. Let
(s, y) ∈ Mb and, for some k ∈ Z+, define (s, ỹ) by setting ỹp∗ = yp∗ + kD and ỹp = yp
for p 6= p∗. Note that (s, ỹ) ∈ Mb for every k ∈ Z+. This shows that π(p∗) ≥ 0 for
every p∗ ∈ Qn. Since π is Lipschitz continuous by part (c) above, we must have π ≥ 0
everywhere. �

Claim A.3. π(z) = 0 for all z ∈ Zn.

Proof of Claim. Assume to the contrary that there is some z ∈ Zn such that π(z) 6= 0. By
the previous claim, π(z) > 0. Define π′ to be π′(z) = 0 and π′(p) = π(p) for p 6= z. Then
(ψ, π′, α) is easily seen to be a valid tuple. This contradicts the minimality of (ψ, π, α).

�

We now show that α = 1. Since ψ, π ≥ 0 by parts (b) and (d), if α = 0 or α = −1, then
this would contradict the fact that the tuple is nontrivial.

(e) The proof is identical to part (d) of the proof of Theorem 6.22 in [6].

This concludes the proof of the theorem.
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