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Abstract. This paper studies a class of problems consisting of minimizing a continuously differentiable function penalized

with the so-called `0-norm over a symmetric set. These problems are hard to solve, yet prominent in many fields and applications.

We first study the proximal mapping with respect to the `0-norm over symmetric sets, and provide an efficient method to attain

it. The method is then improved for symmetric sets satisfying a sub-modularity-like property, which we call “second order

monotonicity” (SOM). It is shown that many important symmetric sets, such as the `1, `2, `∞-balls, the simplex and the full-

simplex, satisfy this SOM property. We then develop, under the validity of the SOM property, necessary optimality conditions,

and corresponding algorithms that are guaranteed to converge to points satisfying the aforementioned optimality conditions. We

prove the existence of a hierarchy between the optimality conditions, and consequently between the corresponding algorithms.

1. Introduction. Sparsity plays an important role in countless applications in various fields, especially

in the emerging fields of compressed sensing and image and signal processing (see the in-depths reviews

[15, 18, 19, 27]). Optimization problems involving sparsity are on the border between continuous and

combinatorial optimization, and the vast majority of them are considered to be very hard (see for example

[23]). This difficulty is usually treated either by relaxing the sparsity term ([4, 12, 14, 27, 29]) or by assuming

restrictive assumptions ([13, 16, 17]). Since in general it is impossible to attain an optimal solution, or even

to verify if a feasible solution to a sparse optimization problem is optimal, necessary optimality conditions

and methods to obtain good solutions are imperative.

Sparse optimization problems usually belong to one of two classes of problems: problems with a spar-

sity constraint, or problems with sparsity penalty term. The literature on sparsity constrained problems is

rather rich, in particular, immense literature has been accumulated on the problem of sparsest solution to a

system of linear equations (see for example the review paper [11] and references therein). Several studies in

recent years have expanded and generalized these results to include more general functions and additional

constraints. In particular, several works have been done in the area of compressed sensing with nonlinear

measurements, see for example [7] and the recent studies on sparse phase retrieval [24, 25, 28].

Several studies were conducted on the study of general optimality conditions and algorithms on sparsity-

constrained problem. The work [2] presented optimality conditions and their hierarchy for sparsity con-

strained problems, as well as methods that guarantee to converge in some sense to points satisfying the

derived optimality conditions. Later on, the work [3] studied the generalization where the feasible set is a

sparse symmetric set, meaning a set which is an intersection of a closed convex symmetric set and the set

of all k-sparse vectors (for some positive integer k). It was shown in [3] how to compute the orthogonal

projection onto sparse symmetric sets efficiently, and used this result to define optimality conditions and

algorithms, as well as establish a hierarchy between the different methods and conditions.

The recent work [5] studied the sparse PCA problem, devising a coordinate-wise optimality condition

that was superior (i.e. more restrictive) than other frequently used stationary-based optimality conditions.

The superiority (i.e. restrictiveness) of coordinate-wise based conditions over stationary-based conditions

was proved and illustrated in all three papers [2, 3, 5], demonstrating the importance of studying optimality

conditions in the sparse optimization setting.

Much less is known on problems incorporating a sparsity term as a penalty term. In particular, in this
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paper we study the following optimization problem:

(1.1) min{f(x) + λ‖x‖0 : x ∈ B},

where B ⊆ Rn satisfies some symmetry assumptions. Problem (1.1) for the specific case where f(x) ≡
‖Ax − b‖2 (A ∈ Rm×n,b ∈ Rm) was studied in [26] where a stationarity-based optimality condition was

derived. The work [8] studied the convergence of a gradient descent thresholding method to points satisfying

the aforementioned optimality condition. The paper [22] studied the penalized problem over component-wise

separable sets, and provided a stationarity-based optimality condition.

Paper layout. Fundamental mathematical preliminaries for sparse optimization over symmetric sets are

defined and presented in Section 2. Section 3 studies the sparse proximal mapping operator over symmetric

sets. Essential properties of the sparse prox are proved, and an efficient method for computing the sparse

prox in the general case is derived. This method is then improved for sets that satisfy a sub-modularity

like property named second order monotonicity. Many important sets satisfy this property, as shown in

the appendix. In Section 4 we develop necessary optimality conditions and prove their hierarchy under the

validity of the second order monotonicity property. The section is concluded with examples illustrating the

strictness of the hierarchy. Finally, Section 5 presents methods that obtain points satisfying the new derived

optimality conditions.

Notation. Matrices and vectors are denoted by boldface letters. The vector of all zeros is denoted by 0

and the vector of all ones by e. The vector which has 1 in its ith component and zeros elsewhere is denoted

by ei. For any p ∈ [1,∞] and α > 0, the set Bp[0, α] = {x : ‖x‖p ≤ α} is the `p ball with center 0 and

radius α. For a vector x ∈ Rn, the vector |x| is the vector of absolute values of the components of x, and

the vector sign(x) is defined by sign(x)i = 1 when xi ≥ 0 and −1 otherwise. For any two vectors x,y of the

same dimension, x � y denotes their component-wise product (a.k.a. Hadmard product). For a given set

S ⊆ Rn, the orthogonal projection of x onto S is defined as

PS(x) = argmin{‖y − x‖22 : y ∈ S}.

The indicator function of a given set S ⊆ Rn is denoted by δS and is given by δS(x) = 0 for x ∈ S and

∞ otherwise. The so-called `0-norm, ‖x‖0, which counts the number of nonzero elements in x is defined by

‖x‖0 ≡ |{i : xi 6= 0}|. For a given integer s ∈ {1, . . . , n}, the set Cs comprises all vectors with at most s

non-zero elements:

Cs = {x ∈ Rn : ‖x‖0 ≤ s} .

In this context, s will be called ”the sparsity level”. The support set of a vector x ∈ Rn is denoted by

I1(x) ≡ {i ∈ {1, . . . , n} : xi 6= 0}, and the off-support is denoted by I0(x) ≡ {i ∈ {1, . . . , n} : xi = 0}. A

vector is said to have a full support with respect to a given sparsity level s if ‖x‖0 = s and a non-full support

if ‖x‖0 < s. Given a vector x ∈ Rn, the subvector of x composed of the components of x whose indices are

in a given subset T ⊆ {1, . . . , n} is denoted by xT ∈ R|T |. The matrix UT denotes the submatrix of the

n-dimensional identity matrix In constructed from the columns corresponding to the index set T . Obviously,

if T = {i : xi 6= 0}, then x = UTxT . Given a set B ⊆ Rn and a set of indices T ⊆ {1, 2, . . . , n}, the

restriction of the set B to the index set T is defined by BT = {x ∈ R|T | : UTx ∈ B} whenever T 6= ∅, and

in case of an empty index set as

B∅ =

{
{0}, 0 ∈ B,
∅, 0 /∈ B.
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2. Mathematical Preliminaries.

2.1. Permutations and Orders. The permutation group comprising all possible n! permutations of

{1, . . . , n} is denoted by Σn. Given a vector x ∈ Rn, the vector xσ is the vector defined by

(xσ)i = xσ(i),

which is the reordering of x according to the permutation σ. For example, if x = (4, 5, 6)
T

, and σ is

the permutation given by σ(1) = 3, σ(2) = 2, σ(3) = 1, then xσ = (6, 5, 4)T , meaning that σ reorders the

elements of x in a non-ascending order. Such permutations will be called sorting permutations and their

formal definition follows.

Definition 2.1 (sorting permutations). Let x ∈ Rn. Then a permutation which sorts the elements of

x in a non-ascending order will be called a sorting permutation of x. The set of all sorting permutations

of x is a subset of Σn and is denoted by Σ̃(x). Explicitly,

Σ̃(x) =
{
σ ∈ Σn : xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n−1) ≥ xσ(n)

}
.

Given σ ∈ Σn, the set Sσj is the set comprising the indices σ(1), σ(2), . . . , σ(j):

Sσj =

{
{σ(1), σ(2), . . . , σ(j)} , 1 ≤ j ≤ n,
∅. otherwise.

2.2. Symmetric Functions and Sets. Symmetry will play a vital role in the analysis to follow. We

begin with the definition of symmetric functions.

Definition 2.2 (symmetric functions). A function h : Rn → [−∞,∞] is called symmetric if h(x) =

h(xσ) for any x ∈ Rn and σ ∈ Σn.

In a similar way, we define symmetric sets.

Definition 2.3 (symmetric sets). Let D ⊆ Rn. Then D is a symmetric set if for any vector x ∈ D
and σ ∈ Σn, it holds that xσ ∈ D.

When a symmetric function is also invariant under sign changes, it is called an absolutely symmetric function.

Definition 2.4 (absolutely symmetric functions). A function h : Rn → [−∞,∞] is called absolutely

symmetric if for any x ∈ Rn and σ ∈ Σn, it holds that h(x) = h(|xσ|).

Example 2.5. The `1-norm function h(z) =
∑n
i=1 |zi| is absolutely symmetric, while the sum function

h(z) =
∑n
i=1 zi is symmetric, but not absolutely symmetric.

Correspondingly, sets that are symmetric under sign changes and permutations will be called absolutely

symmetric.

Definition 2.6 (absolutely symmetric sets). Let D ⊆ Rn be a symmetric set. Then D is an absolutely

symmetric set if it satisfies that x ∈ D if and only if |x| ∈ D.

Obviously, D ⊆ Rn is a symmetric set if and only if δD is a symmetric function, and is an absolutely

symmetric set if and only if δD is an absolutely symmetric function. Much of the properties of symmetric

and absolutely symmetric functions were studied in the seminal papers of Lewis in [20, 21] and in the book

of Lewis and Borwein [10, Section 5.2, etc.]. We note that the terminology used in this manuscript differs
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from the one used in [3] where “symmetric” and “absolutely symmetric” sets were referred to as “type-1”

and “type-2” symmetric sets respectively.

Another important property of sets is non-negativity.

Definition 2.7 (nonnegative sets). A set D ⊆ Rn is nonnegative if x ≥ 0 for any x ∈ D.

Examples of nonnegative symmetric sets are the nonnegative orthant, the unit-simplex ∆n ≡ {x ∈ Rn : x ≥
0, eTx = 1}, and nonnegative boxes of the form [l, u]n (u ≥ l ≥ 0). Examples of absolutely symmetric sets

are `p-balls (p > 0), Rn, as well as any box set of the form [−l, l]n for some l ≥ 0.

2.3. Review of Results for the Projection onto Sparse Symmetric Sets. Let x ∈ Rn, s ∈
{1, 2, . . . , n} and let B ⊆ Rn be a nonempty closed and convex set. A vector in PCs∩B(x) is called an

s-sparse projection vector of x onto B. Since Cs is a nonconvex set, computing a member in PCs∩B(x) is

in general a hard task; however, in [3] it was shown that whenever B is either nonnegative symmetric or

absolutely symmetric, it is possible to find a sparse projection vector onto B efficiently.1

We will mostly focus on sets that are simple symmetric sets, a term that we define explicitly below.

Definition 2.8 (simple symmetric sets). A set B ⊆ Rn is called a simple symmetric set if (i) it is

either nonnegative symmetric or absolutely symmetric and (ii) it is nonempty closed and convex.

To simplify and unify the analysis, in cases where B is either an absolutely symmetric or a nonnegative

symmetric set, we will use the following symmetry function pB : Rn → Rn that distinguishes between the

two types of possible symmetries B might posses:

(2.1) pB(x) ≡
{

x, B is nonnegative symmetric,

|x|, B is absolutely symmetric.

The following theorem recalls how to compute a sparse projection vector onto simple symmetric sets.

Theorem 2.9 ([3, Theorem 4.4]). Suppose that B ⊆ Rn is a simple symmetric set. Let s ∈ {1, 2, . . . , n},
x ∈ Rn and σ ∈ Σ̃(pB(x)). Then UTPBT (xT ) ∈ PCs∩B(x), where T = Sσs .

Theorem 2.9 essentially states that a member in PCs∩B(x) can be constructed by projecting the s largest

components of x (in value or in absolute value depending on the type of symmetry) onto the restriction of

B to these components and plugging zeros elsewhere. Note that the choice of the s largest components is

not necessarily unique, and therefore there can be more than one member in PCs∩B(x).

The following two properties of the orthogonal projection onto symmetric sets from [3] will be useful in

our analysis.

Lemma 2.10 (properties of projection onto symmetric sets). Let D ⊆ Rn be a symmetric set, x ∈ Rn

and y ∈ PD (x). Then

(a) for any permutation σ ∈ Σn and any i, j ∈ {1, 2, . . . , n}, it holds that

(yi − yj) (xi − xj) ≥ 0; ([3, Lemma 3.1])

(b) if D is absolutely symmetric, then |y| ∈ PD∩Rn+(|x|); ([3, Corollary 3.1])

(c) if D is absolutely symmetric, then sign(x)� y ∈ PD∩Rn+(|x|). ([3, Lemma 3.3])

We will now derive a key result that states that if y ∈ PD(x) for some symmetric set D, then PD(x)

and y can be ordered simultaneously.

1Given that it is possible to efficiently find orthogonal projections onto nonempty closed convex sets of the form BT (T
being an index set).
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Theorem 2.11. Suppose that D ⊆ Rn is either an absolutely symmetric set or a nonnegative symmetric

set. Let x ∈ Rn. Then for any y ∈ PD(x) there exists

(2.2) σ ∈ Σ̃(pD(x)) ∩ Σ̃(pD(y)).

Proof. We will begin by showing that for any y ∈ PD(x) there exists σ ∈ Σ̃(y) ∩ Σ̃(x). Let y ∈ PD(x),

and σ ∈ Σ̃(y); suppose that σ /∈ Σ̃(x). Then there exist indices i1 < i2 such that xσ(i1) < xσ(i2). By Lemma

2.10(a), (yσ(i1) − yσ(i2))(xσ(i1) − xσ(i2)) ≥ 0, which implies that yσ(i1) ≤ yσ(i2). Since σ ∈ Σ̃(y), it follows

that yσ(i1) ≥ yσ(i2), and hence yσ(i1) = yσ(i2). Therefore, the permutation σ̂ defined by σ̂(i1) = i2, σ̂(i2) = i1
and σ̂(k) = σ(k) otherwise, is also a sorting permutation of y; we then set σ ← σ̂. This procedure can be

repeated as long as there are indices i < j which violate the order (xσ(i) < xσ(j)). Since at each iteration of

the procedure, the number of pairs of indices which violate the order of x is strictly reduced, the process is

finite and ends with a sorting permutation σ ∈ Σ̃(y) satisfying σ ∈ Σ̃(x).

Let σ ∈ Σ̃(y) ∩ Σ̃(x). If D is a nonnegative symmetric set, then (2.2) is trivially satisfied. If D is an

absolutely symmetric set, then by Lemma 2.10(b) we have that |y| ∈ PD∩Rn+(|x|). Hence, by the first part

of this proof, there exists σ ∈ Σ̃(|y|) ∩ Σ̃(|x|), and the required is satisfied.

3. Sparse Prox Vectors. In this section we will focus on studying the properties, as well as com-

putation methods, of vectors in proxαgB , where α > 0 and gB(x) ≡ δB(x) + ‖x‖0 with B being a simple

symmetric set. Recall that by the definition of the prox operator

proxαgB (x) = argmin
u∈B

{
α‖u‖0 +

1

2
‖u− x‖22

}
.

An optimal solution of the above problem will be called a sparse prox vector over B with constant α, and in

most cases we will just refer to the vector as a sparse prox vector over B without indication of the identity

of the constant α. The results of this section will later be used in Section 4 to develop optimality conditions

for problem (P) and in Section 5 in the developments of corresponding algorithms.

A fundamental tool in analyzing and finding sparse prox vectors when the underlying set is simple

symmetric is the sparse projection sequence.

3.1. The Sparse Projection Sequence.

Definition 3.1 (i-sparse projection). Let B ⊆ Rn be a simple symmetric set and let x ∈ Rn, σ ∈
Σ̃(pB(x)). Then for any i ∈ {1, . . . , n}, the i-sparse projection on B with respect to σ, denoted by

PσB(x; i), is defined by

PσB(x; i) = UTPBT (xT ) where T = Sσi .

When 0 ∈ B, we will artificially define PσB(x; 0) = 0. The following binary variable will be used to indicate

whether 0 is in B or not:

`B ≡
{

0, 0 ∈ B,
1, 0 /∈ B.

When B is nonempty and absolutely symmetric, then by its convexity, 0 ∈ B, and hence `B = 0. Therefore,

the case `B = 1 is only relevant for some examples of nonnegative symmetric sets (such as the unit simplex).

The sequence of all the i-sparse projections w.r.t. the same sorting permutation σ ∈ Σ̃(pB(x)),

{PσB(x; i)}ni=`B
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will be called the sparse projection sequence on B with respect to σ.

Remark 3.2. By Theorem 2.9, for any i ∈ {`B , `B + 1, . . . , n}, PσB(x; i) ∈ PCi∩B(x).

The next lemma states that for any sparse projection vector there exists a sorting permutation and a

corresponding sparse projection sequence to which it belongs.

Lemma 3.3. Let B ⊆ Rn be a simple symmetric set, and let y ∈ PCi∩B (x) where i = ‖y‖0. Then there

exists σ ∈ Σ̃(pB(x)) ∩ Σ̃(pB(y)) for which y = PσB(x; i).

Proof. Since y ∈ PCi∩B (x), it obviously satisfies yI1(y) = PBI1(y)
(xI1(y)), and therefore y = UTPBT (xT )

where T = I1(y). By Theorem 2.11, since y ∈ PCi∩B (x), there exists a sorting permutation σ ∈ Σ̃(pB(x))∩
Σ̃(pB(y)). For this permutation, T = I1(y) = Sσi , and hence PσB (x; i) = UTPBT (xT ) = y.

The following technical lemma will be required.

Lemma 3.4. Suppose that B ⊆ Rn is a simple symmetric set. Let x ∈ Rn, i ∈ {1, . . . , n}, and σ ∈
Σ̃(pB(x)). Let i, j be two integers satisfying `B ≤ j ≤ i ≤ n. If

(3.1) ‖x− PσB(x; j)‖22 = ‖x− PσB (x; i) ‖22,

then PσB(x; j) = PσB (x; i) .

Proof. By splitting the sums in each of the sides of (3.1) to indices in Sσi and in (Sσi )c, we obtain2

‖PσB(x; i)Sσi − xSσi ‖
2
2 + ‖x(Sσi )c‖22 = ‖PσB(x; j)Sσi − xSσi ‖

2
2 + ‖x(Sσi )c‖22,

and hence,

(3.2) ‖PσB(x; i)Sσi − xSσi ‖
2
2 = ‖PσB(x; j)Sσi − xSσi ‖

2
2.

Note that PσB(x; i)Sσi is the orthogonal projection of xSσi onto BSσi and that PσB(x; j)Sσi ∈ BSσi . Therefore,

by the uniqueness of the orthogonal projection of xSσi onto the nonempty closed and convex set BSσi , (3.2)

implies that PσB(x; j)Sσi = PσB (x; i)Sσi
, and hence, also that PσB(x; j) = PσB(x; i).

We can utilize Lemma 3.4 and obtain the following result stating that if the projection sequence comprises

different vectors up to a certain point, then these vectors must have full support.

Theorem 3.5. Suppose that B ⊆ Rn is a simple symmetric set. Let x ∈ Rn, i ∈ {1, . . . , n}, and

σ ∈ Σ̃(pB(x)). Let k ∈ {1, 2, . . . , n}. If PσB(x; i) 6= PσB(x; i + 1) for any i = `B , `B + 1, . . . , k − 1, then

‖PσB(x; i)‖0 = i for any i = `B , `B + 1, . . . , k.

Proof. We will prove that ‖PσB(x; i)‖0 = i by induction on i. For i = `B , it is obvious that ‖PσB(x; `B)‖0 =

`B . Now we assume that ‖PσB(x; j)‖0 = j for all j = `B , `B + 1, . . . , i− 1 where i ∈ {`B + 1, `B + 2, . . . , k},
and will prove that ‖PσB(x; i)‖0 = i. Suppose by contradiction that ‖PσB(x; i)‖0 ≤ i − 1. This, along with

the fact that PσB(x; i− 1) ∈ argmin
y∈Ci−1∩B

‖y − x‖22 implies that

‖PσB(x; i− 1)− x‖22 ≤ ‖P
σ
B(x; i)− x‖22 .

Since PσB(x; i) ∈ argmin
y∈Ci∩B

‖y − x‖22,

‖PσB(x; i)− x‖22 ≤ ‖P
σ
B(x; i− 1)− x‖22 .

2When i = n, the term ‖x(Sσi )c‖22 is omitted from both sides.
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Thus, ‖PσB(x; i)− x‖22 = ‖PσB(x; i− 1)− x‖22 . Invoking Lemma 3.4, we obtain that PσB(x; i− 1) = PσB(x; i),

which is a contradiction to the underlying assumption that the projection sequence (up to the kth vector)

comprises different vectors.

3.2. Computing Sparse Prox Vectors. In this section we will show how to find a sparse prox vector

over B under the assumption that B is a simple symmetric set. In particular, Theorem 3.6 below shows that

a sparse prox vector can always be found among the sparse projection sequence (w.r.t. an arbitrary sorting

permutation). We begin by defining the set of indices

Dα(x) = argmin
i∈{`B ,`B+1,...,n}

{
α‖PσB(x; i)‖0 +

1

2
‖PσB(x; i)− x‖22

}
.

Theorem 3.6 (sparse prox characterization). Suppose that B is a simple symmetric set. Let x ∈
Rn, σ ∈ Σ̃(pB(x)) and α > 0. Then PσB(x;m) ∈ proxαgB (x) for any m ∈ Dα(x).

Proof. Since proxαgB (x) is nonempty, there exists

(3.3) z ∈ proxαgB (x) = argmin
u∈B

{
α‖u‖0 +

1

2
‖u− x‖22

}
.

Since m ∈ Dα(x),

(3.4) α‖PσB(x;m)‖0 +
1

2
‖PσB(x;m)− x‖22 ≤ α‖PσB(x; ‖z‖0)‖0 +

1

2
‖PσB(x; ‖z‖0)− x‖22.

By the definition of the projection sequence (see also Remark 3.2), PσB(x; ‖z‖0) ∈ PC‖z‖0∩B(x), and hence,

‖PσB(x; ‖z‖0)− x‖22 ≤ ‖z− x‖22, which combined with the obvious inequality ‖PσB(x; ‖z‖0)‖0 ≤ ‖z‖0, yields

(3.5) α‖PσB(x; ‖z‖0)‖0 +
1

2
‖PσB(x; ‖z‖0)− x‖22 ≤ α‖z‖0 +

1

2
‖z− x‖22.

Combining (3.4) and (3.5), we have that α‖PσB(x;m)‖0 + 1
2‖P

σ
B(x;m)− x‖22 ≤ α‖z‖0 + 1

2‖z− x‖22, which by

the definition of z (see (3.3)) implies that PσB(x;m) ∈ proxαgB (x).

Theorem 3.6 states that essentially in order to find a sparse prox vector, we need to minimize the discrete

function

VB,σ,x,α : i 7→ α‖PB(x; i)‖0 +
1

2
‖x− PσB(x; i)‖22.

When the identities of B, σ,x and α will be clear from the context, we will use the notation V instead of

VB,σ,x,α. In this notation, Dα(x) = argmin
i=`B ,`B+1,...,n

V (i).

Theorem 3.6 naturally leads to the following algorithm for computing a sparse prox vector over simple

symmetric sets.

3.3. The Second Order Monotonicity Property.

3.3.1. Definition and Basic Properties. Algorithm 1 requires the computation of n sparse projection

vectors in order to compute a sparse prox vector. We will now show how this search can be done more

efficiently when the set B, in addition to being simple symmetric, satisfies a submodularity-like monotonicity

property that we will refer to as the second order monotonicity property.

Definition 3.7 (second order monotonicity). A simple symmetric set B ⊆ Rn is said to satisfy the

second order monotonicity (SOM) property if for any x ∈ Rn, i ∈ {`B , `B + 1, . . . , n − 2} and σ ∈
7



Algorithm 1 Computing a Sparse Prox Vector

Input: x ∈ Rn, α > 0, B ⊆ Rn simple symmetric.
Output: y ∈ proxαgB (x).

1. Find σ ∈ Σ̃(pB(x)).
2. Compute PσB(x; i) for any i ∈ {`B , `B + 1, . . . , n}.

3. Set y = PB(x;m), where m ∈ argmin
i∈{`B ,`B+1,...,n}

{
α‖PσB(x; i)‖0 +

1

2
‖PσB(x; i)− x‖22

}
.

Σ̃(pB(x)), the following inequality holds:

(3.6) ‖PσB(x; i)− x‖22 − ‖PσB(x; i+ 1)− x‖22 ≥ ‖PσB(x; i+ 1)− x‖22 − ‖PσB(x; i+ 2)− x‖22.

In Appendix A we prove that many important sets share this property, such as Rn, Rn+, `1, `2, `∞-balls

and the α-simplex set.

For any i ∈ {`B , `B + 1, . . . , n− 1} and x ∈ Rn we use the notation

dσB(x; i) ≡ 1

2
‖PσB(x; i)− x‖22 −

1

2
‖PσB(x; i+ 1)− x‖22.

Obviously dσB(x; j) ≥ 0 for any x ∈ Rn and j ∈ {`B , `B + 1, . . . , n− 1}. The SOM property can be written

in terms of this notation as

dσB(x; `B) ≥ dσB(x; `B + 1) ≥ · · · ≥ dσB(x;n− 1).

In the rest of this section we will show that the above monotonicity property of the sequence {dσB(x; i)}n−1
i=`B

implies that an index in Dα(x) can be attained by performing a binary search, thus reducing the amount of

sparse projections that need to be computed from O(n) to O(log2(n)).

The largest index for which dσB(x; i− 1) > 0 will be denoted by uB,σ,x:

uB,σ,x =

{
max{i ∈ {`B + 1, `B + 2, . . . , n} : dσB(x; i− 1) > 0}, dσB(x; `B) > 0,

`B , dσB(x; `B) = 0.

The next lemma establishes some basic properties of the sparse projection sequence under the SOM property

that will be useful in our analysis.

Lemma 3.8. Let x ∈ Rn, and suppose that B is a simple symmetric set satisfying the SOM property.

Then

(a) ‖PσB(x; i)‖0 = i for any i ∈ {`B , `B + 1, . . . , uB,σ,x};
(b) ‖PσB(x; i)‖0 = uB,σ,x for any i ∈ {uB,σ,x, uB,σ,x + 1, . . . , n}. Moreover, for any such i, PσB(x; i) =

PσB(x;uB,σ,x).

Proof. Claim (a) is obvious for the case where uB,σ,x = `B . Suppose that uB,σ,x > `B . By the definition

of uB,σ,x, it follows that dσB(x; i− 1) > 0 for any i ∈ {`B + 1, `B + 2, . . . , uB,σ,x}. In particular for any such

i, PσB(x; i− 1) 6= PσB(x; i), and thus part (a) follows by invoking Theorem 3.5. To prove claim (b), note that

by the definition of uB,σ,x and the SOM property dσB(x; i) = 0 for any i ∈ {uB,σ,x, uB,σ,x + 1, . . . , n − 1},
meaning that for such i, ‖x− PσB(x; i)‖22 = ‖x− PσB(x; i+ 1)‖22. Thus, invoking Lemma 3.4 , it follows that

PσB(x; i) = PσB(x;uB,σ,x) for any i ∈ {uB,σ,x, uB,σ,x + 1, . . . , n}, and in particular for such i, ‖PσB(x; i)‖0 =

‖PσB(x;uB,σ,x)‖0 = uB,σ,x.
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The main result connecting dσB and the value function V will now be stated and proved.

Theorem 3.9. Suppose that B ⊆ Rn is a simple symmetric set satisfying the SOM property. Let x ∈ Rn,

σ ∈ Σ̃(pB(x)) and α > 0. Denote V ≡ VB,σ,x,α.

1. For any i ∈ {`B , `B + 1, . . . , uB,σ,x − 1}, it holds that

(a) dσB(x; i) > α if and only if V (i) > V (i+ 1).

(b) dσB(x; i) = α if and only if V (i) = V (i+ 1).

(c) dσB(x; i) < α if and only if V (i) < V (i+ 1).

2. V (uB,σ,x) = V (uB,σ,x + 1) = · · · = V (n).

Proof. 1. By Lemma 3.8, for any i ∈ {`B , `B + 1, . . . , uB,σ,x− 1}, ‖PσB(x; i)‖0 = i and ‖PσB(x; i+ 1)‖0 =

i+ 1; thus,

V (i+ 1)− V (i) =
1

2
‖x− PσB(x; i+ 1)‖22 + α(i+ 1)− 1

2
‖x− PσB(x; i)‖22 − αi = α− dσB(x; i),

from which (a),(b) and (c) follow.

2. By the definition of uB,σ,x and the SOM property, dσB(x;uB,σ,x) = dσB(x;uB,σ,x+1) = · · · = dσB(x;n−1) =

0, and hence ‖x−PσB(x; i)‖22 = ‖x−PσB(x;uB,σ,x)‖22 for any i ∈ {uB,σ,x, UB,σ,x +1, . . . , n}, which along with

Lemma 3.8(b) implies that for any i ∈ {uB,σ,x, UB,σ,x + 1, . . . , n}

V (i) = α‖PσB(x; i)‖0 +
1

2
‖x− PσB(x; i)‖22 = α‖PσB(x;uB,σ,x)‖0 +

1

2
‖x− PσB(x;uB,σ,x)‖22 = V (uB,σ,x).

The connection between V and dσB described in Theorem 3.9 implies that if dσB(x; i) > α, then all the

indices in Dα(x) are larger than i, and that if dB(x; i) ≤ α, then Dα(x) ∩ {`B , `B + 1, . . . , i} 6= ∅. This

naturally implies that we can define a binary search procedure for finding an index in Dα(x). Specifically,

the following procedure finds the smallest index in Dα(x), which can be explicitly written as

(3.7) Dmin
α =

{
max{i ∈ {`B , `B + 1, . . . , n} : dσB(x; i− 1) > α}, dσB(x; `B) > α,

`B , dσB(x; `B) ≤ α.

Algorithm 2 Binary Search for Computing a Sparse Prox Vector

Input: x ∈ Rn, α > 0, B ⊆ Rn simple symmetric (n ≥ 3).
Output: y ∈ proxαgB (x).

1. Find σ ∈ Σ̃(pB(x)).
2. If dσB(x; `B) ≤ α, then Dmin

α = `B and go to step 6.
3. If dσB(x;n− 1) > α, then Dmin

α = n and go to step 6.
4. Set klow = `B , kup = n− 1.
5. Repeat:

(a) if kup = klow + 1, then Dmin
α = kup and go to step 6.

(b) kmid = d(kup + klow)/2e
i. if dB(x; kmid) > α set klow ← kmid;

ii. otherwise set kup ← kmid.
6. Set y = PσB

(
x;Dmin

α

)
.

As was illustrated above, the validity of the SOM property enables a more efficient computation of a

sparse prox vector. We will later show in Section 4 that the SOM property is fundamental in the study of
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optimality conditions of problem (1.1). It is thus important to detect simple symmetric sets that satisfy the

property. Table 1 contains a list of subsets of Rn on which we will prove the validity of the SOM property.

The constant α is assumed to be positive. The proofs are very long and technical, and since they are not

essential for the developments in the sequel, they are postponed to Appendix A.

Table 1
List of sets satisfying the SOM property.

Name of Set Set Reference

`∞-ball B∞[0, α] Theorem A.6
nonnegative α-box [0, α]n Theorem A.5

– Rn Theorem A.6
nonnegative orthant Rn+ Theorem A.5

`2-ball B2[0, α] Theorem A.7
α-simplex ∆n(α) = {x : eTx = α,x ≥ 0} Theorem A.13

full α-simplex ∆F
n (α) = {x : eTx ≤ α,x ≥ 0} Theorem A.15

`1-ball B1[0, α] Theorem A.16

4. Optimality Conditions. In this section we will discuss some key properties of minimizers of prob-

lem (1.1). For the sake of simplicitly, we will rewrite the problem as

(P) min
x∈Rn

f(x) + λgB(x),

where as usual gB(x) = δB(x) + ‖x‖0. We will focus on three types of optimality conditions: support

optimality (SO), L-stationarity, and coordinate-wise (CW) optimality.

4.1. Preliminaries. We make the following set of standing assumptions that will be assumed from

now on.

Assumption 4.1. (A) f : Rn → R is differentiable over Rn and its gradient has a Lipschitz constant

Lf > 0:

‖∇f(x)−∇f(y)‖2 ≤ Lf‖x− y‖2 for all x,y ∈ Rn.

(B) B ⊆ Rn is a simple sparse set.

(C) λ > 0.

The class of differentiable functions with Lipschitz gradient with constant L is denoted by C1,1
L , so part

(A) of Assumption 4.1 can also be written as f ∈ C1,1
Lf

. In our analysis we will frequently use the operator

TL : Rn → Rn denoting a gradient step at y ∈ Rn with stepsize 1
L :

(4.1) TL(y) ≡ y − 1

L
∇f(y).

The analysis of the optimality conditions will be based on two well-known claims, the most fundamental

is the so-called descent lemma (recall that Assumption 4.1 is a standing assumption).

Lemma 4.2 (descent lemma [6]). For any x,d ∈ Rn and L ≥ Lf , it holds that f(x + d) ≤ f(x) +

∇f(x)Td + L
2 ‖d‖

2
2.

The sufficient decrease lemma for the proximal gradient mapping is given next.
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Lemma 4.3 (sufficient decrease lemma [9, Lemma 3.2]). Let L > Lf . Then for any y ∈ B and

z ∈ prox λ
L gB

(TL(y)), it holds that f(y) + λgB(y)− f(z)− λgB(z) ≥ L−Lf
2 ‖z− y‖2 .

We also recall some basic facts (see for example [6]) about stationarity in problems consisting of mini-

mizing smooth functions over closed convex sets, meaning problems of the form

(H) min{h(x) : x ∈ S},

where h : Rn → R is differentiable and S ⊆ Rn is nonempty closed and convex. A point x∗ ∈ S is called a

stationary point of (H) if 〈∇h(x∗),x− x∗〉 ≥ 0 for all x ∈ S.
It is well-known that stationarity is a necessary local optimality condition for problem (H), and in case

where f is convex, it is a necessary and sufficient global optimality condition. It is also known that for a

given L > 0, a point x∗ ∈ S is a stationary point of (H) if and only if

(4.2) x∗ = PS

(
x∗ − 1

L
∇h(x∗)

)
.

Combining this with the fact that the original definition of stationarity is independent of any parameter, we

can conclude that (4.2) holds for a specific L > 0 if and only if it holds for any L > 0.

4.2. Support Optimality. We begin with the condition of optimality over the support.

Definition 4.4 (support optimality). A vector x ∈ B is called a support optimal (SO) point of

(P) if

x ∈ argmin
u∈B

{f(u) : I1(u) ⊆ I1(x)} .

Remark 4.5. By the definition of BT for a given index set T , it follows that x is support optimal if and

only if

xI1(x) ∈ argmin
d
{f(UI1(x)d) : d ∈ BI1(x)}.

The support optimality condition is a necessary optimality condition for problem (P).

Theorem 4.6 (optimality ⇒ SO). Let x∗ be an optimal solution of problem (P), then x∗ is a support

optimal point of (P).

Proof. Let z ∈ B satisfy I1(z) ⊆ I1(x∗). The latter condition implies that ‖z‖0 ≤ ‖x∗‖0, which combined

with the optimality of x∗ yields

f(x∗) + λ‖x∗‖0 ≤ f(z) + λ‖z‖0 ≤ f(z) + λ‖x∗‖0,

and hence f(x∗) ≤ f(z), proving the support optimality of x∗.

The next lemma establishes two technical results. The first states that if a point is support optimal, then

it is a stationary point over the support. The second result is only relevant when the underlying set is an

absolutely symmetric set, and will be useful later on in the analysis.

Lemma 4.7. Let x ∈ Rn be a support optimal point of (P). Then
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(a) for any L > 0,

(4.3) xI1(x) = PBI1(x)

(
TL(x)I1(x)

)
;

(b) if B is absolutely symmetric, then xi∇if(x) ≤ 0 for any i ∈ I1(x).

Proof. (a) By Remark 4.5, xI1(x) is an optimal solution of

(4.4) min
d∈BI1(x)

f(UI1(x)d),

and thus, xI1(x) is a stationary point of (4.4). That is, for any L > 0 we have that xI1(x) satisfies

xI1(x) = PBI1(x)

(
xI1(x) −

1

L
UT
I1(x)∇f(UI1(x)xI1(x))

)
.

Since UT
I1(x)∇f(UI1(x)xI1(x)) = ∇I1(x)f(x), x satisfies (4.3) for any L > 0.

(b) Let i ∈ I1(x). Since xI1(x) is a stationary point of (4.4), it follows that

(4.5) UT
I1(x)∇f(UI1(x)xI1(x))

T (yI1(x) − xI1(x)) ≥ 0 for any y ∈ B s.t. I1(y) ⊆ I1(x).

Since B is absolutely symmetric, the vector x̃ = x � (−ei) is also in B. Obviously, I1(x̃) = I1(x), and

therefore we can plug x = x̃ into (4.5) and obtain the desired inequality xi∇if(x) ≤ 0.

4.3. L-stationarity. In Section 5.1, we will consider the proximal gradient method for solving problem

(P), whose general update step is of the form xk+1 ∈ prox λ
L gB

(TL(x)). L-stationary points are defined as

fixed points of this process.

Definition 4.8 (L-stationarity). Let L > 0. A vector x ∈ Rn is called an L-stationary point of

(P) if

(4.6) x ∈ prox λ
L gB

(TL(x)) .

Related optimality conditions expressed in terms of the orthogonal projection operator were considered in

[2, 3] in the context of problems with sparsity constraints.

The next theorem shows that L-stationarity is a necessary optimality condition whenever L > Lf . Note

that the condition is stronger than L-stationarity since it states that x∗ is the only vector in prox λ
L gB

(TL(x∗)).

Theorem 4.9 (optimality ⇒ L-stationarity). Let x∗ be an optimal solution of problem (P). Then for

any L > Lf it holds that {x∗} = prox λ
L gB

(TL(x∗)) .

Proof. Let L > Lf , and let z ∈ prox λ
L gB

(TL(x∗)). Then by the sufficient decrease lemma (Lemma 4.3)

and by the optimality of x∗,

f(x∗) + λgB(x∗) ≥ L− Lf
2

‖z− x∗‖2 + f(z) + λgB(z) ≥ L− Lf
2

‖z− x∗‖2 + f(x∗) + λgB(x∗).

Since L > Lf , we conclude that z = x∗.

The next result shows a relation between L-stationarity and support optimality – in case where f is

convex, L-stationarity implies support optimality.
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Theorem 4.10 (L-stationarity ⇒ SO optimality (f convex)). Suppose that f is convex. Let x ∈ Rn be

an L-stationary point of (P) for some L > 0. Then x is a support optimal point of (P).

Proof. Since (4.6) holds, it follows that

λ

L
‖x‖0 +

1

2
‖x− TL(x)‖22 ≤ min

u

{
λ

L
‖u‖0 +

1

2
‖u− TL(x)‖22 : u ∈ B

}
≤ min

u

{
λ

L
‖u‖0 +

1

2
‖u− TL(x)‖22 : u ∈ B, I1(u) ⊆ I1(x)

}
≤ min

u

{
λ

L
‖x‖0 +

1

2
‖u− TL(x)‖22 : u ∈ B, I1(u) ⊆ I1(x)

}
,

and hence,

‖x− TL(x)‖22 ≤ min
u

{
‖u− TL(x)‖22 : u ∈ B, I1(u) ⊆ I1(x)

}
= min

d

{
‖UI1(x)d− TL(x)‖22 : d ∈ BI1(x)

}
.

Decomposing the expressions in both sides of the above inequality w.r.t. the two sets of indices I1(x) and

I0(x), we obtain

‖xI1(x) − TL(x)I1(x)‖22 + ‖TL(x)I0(x)‖22 ≤ min
d

{
‖d− TL(x)I1(x)‖22 : d ∈ BI1(x)

}
+ ‖TL(x)I0(x)‖22,

that is,

‖xI1(x) − TL(x)I1(x)‖22 ≤ min
d

{
‖d− TL(x)I1(x)‖22 : d ∈ BI1(x)

}
,

meaning that xI1(x) = PBI1(x)

(
TL(x)I1(x)

)
, which is precisely the condition that xI1(x) is a stationary point

of the problem

(4.7) min{f(UI1(x)d) : d ∈ BI1(x)}.

Since problem (4.7) is convex (by the convexity of f), it follows that xI1(x) is an optimal solution of (4.7),

establishing the fact that it is a support optimal point.

We will now state and prove a sufficient condition for L-stationarity that will play an important role in

establishing the hierarchy between L-stationary and the condition that will be discussed in the next section.

Lemma 4.11 (L-stationarity sufficient conditions). Let L ≥ Lf . Suppose that x = PσB (TL(x); ‖x‖0) for

some σ ∈ Σ̃ (pB (TL(x))). Denote v+ ≡ PσB (TL(x); ‖x‖0 + 1) and v− ≡ PσB (TL(x); ‖x‖0 − 1). Then x is an

L-stationary point of (P) if the following two conditions hold:

(a) if ‖x‖0 ≤ n− 1 then f(x) + λ‖x‖0 ≤ f (v+) + λ‖v+‖0;

(b) if ‖x‖0 ≥ `B + 1 then f(x) + λ‖x‖0 ≤ f (v−) + λ‖v−‖0.

Proof. To simplify the exposition of the proof, we will make the convention that whenever v+ appears

in an expression, then we assume that ‖x‖0 ≤ n−1 and that each time v− appears, it means that we assume

that ‖x‖0 ≥ `B + 1. For any v ∈ B satisfying f(x) +λ‖x‖0 ≤ f(v) +λ‖v‖0, the descent lemma implies that

f(x) + λ‖x‖0 ≤ f (v) + λ‖v‖0 ≤ f(x) + 〈v − x,∇f(x)〉+
L

2
‖v − x‖2 + λ‖v‖0.
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Consequently, by (a) and (b) it follows that

λ
(
‖v+‖0 − ‖x‖0

)
≥
〈
x− v+,∇f(x)

〉
− L

2

∥∥v+ − x
∥∥2
,(4.8)

λ
(
‖x‖0 − ‖v−‖0

)
≤
〈
v− − x,∇f(x)

〉
+
L

2

∥∥v− − x
∥∥2
.(4.9)

Since x = PσB (TL(x); ‖x‖0), v+ ≡ PσB (TL(x); ‖x‖0 + 1), and v− ≡ PσB (TL(x); ‖x‖0 − 1), we have that

LdσB (TL(x); ‖x‖0) =
L

2
‖x− TL(x)‖22 −

L

2

∥∥v+ − TL(x)
∥∥2

2
=
〈
x− v+,∇f(x)

〉
− L

2

∥∥v+ − x
∥∥2
,

and

LdσB (TL(x); ‖x‖0 − 1) =
L

2

∥∥v− − TL(x)
∥∥2

2
− L

2
‖x− TL(x)‖22 =

〈
v− − x,∇f(x)

〉
+
L

2

∥∥v− − x
∥∥2
.

Plugging the former and latter into (4.8) and (4.9) respectively implies that

dσB (TL(x); ‖x‖0) ≤ λ

L

(
‖v+‖0 − ‖x‖0

)
if ‖x‖0 ≤ n− 1,(4.10)

dσB (TL(x); ‖x‖0 − 1) ≥ λ

L

(
‖x‖0 − ‖v−‖0

)
if ‖x‖0 ≥ `B + 1.(4.11)

By the definition of v+, it follows that ‖v+‖0 ≤ ‖x‖0 + 1, and hence (4.10) implies that

(4.12) dσB (TL(x); ‖x‖0) ≤ λ

L
if ‖x‖0 ≤ n− 1.

Since x = PσB (TL(x); ‖x‖0), we have that ‖x‖0 = ‖PσB (TL(x); ‖x‖0) ‖0, and consequently by Lemma 3.8,

‖x‖0 ≤ uB,σ,TL(x). Subsequently ‖x‖0 − 1 < uB,σ,TL(x), and by Lemma 3.8 again, it holds that ‖v−‖0 =

‖x‖0 − 1. Therefore, (4.11) implies that

(4.13) dσB (TL(x); ‖x‖0 − 1) ≥ λ

L
if ‖x‖0 ≥ `B + 1.

By Theorem 3.9, combining (4.12), (4.13), we obtain that ‖x‖0 ∈ Dλ/L(TL(x)), which means that x =

PσB(TL(x); ‖x‖0) ∈ prox λ
L gB

(TL(x)), showing that x is an L-stationary point.

4.4. Partial Coordinate-Wise Optimality. Loosely speaking, in the context of sparsity-related

problems, coordinate-wise optimality conditions are conditions that state that the function value does not

improve if a small change in the support is performed. For a given support optimal point x, the condition

that we will consider will compare the function value of x with those of the following three support optimal

points:

v−x ∈ argmin {f(u) : I1(u) ⊆ I1(x)\{ix},u ∈ B} ,(4.14)

vswap
x ∈ argmin {f(u) : I1(u) ⊆ (I1(x)\{ix}) ∪ {jx},u ∈ B} ,(4.15)

v+
x ∈ argmin {f(u) : I1(u) ⊆ I1(x) ∪ {jx},u ∈ B} ,(4.16)
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where

ix ∈ argmin
`∈C(x)

{pB(−∇`f(x))} with C(x) = argmin
k∈I1(x)

, pB(xk)(4.17)

jx ∈ argmin
`∈I0(x)

{−pB(−∇`f(x))} .(4.18)

Note that there might be several options of how to choose ix and jx given x ∈ Rn and we assume that there

exists some rule for choosing ix and jx. We can now define the optimality condition, which we refer to as

partial coordinate-wise (CW) optimality

Definition 4.12 (partial CW optimality). A support optimal vector x ∈ B is called a partial

coordinate-wise (CW) optimal point of problem (P) if it satisfies

f(x) + λ‖x‖0 ≤ min
{
f(v) + λ‖v‖0 : v ∈ {v−x ,vswap

x ,v+
x }
}
.

The partial CW optimality condition is obviously a necessary optimality condition for problem (P).

Theorem 4.13 (optimality ⇒ partial CW optimality). Let x∗ be an optimal solution of (P), then x∗

is a partial CW optimal point of (P).

The partial CW optimality condition implies L-stationarity for any L ≥ Lf . To prove this claim, we will use

the following result proved in [3], and stated in the terminology of the current paper.

Lemma 4.14 ([3, Theorem 6.1]). Let x ∈ Rn be a support optimal point. If the inequality f(x) ≤
f(vswap) holds, then for any L ≥ Lf it holds that x ∈ PC‖x‖0∩B (TL(x)) .

By combining Lemma 4.14 together with Lemma 3.3 we obtain the following result.

Lemma 4.15. Let x ∈ Rn be a support optimal point of (P) and let L ≥ Lf . If

f(x) ≤ f(vswap),

then there exists σ ∈ Σ̃(pB(x)) ∩ Σ̃(pB(TL(x))) for which x = PσB (TL(x); ‖x‖0) and

σ(‖x‖0) ∈ argmin
`∈C(x)

{pB(−∇`f(x))} with C(x) = argmin
t∈I1(x)

pB(xt),(4.19)

σ(‖x‖0 + 1) ∈ argmin
`∈I0(x)

{−pB(−∇`f(x))} .(4.20)

Proof. Denote k = ‖x‖0. Lemma 4.14 implies that x ∈ PCk∩B (TL(x)), and thus by Lemma 3.3 there

exists a permutation

(4.21) σ ∈ Σ̃(pB(x)) ∩ Σ̃(pB(TL(x)))

for which x = PσB (TL(x); k) . Then in particular

(4.22) σ(k) ∈ C(x) ∩ argmin
`∈I1(x)

{pB(TL(x))`} and xσ(m) = 0 for all m ≥ k + 1.

We will now show that (4.19) and (4.20) are satisfied. Since xσ(m) = 0 for all m ≥ k + 1, relation (4.20)

follows trivially from (4.21). To prove relation (4.19), we will consider two cases.

• B is nonnegative symmetric. For any t ∈ C(x) it holds that xt = xσ(k), and by (4.22),
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TL(x)σ(k) ≤ TL(x)t. Combining these two fact we conclude that (4.19) holds.

• B is absolutely symmetric. Since x is support optimal and B is absolutely symmetric, it follows

by Lemma 4.7(b) that xt∇tf(x) ≤ 0 for any t ∈ I1(x). Therefore, for any t ∈ C(x) (noting that

C(x) ⊆ I1(x)),

(4.23)

∣∣∣∣xt − 1

L
∇tf(x)

∣∣∣∣ = |xt|+
1

L
|∇tf(x)| .

Now for any t ∈ C(x) it holds that |xt| = |xσ(k)|, and by (4.22) it holds that |TL(x)σ(k)| ≤ |TL(x)t|,
which by (4.23) implies that |∇σ(k)f(x)| ≤ |∇tf(x)|, implying the validity of (4.20) in this case.

In the next claim we show that any partial CW optimal point is an L-stationary point for any L ≥ Lf .

Theorem 4.16 (partial CW optimality ⇒ L-stationarity for L ≥ Lf ). If x is a partial CW optimal

point of (P), then it is an L-stationary point of (P) for any L ≥ Lf .

Proof. Suppose that x is a partial CW optimal point of (P). Then by definition, x is a support optimal

point of (P) that satisfies

f(x) + λ‖x‖0 ≤ min
{
f(v) + λ‖v‖0 : v ∈ {v−x ,vswap

x ,v+
x }
}
.(4.24)

where v−x ,v
swap
x ,v+

x are defined in (4.14), (4.15), and (4.16) respectively, with ix and jx defined in (4.17)

and (4.18) respectively.

Denote k = ‖x‖0. By its definition, vswap
x satisfies ‖vswap

x ‖0 ≤ k, and consequently by (4.24) we have

that

f(vswap
x )− f(x) ≥ λ(k − ‖vswap

x ‖0) ≥ 0.

Thus, since x is a support optimal point of (P) that satisfies f(x) ≤ f(vswap), Corollary 4.15 implies that

there exists a permutation

(4.25) σ ∈ Σ̃(pB(x)) ∩ Σ̃(pB(TL(x)))

for which

(4.26) x = PσB (TL(x); k)

and

σ(k) ∈ argmin
`∈C(x)

{pB(−∇`f(x))} with C(x) = argmin
t∈I1(x)

pB(xt)(4.27)

σ(k + 1) ∈ argmin
`∈I0(x)

{−pB(−∇`f(x))} .(4.28)

In particular,

pB(xix) = pB(xσ(k)), pB(−∇ixf(x)) = pB(−∇σ(k)f(x))

and

pB(−∇jxf(x)) = pB(−∇σ(k+1)f(x)).

Hence, if ix 6= σ(k) or jx 6= σ(k+ 1), we can swap in σ (employing a transposition permutation) between ix
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and σ(k) and between jx and σ(k+ 1) in σ, implying that we can assume that in addition for the properties

(4.25),(4.26), (4.27),(4.28), σ also satisfies σ(k) = ix and σ(k+1) = jx. Consequently, Sσk−1 = I1(x)\{ix} and

Sσk+1 = I1(x)∪{jx}, and thus, I1 (PσB (TL(x); k − 1)) ⊆ I1(x)\{ix}, and I1 (PσB (TL(x); k + 1)) ⊆ I1(x)∪{jx},
which in turn, by (4.14) and (4.16), implies that

(4.29) f(v−x ) ≤ f (PσB (TL(x); k − 1)) , and f(v+
x ) ≤ f (PσB (TL(x); k + 1)) .

We will now show that the sufficient conditions for L-stationarity involving the (k ± 1)-sparse projections,

given in Lemma 4.11, are satisfied.

Assume that k ≥ `B + 1. Since k = ‖PσB (TL(x); k) ‖0, it holds that

(4.30) k ≤ uB,σ,TL(x),

and thus, by Lemma 3.8, ‖PσB (TL(x); k − 1) ‖0 = k − 1. Consequently, by combining (4.24), (4.29) and the

fact that ‖v−x ‖0 ≤ k − 1, we attain that if k ≥ `B + 1, it holds that

(4.31) λk + f(x) ≤ λ‖v−x ‖0 + f(v−x ) ≤ λ‖PσB (TL(x); k − 1) ‖0 + f (PσB (TL(x); k − 1)) .

Now assume that k ≤ n−1. If ‖PσB (TL(x); k + 1) ‖0 < k+1, then due to (4.26) and (4.30), Lemma 3.8 implies

that ‖PσB (TL(x); k + 1) ‖0 = k and PσB (TL(x); k + 1) = x. As a result, λk+f(x) = λ‖PσB (TL(x); k + 1) ‖0 +

f (PσB (TL; k + 1)) . Otherwise, ‖PσB (TL(x); k + 1) ‖0 = k + 1, and since ‖v+
x ‖0 ≤ k + 1, we have that

λk + f(x) ≤ λ‖v+
x ‖0 + f(v+

x ) ≤ λ‖PσB (TL(x); k + 1) ‖0 + f (PσB (TL(x); k + 1)) ,

concluding that in any case

(4.32) λk + f(x) ≤ λ‖PσB (TL(x); k + 1) ‖0 + f (PσB (TL(x); k + 1)) .

Since the sufficient conditions for L-stationarity, (4.25), (4.26), (4.31), and (4.32) hold, by Lemma 4.11 the

vector x is an L-stationary point of (P) for any L ≥ Lf .

The hierarchy between the optimality conditions is summarized in the following diagram.

optimality partial CW optimality SO

L-stationarity

Thm. 4.13 def.

Thm. 4.16, L ≥ Lf

Thm. 4.10, f convex

Thm. 4.6

Thm. 4.9, L > Lf

Fig. 1. optimality points hierarchy

The strictness of the hierarchy will be demonstrated in the following numerical example.
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Example 4.17. Consider the following optimization problem over the `1-norm unit ball, C ≡ B1[0, 1]:

min
x∈R10

‖Ax− b‖22 + 0.2‖x‖0 + δC(x),

where A ∈ R10×10 and b ∈ R10. We generated the components of A and b independently via a standard

normal distribution. The following table contains, for a specific realizaion, the number of support optimal,

Lf -stationary (Lf = 2λmax(ATA)), partial CW and optimal points. The superiority of the partial CW

optimality condition is well illustrated in this example by the fact that there are significantly less partial CW

optimal points (2) than Lf -stationary points (25) or support optimal points (887). We note that very similar

results are obtained if other realizations are considered.

supports support optimal L-stationary partial CW optimal
number of 1024 887 25 2 1

Table 2
points satisfying optimality conditions

In the next section we derive procedures to attain the defined optimality conditions.

5. Methods.

5.1. The Proximal Gradient Method. L-stationary points can be attained by the so-called proximal

gradient method. In the setting of our problem, the prox operator can be computed using Algorithm 1 or

Algorithm 3 proximal gradient method

Input: x0 ∈ Rn, ε, λ, L > 0, B-simple symmetric set.
repeat

1. xk+1 ∈ prox λ
L gB

(
TL(xk)

)
;

2. k ← k + 1;

Algorithm 2.

We will show that if in addition to our standing assumption (Assumption 4.1) we assume that f is lower

bounded, then utilizing the sufficient decrease lemma (Lemma 4.3) allows us to to prove that limit points of

the sequence generated by the proximal gradient method with L > Lf are L-stationary points.

Theorem 5.1. Assume that f is lower bounded. Let {xk}k≥0 be the sequence generated by the proximal

gradient method with with L > Lf . Then

(a) f(xk) + λgB(xk)− f(xk+1)− λgB(xk+1) ≥ L−L(f)
2

∥∥xk+1 − xk
∥∥2

;

(b) any limit point of the sequence {xk}k≥0 is an L-stationary point.

Proof. Part (a) readily follows from the sufficient decrease lemma (Lemma 4.3). To prove part (b), note

that by part (a) the sequence of function values {f(xk) + λgB(xk)}k≥0 is nonincreasing and in addition,

by the assumption that f is lower bounded, it follows that the sequence is also lower bounded and hence

convergent. We can thus conclude by part (a) that

(5.1) ‖xk+1 − xk‖ → 0 as k →∞.

Let x∗ be a limit point of the sequence. Then there exists a subsequence {xki}i≥1 that converges to x∗,

and hence, by (5.1), xki+1 → x∗ as i → ∞. Since xki+1 ∈ prox λ
L gB

(TL(xki)), by the definition of the prox
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operator we have

λ

L
‖xki+1‖0 +

1

2
‖xki+1 − TL(xki)‖22 ≤

λ

L
‖x‖0 +

1

2
‖x− TL(xki)‖22 for all x ∈ B.

Taking the limit i→∞ yields

λ

L
‖x∗‖0 +

1

2
‖x∗ − TL(x∗)‖22 ≤

λ

L
‖x‖0 +

1

2
‖x− TL(x∗)‖22 for all x ∈ B,

which along with the fact that x∗ ∈ B (by the closedness of B) implies that x∗ ∈ prox λ
L gB

(TL(x∗)), meaning

that x∗ is an L-stationary point.

5.2. The Coordinate-Wise Support Optimality method. The hierarchy of the optimality con-

ditions illustrated in (1) suggests that partial coordinate-wise optimality is a more restrictive optimality

condition than L-stationarity for L ≥ Lf . The following method creates a sequence of support optimal

points and returns a partial CW optimal point in finite number of steps. We therefore refer to it as the

coordinate-wise support optimality method.

Algorithm 4 CowS

Input: y ∈ Rn, λ > 0, B-simple symmetric set.
1. set x0 = argmin {f(u) : I1(u) ⊆ I1(y)} and k ← 0;
2. set x = xk and compute

ix ∈ argmin
`∈C(x)

{pB(−∇`f(x))} with C(x) = argmin
k∈I1(x)

pB(xk),

jx ∈ argmin
`∈I0(x)

{−pB(−∇`f(x))} ;

3. compute

v−x ∈ argmin {f(u) : I1(u) ⊆ I1(x)\{ix},u ∈ B} ,
vswap
x ∈ argmin {f(u) : I1(u) ⊆ (I1(x)\{ix}) ∪ {jx},u ∈ B} ,
v+
x ∈ argmin {f(u) : I1(u) ⊆ I1(x) ∪ {jx},u ∈ B} ;

4. if f(x) + λ‖x‖0 ≤ min {f(v) + λ‖v‖0 : v ∈ {v−x ,vswap
x ,v+

x }}, stop and return x.

5. set xk+1 ∈ argmin
{
f(u) + λ‖u‖0 : u ∈ {v−x ,vswap

x ,v+
x }
}

, k ← k + 1, and go to step 2.

Note that the vectors v−x ,v
swap
x ,v+

x are not necessarily well defined since the optimization problems

defining them might have multiple optimal solutions. To make them well defined, and in order to assure the

finiteness of the CowS algorithm, we make the assumption that there is some deterministic rule for choosing

an optimal solution among multiple optimal solutions (if exist) for problems of the form

(5.2) min{f(u) : I1(u) ⊆ T,u ∈ B}

where T ⊆ {1, 2, . . . , n} is an index set. Under this assumption, the algorithm is obviously finite since it

generates a sequence with strictly decreasing function values and there are only a finite amount of possible

vectors through which it passes–the optimal solutions of problems of the form (5.2). Since there are only a
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finite amount of index sets (2n), the finiteness of the algorithm follows.

It is easy to show that the outcome of the CowS method is a partial CW optimal point.

Theorem 5.2. Let x be the output of the CowS method. Then x is a partial CW optimal point of problem

(P).

Proof. By the definition of the method, x is a support optimal point satisfying

f(x) + λ‖x‖0 ≤ min{f(u) + λ‖u‖0 : u ∈ {v−x ,vswap
x ,v+

x }},

which means that it is a partial CW optimal point.
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Appendix A. Sets Satisfying the SOM property.

In this section we will prove that several notable sets satisfy the SOM property – separable sets, the `1
and `2 α-balls, the α-simplex and the full α-simplex (α > 0). In proving the SOM property of this selection

of sets, we will aim to prove that for any x ∈ Rn, σ ∈ Σ̃(pB(x)) and i ∈ {`B , `B + 1, . . . , n− 2}, the following

relation holds:

(A.1) ‖x− PσB(x; i)‖22 − ‖x− PσB(x; i+ 1)‖22 ≥ ‖x− PσB(x; i+ 1)‖22 − ‖x− PσB(x; i+ 2)‖22.

For the sake of simplicity, we will use the following notation:

Given a permutation σ ∈ Σn and l ∈ {0, 1, . . . , n− 1}, the vector y〈l〉σ ∈ Rn has the original values of y in

indices Sσl , and zeros elsewhere, that is, (y〈l〉σ )Sσl = ySσl , (y〈l〉σ )(Sσl )c = 0.

A.1. General results for absolutely symmetric sets. We begin by establishing several properties of

the sparse orthogonal projection operator onto absolutely symmetric sets that tie it to the sparse orthogonal

projection onto nonnegative symmetric sets. The first result extends the correspondence given in Lemma

2.10(b).

Corollary A.1. Let x ∈ Rn and σ ∈ Σ̃(|x|). Suppose that D ⊆ Rn is nonempty, absolutely symmetric,

closed and convex, and B = D ∩ Rn+. Then for any i ∈ {0, 1, . . . , n}

(A.2) PσD(x; i) = sign(x)� PσB(|x|; i).

Proof. Let T = Sσi . Then PσD(x; i) = UTPDT (xT ). By Lemma 2.10(c) (taking into account the closed-

ness and convexity of DT ),

UTPDT (xT ) = UT

(
sign(xT )� P

DT∩R|T |+
(|xT |)

)
= sign(x)�UTPDT∩R|T |+

(|xT |).

Since BT = DT ∩ R|T |+ , UTPDT∩R|T |+
(|xT |) = UTPBT (|xT |), and by the choice of σ ∈ Σ̃(|x|), it holds that

UTPBT (|xT |) = PσB(|x|; i). Thus, by the derived chain of equalities, (A.2) holds.

We can now establish that if the nonnegative part of an absolutely symmetric set satisfies the SOM

property, then so does the entire set.

Lemma A.2. Let D ⊆ Rn be a nonempty, absolutely symmetric, closed and convex set, and B = D∩Rn+.

If B satisfies the SOM property, then D satisfies the SOM property.

Proof. Let x ∈ Rn and σ ∈ Σ̃(|x|). By Corollary A.1, PσD(x; i) = sign(x) � PσB(|x|; i) for any i ∈
{0, 1, . . . , n}. Since ‖PσD(x; i)− x‖2 = ‖sign(x)� (PσB(|x|; i)− |x|)‖2 = ‖PσB(|x|; i)− |x|‖2, the set D satisfies

the SOM property if and only if B satisfies it for |x|. Therefore, by the underlying assumption that B
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satisfies the SOM property, the required holds.

The former corollary suggests that members of the sparse projection sequences onto an absolutely sym-

metric set D can easily be obtained from the corresponding members of the sparse projection sequence onto

the intersection D ∩ Rn+. It will now be shown that for the members of the sparse projection sequence onto

such intersections, the components corresponding to the non-positive elements in the input vector are zeros.

Lemma A.3. Let x ∈ Rn, σ ∈ Σ̃(x) and J = {l : xl > 0}. Suppose that D ⊆ Rn is nonempty, absolutely

symmetric, closed and convex, and let B = D ∩ Rn+. Then PσB(x; i) = PσB(x; ri) for any i ∈ {0, 1, . . . , n},
where ri = min{i, |J |}.

Proof. We will first show that the assertion is correct for i = n, in which case PσB(x; i) = PB(x). To prove

the required in this case it is enough to prove that PB(x)Jc = 0. Since B is nonnegative, PB(x)Jc ≥ 0 ≥ xJc ,

and we thus have that ‖PB(x)Jc − xJc‖22 ≥ ‖xJc‖
2
2. Consequently,

‖PB(x)− x‖22 = ‖PB(x)Jc − xJc‖22 + ‖PB(x)J − xJ‖22 ≥ ‖xJc‖
2
2 + ‖PB(x)J − xJ‖22

= ‖UJPB(x)J − x‖22 .(A.3)

Since D is absolutely symmetric, PB(x) ∈ B ⊆ D implies that [UJPB(x)J−UJcPB(x)Jc ] ∈ D, and therefore,

by the convexity of D,

UJPB(x)J = 0.5 (PB(x) + [UJPB(x)J −UJcPB(x)Jc ]) ∈ D.

Hence, UJPB(x)J ∈ D ∩ Rn+ = B, and by (A.3) and the uniqueness of the orthogonal projection onto close

and convex sets, it follows that PB(x) = UJPB(x)J . Subsequently, PB(x)Jc = 0, and the required holds for

i = n.

Let i ∈ {0, 1, . . . , n} and T = Sσi . Then PσB(x; i) = UTPBT (xT ). We will use the ’tilde’ notation to

refer to terms in dimension R|T | (T is fixed). For an index set W ⊆ {1, . . . , |T |}, the matrix ŨW denotes

the submatrix of the |T |-dimensional identity matrix I|T | constructed from the columns corresponding to

the index set W , x̃ ≡ xT , B̃ ≡ BT , and J̃ = {l : (xT )l > 0}. By applying the result of the first part (with

adjusted dimensions) we have that UTPBT (x̃) = UT ŨJ̃PB̃J̃
(x̃J̃). Since σ ∈ Σ̃(x) and J = {l : xl > 0}, it

holds that J = Sσ|J|. Therefore, T ∩ J = Sσi ∩ Sσ|J| = Sσri , and subsequently |J̃ | = |T ∩ J | = ri. Hence, by the

equalities UT ŨJ̃ = UT∩J and x̃J̃ = xT∩J , we have that UT ŨJ̃PB̃J̃
(x̃J̃) = USσri

PBSσri
(xSσri

) = PσB(x; ri),

that proves the required.

The following lemma shows that the relation (A.1) defining the SOM property is satisfied in some general

cases when B is absolutely symmetric.

Lemma A.4. Let B ⊆ Rn be a nonempty, absolutely symmetric, closed and convex set. Then for any

x ∈ Rn, σ ∈ Σ̃(|x|) and i ∈ {0, 1, . . . , n− 2} satisfying x〈i+1〉σ ∈ B, the inequality (A.1) holds.

Proof. Let i ∈ {0, 1, . . . , n− 2}. Since x〈i+1〉σ ∈ B, and since B is absolutely symmetric, it follows that

x〈i〉σ − xσ(i+1)eσ(i+1) ∈ B, and hence, by the convexity of B,

x〈i〉σ = 0.5
(
x〈i+1〉σ + x〈i〉σ − xσ(i+1)eσ(i+1)

)
∈ B.

Since x〈i〉σ ∈ B and x〈i+1〉σ ∈ B, we have that PσB(x; i) = x〈i〉σ and PB(x; i + 1) = x〈i+1〉σ . Thus, (A.1)

is equivalent to x2
σ(i+1) ≥ x2

σ(i+2) − ‖x〈i+2〉σ − PσB(x; i + 2)‖22, which is a valid inequality since |xσ(i+1)| ≥
22



case pair result in (A.5)
0 ≥ xσ(i+1) ≥ xσ(i+2) (0, 0) 0 ≥ 0
α > xσ(i+1) > 0 ≥ xσ(i+2) (xσ(i+1), 0) x2

σ(i+1) ≥ 0

α > xσ(i+1) ≥ xσ(i+2) > 0 (xσ(i+1), xσ(i+2)) x2
σ(i+1) ≥ x

2
σ(i+2)

xσ(i+1) ≥ α > 0 ≥ xσ(i+2) (α, 0) x2
σ(i+1) − (xσ(i+1) − α)2 ≥ 0

xσ(i+1) ≥ α > xσ(i+2) > 0 (α, xσ(i+2)) 2αxσ(i+1) ≥ α2 + x2
σ(i+2)

xσ(i+1) ≥ xσ(i+2) ≥ α > 0 (α, α) 2αxσ(i+1) ≥ 2αxσ(i+2)
Table 3

possible cases for (A.5)

|xσ(i+2)|.

We will now prove the SOM property individually per set.

A.2. SOM property of the box. This subsection will show that the symmetric α-box defined by

(A.4) D = {x ∈ Rn : ‖x‖∞ ≤ α},

and its intersection with the nonnegative orthant, satisfy the SOM property for any α ∈ (0,∞], where α =∞
corresponds to the case D ≡ Rn. To show that (A.4) satisfies the SOM property, we will first prove that

B = D ∩ Rn+ satisfies the SOM property.

Theorem A.5 (SOM of nonnegative α-box). Let B = D ∩ Rn+ where D is defined in (A.4) with

α ∈ (0,∞]. Then B satisfies the SOM property.

Proof. Let x ∈ Rn and σ ∈ Σ̃(x). The projection of x ∈ Rn onto B is given for l = 1, . . . , n, by

PB(x)l =


0, xl ≤ 0,

xl, xl ∈ (0, α),

α, α ≤ xl.

In addition, as long as j ≤ i, it holds that PσB(x; i)σ(j) = PσB(x; i + 1)σ(j) = PσB(x; i + 2)σ(j) = PB(x)σ(j).

Consequently, for any i ∈ {0, 1, . . . , n− 1}

‖PσB(x; i)− x‖22 − ‖PσB(x; i+ 1)− x‖22 = x2
σ(i+1) − (xσ(i+1) − PσB(x; i+ 1)σ(i+1))

2,

and the required in (A.1) can be transformed into

(A.5) x2
σ(i+1) − (xσ(i+1) − PσB(x; i+ 1)σ(i+1))

2 ≥ x2
σ(i+2) − (xσ(i+2) − PσB(x; i+ 2)σ(i+2))

2.

To show that (A.5) holds, we explore in Table 3 all the possibilities for xσ(i+1) and xσ(i+2) (first column),

and their corresponding pairs (PσB(x; i+1)σ(i+1), P
σ
B(x; i+2)σ(i+2)) (second column), and show the resulting

inequality (A.5) (third column). It can be easily seen that the derived inequality (A.5) holds in all cases.

By combining Lemma A.2 and Theorem A.5, we conclude that D defined in (A.4) satisfies the SOM

property.

Theorem A.6 (SOM property of the α-box). Let D be defined in (A.4) with α ∈ (0,∞]. Then D

satisfies the SOM property.
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A.3. SOM property of the `2 ball.

Theorem A.7 (SOM property of the `2 ball). Let B = B2[0, α] = {x ∈ Rn : ‖x‖2 ≤ α}, where α > 0.

Then B satisfies the SOM property.

Proof. Let x ∈ Rn and σ ∈ Σ̃(|x|). Let i ∈ {0, 1, . . . , n − 2}. If ‖x〈i+1〉σ‖2 ≤ α, then x〈i+1〉σ ∈ B, and

hence by Lemma A.4 the required (A.1) is satisfied. We will hereafter assume that ‖x〈i+1〉σ‖2 > α.

For any j ∈ {0, 1, . . . , n}, ‖x〈j〉σ‖2 ≤ α implies that PσB(x; j) = x〈j〉σ , and ‖x〈j〉σ‖2 > α implies that

PσB(x; j) = α

‖x〈j〉σ‖2
x〈j〉σ . Therefore,

(A.6) ‖x− PσB(x; j)‖22 =

{
‖x‖22 − ‖x〈j〉σ‖22, ‖x〈j〉σ‖2 ≤ α;

‖x‖22 − 2α‖x〈j〉σ‖2 + α2, ‖x〈j〉σ‖2 > α.

If ‖x〈i〉σ‖2 > α, then ‖x〈i+1〉σ‖2, ‖x〈i+2〉σ‖2 > α. Substituting (A.6) for j = i, i + 1, i + 2 into (A.1)

results with: −2α‖x〈i〉σ‖2 + 2α‖x〈i+1〉σ‖2 ≥ −2α‖x〈i+1〉σ‖2 + 2α‖x〈i+2〉σ‖2, which is the same as

(A.7)
‖x〈i+1〉σ‖22 − ‖x〈i〉σ‖22
‖x〈i+1〉σ‖2 + ‖x〈i〉σ‖2

≥
‖x〈i+2〉σ‖22 − ‖x〈i+1〉σ‖22
‖x〈i+1〉σ‖2 + ‖x〈i+2〉σ‖2

.

Since

‖x〈i+1〉σ‖
2
2 − ‖x〈i〉σ‖

2
2 = x2

σ(i+1) ≥ x
2
σ(i+2) = ‖x〈i+2〉σ‖

2
2 − ‖x〈i+1〉σ‖

2
2,

and ‖x〈i+1〉σ‖2 + ‖x〈i〉σ‖2 ≤ ‖x〈i+1〉σ‖2 + ‖x〈i+2〉σ‖2, the relation (A.7) holds, and consequently the required

is satisfied.

Now suppose that ‖x〈i〉σ‖2 ≤ α and ‖x〈i+1〉σ‖2 > α (implying that ‖x〈i+2〉σ‖2 > α). Plugging the

corresponding equations (A.6) for j = i, i+ 1, i+ 2, (A.1) becomes

(A.8) 4α‖x〈i+1〉σ‖2 − ‖x〈i〉σ‖
2
2 − 2α‖x〈i+2〉σ‖2 − α

2 ≥ 0.

Denote t = ‖x〈i〉σ‖2, a = ‖x〈i+1〉σ‖2, b =
√
‖x〈i〉σ‖22 + x2

σ(i+2). Then ‖x〈i+2〉σ‖2 =
√
a2 + b2 − t2. Therefore,

inequality (A.8) can be expressed in terms of a, b, t, α as: 4αa − t2 − α2 ≥ 2α
√
a2 + b2 − t2. As both sides

are positive (a > α ≥ t), it is equivalent (after squaring and rearranging terms) to

qt(a, b) ≡ 4α2(a2 − b2) + 8α2a2 − 8αa(t2 + α2) + (t2 + α2)2 + 4α2t2 ≥ 0.

Since a2 = ‖x〈i+1〉σ‖22 = t2 + x2
σ(i+1) ≥ t

2 + x2
σ(i+2) = b2, it follows that

qt(a, b) ≥ qt(a, a) = 8α2a2 − 8αa(t2 + α2) + (t2 + α2)2 + 4α2t2 ≡ gt(a).

Recalling that α ≥ t, we obtain that g′t(a) = 16α2a − 8α(t2 + α2) ≥ 0 for any a ≥ α, and hence gt is

nondecreasing over [α,∞). Consequently,

gt(a) ≥ gt(α) = 8α4 − 8α2(t2 + α2) + (t2 + α2)2 + 4α2t2 = α4 − 2α2t2 + t4 = (α2 − t2)2 ≥ 0.

A.4. SOM property of the α-simplex. In this subsection we will show that the SOM property holds

for the α-simplex set (α > 0) given by ∆n(α) = {x ∈ Rn : eTx = α,x ≥ 0}. We begin by recalling the form

of the orthogonal projection onto ∆n(α).
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Lemma A.8 (projection onto the α-simplex set [1, Section 12.3.6]). Let x ∈ Rn. Then the orthogonal

projection onto ∆n(α) is given by PB(x) = [x + γe]+, where γ satisfies
∑n
l=1[xl + γ]+ = α.

Obviously, for any γ ∈ R it holds that xσ(1) +γ ≥ xσ(2) +γ ≥ · · · ≥ xσ(n) +γ. This fact suggests the following

corollary.

Corollary A.9. Let x ∈ Rn and σ ∈ Σ̃(x). Suppose that γ satisfies
∑n
l=1[xl + γ]+ = α. Then

there exists k ∈ {1, . . . , n} such that γ = 1
k

(
α−

∑k
l=1 xσ(l)

)
, and xσ(1) + γ, . . . , xσ(k) + γ > 0;xσ(k+1) +

γ, . . . , xσ(n) + γ ≤ 0.

Lemma A.10 (α-simplex projection properties). Let B = ∆n(α) for some α > 0, and let x ∈ Rn, σ ∈
Σ̃(x). Define

(A.9) γj =
1

j

(
α−

j∑
l=1

xσ(l)

)
, j ∈ {1, . . . , n}, and q = max

{
j ∈ {1, 2, . . . , n} : xσ(j) + γj > 0

}
.

Then

(a) for any j ∈ {1, . . . , n− 1},

(A.10) xσ(j+1) + γj+1 =
j

j + 1

(
xσ(j+1) + γj

)
,

and consequently xσ(j+1) + γj+1 > 0 if and only if xσ(j+1) + γj > 0;

(b) the sequence {[xσ(j) + γj ]+}nj=1 is non-increasing;

(c) PB(x) = [x + γqe]+.

Proof. (a). For any j ∈ {1, . . . , n− 1},

xσ(j+1) + γj+1 =
1

j + 1

(
(j + 1)xσ(j+1) + α−

j∑
l=1

xσ(l) − xσ(j+1)

)
=

j

j + 1

(
xσ(j+1) + γj

)
.

(b) Let j ∈ {1, . . . , n−1}. If [xσ(j+1)+γj+1]+ = 0, then trivially [xσ(j)+γj ]+ ≥ [xσ(j+1)+γj+1]+. Otherwise,

[xσ(j+1) + γj+1]+ > 0, and consequently, by part (a), xσ(j+1) + γj > 0. Combining this with the fact that

xσ(j) ≥ xσ(j+1), we conclude that

xσ(j) + γj ≥ xσ(j+1) + γj ≥ j

j + 1

(
xσ(j+1) + γj

)
= xσ(j+1) + γj+1.

(c) By Lemma A.8 and Corollary A.9, there exists k ∈ {1 . . . , n} such that PB(x) = [x + γke]+ and

(A.11) xσ(1) + γk, . . . , xσ(k) + γk > 0;xσ(k+1) + γk, . . . , xσ(n) + γk ≤ 0.

We will show that k = q. Assume by contradiction that k 6= q. By the definition of q, the relations in (A.11)

imply that k < q. Thus, by part (b), xσ(k+1) + γk+1 ≥ xσ(q) + γq > 0, and hence, by (A.10), it follows that

xσ(k+1) + γk > 0, which is a contradiction to (A.11).

Lemma A.10 suggests that the projection onto the α-simplex might be sparse even without a sparsity

constraint. In the context of the sparse projection sequence, this implies that there might be a minimal

sparsity level from which all the sparse projections are equal. That sparsity level is equal to the sparsity

level of the full-dimension projection (the n-sparse projection vector). By utilizing this insight together with

25



the definition of the i-sparse projection vector as PσB(x; i) = UTPBT (xT ) where T = Sσi , it is easy to show

that the formula for the projection onto the α-simplex set can be extended to compute the sparse projection

sequence of the α-simplex in the following way.

Lemma A.11. Let B = ∆n(α) for some α > 0. Let x ∈ Rn and σ ∈ Σ̃(x). Let q and γi be defined as in

(A.9). Then for any i ∈ {1, 2, . . . , n},

PσB(x; i) =

{
x〈i〉σ + γie〈i〉σ , i ≤ q,
[x + γqe]+, i > q.

We next present a direct consequence of the last lemma characterizing the point from which the projection

sequence onto the α-simplex becomes fixed.

Corollary A.12. Let B = ∆n(α) for some α > 0. Let x ∈ Rn and σ ∈ Σ̃(x). Let q be defined as in

(A.9). Then i ≥ q if and only if PσB(x; i+ 1) = PσB(x; i).

Proof. If i ≥ q, then by Lemma A.11, PσB(x; i) = PσB(x; i+1) = [x+γqe]+. If i < q, then PσB(x; i)σ(i+1) =

0 and by Lemma A.10(b), PσB(x; i+ 1)σ(i+1) = [xσ(i+1) + γi+1]+ ≥ [xσ(q) + γq]+ > 0, and hence PσB(x; i) 6=
PσB(x; i+ 1).

The claim that the α-simplex satisfies the SOM property will now be stated and proved.

Theorem A.13 (SOM property of the α-simplex). Let B = ∆n(α). Then B satisfies the SOM property.

Proof. Let i ∈ {1, 2, . . . , n− 2} and x ∈ Rn, σ ∈ Σ̃(x). We will prove that (A.1) holds. Let q be defined

as in (A.9). If q < i + 2, then by Corollary A.12, PσB(x; i + 2) = PσB(x; i + 1), and consequently (A.1)

trivially holds. We will hereafter assume that q ≥ i + 2, which in particular implies by Lemma A.11 that

PσB(x; l) = x〈l〉σ + γle〈l〉σ for l = i, i+ 1, i+ 2. Consequently, for j ∈ {i, i+ 1},

‖x− PσB(x; j)‖22 − ‖x− PσB(x; j + 1)‖22
= ‖x− x〈j〉σ − γ

je〈j〉σ‖
2
2 − ‖x− x〈j+1〉σ − γ

j+1e〈j+1〉σ‖
2
2

= x2
σ(j+1) + j(γj)2 − (j + 1)(γj+1)2.

By (A.10) we have that γj = j+1
j γj+1 + 1

j xσ(j+1), and subsequently,

‖x− PσB(x; j)‖22 − ‖x− PσB(x; j + 1)‖22

= x2
σ(j+1) + j

(
j + 1

j
γj+1 +

1

j
xσ(j+1)

)2

− (j + 1)(γj+1)2

=
j + 1

j
(xσ(j+1) + γj+1)2.

Thus, what we need to prove is that i+1
i

(
xσ(i+1) + γi+1

)2 ≥ i+2
i+1

(
xσ(i+2) + γi+2

)2
, which is a valid inequality

since i+1
i > i+2

i+1 and xσ(i+1) + γi+1 ≥ xi+2 + γi+2 ≥ xq + γq > 0.

A.5. SOM property of the full α-simplex and the `1 α-ball. In this subsection we will prove that

the SOM property holds for the full α-simplex set and the `1 α-ball (α > 0). The full α-simplex set is given

by ∆F
n (α) = {x ∈ Rn : eTx ≤ α,x ≥ 0}. By noting that ∆F

n (α) = D ∩ Rn+ where D = {x ∈ Rn : ‖x‖1 ≤ α},
the projection onto ∆F

n (α) can be derived using Lemma A.3 and simple convex optimization arguments.

Lemma A.14 (full α-simplex projection). Let B = ∆F
n (α), where α > 0. Denote J = {l : xl > 0}.
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Then

(A.12) PB(x) =

{
UJxJ , if eTJ xJ ≤ α
UJP∆|J|(α)(xJ), if eTJ xJ > α.

Proof. By the fact that ∆F
n (α) = D ∩ Rn+ where D = {x ∈ Rn : ‖x‖1 ≤ α} is absolutely symmetric,

Lemma A.3 implies that

(A.13) PB(x) = UJP∆F
|J|(α)(xJ),

where by definition

(A.14) P∆F
|J|(α)(xJ) = argmin

{
‖u− xJ‖2 : eTu ≤ α,u ≥ 0

}
.

Since xJ > 0, if eTxJ ≤ α, then xJ ∈ ∆F
|J|(α), and subsequently

(A.15) P∆F
|J|(α)(xJ) = xJ .

Otherwise, eTxJ > α and thus xJ /∈ ∆F
|J|(α). We will show that in this case, eTP∆F

|J|(α)(xJ) = α must hold.

Suppose in contradiction that x̃ = P∆F
|J|(α)(xJ) satisfies eT x̃ < α. Then zβ = βxJ + (1 − β)x̃ ≥ 0 for any

β ∈ (0, 1), and eT zβ = eT x̃ + β(eTxJ − eT x̃) ≤ α for all β ≤ α−eT x̃
eTxJ−eT x̃ = β1. In particular, zβ1 ∈ ∆F

|J|(α),

and in addition ‖zβ1
− xJ‖2 = (1 − β1)‖x̃ − xJ‖2 < ‖x̃ − xJ‖2, which is a contradiction to the fact that

x̃ = P∆F
|J|(α)(xJ). We have thus shown that if eTxJ > α then eTP∆F

|J|(α)(xJ) = α, and consequently, (A.14)

is equivalent to

(A.16) P∆F
|J|(α)(xJ) = argmin

{
‖u− xJ‖2 : eTu = α,u ≥ 0

}
= P∆|J|(α)(xJ).

Plugging (A.15) and (A.16) into (A.13), we obtain the desired formula (A.12).

The SOM property of the full α-simplex will now be proved.

Theorem A.15 (SOM property of the full α-simplex). Let B = ∆F
n (α). Then B satisfies the SOM

property.

Proof. Let x ∈ Rn, σ ∈ Σ̃(x), and i ∈ {0, 1, . . . , n − 2}. Denote J = {l : xl > 0}. We will prove that

(A.1) holds. Combining Lemma A.14 and Lemma A.3, we have that for any j ∈ {0, 1, . . . , n} the j-sparse

projection vector is given by

PσB(x; j) =

{
x〈rj〉σ , if eT〈rj〉σx〈rj〉σ ≤ α,
Pσ∆n(α)(x; rj), if eT〈rj〉σx〈rj〉σ > α,

where rj = min{j, |J |}. If ri+2 6= i + 2, then ri+2 = |J | and |J | ≤ i + 1. Thus, ri+1 = |J | as well, and

consequently, PσB(x; i + 2) = PσB(x; i + 1), which implies that the required inequality (A.1) trivially holds.

We will hereafter assume that PσB(x; i + 2) 6= PσB(x; i + 1), and subsequently ri+2 = i + 2, implying that

|J | ≥ i+ 2 and xσ(i) ≥ xσ(i+1) ≥ xσ(i+2) > 0. Several cases will now be addressed.

Suppose that eT〈i+1〉σx〈i+1〉σ ≤ α. Then for j ∈ {i, i+ 1}, PσB(x; j) = x〈j〉σ , and thus (A.1) is equivalent

to x2
σ(i+1) ≥ x

2
σ(i+2) − ‖x〈i+2〉σ − PσB(x; i+ 2)‖22, which is a valid inequality since xσ(i+1) ≥ xσ(i+2) > 0.
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Suppose that eT〈i〉σx〈i〉σ ≤ α and eT〈i+1〉σx〈i+1〉σ > α. Then

(A.17) PσB(x; i) = x〈i〉σ , P
σ
B(x; i+ 1) = Pσ∆n(α)(x; i+ 1), PσB(x; i+ 2) = Pσ∆n(α)(x; i+ 2).

Therefore, by the underlying assumption that PσB(x; i+ 2) 6= PσB(x; i+ 1), we have that

(A.18) Pσ∆n(α)(x; i+ 2) 6= Pσ∆n(α)(x; i+ 1).

Corollary A.12 in view of (A.18) implies that q defined in (A.9) satisfies q ≥ i+ 2. Thus, for j ∈ {i+ 1, i+ 2}
it holds that

(A.19) PσB(x; j) = x〈j〉σ + γje〈j〉σ = x〈j〉σ +
1

j

(
α−

j∑
l=1

xσ(l)

)
e〈j〉σ .

Denote t = α−
∑i+1
l=1 xσ(l). By equations (A.17) and (A.19), we have the following equalities: ‖x− PσB(x; i)‖22−

‖x− PσB(x; i+ 1)‖22 = x2
σ(i+1) −

1
i+1 t

2, and ‖x− PσB(x; i+ 1)‖22 − ‖x− P
σ
B(x; i+ 2)‖22 = x2

σ(i+2) + 1
i+1 t

2 −
1
i+2

(
t− xσ(i+2)

)2
. Hence, in order to prove the required we need to show that x2

σ(i+1) −
2
i+1 t

2 − x2
σ(i+2) +

1
i+2

(
t− xσ(i+2)

)2 ≥ 0. By rearranging terms and multiplying by (i+2), the above inequality can be rewritten

as

(A.20) (i+ 1)(x2
σ(i+1) − x

2
σ(i+2)) + (x2

σ(i+1) − t
2)− 2t

(
t

i+ 1
+ xσ(i+2)

)
≥ 0.

The non-negativity of the first term trivially follows from the standing assumption that xσ(i+1) ≥ xσ(i+2) > 0.

For the second term, since xσ(i+1) > 0 and t < 0, we have that

x2
σ(i+1) − t

2 = (xσ(i+1) + |t|)

(
xσ(i+1) + α−

i+1∑
l=1

xσ(l)

)
= (xσ(i+1) + |t|)

(
α−

i∑
l=1

xσ(l)

)
≥ 0,

where the last inequality follows from the standing assumption that eT〈i〉σx〈i〉σ ≤ α. For the third term, we

have that

−2t

(
t

i+ 1
+ xσ(i+2)

)
= −2t(i+ 2)

i+ 1

(
xσ(i+2) +

1

i+ 2

(
α−

i+2∑
l=1

xσ(l)

))

= −2t(i+ 2)

i+ 1
P∆n(α)(x; i+ 2)σ(i+2) ≥ 0,

where the second equality follows from (A.19), and the third inequality from the fact that t < 0 and

P∆n(α)(x; i+ 2)σ(i+2) ≥ 0 (as ∆n(α) is nonnegative). Thus, (A.20) holds, and (A.1) is satisfied in this case.

Finally, suppose that eT〈i〉σx〈i〉σ > α. Then PσB(x; j) = Pσ∆n(α)(x; j) for j ∈ {i, i + 1, i + 2}, and conse-

quently (A.1) holds if and only if it holds for B = ∆n(α). By Theorem A.13 the set ∆n(α) satisfies the SOM

property, and in particular required inequality (A.1).

Since ∆F
n (α) = D ∩ Rn+ where D = {x ∈ Rn : ‖x‖1 ≤ α}, Lemma A.2 together with Theorem A.15

readily imply that the `1 α-ball satisfies the SOM property.

Theorem A.16 (SOM property of the `1 ball). Let B = B1[0, α] = {x ∈ Rn : ‖x‖1 ≤ α}, where α > 0.

Then B satisfies the SOM property.
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