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Abstract. We consider image deblurring problem in the presence of impulsive noise. It is known that total variation (TV)

regularization with L1-norm penalized data fitting (TVL1 for short) works reasonably well only when the level of impulsive

noise is relatively low. For high level impulsive noise, TVL1 works poorly. The reason is that all data, both corrupted and

noise free, are equally penalized in data fitting, leading to insurmountable difficulty in balancing regularization and data fitting.

In this paper, we propose to combine TV regularization with smoothly clipped absolute deviation (SCAD) penalty for data

fitting (TVSCAD for short). Our motivation is simply that data fitting should be enforced only when an observed data is

not severely corrupted, while for those data more likely to be severely corrupted, less or even null penalization should be

enforced. A difference of convex functions algorithm is adopted to solve the nonconvex TVSCAD model, resulting in solving

a sequence of TVL1-equivalent problems, each of which can then be solved efficiently by the alternating direction method of

multipliers. Theoretically, we establish global convergence to a critical point of the nonconvex objective function. The R-linear

and at-least-sublinear convergence rate results are derived for anisotropic and isotropic TV, respectively. Numerically, extensive

experimental results are given to show that the TVSCAD model improves the TVL1 significantly, especially for cases with high

level impulsive noise. In addition, the TVSCAD model is also compared with a recently proposed iteratively corrected TVL1

method to illustrate its promising performance.
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1. Introduction. We consider the problem of recovering an image degraded by blur and impulsive

noise. For simplicity, we focus solely on grayscale images with square domain, and by using the multichannel

total variation (TV) regularization introduced in [55] our discussions extend, without essential difficulties,

to multichannel images with either square or rectangle domains. Let ū be a clean image of size n-by-n.

By stagnating the columns of ū in an left-upper and right-lower manner, ū can be treated equally as a

vector in <n2

. Without loss of generality, we assume that the pixel values of ū are scaled into [0, 1]. The

observed blurry and noisy image f ∈ <n2

obeys f = Nimp(Kū), where K ∈ <n2×n2

is a blurring operator

corresponding to an underlying point spread function, and Nimp(·) represents a procedure of impulsive noise

corruption. Our aim is to approximately recover the clean image ū from the blurry and noisy observation f ,

with the blurring operator K given. Apparently, this problem falls into the class of linear inverse problems.

In the rest of this section, we first review briefly some impulsive noise removal methods, either with or

without the degradation of blur, and then summarize the notation and the organization of this paper.

1.1. Impulsive noise and filter methods. Impulsive noise is often generated by malfunctioning

pixels in camera sensors, faulty memory locations in hardware, or erroneous transmission, see [8]. Two

common types of such noise are salt-and-pepper (SP) noise and random-valued (RV) noise, both of which

degrade an image by changing the values of a fraction of randomly selected pixels while leaving the rest ones

untouched. When degraded by SP noise, the value of the selected pixel will be replaced with half probability

by either the minimum or the maximum pixel value. RV noise degrades images in a similar way, except
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that intensities of the corrupted pixels are uniformly distributed between the minimum and the maximum

pixel values. They are referred to as impulsive noise because corrupted pixels are mostly distinguishable

from their neighbors, and intuitively RV noise is harder to remove than SP noise. Based on these features,

a number of digital filter methods have been proposed [3], which first detect likely corrupted data entries

and then replace them by using the filters. Among others, the median type filters are very popular due to

their favorable denoising power and high computational efficiency, e.g., the adaptive median filter [32], the

multistate median filter [15], and the median filter based on homogeneity information [22, 39]. We mention

that most of the aforementioned filters are merely suitable for denoising in the absence of blur.

1.2. Variational methods. An important class of methods for image deblurring is the variational

approach, in which the ground truth ū is recovered approximately as the minimizer of a certain energy

function. It is not uncommon that the energy function is composed of a data fitting term Φ(u) and a

regularization term Ψ(u), i.e., an optimization problem of the form minu Ψ(u) + µΦ(u) is solved to recover

ū. Here µ > 0 is a weighting parameter balancing the two terms in minimization.

The purpose of the regularization term Ψ(u) is to enforce certain regularity conditions or prior constraints

on the image, such as smoothness and boundedness. Indeed, image deblurring problem is very ill-posed

and, as a consequence, the regularization term is indispensable in stabilizing the recovery procedure. The

traditional Tikhonov regularization [51] has been widely used due to its simplicity. However, Tikhonov

regularized models, though relatively easy to solve, tend to produce overly smoothed images and are unable to

preserve important image attributes such as sharp boundaries. In contrast, the TV regularization pioneered

by Rudin, Osher and Fatemi [44] makes image edges and object boundaries, which are generally the most

important features of an image, very well preserved due to the linear penalty on the image gradient. Using

finite difference operations, one can discretize the TV into different forms, e.g., the well known isotropic and

anisotropic discretizations of TV are given by

TViso(u) =
∑n2

i=1
‖Diu‖2 and TVaniso(u) =

∑n2

i=1
‖Diu‖1, (1.1)

respectively, where Di ∈ <2×n2

is a local finite difference operator at the ith pixel (boundary conditions will

be specified later). Exactly because of the attractive edge-preserving ability, TV regularization has been

extremely widely used, see, e.g., a recent review paper up to 2013 [10] and the references therein.

On the other hand, the data fitting term penalizes the deviation of the observed data from the physical

model. In the case of additive noise, i.e., f = Ku + ω for some error ω ∈ <n2

, or impulsive noise as is the

concern of this paper, Φ(u) usually takes the form ‖Ku− f‖pp for p = 1 or 2. For additive Gaussian noise, p

is usually set to 2 because minimizing ‖Ku−f‖22 corresponds to seeking the maximum likelihood estimation

of ū. Combined with TV regularization, this leads to the influential TVL2 model [44, 43]. However, practical

systems usually suffer from outliers, where only a fraction of data entries are corrupted by noise of some

non-Gaussian distribution, e.g., impulsive noise. In such cases, nonsmooth data fitting is preferred due to

its ability in fitting the uncorrupted data entries, e.g., `1-norm data fitting was originally introduced in [1]

for pure denoising problem. The importance of nondifferentiable data fitting such as the `1-norm penalizing

has been examined deeply in [35, 36].

By combining TV regularization with `1-norm penalized data fitting ‖Ku − f‖1, we arrive at the well

known TVL1 model, i.e.,

minu TV(u) + µ‖Ku− f‖1, (1.2)

where TV(u) can be either isotropic or anisotropic discretizations. In practice, the anisotropic TV is slightly
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easier to process than the isotropic one. In fact, TVL1 model with anisotropic TV can be reformulated

as a linear program and has been studied in [25]. Theoretically, various geometrical properties of TVL1

model have been revealed in [14, 16, 57, 58], which well justify its suitability for deblurring in the presence

of impulsive noise. Numerically, very efficient algorithms have been designed for solving it, including the

structure utilizing split-and-penalty method [56] and the augmented Lagrangian type methods [29, 23] which

are also known as split Bregman methods. These methods can deal with both isotropic and anisotropic TV.

We note that simple bound constraint can be incorporated to improve the quality of recovery, for which

efficient structure-utilizing algorithms can still be designed, e.g., TVL1 model with constraint 0 ≤ u ≤ 1 was

considered in [13].

1.3. Two-phase method and corrected TVL1 method. The TVL1 model (1.2) fits all data entries,

both corrupted and noise-free, via entry-wise absolute difference and with a unified weighting parameter µ.

On the one hand, µ should be reasonably small in order to weaken the influence of fitting the corrupted data.

On the other hand, if µ is not big enough, the recovered image is mostly over regularized and very blocky.

As a consequence, it becomes critical to choose an appropriate weighting parameter µ so that regularization

and data fitting are well balanced, particularly for the cases with high noise level. As a remedy, a two-phase

method was proposed in [11] for image deblurring with impulsive and Gaussian noise. In the first stage, the

outliers are approximately identified using median filters and removed from the data set. In the second stage,

the image is restored by solving a regularized model with `1-norm data fitting that applies to the remaining

data entries. In [11], a regularizer that approximates the Mamford-Shah regularizer [34] was applied, and the

nonsmooth `1-norm was approximated by a smooth function, see [11, Eq. (7)]. A similar two phase approach

was proposed in [12], where anisotropic TV regularizer was used to replace the nonconvex regularizer used

in [11]. The resulting problem was again solved by smoothing methods. We note that solving the variational

models arising from the second stage is generally much harder than solving the TVL1, which, in contrast,

has very efficient algorithms [56, 29, 23, 13].

Very recently, an iteratively corrected TVL1 (abbreviated as CTVL1) method was proposed in [7]. The

CTVL1 method accomplishes deblurring and impulsive noise removal simultaneously via solving a sequence

of TVL1-equivalent problems. In particular, given the current point uk, the CTVL1 method [7] generates

the next iterate uk+1 via

uk+1 = arg minu TV(u) + µ
(
‖Ku− f‖1 − `k(u)

)
, (1.3)

where `k(u) = 〈sk,Ku− f〉, sk = (sk1 , . . . , s
k
n2)T ∈ <n2

,

ski = φ

(
(Kuk − f)i
‖Kuk − f‖∞

)
, i = 1, 2, . . . , n2, and φ(t) = sign(t)(1 + ετ )

|t|τ

|t|τ + ετ
. (1.4)

Here we adopt the convention 0/0 = 0, and ε, τ > 0 are given parameters. It has been demonstrated via

extensive numerical results in [7] that the CTVL1 method performs very competitive and, in particular,

outperforms the two-phase method [11].

1.4. Notation. Given a vector v, its dimension and ith component are denoted by dim(v) and vi,

respectively. The superscript “T ” denotes matrix or vector transpositions. The standard inner product in

<n is denoted by 〈·, ·〉, i.e., 〈x, y〉 = xT y for x, y ∈ <n. We follow standard notation in convex analysis

[41]. The set of extended-real-valued, lower-semicontinuous, proper and convex functions on <n is denoted

by Γ0(<n). The effective domain of an extended-real-valued function f on <n is denoted by dom f . The

conjugate function f∗ of a given f ∈ Γ0(<n) is defined by f∗(x) = supy〈y, x〉 − f(y). The indicator function
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of a set Ω is denoted by χΩ, i.e., χΩ(x) = 0 if x ∈ Ω, and +∞ otherwise. The Euclidean distance of a point

x to a set S is denoted by dist(x, S). The gradient of a multivariate differentiable function f is denoted by

∇f . If unspecified, ‖ · ‖ denotes the `2-norm. Whenever there is no confusion, we let
∑
i :=

∑n2

i=1.

1.5. Organization. The paper is organized as follows. The TVSCAD model and a difference of convex

functions (DC) algorithm are proposed in Section 2, with global convergence and convergence rate to a critical

point established in Section 3. Extensive numerical results, with comparisons to both TVL1 and CTVL1,

are demonstrated in Section 4. Finally, some concluding remarks are given in Section 5.

2. A TVSCAD approach. In this section, we present a TVSCAD model, reformulate it as a DC

program, and propose a DC algorithm (DCA). A brief overview on DC programming is also included.

2.1. A TVSCAD model. The SCAD function was originally introduced in [24] as a penalty function

for sparse variable selection. Let γ := (γ1, γ2) be a pair of given parameters satisfying γ2 > γ1 > 0. The

one-dimensional SCAD function ϕγ is defined as

ϕγ(x) =


|x|, if |x| ≤ γ1,
−x2+2γ2|x|−γ2

1

2(γ2−γ1) , if γ1 < |x| < γ2,
γ1+γ2

2 , if |x| ≥ γ2,

x ∈ <, (2.1)

and its graph is given in the first plot of Figure 2.1. It can be seen, from either the definition or the graph,

that ϕγ coincides with the absolute value function if |x| ≤ γ1 and takes the constant value (γ1 + γ2)/2 if

|x| ≥ γ2. For γ1 < |x| < γ2, the unique quadratic function, which connect (±γ1, γ1) and (±γ2, (γ1 + γ2)/2)

and make the connected parts smoothly linked, were inserted. The thresholding operator, also known as

shrinkage or proximity operator, of ϕγ is defined as

T (x, ϕγ , τ) := arg min
y∈<

ϕγ(y) +
1

2τ
‖y − x‖2, x ∈ <, (2.2)

where τ > 0 is a parameter. We note that τ ≤ γ2 − γ1 must be satisfied to guarantee that the objective

function in (2.2) has a unique minimizer, see [24]. In this case, the graph of T (x, ϕγ , τ) is given in the

second plot of Figure 2.1. It is clear from the graph that SCAD penalty function makes the resulting

estimator possesses three desired properties, namely, continuity, sparsity, and unbiasedness. In contrast, the

widely used hard- and soft-thresholding estimators lack continuity and unbiasedness, respectively, see [24]

for detailed discussions.

To present our TVSCAD model, we define the componentwise extension of ϕγ as follows

Φγ(v) =
∑dim(v)

i=1
ϕγ(vi), v ∈ <dim(v). (2.3)

We propose the following TVSCAD model for image deblurring with impulsive noise:

minu {TV(u) + µΦγ(Ku− f) | 0 ≤ u ≤ 1} , (2.4)

where Φγ is defined in (2.3), TV(u) can be either isotropic or anisotropic, and µ > 0. The motivation of

using SCAD function here is simply to enforce less or even null data fitting and more regularization whenever

(Ku)i deviates significantly from fi. This is quite reasonable as in such case the ith pixel is more likely

to be corrupted. For those i such that (Ku − f)i is sufficiently small, the absolute deviation penalty is

kept, as indicated by the definition of ϕγ . Note that here we also include in the model the bound constraint

0 ≤ u ≤ 1, which usually improves the recovery quality [13]. It is clear that the TVSCAD model is nonconvex
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Fig. 2.1. Left: the SCAD function ϕγ . Right: the thresholding operator T (x, ϕγ , τ).

and nonsmooth since ϕγ is so. The use of nonconvex and nonsmooth functions in image recovery usually

results in images with better contrasts and sharper edges, see [37, 18, 19, 38], which reveal the theoretical

advantages of least squares problems regularized by nonconvex and nonsmooth functions. In our setting, the

nonconvex and nonsmooth SCAD function is adopted for data fitting.

2.2. Reformulation as a DC program. The TVSCAD problem (2.4) is nonconvex and nonsmooth

and, in general, very challenging to solve. We reformulate the TVSCAD model as a DC program by de-

composing the SCAD function (2.1) as the difference of two convex functions, where the first is the absolute

value function | · | and the second is given by

ψγ(x) := |x| − ϕγ(x) =


0, if |x| ≤ γ1,
x2−2γ1|x|+γ2

1

2(γ2−γ1) , if γ1 < |x| ≤ γ2,

|x| − γ1+γ2
2 , if |x| > γ2,

x ∈ <. (2.5)

The decomposition ϕγ = | · | − ψγ is illustrated in Figure 2.2. The componentwise extension of ψγ , denoted

by Ψγ , is given by

Ψγ(v) =
∑dim(v)

i=1
ψγ(vi), v ∈ <dim(v). (2.6)

It then follows from (2.3) and (2.6) that Φγ(v) = ‖v‖1−Ψγ(v) for all v ∈ <dim(v). As a result, the TVSCAD

model (2.4) can be reformulated as the following DC programming problem

minu {TV(u) + µ (‖Ku− f‖1 −Ψγ(Ku− f)) | 0 ≤ u ≤ 1} . (2.7)

The idea of decomposing a nonconvex function as the difference of two convex functions is not new, see,

e.g., [27], where it was applied to sparse recovery problems. Before deriving our algorithm for solving the

reformulated problem (2.7), we next give a very briefly overview on DC programming.

2.3. DC programming. DC programming refers to optimizing a function that can be written as the

difference of two convex functions. This class of problems covers generic convex optimization and many

real world nonconvex problems as special cases. The study of subgradient method for convex maximization

problem in [45, 46] can be viewed as early works on DC programming. Later, DC duality theory and DCAs

were developed in [49, 50] based on the nonconvex duality results in [52, 53]. Now, DC programming,
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Fig. 2.2. DC decomposition: ϕγ(·) = | · | − ψγ(·).

including model, theory and algorithms have been widely used in many applications. Interested readers can

refer to the review papers [47, 31, 2].

Let g, h ∈ Γ0(<n). A generic DC programming problem takes the form

α := infx g(x)− h(x). (2.8)

It is standard result in convex analysis that the dual conjugate of h ∈ Γ0(<n) is itself, i.e., h∗∗ := (h∗)∗ = h,

see, e.g., [41, Theorem 12.2]. Therefore, the DC program (2.8) can be reformulated as

α = inf
x
g(x)− h∗∗(x) = inf

x

[
g(x)− sup

y
〈x, y〉 − h∗(y)

]
= inf

y
m(y), (2.9)

where m(y) := infx g(x)− 〈x, y〉+ h∗(y) = h∗(y)− g∗(y) if y ∈ domh∗, and +∞ otherwise. Plug into (2.9),

we obtain

α = infy {h∗(y)− g∗(y) | y ∈ domh∗} . (2.10)

We assume that α is finite, which implies that dom g ⊂ domh and domh∗ ⊂ dom g∗, and adopt the

convention +∞− (+∞) = +∞. Then, (2.10) can be equivalently simplified as

α = infy h
∗(y)− g∗(y), (2.11)

which is clearly also a DC programming problem and is known as the dual problem of (2.8). Note that

there exists perfect symmetry between the primal and the dual DC programming problems (2.8) and (2.11).

Interested readers can refer to [48, Sections 3.1, 3.2] and references therein for more discussions on duality

results, global and local optimality conditions of (2.8) and (2.11).

The classic DCAs (cf. [45, 46] and [48, Sec. 3.3]) aim at solving the DC program (2.8) and its dual

problem (2.11) to their global or local optimality. A simplified form of DCA solves (2.8) via linearizing the

second part and solving a sequence of convex problems. Specifically, starting at an initial point x0 ∈ dom g,

DCA iterates as

xk+1 = arg min
x

[
g(x)− (h(xk) + 〈yk, x− xk〉)

]
, yk ∈ ∂h(xk), k = 0, 1, . . . (2.12)

Under certain conditions, the DCA is well defined [48, Lemma 3.6], and its convergence properties were

summarized in [48, Theorem 3.7] and [47, Theorem 3]. In particular, the sequence of function values {g(xk)−
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h(xk)} is guaranteed to be decreasing, and if α is finite and the sequence {(xk, yk)} is bounded, then every

limit point of {xk} (resp. {yk}) is a critical point of g − h (resp. h∗ − g∗), a notion that is slightly weaker

than local minimizer [48, Theorem 3.2]. We emphasize that the theoretical results derived for our DCA in

Section 2.4 are much stronger than those existing ones for generic DC programming, see Section 3.

2.4. A DCA. A DCA for solving the proposed TVSCAD model (2.7) is derived in this subsection. It

is easy to verify that ψγ defined in (2.5) is smooth, and so is Ψγ in (2.6). Given uk satisfying 0 ≤ uk ≤ 1,

our DCA generates the next iterate by

uk+1 = arg min
u

{
TV(u) + µ

(
‖Ku− f‖1 − `k(u)

)
+
η

2
‖u− uk‖2 | 0 ≤ u ≤ 1

}
, (2.13)

where η > 0 is a given parameter, and `k(u) is the linear part of Ψγ(Ku− f) at uk, i.e.,

`k(u) := Ψγ(Kuk − f) + 〈KT∇Ψγ(Kuk − f), u− uk〉. (2.14)

It is straightforward to verify that the DCA defined in (2.13)-(2.14) is a special case of the classic DCA

(2.12) for DC programming (2.8) with

g(u) = TV(u) + µ‖Ku− f‖1 + χ0≤u≤1(u) +
η

2
‖u‖2 and h(u) = µΨγ(Ku− f) +

η

2
‖u‖2. (2.15)

DCA resulting from the above decomposition makes the objective function of (2.13) strongly convex, and

thus uk+1 is well defined. Indeed, it is exactly because of the resulting proximal term η
2‖u − uk‖2 that

makes our theoretical results in Section 3 much stronger than those in [48]. In particular, the theory of DC

programming for strongly convex g and h can only guarantee that limk→∞(uk+1 − uk) = 0, see, e.g., [48,

Theorem 3.7 (iii)], while we guarantee that the sequence {uk} converges globally to a critical point of the

problem (2.4). Moreover, the addition of the proximal term also ensures R-linear convergence rate in the

case of anisotropic TV. In computation, a small value of η can always be used to enhance robustness.

Next, we adapt the versatile and efficient alternating direction method of multipliers (ADMM, [28, 26])

to solving the subproblem (2.13). ADMM can be viewed as a practical variant of the classic augmented

Lagrangian method [30, 40] or a dual application of the Douglas-Rachford splitting [17, 21] for monotone

inclusion problem. ADMM has been applied to numerous applications, see, e.g., [9, 20], among others, it

has been applied to TV based image deblurring problem [29] and its variants [23]. Given the encouraging

performance of ADMM, especially for TV regularized image recovering problems, it is appropriate here to

adopt it as the subproblem solver.

ADMM has been applied to constrained TVL1 problem in [13]. With the additional proximal term
η
2‖u− u

k‖2 and the linear term `k(u) added to the TVL1 problem, the resulting ADMM is similar. Here we

present the algorithm only for completeness. We take the isotropic discretization of TV as an example, i.e.,

TV(u) =
∑
i ‖Diu‖, and the discussion for the case of anisotropic TV is completely analogues. First, we

introduce a set of auxiliary variables {wi ∈ <2 : i = 1, . . . , n2} and v ∈ <n2

to transfer {Diu : i = 1, . . . , n2}
and Ku − f out of the nondifferentiable norms. The set of wi’s is also denoted by w ∈ <2n2

. In order to

treat the bound constraint, we also need to introduce an additional auxiliary variable x ∈ <n2

. Define

θ(w) :=
∑

i
‖wi‖, vk := Kuk − f, pk := ∇Ψγ(vk) and Ω := {u | 0 ≤ u ≤ 1}. (2.16)

By omitting constant values, (2.13) can be reformulated as

min
u,v,w,x

{
θ(w) + µ

(
‖v‖1 − 〈pk, v〉

)
+
η

2
‖u− uk‖2 | wi = Diu,∀ i, v = Ku− f, x = u, x ∈ Ω

}
. (2.17)
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The augmented Lagrange function associated with (2.17) is

L (w, v, x, u, λw, λv, λx) = θ(w) +
∑

i

(
〈(λw)i, Diu−wi〉+

βw
2
‖Diu−wi‖2

)
+ µ

(
‖v‖1 − 〈pk, v〉

)
− 〈λv, v − (Ku− f)〉+

βv
2
‖v − (Ku− f)‖2

+
η

2
‖u− uk‖2 − 〈λx, x− u〉+

βx
2
‖x− u‖2,

where λw ∈ <2n2

, λv, λx ∈ <n
2

are Lagrange multipliers, and βw, βv, βx > 0 are penalty parameters. Given

u0 and (λ0
w, λ

0
v, λ

0
x), the classic 2-block ADMM iterates are

(wj+1, vj+1, xj+1) = arg min
w,v,x

{
L
(
w, v, x, uj , λjw, λ

j
v, λ

j
x

)
| x ∈ Ω

}
, (2.18a)

uj+1 = arg min
u

{
L
(
wj+1, vj+1, xj+1, u, λjw, λ

j
v, λ

j
x

)}
, (2.18b) λj+1

w

λj+1
v

λj+1
x

 =

 λjw − βw(wj+1 −Duj+1)

λjv − βv
(
vj+1 −Kuj+1 + f

)
λjx − βx(xj+1 − uj+1)

 . (2.18c)

We note that both (2.18a) and (2.18b) have closed form solutions and hence can be computed efficiently. In

fact, the optimization of w, v and x in (2.18a) can be carried out in parallel since they are separable from each

other. Moreover, wj+1 and vj+1 are given explicitly by the proximity operators of θ and ‖ · ‖1, respectively,

the computations of which have linear cost. On the other hand, xj+1 can be computed via a projection onto

Ω. The u-subproblem (2.18b) is a least-squares problem and, under the assumption of periodic boundary

conditions, it can be solved very efficiently via two fast Fourier transforms. The problem structures of

this type were first recognized and fully exploited in [54], where an alternating minimization algorithm was

designed based on quadratic penalty method for image deblurring with Gaussian noise. Later, this splitting

and alternating minimization idea was extended in [56, 55] to solve TVL1 problem and multichannel image

deblurring.

2.5. Connections with the CTVL1 method. The connection between our DCA (2.13) and the

CTVL1 method (1.3) recently proposed in [7] is explained in this subsection. By removing in (2.13) the

bound constraint 0 ≤ u ≤ 1 and the proximal term η
2‖u− u

k‖2, we see that (2.13) differs from (1.3) only in

the choice of `k(u). By letting vk = Kuk − f and throwing away some constants, one can see that `k(u) for

both methods has the form `k(u) = 〈sk,Ku− f〉 with sk = (sk1 , . . . , s
k
n2)T defined by

ski =

{
φ
(
vki /‖vk‖∞

)
, for (1.3),

ψ′γ(vki ), for (2.13),
i = 1, . . . , n2. (2.19)

Here φ and ψγ are defined in (1.4) and (2.5), respectively. It was suggested in [7] that ε2 = 10−3 and τ = 2

should be used in φ, and the derivative of ψγ is given by

ψ′γ(x) =


0, if |x| ≤ γ1,
x−γ1sign(x)
γ2−γ1 , if γ1 < |x| ≤ γ2,

sign(x), if |x| > γ2,

x ∈ <.

Plots of φ and ψ′γ (with γ1 = 0.15, γ2 = 0.5, and the practical choice of γ1 and γ2 will be discussed in Section

4) are given in Figure 2.3. From the figure, one may observe that if vki = (Kuk−f)i is positive and relatively

large, the values of ski will tend to be 1 and equal to 1 in (1.3) and (2.13), respectively. Consequently, this
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Fig. 2.3. Left: the φ function used by the CTVL1 method [7]. Right: the derivative of ψγ .

means the data fitting term µ
(
‖Ku− f‖1 − `k(u)

)
being nearly or totally cancelled out from (1.3) and

(2.13), respectively. In other words, nearly no or just no penalization being enforced on vki = (Kuk − f)i.

This coincides with our motivation as large (Kuk− f)i means the ith pixel is more likely to be corrupted by

the impulsive noise, and thus should not be fitted. When vki = (Kuk−f)i is negative with its absolute value

relatively large, similar explanation applies. On the other hand, when the absolute value of vki = (Kuk− f)i

is relatively small, µ|(Ku− f)i| corresponding to `1-norm penalized data fitting is used in (2.13) as opposed

to µ|(Ku− f)i| minus a linear term used in (1.3).

We also mention that the outer loop convergence of the CTVL1 method is unknown in [7], while our

algorithm is guaranteed to converge globally to a critical point of the TVSCAD problem (2.4), as will be

shown in Section 3.

3. Theoretical analysis. In this section, we establish global convergence and convergence rate for

the DCA (2.13). We start with some definitions. Let F be an extended-real-valued, proper and lower

semicontinuous function on <n. The limiting subdifferential of F at x ∈ domF is defined by

∂F (x) :=

{
v ∈ <n : ∃xt → x, F (xt)→ F (x), vt → v, lim inf

z 6=xt,z→xt
F (z)− F (xt)− 〈vt, z − xt〉

‖z − xt‖
≥ 0

}
.

A necessary condition for x ∈ <n to be a minimizer of F is 0 ∈ ∂F (x), and a point satisfying this condition

is called a critical or stationary point of F . Readers are referred to [42] for these basics. The function F is

said to have the KL property at x̄ ∈ dom ∂F with an exponent of σ (cf. [6, 5]) if there exist c, ε > 0 and

v ∈ (0,∞] such that

dist(0, ∂F (x)) ≥ c(F (x)− F (x̄))σ (3.1)

for all x satisfying ‖x− x̄‖ ≤ ε and F (x̄) < F (x) < F (x̄) + v. If F has the KL property with the exponent σ

at any x ∈ dom ∂F , then F is called a KL function with an exponent of σ. We continue using the notation

of vk and Ω as defined in (2.16), and according to (2.4) and (2.7), we define

F (u) := TV(u) + µΦγ(Ku− f) + χΩ(u) = TV(u) + µ (‖Ku− f‖1 −Ψγ(Ku− f)) + χΩ(u).

Lemma 3.1. For any u0 ∈ Ω and η > 0, the sequence {uk} generated by (2.13) satisfies

F (uk)− F (uk+1) ≥ η‖uk+1 − uk‖2, ∀ k ≥ 0. (3.2)

9



Proof. By definition, (2.13) implies that uk ∈ Ω and thus χΩ(uk) = 0 for all k ≥ 0. Let k ≥ 0 be fixed.

The convexity of Ψγ implies that Ψγ(vk+1) ≥ Ψγ(vk) + 〈∇Ψγ(vk), vk+1 − vk〉. Thus,

F (uk)− F (uk+1) ≥
(
TV(uk) + µ‖vk‖1

)
−
(
TV(uk+1) + µ‖vk+1‖1

)
+ µ〈∇Ψγ(vk), vk+1 − vk〉 (3.3)

It follows from (2.13) that

sk+1 := µKT∇Ψγ(vk) + η(uk − uk+1) ∈ ∂ [TV(u) + µ‖Ku− f‖1 + χΩ(u)]
∣∣
u=uk+1 .

Further considering the convexity of TV(u) + µ‖Ku− f‖1 + χΩ(u), we obtain from (3.3) that

F (uk)− F (uk+1) ≥ 〈sk+1, uk − uk+1〉+ µ〈∇Ψγ(vk), vk+1 − vk〉 = η‖uk+1 − uk‖2,

which completes the proof.

Lemma 3.2. If the TV is anisotropic as given in (1.1), then for any fixed µ > 0 the function F is a KL

function with exponent 1/2.

Proof. According to the definitions of anisotropic TV (1.1) and Ψγ (2.6), F is a piecewise linear-

quadratic function, and every piece is defined on a closed polyhedral set. Denote by m the number of

pieces of F , Fi the linear-quadratic function on the ith piece, and Ci the domain of Fi. Then, it holds that

F (u) = min1≤i≤m {Fi(u) + χCi(u)}. Since χCi is a proper closed polyhedral function, if follows from [33,

Corollary 5.2] that F is a KL function with exponent 1/2.

Now we are ready to establish the global convergence and convergence rate results for our DCA. In the

general theory of DC programming, see, e.g., [47, Theorem 3.7 (iv)], it is only guaranteed that, if α in (2.8)

is finite and the generated sequence is bounded, then any accumulation point is a critical point. The same

result is derived in part (i) of the following Theorem 3.3, while the rest of the theorem, namely part (ii)-(iv),

are much stronger than existing results for generic DC programming.

Theorem 3.3 (Global convergence and rate of convergence). Let u0 ∈ Ω, η > 0 and {uk} be the

sequence generated by (2.13). Then

(i) any accumulation point of {uk} is a critical point of (2.4);

(ii) {uk} converges globally to a critical point of (2.4), and furthermore
∑∞
k=0 ‖uk+1 − uk‖ < +∞;

(iii) if the TV is anisotropic, then there exist h > 0 and τ ∈ (0, 1) such that ‖uk − u∗‖ ≤ hτk for all

k ≥ 0, i.e., the convergence rate is R-linear;

(iv) if the TV is isotropic, then {uk} converges to u∗ at least sublinearly.

Proof. (i) It follows from (2.13) that

dk+1 := µKT
(
∇Ψγ(vk)−∇Ψγ(vk+1)

)
− η(uk+1 − uk) ∈ ∂F (uk+1). (3.4)

Since uk ∈ Ω for all k ≥ 0 and TV(u) + µΦγ(u) is bounded below (by 0), it follows from (3.2) that∑∞

k=0
‖uk+1 − uk‖2 ≤ F (u0)/η < +∞.

It thus follows that limk→∞(uk+1 − uk) = 0. Let u∗ be any accumulation point of {uk} and {unk} be a

subsequence such that limk→∞ unk = u∗. Then, limk→∞ unk+1 = limk→∞[(unk+1 − unk) + unk ] = u∗. By

replacing k by nk and letting k → +∞ on the both sides of (3.4), we obtain immediately from the upper

semicontinuity of ∂F and the continuity of ∇Ψγ that 0 ∈ ∂F (u∗), which completes the proof of part (i).

(ii) According to [6, Theorem 2.9], it suffices to guarantee that the sufficient decrease condition of {F (uk)},
the relative error condition on {dk} and the boundedness of {uk} hold for all k. In fact, {F (uk)} is sufficiently
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decreasing due to (3.2), and {uk} is bounded since 0 ≤ uk ≤ 1. Moreover, since ∇Ψγ is Lipschitz continuous,

we know from (3.4) that there must exist M > 0 sufficiently large such that

‖dk+1‖ ≤M‖uk+1 − uk‖. (3.5)

Thus, all the conditions required to guarantee the global convergence of {uk} to a critical point have been

fulfilled. The global convergence of {uk}, as well as the inequality
∑∞
k=0 ‖uk+1−uk‖ < +∞, follows directly

from [6, Theorem 2.9].

(iii) From (3.2), we see immediately that

F (uk+1)− F (u∗) ≥
∑∞

i=k+1
η‖ui+1 − ui‖2. (3.6)

By Lemma 3.2, F has the KL property at u∗ with σ = 1/2. It thus follows from (3.1) and (3.5) that there

exists a sufficiently large K such that

F (uk+1)− F (u∗) ≤ 1

c2
dist2

(
0, ∂F (uk+1)

)
≤ M2

c2
‖uk+1 − uk‖2, ∀ k ≥ K. (3.7)

Define Ak =
∑∞
i=k ‖ui+1 − ui‖2. Combing (3.6) and (3.7), we get Ak+1 ≤ M2

ηc2 (Ak − Ak+1), or equivalently

Ak+1 ≤ τ2Ak for all k ≥ K, where τ := M/
√
M2 + ηc2 ∈ (0, 1). Hence, there exist a constant ρ > 0

sufficiently large such that Ak ≤ ρ2τ2k for all k ≥ 0, and hence ‖uk+1 − uk‖ ≤ ρτk, for all k ≥ 0. Thus,

‖uk − u∗‖ ≤
∑∞

i=k
‖ui+1 − ui‖ ≤ ρ

1− τ
τk := hτk, ∀ k ≥ 0.

(iv) Since the isotropic TV is semialgebraic, so is F . It then follows that F is a KL function with certain

exponent σ ∈ [1/2, 1), see [6] for details. If σ > 1/2, then it is straightforward to show by following [4,

Theorem 2] that ‖uk − u∗‖ ≤ hk−
1−σ
2σ−1 for some h > 0 and all k ≥ 1, i.e., the convergence rate is sublinear.

If σ = 1/2, then similar to the proof of (iii), we can derive that the sequence {uk} converges to u∗ with the

faster R-linear rate.

4. Numerical results. In this section, numerical results are presented to demonstrate the performance

of the proposed TVSCAD model (2.4) and the corresponding DCA (2.13). The superior performance of

CTVL1 compared to the two-phase method [11] in terms of recovery quality has been demonstrated in [7]

via extensive numerical results. Therefore, we only compare TVSCAD with CTVL1. For reference purpose,

we also present results of TVL1.

Let ū and u be the original and the recovered images, respectively, and denote the mean intensity of ū

by mean(ū). The quality of recovered images will be evaluated by signal-to-noise ratio (SNR, in dB), which

is defined by

SNR := 20× log10 (‖ū−mean(ū)‖/‖ū− u‖) . (4.1)

According to our experiments, adding the bound constraint 0 ≤ u ≤ 1 can generally stabilize the compared

algorithms and improve the recovery quality. Therefore, we incorporate this constraint into all the compared

algorithms, and the resulting algorithms will still be referred as TVL1 and CTVL1. In our experiments,

constrained TVL1-equivalent problems, e.g., (2.18) for TVSCAD, were always solved by ADMM with the

same set of parameters. It is also our experience that the isotropic and anisotropic discretizations of TV

do not result in significantly different recoveries in terms of both visual quality and SNR. Thus, we simply

chose the anisotropic TV in our tests, which has favorable theoretical guarantee for TVSCAD.

All algorithms were implemented in Matlab, and the experiments were executed on a Lenovo Thinkpad

laptop with an Intel Core i7-3667U CPU at 2.00 GHz and 8 GB of memory, running 64 bit Microsoft Windows

8 and Matlab v8.6 (R2015b).
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4.1. Details of setting. The details of our experiments are summarized below.

- Tested image. In our experiments, we mainly tested the popular Lena image of size 512-by-512,

which has both smooth region and sharp boundaries. The original Lena image is given in Figure 4.1.

In fact, a few other nonabnormal images are test as well. Since the results remain largely similar

provided that relevant parameters are properly set and also due to the limitation of space, only

results of the Lena image are included. The only reason that we choose to present results of this

image is because it seems to be the most widely used one in imaging science.

Fig. 4.1. Tested image: Lena (512-by-512).

- Tested blur. We tested three types of blur, i.e., Gaussian, motion and average blurs, which were

generated by the Matlab function fspecial. For Gaussian and average blurs, the tested kernel sizes

were hsize = 7, 11, 15. For motion blur, we tested len = 7, 13, 19 and angle = 45◦. For Gaussian

blur, we set the standard deviation of kernel to be 5. We have also tested disk and pillbox blurs.

Since the comparison results remain largely alike, we only present recovered results of Gaussian,

motion and average blurs.

- Impulsive noise. We tested the two common types of impulsive noise, i.e., SP and RV noise. In

general, RV noise is much harder to remove than SP noise. In our experiments, we tested 90% and

80% as the highest noise levels for SP and RV noise, respectively.

- Parameters: µ, τ , ε, γ1, γ2, η, and others. Now we specify the model and algorithmic parameters

used in our tests.

(i) The “best” choice of the parameter µ is known to be problem dependent and very hard to

find. In fact, this is largely an open problem, even for the simpler TVL2 model [44]. In our

experiments, we first solved a sequence of bound constrained TVL1 problems to search for each

specific case the “best” choice of µ, i.e., a value that gives nearly the highest possible SNR.

These “best” parameters for different blurs and noise are plotted in Figure 4.2. Generally, more

noise implies smaller µ.

(ii) For TVSCAD and CTVL1, the model parameter µ is set by µ = cµ∗

1−r . This simple rule

for setting µ is based on numerical experiments. Here µ∗ denotes the “best” µ found for

constrained TVL1 model, c > 0 is a constant, and r denotes the noise level defined by

noise level := (# corrupted pixels)/(# total pixels). We set c = 4 and c = 1 for SP and

12
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Fig. 4.2. The “best” choice of µ for different settings.

RV noise, respectively, which may be suboptimal but performed favourably in our tests. We

emphasize that both TVSCAD and CTVL1 are much less sensitive in the choice of µ than

TVL1 due to the additional correction term `k(u) at each iteration, see detailed discussions

in [7]. Continuation on µ, i.e., starting from a small value and increasing it gradually, is also

applied to enhance the stability of the algorithms.

(iii) Parameters τ and ε, which define φ in (1.4) for CTVL1, and parameters γ1 and γ2, which define

the SCAD function ϕγ in (2.1), are also problem dependent. Consequently, the “best” choices

of these parameters are very difficult to determine. For CTVL1, we set τ = 2 and ε = 10−3,

as recommended by the authors of [7]. For TVSCAD, we set γ2 = max(0.2 × 0.85k−1, 0.1)

and γ1 = 0.08/k, where k ≥ 1 denotes the iteration counter. Our choice of γ2 is based on

experiments, which performed favourably in all the tested cases. It is definitely possible to

adjust the rule for choosing γ2 case by case. However, a uniformly defined γ2 is preferred.

(iv) The proximal term η
2‖u−u

k‖2 is added mainly to facilitate the theoretical analysis. In practice,

the presence of this term also prevents uk+1 from deviating too much from uk, and thus stabilizes

the algorithm. We set η to be 10−5 throughout. For solving the constrained TVL1 problem

like (2.17), we set βw = 5, βv = 50 and βx = 50 uniformly for all cases, and ADMM performs

very stable and efficient.

- Initialization. For solving TVL1 problem by ADMM, we set u0 = f always. For TVSCAD and

CTVL1, u0 is set to be the solution obtained from solving TVL1. To compute uk+1 from uk by

solving the TVL1-equivalent problem like (2.13), ADMM (2.18) is initialized from uk. Each time we

launched ADMM, all the starting Lagrange multipliers are set to zero.

- Stopping rule. For solving each TVL1-equivalent subproblem, the ADMM (2.18) was terminated by

‖uj+1 − uj‖/(1 + ‖uj‖) ≤ 10−4. According to our experiments, in many cases (though not always)

the quality of recovered images does not change significantly after no more than 15 iterations for

both TVSCAD and CTVL1, see [7] for a similar conclusion. Therefore, we terminated both methods

after 15 iterations. For TVSCAD, a more practical stopping rule could be introduced depending
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on detecting the stagnation of objective function values in (2.4). However, this is not possible for

CTVL1 since the convergence of its outer loop is unknown.

4.2. Comparison results with TVL1 and CTVL1. In this section, we present comparison results

with CTVL1. For reference purpose, results of TVL1 are also presented. We emphasize that we have modified

TVL1 and CTVL1 by adding the bound constraint 0 ≤ u ≤ 1 to improve the recovery quality. Without this

constraint, pixel values of recovered images may fall out of [0, 1], in which truncation or rescaling technique

need to be incorporated.
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Fig. 4.3. Gaussian (9× 9), 90% SP noise.

Here we present two classes of experimental results. In the first class, we tested three blurs, i.e., Gaussian

blur (hsize = 9, std = 5), motion blur (len = 7, angle = 45◦) and average blur (hsize = 9). For each

blur, 90% SP noise and 70% RV noise were tested. Detailed experimental results are given in Figures 4.3-

4.8, including evolutions of SNR values and objective function values and the recovered images for all the

compared algorithms. In the second class, we tested Gaussian blur (hsize = 7, 11, 15, std = 5), motion blur

(len = 7, 13, 19, angle = 45◦) and average blur (hsize = 7, 11, 15). For each blur, 20%, 40%, 60% and 80%

SP and RV noise were tested. We note that this class of experimental results contain much more information

than the first class. For each instance, the SNR values of restored images by TVL1, CTVL1 and TVSCAD

are demonstrated by bar plots, see details given in Figure 4.9.

It can be see from Figures 4.3-4.9 that both TVSCAD and CTVL1 outperform TVL1 significantly for all

the tested cases. For low noise level, TVL1 performs reasonably well, while TVSCAD and CTVL1 perform

better. For high noise level, TVSCAD and CTVL1 can improve the results of TVL1, and sometimes the

improvements are significant. This is desirable and easy to understand because both methods enforce less

fitting on likely noisy data, as a result of which the likely uncorrupted data can be fitted more sufficiently
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Fig. 4.6. Motion blur (len = 7, angle = 45◦), 70% RV noise.

0 5 10 15
Iteration

6

8

10

12

14

S
N

R

TVSCAD
CTVL1

0 5 10 15
Iteration

1.2

1.4

1.6

1.8

2

2.2

O
bj

ec
tiv

e 
va

lu
e

×106

TVSCAD

TVL1: SNR 5.90dB CTVL1: Iter 15, SNR 15.02dB TVSCAD: Iter 15, SNR 15.05dB
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Fig. 4.8. Average blur (9× 9), 70% RV noise.

by attaching a parameter µ larger than that of TVL1. From Figures 4.3-4.8, the images recovered by both

CTVL1 and TVSCAD are apparently much better than those recovered by TVL1 in terms of both visual

quality and SNR. Moreover, both TVSCAD and CTVL1 improve SNR as the algorithms proceed. In four

of the six cases tested in the first class experiments, the SNR values of restored images stagnated for both

methods after around 15 iterations. Two exceptions are Gaussian and motion blur with 70% RV noise, in

which case CTVL1 converges much slower and needs more iterations, see Figures 4.4 and 4.6. The objective

function value TV(u) + µΦγ(Ku − f) of (2.4) also decreases monotonically and quickly. Comparing the

results of CTVL1 and TVSCAD, we see that TVSCAD obtained better or comparable results in all the

tested cases. In particular, it can be seen from the results of Gaussian and motion blur with 70% RV noise

that TVSCAD increases SNR much faster than CTVL1, as shown in Figures 4.4 and 4.6. The only case that

CTVL1 wins with slightly higher SNR is motion blur with 90% SP noise, as shown in Figure 4.5. For other

cases, as given in Figures 4.3, 4.7 and 4.8, TVSCAD is either faster than or comparable with CTVL1. For

the large set of experimental results presented in Figure 4.9, TVSCAD is a clear winner since in about half

of the tested cases TVSCAD obtained noticeably higher SNR values than CTVL1, while for the rest half

cases, TVSCAD and CTVL1 perform very closely.

5. Concluding remarks. In this paper, we proposed, analyzed and tested a nonconvex TVSCAD

model for image deblurring with impulsive noise corruption. To solve the nonconvex TVSCAD model, we

proposed a DCA, which enjoys favorable convergence properties, namely, global convergence to a critical

point of the nonconvex objective function, R-linear rate of convergence in the case of anisotropic TV, and

at-least-sublinear convergence rate for isotropic TV regularization case. These results are much stronger

than existing results for general DC programming. Extensive numerical results demonstrated that TVSCAD
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Fig. 4.9. More comparison results with TVL1 and CTVL1.

performs favorably. In particular, it outperforms the recently proposed CTVL1 method [7] in many cases.

We note that the idea of this paper can be extended to solve more problems. For example, color image

processing based on the multichannel TV regularization proposed in [56]. The idea of DCA can also be

extended to solve problems with other nonconvex penalty function, such as folded concave functions [27]. At

18



present, it remains largely unexplored on how to adaptively choose the weighting parameter µ and the SCAD

parameters γ1 and γ2, which are clearly problem dependent. Our choice in this paper could be far from

optimal for certain specific instances. Another problem is how to determine a “better” DC decomposition

of the objective function. Our choice in (2.15) was motivated by the easiness of subproblem and better

convergence properties of the whole algorithm. In fact, this problem is known as regularization technique in

DC programming and kept open for a long time. Moreover, the theoretical properties of the TVSCAD model

is definitely very important in understanding its performance and deserves further investigations. Related

results for regularized least squares problem have been presented in [37, 18, 19, 38]. We leave these issues

to further research.
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