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Abstract

This paper establishes convergence rate bounds for a variant of the proximal alternat-
ing direction method of multipliers (ADMM) for solving nonconvex linearly constrained
optimization problems. The variant of the proximal ADMM allows the inclusion of an
over-relaxation stepsize parameter belonging to the interval (0,2). To the best of our
knowledge, all related papers in the literature only consider the case where the over-
relaxation parameter lies in the interval (0, (1 + v/5)/2).
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1 Introduction
We consider the following linearly constrained problem
min{f(z) + g(y) : Ar+ By =b, x € R",y € RP} (1)
where f: R" — (—o0, 0] and g : R? — (—00, o] are proper lower semicontinuous functions,

A eR™" B e R™Pand b e R™. Optimization problems such as (1) appear in many impor-
tant applications such as nonnegative matrix factorization, distributed matrix factorization,
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distributed clustering, sparse zero variance discriminant analysis, tensor decomposition, and
matrix completion, asset allocation (see, e.g., [1, 7, 22, 32, 33, 36, 38]). Moreover, it has
observed that (specific variants of) the alternating direction method of multipliers (ADMM)
can tackle many of the instances arising in these settings extremely well despite many of them
being nonconvex.

A particular ADMM class for solving (1), namely, the proximal ADMM, recursively com-
putes a sequence {(Sg, Yk, Tx)} as

. 1
Tp = argmin, {ﬁﬁ(ﬂf, Ye—1, Ak—1) + §H95 - xk1|]é} )

_ 1
e = argmin, { £5(ax, 30 + 3l ~ el . @)
A = M1 — 07 [Axk + Byy, — b]

where § > 0 is a penalty parameter, § > 0 is a stepsize parameter, G € R™*" and H € RP*?
are symmetric and positive semidefinite matrices, and

Lo(ey ) = £(2) + glu) — (0 A + By — b) + 2| Az + By~ b|°

is the augmented Lagrangian function for problem (1). If (H,G) = (0,0) in the above method,
we obtain the standard ADMM. Moreover, the above subproblems with suitable choices of G
and H are easy to solve or even have closed-form solutions for many relevant instances of (1)
(see [4, 17, 31, 34] for more details).

For the case in which f and ¢ in (1) are both convex (e.g., see [11, 16, 17, 24]), the
complexity results for the proximal ADMM (2) can be conveniently stated in terms of the
following simple termination criterion associated with the optimality condition for (1), namely:
for given p, e > 0, terminate with a quintuple (x,y, A\, 71, 72) € R"xRP xR™ xR™ x RP satisfying

max{||Az + By = b[l, [[r[l, 2/} <p, 1€ 0-f(x) = A"A, 12 € Oegly) — BA - (3)

where 0, denotes the classical e-subdifferential of convex functions and the norms in the
first inequality can be arbitrarily chosen. In terms of this termination criterion, the best
ergodic iteration-complexity bound found in the literature is O(max{p~!,e1}) while the best
pointwise one is O(p~2). (The latter bound is independent of ¢ since, in the pointwise case,
the two inclusions above are shown to hold with € = 0.)

This paper considers the special case of (1) in which f is as stated immediately following (1)
(and hence not necessarily convex) and g is a differentiable function whose gradient is Lipschitz
continuous on the whole RP. By considering an extended notion of subdifferential for the
nonconvex function f (see for example [25, 27]), this paper establishes an O(p~?)-pointwise
iteration-complexity bound to obtain a quadruple (z,y, A, 1) € R" x R? x R™ x R" satisfying

max{||Az + By — b[|, [Vg(y) = B*All, [|r[l} < p, 71 € 9f(x) = A"

for an important subclass of the proximal ADMM (2). The latter subclass has the following
properties: the penalty parameter (3 is sufficiently large (see (6)), G is an arbitrary positive
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semidefinite matrix, H is a sufficiently large positive multiple of the identity, and the stepsize
0 lies in the interval (0,2). To the best of our knowledge, no iteration-complexity has been
established in the literature for a variant of the ADMM with stepsize > (v/5 4+ 1)/2, even
for the case in which (1) is assumed to be a convex problem. It is worth pointing out that
6, 9] show that larger choice of # usually improves the practical performance of the proximal
ADMM.

Previous related works. The ADMM was introduced in [8, 10] and is thoroughly dis-
cussed in [2, 9]. Even though convergence of the sequence generated by the ADMM has
been established in very early papers about it, only recently has its iteration-complexity been
established. To discuss this development in the convex case, we use the terminology weak
pointwise or strong pointwise bounds to refer to complexity bounds relative to the best of the
first k iterates or the last iterate, respectively, to satisfy the termination criterion (3). The
first iteration-complexity bound for the ADMM was established in [24] under the assump-
tions that C' is injective. More specifically, the ergodic iteration-complexity for the standard
ADMM is derived in [24] for any 6 € (0, 1] while a weak pointwise iteration-complexity easily
follows from the approach in [24] for any # € (0,1). Subsequently, without assuming that
C' is injective, [17] established the ergodic iteration-complexity of the proximal ADMM (2)
with G = 0 and 0 = 1 and, as a consequence, of the split inexact Uzawa method [37]. Paper
[16] establishes the weak pointwise and ergodic iteration-complexity of another collection of
ADMM instances which includes the standard ADMM for any 6 € (0, (1 + v/5)/2). It should
be noted however that [16, 17] do not provide any details on how to obtain an easily verifiable
ergodic termination criterion with a well-established iteration-complexity bound. A strong
pointwise iteration-complexity bound for the proximal ADMM (2) with G = 0 and 6 = 1
is derived in [18]. Pointwise and ergodic iteration-complexity results for the whole proximal
ADMM (2) and for any 6 € (0, (1 + 1/5)/2) are given in [3, 13]. In addition to providing
alternative proofs for these latter results, paper [11] obtains an ergodic iteration complexity
bound for the proximal ADMM with 6 = (1 4 /5)/2. Finally, a number of papers (see for
example [4, 5, 12, 15, 23, 26] and references therein) have obtained similar complexity results
in the context of other ADMM classes.

Iteration-complexity analysis of the ADMM has also been established for possibly noncon-
vex instances of (1) satisfying the same assumptions made on this paper, i.e., f is a proper
lower semi-continuous function and ¢ is a continuously differentiable function whose gradient
is Lipschitz continuous on the whole R?. Recently, there have been a lot of interest on the
study of ADMM variants for nonconvex problems (see, e.g., [14, 19, 20, 21, 28, 29, 30, 35]).
The results developed in [14, 21, 28, 29, 30, 35] establish convergence of the generated se-
quence to a stationary point of (1) under the assumption that the objective function of (1)
satisfies the so-called Kurdyka-Lojasiewicz (K-L) property. However, none of these papers
considers the issue of iteration complexity for ADMM although their theoretical analysis are
generally half-way or close to accomplishing such goal. Paper [19] analyzes the convergence of
ADMM for solving nonconvex consensus and sharing problems and establishes the iteration
complexity of ADMM for the consensus problem. Paper [20] studies the iteration-complexity
of a multi-block type ADMM method whose two-block special case is a modification of the



proximal ADMM in which the function g of the second subproblem in (2) is replaced by its
linear approximation, GG is positive definite and H is chosen as LI where L is the Lipschitz
constant of Vg(-).

Organization of the paper. Subsection 1.1 presents some notation and basic results. Sec-
tion 2 describes the proximal ADMM and presents corresponding convergence rate bounds
whose proofs are given in Subsection 3.

1.1 Notation and basic results

This subsection presents some definitions, notation and basic results used in this paper.

Let R™ denote the n-dimensional Euclidean space with inner product and associated norm
denoted by (-,-) and | - ||, respectively. We use R™*" to denote the set of all m x n matrices.
The image space of a matrix ) € R™*" is defined as Im(Q) := {Qx : x € R"} and Py denotes
the Euclidean projection onto Im (Q). The notation @ > 0 means that @ is a definite positive
matrix. The symbol A\, (Q) denotes the minimum eigenvalue of a symmetric matrix Q. If @
is a symmetric and positive semidefinite matrix, the seminorm induced by ) on R", denoted
by || - ||, is defined as || - ||g = (Q(-),)!/%. For a given sequence {z; : k > 0}, we denote by
{Az;} be sequence defined by

Azk =2k — Rk—1, /ﬂz 1.

The domain of a function h : R" — (—o0, 0] is the set domh := {z € R : h(x) < +o00}.
Moreover, h is said to be proper if f(z) < oo for some z € R™.
We next recall some definitions and results of subdifferential calculus [25, 27].

Definition 1.1. Let h: R" — (—o00, 00] be a proper lower semi-continuous function.

(i) The Fréchet subdifferential of h at x € dom h, written by éh(z), is the set of all elements

u € R™ which satisfy
L hly) = h)  fuy — a)
yETy—e ly — ||

When = ¢ dom h, we set Oh(x) = 0.

> 0.

(ii) The limiting subdifferential, or simply subdifferential, of h at x € domh, written by
Oh(x), is defined as

Oh(x) = {u e R": Jx, — x, h(xy,) — h(x), up € Oh(xy), with u, — u}.
(11i) A critical (or stationary) point of h is a point x in the domain of h satisfying 0 € Oh(x).
The following result gives some properties of the subdifferential.

Proposition 1.2. Let h : R" — (—o0, 0] be a proper lower semi-continuous function.



(a) if {(ux,xr)} is a sequence such that x;, — x, up — u, h(zg) — h(x) and u, € Oh(xy),
then u € Oh(x);

(b) if v € R™ is a local minimizer of h, then 0 € Oh(x);
(c¢) if p: R™ = R be a continuously differentiable function, then d(h+p)(x) = Oh(z)+Vp(x).
We end this section by recalling the definition of critical points of (1).
Definition 1.3. A triple (z*,y*, \*) € R" x R? x R™ is a critical point of problem (1) if
0€df(z*)— A"\, 0=Vgy*)— B*\, 0= Az"+ By" —b.

It is well-known that if (z*,y*) is a global minimum of (1), then there exists A* such that
(x*,y*, \*) is a critical point of (1).

2 Proximal ADMM and its convergence rate

This section describes the assumptions made on problem (1) and states the variant of the
proximal ADMM considered in this paper. It also states the main result of this paper (The-
orem 2.1), and a special case of it (Corollary 2.2), both of them describing convergence rate
bounds for the aforementioned proximal ADMM variant. The proof of Theorem 2.1 is however

postponed to Section 3.
The augmented Lagrangian associated with problem (1) is defined as

B
Ls(z,y,\) = f(x) + g(y) = (A, Az + By —b) + S [| Az + By — b|]* (4)
This paper considers problem (1) under the following set of assumptions:
(A0) f:R™ — (—o00,00] is a proper lower semi-continuous function;

(A1) B #0 and Im(B) D {b} UIm(A);
(A2) g :RP — R is differentiable everywhere on R? and there exists L > 0 such that

|Ps-(Vg(y')) — Pe-(Vgw))ll < Llly' =yl Vy,y' € R,

(A3) there exists L > 0 such that the function g(-) + L|| - [|2/2 is convex, or equivalently,

/ / L / !
9(¢") = 9(y) = (Vav),v' =) = =5 lly —y|> Vy.y €RY

(A4) there exists 3 > 0 such that

(z,y)

L := inf {f(m) +9(y) + gHA%‘ + By — bHQ} > —00.



Some comments are in order. First, due to the generality of (A0), problem (1) may include
an extra constraint of the form x € X where X is a closed set since this constraint can be
incorporated into f by adding to it the indicator function of X. Second, (A1) implies that
for every x € R™, there exists y € RP such that (x,y) satisfies the (linear) constraint of (1).
The extra condition that B # 0 is very mild since otherwise (1) would be much simpler to
solve. Third, if Vg(-) is L-Lipschitz continuous, then (A2) and (A3) with L = L obviously
hold. However, conditions (A2) and (A3) combined are generally weaker than the condition
that Vg(-) be L-Lipschitz continuous.

Next we state the proximal ADMM for solving problem (1).

Proximal ADMM

(0) Let an initial point (xo, yo, Ao) € R™ x R? x R™ and a symmetric positive semi-definite
matrix G € R"*" be given. Let a stepsize parameter 6 € (0,2) be given and define

0
e ?

Choose scalars 3 > 3 (see (A4)) and 7 > 0 such that

5y = (g - ‘;g) >0, 0= Aum KT - QBL;Z - g) [+&B°B| >0, (6)
BB*B+ (1 — L)I » 0 (7)
where op denotes the smallest positive eigenvalue of B*B, and set k = 1;
(1) compute an optimal solution x; € R™ of the subproblem
iy { Lot s ) + e — a2 ®)
z€R™ 2
and then compute an optimal solution y; € R? of the subproblem
min { Loy, Mer) + Sy = e )
(2) set
A = M_1 — 05 [Axy + By — b (10)

and k < k + 1, and go to step (1).

end

We now make a few remarks about the proximal ADMM. First, the assumption that
6 € (0,2) guarantees that v in (5) is well-defined and positive. Second, the special case of the
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proximal ADMM in which G = 0 requires only an initial pair (yo, Ag) since any of its iteration
is independent of z;_;. Third, (7) implies that the objective function of subproblem (9) is
strongly convex and hence that y;, is uniquely determined. Fourth, the subproblems (8) and
(9) are of the form

. 1 2 . 1 2
min {70+ {ev0) + lelpmen o min {0 + (o) + 5100Erc g
for some ¢ € R™ and d € RP. For the purpose of this paper, we assume they are easy to solve
exactly, possibly by choosing 7 > 0, § > 0 and G appropriately. Fifth, any scalars § > 5 and
7 > 0 such that

2Ly -
VL f<r< 008 (11)

Bop Lval
satisfy conditions (6) and (7), and hence they are compactible conditions. Sixth, even though
(11) does not allow 7 = 0, conditions (6) and (7) still allow the choice 7 = 0 if B*B is assumed
to be invertible (e.g., B = I).
Next we define a parameter required in order to present our convergence rate bounds.
Define

o) = L1B*AX ZiBA
10 (Yo, o) (AggAO)ZII ol +4|| Yol

s.t. TAyo+ (1 —1/0)B*AXNg = B*\o — Vg(v0) (12)

where

216 — 1|
C1 =
BO(1 =10 —1|)os
We make two remarks about the definition of 79(yo, Ag). First, if 7 > 0, then (12) always has a
feasible solution. Second, if 7 = 0 and B*B is invertible, then there are two cases to consider:
(i) if @ # 1, then (12) always has a feasible solution; and, (ii) if § = 1, then choosing A¢ so
that B*A\g = Vg(yo) makes any pair (Ayg, A)g) feasible to (12), and hence 19(yo,n0) = 0.

We now state the main convergence rate result for the proximal ADMM under assumptions
(A0)-(A4).

Theorem 2.1. Let (29, Yo, \o) € R" X R? X R™ be given and define

> 0. (13)

Lo := Ls(x0, Y0, No) — L + 1o (14)

where 0y := 1n9(yo, No) and L is as in (A4) . If, for every k > 1, we define

RY :=Vg(y,) — B*\e, R} := Az + By, —b (15)
where X
M = Me—1 — B (A + Byp—1 — b), (16)
then we have R
—GACL’k S 8f(xk) — A*)\k, (17)
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and there exists j < k such that

Lo 2L 1 27,
Azjlle < 24/ =2 vl < (|| B*B o M < =4[220
lAzjle <2¢/== IRl < (BIB*Bll +7) ok | R} < 50\ 5k

where 61, 02 are as in (6), and 03 is defined as

0 20~vL?  8hyr2\
53:(6no+ vLr ’YT)

ENO (SQO—B (510']23

(18)

By relating 7 and 3 in a proper manner, the next result gives a more explicit specialization
of the bounds obtained in Theorem 2.1 only in terms of 3, L, || B*B|| and os. For the sake of
simplicity, we view quantities depending only on the initial iterate as being O(1) in order to
obtain the bounds below.

Corollary 2.2. Choose 8> 3 and 7 > 0 such that

4L2 ﬂO'B

+L<
pog 4v/2v

and assume that (xg,yo) is a feasible point for (1). Then, for every k > 1, inclusion (17)

holds and there exists 7 < k such that

1 1

(BBl + Bo5) | 33y + 5

1
HA%HG<O<\/— +1> 1175 < O \/—

1 1 ' L? N L?
BVE\ 0% Bloy  Bog
Proof. First note that the assumption on the parameters 8 and 7 together with (6), yield

= O(fog), 61 = O(F) and 62 > O(Pop). Hence, using (14) and the fact that (zo,yo) is
feasible to problem (1), we obtain

A
177 <O

~ 1 L2
£0:O(n0+1)§(9(—+1), 1/53§O(ﬁ+ﬁ7).

BUQB B

Lo < 1 1) Lo (1 L2 L2)
—=<0(mFg+—], —<O|Z+B+57+=7]-
5 =\ B T o) B Pt Bt T 52

Therefore, the conclusion of the corollary follows by combining the above bounds with Theo-
rem 2.1. O

Then,

We now make a few remarks about Corollary 2.2. First, the larger [ is, the smaller the
bounds on || R}|| and [|Az; ||, and the larger the one on || RY|| become. Second, the assumption
that (zo,y0) is a feasible point for (1) in the above corolllary is not crucial. Without this
assumption, the dependency of the above bounds on 8 would change since now Lo would be
O(no + B) instead of O(ny + 1).



3 Proof of Theorem 2.1

This section gives the proof of Theorem 2.1.
We first establish a few technical lemmas. The first one describes a set of inclusions/equations
satisfied by the sequence {(zx, yx, A\x)} generated by the proximal ADMM.

Lemma 3.1. Consider the sequence {(w, Y, \r)} generated by the prozimal ADMM and let
{A\x} as defined in (16). Then, for every k > 1, the following inclusions hold:

0e [a Flaw) — A*S\k] + Glan — Tpr), (19)
0= [Vg(yk) - B*S\k} + BB B(yk — Yr—1) + T(Yk — Y1), (20)

Proof. The optimality conditions for (8) and (9) imply that
0€0f(wr) — A" (A1 — B(Axy + Byp—1 — b)) + G(xp — 24-1),
0=Vg(yx) — B* (N1 — B(Azy, + By, — b)) + 7(yr — Yr—1),

respectively. These relations combined with (16) immediately yield (19) and (20). Relation
(21) follows immediately from (10). O

The following lemma provides a recursive relation for the sequence {A\;}.

Lemma 3.2. Let Ayg € RP and A)yg € R™ be such that

TAyo+ (1 = 1/0)B*ANg = B* Ao — Vg(v0)- (22)
Then, for every k > 1, we have
B*AXN, = (1 = 0)B*ANg—1 + Ouy (23)
where
ur = Vg(yr) = Vg(ye-1) + 7(Ayx — Ayg-1). (24)

Proof. Using (16) and (21) we easily see that
ONp := N + (0 — Doy + BOB(y, — yo—1), Yk >1.
This expression together with (20) then imply that
B*Ne = (1=0)B"N\p—1 +0[Vg(yx) + TAy] VE> 1. (25)

Hence, in view of (24), relation (23) holds for every k& > 2. Also, (24) and (25) both with
k =1 imply that

which, together with the definition of Ay, in (22), shows that (23) also holds for k =1. O
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The next lemma describes how the sequence {(zy,yx, A\x)} affects the value of the aug-
mented Lagrangian function defined in (4).

Lemma 3.3. For every k > 1, we have
(a) La(xr, Yr-1, Me-1) = La(Tr-1, Yb-1, A1) < —[|Az]|E/2;
(6) Lo, Yo Meo1) = Lo (@, Y1, A1) < (LI Ayell” — (8/2) | BAkl* — 7| Ay
(¢) Ls(wr, Y, M) — La(@r, Y, A1) = [L/(0B)][| AN 1.

Proof. (a) In view of (8), we have Lg(zx, yr_1, \e—1) + |76 — 2p_1|5/2 < Ls(Tp_1, Yr_1, Me1),
which, combined with the identity Az, = x) — xx_1, proves (a).
(b) Observe that the objective function of (9) has the form

Lo(@r s M) + 51 =y = (9 + () (26)

where ¢ is a quadratic function whose Hessian is Q = 8B*B+71I. Since Q — LI = 0 in view of
(7), and condition (A3) implies that g is a proper lower semi-continuous such that g+ L|| - ||?
is convex, it follows from inequality (37) of Lemma A.1 with y = yx_; and § = y;, that

B T L
(9+ @) (yr-1) = (g +q)(yr) + §HB(yk71 — )| + §Hyk71 —yel® - EHykfl — yill?,

which together with (26) immediately implies (b).
(c) This statement follows from (10), the identity ANy = Ay — Ax—1 and the fact that (4)
implies that

Ls(xr, Y, Ae) = La(xk, Y, Ae—1) — (M — Ao—1, Az, + Byy, — b). O

Our goal now is to show that a certain sequence associated with {Ls(z, Yk, Ax)} is mono-
tonically decreasing, namely, the sequence {L;} defined as

A

Ly = Eﬁ(xk, Yk )\k) + Nk Vk >0 (27)

where

C
me= SUB AN + D IBAWI?  vE 21 (28)

and 19 = 10(yo, Ao) and ¢; are as defined in (12) and (13), respectively.
Before establishing the monotonicity property of the above sequence, we state three tech-
nical results. The first one describes an upper bound on £ — L;_; in terms of three quantities

related to {Azy}, {AN:} and {Ay}, respectively.

Lemma 3.4. For every k > 1,
fr— oy < — [ Azy|% + O! + ©2 2
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where 1
c
Oy == @HA)\kﬂz + 51 (1B AN = [ B* AN ]1?) (30)

@i:z(

where ¢y is defined in (13).

and

DO |

p
- T> 1Ay l1” = 5 (1BAYe[” + | BA[*) (31)

Proof. The lemma follows by adding the three inequalities given in statements (a), (b) and
(c) of the previous lemma and using the definition of L in (27). O

The next two results combined provide an upper bound for ©} in terms of the sequence

{Aye}.
Lemma 3.5. Let uy, and O}, be as in (24) and (30), respectively. Then,

5 [

where 7y is defined in (5).

Proof. Assumption (A1) clearly implies that A\, = —560(Axy + Byr — b) € Im(B). Hence,
it follows from Lemma A.2 that

1 *
[AN] = [[Pe(AN) < \/—U_BHB ANg|l
where Pg(-) is defined in Subsection 1.1. Hence, in view of (23) and (30), we have

O < - —[IB"AN* + (IIB*AMH2 — | B* AN %)

50

1 C1 2 C1 2
= —= 1—0)B*AN,_1 + 0 — —||B*AN,_1]|%.
(5 + 5 ) 10 =005 8-+ 6wl = 518" A0

Note that if # = 1, then (13) implies that ¢; = 0 and the above inequality implies the conclusion
of the lemma. We will now establish the conclusion of the lemma for the case in which 6 # 1.
The previous inequality together with the relation ||s; + so||* < (1 +¢)|[s1]|* + (1 + 1/1)]|s2]|?
which holds for every s, s9 € R™ and ¢ > 0 yield

1 c N 1 c *
ol < ( S ;) [<1+t>< CRYB AN+ (1+t) e?nuknﬂ B AN

A R N e
{% -[1-a+nE -7 (;21} B AN |I” + <59 - ) <1 + 1) 0|y |2.
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Using the above expression with t = —1+41/|0 — 1| and noting that ¢ > 0 in view of the assumption
that 6 € (0,2), we conclude that

N
Bop

— (e )
" Bbop 1—jo—1)1—10—1""

where the last equality is due to (13). Hence, in view of (5), the conclusion of the lemma follows. [J

Lemma 3.6. The vector uy, defined in (24) satisfies

92
1—10—1]

c N 1 c
o= 11- - 10-1) 3| IBrarcal?+ (75— +3)

1 <
@k—[ Blop ' 2

i

472
Jugl|* < 207 Ay + E(HBA?MHQ + | BAyx 1 [*).

Proof. Noting that (23) implies that uj, € Im B* and using assumption (A2) and Lemma A.2,
we obtain

Ju|® = [P (up)I* = 1P (Vg(ur) = Vg(yr-1)) + 7Pp+ (Ayx — Ayp_y) ||?
2 2
T 2T
< | L|| Ayl + \/T—BHBAyk — BAyr|l| <207 Ayl + E(HBAykII + || BAy;1]])?

472
< 2L%|| Ayy|* + E(HBAMQ + | BAY-1[*)
where the last two inequalities follow from the Cauchy-Schwarz inequality and the relation
(514 89) < 252 + 253 for 51,59 € R. O
Finally, the next proposition shows that the sequence {/jk} decreases.

Proposition 3.7. The sequence {(zk, yx, \x)} generated by the proximal ADMM satisfies
A 4 1
Ly, = Ly < —§HA%H?; — 01| BAY-1[1* — 2| Ayal® V> 1

where Ly, is defined in (27), and &, and 65 are defined in (6).
Proof. 1t follows from Lemmas 3.5 and 3.6 that
2y

1 I‘2 2
0, < —|A +

and hence, in view of (31), we have

4~72 2~I2 Z~} 4~y 72
o) +0?2 < (L - é) 1B Ay || + ( e —7) 1Ay + ( U ﬁ) 1B Ay

477'2
Bo,

(I1BAYe-1[I* + [ BAY[?)

fo% 4 Bop 2 po% 4

ovL? L
= —61||BAyk_1||2 + i +——7|1- 5lB*B
Bop 2

< —61|| BAyg-1|* — dof | Ay )?

where the last inequality is due to the definition of d, in (18). Hence, the result follows due
to (29). O
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The next three lemmas show how to obtain convergence rate bounds for the quantities
|Azj|la, |Ay;|l and ||AN;|| with the aid of Proposition 3.7. The first one shows that {L} is
bounded below.

Lemma 3.8. For every k > 1, we have L, > L where Ly, and L are as in (27) and (A4),
respectively.

Proof. Assume for contradiction that there exists an index ky > 0 such that Zko+1 < L. Since
{Lx} is decreasing (see Proposition 3.7), we obtain

J ko
DLk =L)< (Li—L)+ (= ko) (Ligrr — L) Vi > ko
k=1 k=1

and hence '
j
I Ly—L
Jim, > (L
On the other hand, (4), (10), (27) and assumption (A4) imply that
Ly = Lo, Yy M) + 0 > L(Tn, Yy M) > L5k, Y, Ak)

1
= ) + o)+ 5 1Aze + B = WP + 5 (e e = Moot

(Xl = A=l + 12 = s [*) = £

> L+ (Al = [ Ak=1]?)

1 L L
256 2436
and hence that

i 1 , , ,
D26k £)2 g5 (P = Poll) 2~ 1l 521,
which yields the desired contradiction. O]

Lemma 3.9. For every k > 1, we have

k
1 ~
> (G1asll + aBAy- 1P + Bl Anl + 8l ANI?) < 26 (32

j=1
where 01,05 and 65 are as defined in (6) and (18), and Ly is as in (14).

Proof. First note that Proposition 3.7 together with Lemma 3.8 yield, for every k > 1,

k
1 ~
> (Ghanl? + il BAy-I + 8l Aul?) < £ (33)

j=1

13



which, in particular, implies that
k k
£0 LO
DoIBAYIP <= Y Ay)P < = (34)
: o 4 02
Jj=0 j=1
Due to (33), in order to prove (32), it suffices to show that
k
o 14
D lIAN]? < Lo, (35)
j=1 %

Then, in the remaining part of the proof we will show that (35) holds. By rewriting (30), we
have

C
IAN2 = 86 [ (18" ANl = 1B* AN + 6} ¥k =1,

where A)\g is an arbitrary vector satisfying (23). Hence, using (12), we obtain

k
D llAN|? < 8o
j=1

k
C1 %
FIB AN + > e
j=1

k
O
< BOno + — > |luyl?
o UleH il

k

279L 4977‘
<ﬁ9no+z 1Ay 1* + — Z(IIBij—1||2+ 1BAY; %)
279L 86’77‘
< Bbno + Z 1Ay 1% + Z 1BAY;|*
Jj=0 B
B@noﬁo 297L2 Lo 80v72 L,
< + —+t—F
»C[) oB 52 0B 51
0 20~ > 0
g(ﬁﬁu 1 +8W)£0
Lo 020 610%

where the fifth inequality is due to (34). Hence, (35) follows from the last inequality combined
with the definition of d3 in (18), and then the proof is concluded. O

Lemma 3.10. For every k > 1, there exists j < k such that

2L
aa e <222 gl <y 2,3 INVERE

where Lo, 0 and 83 are as defined in (14), (6) and (18), respectively.

Proof. The proof of this result follows directly from Lemma 3.9. O
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We are now ready to prove Theorem 2.1.
Proof of Theorem 2.1: First note that the inclusion (17) follows immediately from (19).
Also, taking into account (15), we obtain from (20) and (21) that

1
Rl = —(BB*B+1)Ay,, Ry = —@mk.

Hence, to end the proof, just combine the above identities with Lemma 3.10. O

A Auxiliary Results

This section presents some auxiliary results which are used in our presentation.

Lemma A.1. Assume that, for some L>0g:R — [—00, 00] is a proper lower semi-
continuous function such that g(-) + L|| - 12/2 is convex and that q(-) is a quadratic function
whose Hessian () € RP*P satisfies () — LI > 0. Then, the problem

min{(g +¢)(y) : y € R} (36)

has a unique optimal solution y and

9+ D)) > 0+ )@ + 3 ly— 5~ Sy~ 7 vy € B, (37)

Proof. Define § := g+ L|| - ||?/2, § = q— L|| - ||>/2 and Q = Q — LI. Clearly, § is a proper
lower semi-continuous convex function and ¢ is a strongly convex quadratic function whose
Hessian is Q > 0. Since g + ¢ = § + ¢, we conclude that the objective function of (36) is
strongly convex, and hence that the first statement of the lemma follows. Moreover, we have

0€d(g+q)(y) =03+ q)(y) = 93(y) + Vi(y)
and hence
9(y) = 9(m) —(Vi(y),y —y) VyeR.
On the other hand, the fact that ¢ is a quadratic function implies that
i o 1 _
Q) = a) +(Vaw)y — o)+ 5ly -9l vy e R

Adding the above two relations, and using the fact that g+ ¢ = §+ ¢ and the definition of Q,
we conclude that (37) holds. O

Lemma A.2. Let S € R"P be a non-zero matriz and let s denote the smallest positive
eigenvalue of SS*. Then, for every u € RP, there holds

1
IPs- ()l < —=llSul.

15



Proof. Let r denote the rank of S and let S = RAQ* be a partial singular-value decomposition
of S where R € R™" is such that R*R = I, @ € RP*" is such that Q*Q = I and A € R™" is

a positive diagonal matrix. It is easy to see that
[Ps-(u)]| = [IPo()]| = 1Q(Q"Q) ' Qull = |Q"ul| Vu € RP. (38)
Moreover, we have
Q" ull = AT AQul| < IATHHAQ u] = [AT [ [RAQ ul| = A Sul  Vu € R”.

The result now follows from the above two relations and the fact that |[A~|| =1/\/0s. O
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