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1 Introduction

In this paper, we consider the following two minimization problems:

min
x

f(x) + g(x)

s.t. c(x) = 0,

d(x) ≤ 0,

xj ∈ Dj , j ∈ J,
‖xJ‖0 ≤ K,

(1)

and
min
x

f(x) + g(x) + λ‖xJ‖0

s.t. c(x) = 0,

d(x) ≤ 0,

xj ∈ Dj , j ∈ J,

(2)

with decision variable x ∈ Rn, where f : Rn → R, c : Rn → Rm, d : Rn → Rp,
are continuously differentiable functions, g : Rn → R ∪ {+∞} is a proper and
lower semi-continuous function, ‖xJ‖0 denotes the cardinality of the subvector
xJ formed by the entries of x indexed by J ⊆ {1, . . . , n} and for all j ∈ J ,
Dj is composed by the union of a finite number of closed intervals of R and a
single point set {0} as following:

Dj =

(
pj⋃
l=1

[alj , blj ]

)⋃
{0}, j ∈ J. (3)

Furthermore, 0 < K < |J | is an integer number, λ > 0 is a regular parameter,
for all l and j, it has −∞ < alj < blj < +∞ and 0 /∈ [alj , blj ], and for all
j ∈ J , it has [aij , bij ] ∩ [alj , blj ] = ∅, i, l = 1, . . . , pj .

In problems (1) and (2), function g can be a nonsmooth function possibly
nonconvex or a indicator function of a feasible set of easy constraints, and
we need these functions and constraints can be handled in proximal prob-
lems, furthermore g also can be the sum of the functions and the indicator
functions described above. The feasible set of typical semi-continuous variable
usually contains one closed interval. From the definition of Dj , we can observe
that for all j ∈ J , discrete variables xj are the generalized semi-continuous
variables, thus optimization problems with semi-continuous variables and l0
minimization problems can be regarded as the special cases of problems (1)
and (2).

In recent years the optimization problem with semi-continuous variables
and the l0 minimization problem have gained considerable attention. As the
generalizations of these two problems, many problems can be put into the
form of problems (1) and (2), such as the portfolio selection problems [1,2,3,
4,5,7], the compressed sensing problems [8,10], the production planning and
the facility location problems [11], and the unite commitment problems [12,
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14]. Problems (1) and (2) are nonconvex and nonsmooth problems and have
been proved to be NP-hard in generally [9]. The main known method for
solving problems (1) and (2) is the integer programming method which trans-
forms problems (1) and (2) to mixed integer programming problems and uses
the branch-and-bound framework and the cutting plane technologies to solve
these problems. In recent decades, several methods which include the branch-
and-bound methods, the perspective reformulation methods, the relaxation
methods, the heuristic methods and the local methods have been developed
for solving special cases of problems (1) and (2).

An important application of problems (1) and (2) in financial optimization
is the portfolio selection problem with cardinality and minimum threshold con-
straints. Bonami and Lejeune [2] proposed a branch-and-bound method based
on continuous relaxation and special branching rules for solving an exact so-
lution of a portfolio selection model under stochastic and integer constraints
including cardinality and minimum threshold constraints. Bienstock [9] devel-
oped a branch-and-cut method for solving cardinality constrained quadratic
programming problems by using a primal feasible method and a surrogate con-
straint approach. Based on a novel geometric approach, a branch-and-bound
method is developed in Gao and Li [6] for solving cardinality constrained
portfolio selection problems. A novel reformulation technique for optimization
problems with semi-continuous variables called perspective reformulation and
its tractable reformulations were proposed by [12,14,15,11,16]. These refor-
mulation methods are based on the perspective function and the cone pro-
gramming technologies and derive much more efficient mixed-integer program
reformulations than the standard formulation. In addition, the perspective re-
formulation method also can be used to solve the optimization problems with
semi-continuous variables and cardinality constraint. In recent decades, many
efficient integer programming methods and perspective reformulation methods
have been developed for optimization problems with semi-continuous variables
or cardinality constraint. But for the discrete constrained optimization prob-
lems arising from the financial optimization and the operation research, it still
lack efficient integer programming methods. The traditional heuristic methods
for special cases of problems (1) and (2) generally base on genetic algorithm,
tabu search and simulated annealing [17,18,19,20]. However, these heuristic
methods do not guarantee to find the optimal or a suboptimal solution of the
problems. And similarly with the integer programming methods, the heuristic
methods also require a large amount of computation time for solving large-
scale problems.

In recent years several relaxation methods and local methods have been
developed for l0 minimization problems. The l1-norm approximation has been
a popular method in compressed sensing and other sparse optimization prob-
lems [8]. However, the l1-norm approximation does not often produce solutions
with desired sparsity. Several nonconvex approximations to the l0-norm have
been studied recently. Gulpinar et al. proposed to reformulate a cardinality
constrained optimization problem as a DC program and find a local optimal
solution of the problem. Based on a new piecewise linear DC approximation
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of the cardinality function, a new DC approximation method was proposed
in [21]. By utilizing a new NLP-reformulation, Burdakov et al. [22] present-
ed a standard nonlinear programming with complementarity-type constraints
reformulation and a regularization method. In recent years, a novel penalty
decomposition (PD) method for solving a stationary point or a local optimal
solution of a general l0 minimization problem and a novel proximal alternat-
ing linearized minimization (PALM) method for general nonconvex and non-
smooth problems has been developed in [23] and [24], respectively. Inspired
by these two work, a penalty PALM method has been developed in [25] for
sparse portfolio selection problems. Moreover, by utilizing the frameworks of
the splitting method and the PD method, Bai et al. [26] presented a splitting
augmented Lagrangian method for optimization problems with a cardinality
constraint and semi-continuous variables.

In this paper, base on [25], we derive the optimality conditions for sparse
discrete constrained optimization problems (1) and (2) and develop an aug-
mented Lagrangian proximal alternating (ALPA) method for solving large-
scale problems (1) and (2), efficiently. And this method also can be used to
solve the special cases of problems (1) and (2), for instance, the discrete con-
strained optimization problems and the l0 minimization problems. For solving
multiple constraints sparse discrete optimization problems, the ALPA method
generates a sequence of augmented Lagrangian (Al) subproblems which are
nonconvex and nonsmooth problems and utilizes the PALM framework and
sparse projection techniques to solve these subproblems. Under some suit-
able assumptions, we establish that any accumulation point of the iterative
sequence generated by the ALPA method satisfies the first-order optimality
conditions of problems (1) and (2). In addition, from the property of the
PALM method, any accumulation point of the sequence generated by the
PALM framework is a critical point of the Al subproblem. Finally, we test
the performance of the ALPA method by applying it to solve the sparse port-
folio selection problems with discrete constraints which are generalizations of
the sparse portfolio selection problems with minimum threshold constraints.
The computational results demonstrate that the framework of our method
is more easily in programming, the solutions generated by our method have
better quality and consume lesser amount of calculation than the solutions
generated by the PD method.

The rest of this paper is organized as follows. In Subsection 1.1, we in-
troduce the notation and terminology that is used throughout the paper. In
Section 2, we establish the first-order optimality conditions for problems (1)
and (2). In Section 3, we develop the ALPA method for the problems. The
convergence result of the ALPA method is established in Section 4. In Section
5, we carry out numerical experiments to test the performance of our method
for solving problems (1) and (2). Finally, we give some concluding remarks in
Section 6.
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1.1 Notation and terminology

In this paper, the symbols Rn denote the n-dimensional Euclidean space. For
any real vector, ‖ · ‖0 and ‖ · ‖ denote the l0-norm (i.e., the cardinality or the
number of the nonzero entries) and the l2-norm, respectively. Given an index
set L ⊆ {1, . . . , n}, |L| denotes the size of L, and the elements of L are always
arranged in ascending order. xL denotes the subvector formed by the entries
of x indexed by L. For any two sets A and B, the subtraction of A and B is
given by A \ B = {x ∈ A : x /∈ B}.

We recall from [27] that for a proper and lower semi-continuous function h :
Rn → (−∞,+∞] and a point x ∈ domh where domh = {x ∈ Rn : h(x) < +∞},
the limiting and horizon subdifferential of h at x are defined respectively as

∂h(x) = {u ∈ Rn : ∃xk h−→ x, uk → u with

lim infz→xk
h(z)−h(xk)−〈uk,z−xk〉

‖z−xk‖ ≥ 0 ∀k},

∂∞h(x) = {u ∈ Rn : ∃xk h−→ x, tku
k → u, tk ↓ 0 with

lim infz→xk
h(z)−h(xk)−〈uk,z−xk〉

‖z−xk‖ ≥ 0 ∀k},

where xk
h−→ x means that xk → x and h(xk)→ h(x) and tk ↓ 0 means tk > 0

and tk → 0. If h is convex, the limiting subdifferential coincides with the
classical subdifferential in convex analysis. Moreover, let h be a continuously
differential function and g be a proper lower semi-continuous function with
finite at x, we simply have that ∂h(x) = {∇h(x)} and ∂(h(x) + g(x)) =
∇h(x) + ∂g(x). For a proper lower semi-continuous function h, a point x is a
critical point of h if 0 ∈ ∂h(x). In addition, for the limiting subdifferential the
Fermat’s rule remains true, that is, if x is a local minimizer of a proper lower
semi-continuous function h, then 0 ∈ ∂h(x). Recall from [27] that a set-valued
mapping σ : Rn ⇒ Rm is said to be outer semi-continuous at x ∈ Rn if{

u ∈ Rm : ∃xk → x, uk → u, uk ∈ σ(xk)
}
⊆ σ(x).

Given a closed set C ⊆ Rn, let IC(x) denote the indicator function of C that
satisfies IC(x) = 0 if x ∈ C and +∞ otherwise, and let NC(x) denote the
limiting normal cone of C at any x ∈ C, then we have ∂IC(x) = NC(x) at
∀x ∈ C. It is well known that the limiting subdifferential mapping ∂h, the
limiting normal cone mapping NC and the horizon subdifferential mapping
∂∞h are outer semi-continuous everywhere.

2 First-order optimality conditions

In this section, we study the constraint qualifications and the first-order opti-
mality conditions for problems (1) and (2). From the definition of the discrete
variable, if we restrict the discrete variable xj , j ∈ J to some constant inter-
val or point of Dj , problems (1) and (2) reduce to two tightened nonlinear
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programming problems. By utilizing these tightened nonlinear programming
problems, we give the constraint qualifications and establish the first-order
necessary conditions for problems (1) and (2). Furthermore, if the l0-norm
and the discrete variables are the only nonconvex part of problems (1) and (2)
we can establish the first-order sufficient conditions for problems (1) and (2).

Before establishing the first-order necessary conditions for problems (1)
and (2), we need to consider the qualifications on the constraints of problems
(1) and (2). The Mangasarian-Fromovitz constraint qualification (MFCQ) is
a standard constraint qualification for nonliner programs. Next, we give the
MFCQ for problems (1) and (2).

Definition 1 Let F1 be the feasible region of problem (1). For a given feasible
point x∗ ∈ F1, let J∗ ⊆ J be an index set with |J∗| = K such that x∗j = 0 for

all j ∈ J̄∗, where J̄∗ = J \ J∗. We say that the MFCQ holds at x∗ ∈ F1 if the
there exists a point x ∈ Rn such that

〈∇ci(x∗), x− x∗〉 = 0, i = 1, . . . ,m,
〈∇di(x∗), x− x∗〉 < 0, i ∈ Ad(x∗),
〈−ej , x− x∗〉 < 0, j ∈ A(x∗),
〈ej , x− x∗〉 < 0, j ∈ B(x∗),
〈ej , x− x∗〉 = 0, j ∈ ZJ∗(x∗) ∪ J̄∗,

(4)

and {∇ci(x∗), ej}, i = 1, . . . ,m, j ∈ ZJ∗(x∗) ∪ J̄∗ are linearly independent
where A(x∗) = {j ∈ J∗ : x∗j = al∗j j}, B(x∗) = {j ∈ J∗ : x∗j = bl∗j j}, ZJ∗(x

∗) =

{j ∈ J∗ : x∗j = 0}, l∗j is the index of the interval of Dj which contains the x∗j ,
Ad(x∗) = {1 ≤ i ≤ p : di(x

∗) = 0} and ej is a n-dimensional vector of which
the the j-th component is equal to 1 and other components are equal to 0.

Definition 2 Let F2 be the feasible region of problem (2). For a given feasible
point x∗ ∈ F2, let J∗ = {j ∈ J : x∗j 6= 0} and J̄∗ = J \ J∗. We say that the
MFCQ condition holds at x∗ ∈ F2 if the there exists a point x ∈ Rn such that

〈∇ci(x∗), x− x∗〉 = 0, i = 1, . . . ,m,
〈∇di(x∗), x− x∗〉 < 0, i ∈ Ad(x∗),
〈−ej , x− x∗〉 < 0, j ∈ A(x∗),
〈ej , x− x∗〉 < 0, j ∈ B(x∗),
〈ej , x− x∗〉 = 0, j ∈ J̄∗,

(5)

and {∇ci(x∗), ej}, i = 1, . . . ,m, j ∈ J̄∗ are linearly independent where A(x∗),
B(x∗), l∗j , Ad(x∗) and ej are defined as in Definition 1.

It is well known that the MFCQ is equivalent to the positively liner in-
dependence of the gradient vectors of the constraints. In addition, since the
objective functions of problems (1) and (2) are lower semi-continuous, a lo-
cal minimizer of problem (1) or (2) may not be a KKT point under only the
MFCQ condition. Hence, like [28] (Definition 2.3), we use the following basic
qualification (BQ) for general discussion.
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Definition 3 Let F1, F2 be the feasible regions of problems (1) and (2),
respectively. For problem (1), we say that the BQ holds at x∗ ∈ F1 if

− ∂∞g(x∗) ∩NF1(x∗) = 0. (6)

Analogously, for problem (2), we say that the BQ holds at x∗ ∈ F2 if

− (∂∞g(x∗) + ∂∞λ‖xJ‖0) ∩NF2(x∗) = 0. (7)

Under the constraint qualifications above, we establish the first-order nec-
essary conditions for problems (1) and (2).

Theorem 1 Assume that x∗ is a local minimizer of problem (1). Let J∗ ⊆ J
be an index set with |J∗| = K such that x∗j = 0 for all j ∈ J̄∗, where J̄∗ =
J \J∗. Suppose that at x∗ the BQ (6) and the MFCQ (4) condition hold. Then,
there exists µ∗ ∈ Rm, ν∗1 ∈ Rp

+, ν∗2 , ν
∗
3 ∈ Rn

+ and z∗ ∈ Rn together with x∗

satisfying

0 ∈ ∇f(x∗) + ∂g(x∗) +∇c(x∗)µ∗ +∇d(x∗)ν∗1 − ν∗2 + ν∗3 + z,
(ν∗1 )idi(x

∗) = 0, i = 1, . . . , p
(ν∗2 )j(al∗j j − x

∗
j ) = 0, (ν∗3 )j(x

∗
j − bl∗j j) = 0, j ∈ J∗ \ ZJ∗(x∗),

(ν∗2 )j = 0, (ν∗3 )j = 0, j ∈ J̄∗ ∪ ZJ∗(x∗) ∪ J̄ ,
z∗j = 0, j ∈ (J∗ \ ZJ∗(x∗)) ∪ J̄ ,

(8)

where J̄ = {1, . . . , n} \ J and ZJ∗(x∗), l∗j are defined as in Definition 1.

Proof It is obvious that if x∗ is a local minimizer of problem (1), x∗ is also a
local minimizer of the following tightened problem:

min
x

f(x) + g(x)

s.t. c(x) = 0,

d(x) ≤ 0,

al∗j j ≤ xj ≤ bl∗j j , j ∈ J
∗ \ ZJ∗(x∗),

xj = 0, j ∈ J̄∗ ∪ ZJ∗(x∗).

(9)

Together with the BQ (6) and the MFCQ (4) condition and the corollaries of
[27], the conclusion holds.

Theorem 2 Assume that x∗ is a local minimizer of problem (2). Let J∗ =
{j ∈ J : x∗j 6= 0} and J̄∗ = J \ J∗. Suppose that at x∗ the BQ (7) and the
MFCQ (5) condition hold. Then, there exists µ∗ ∈ Rm, ν∗1 ∈ Rp

+, ν∗2 , ν
∗
3 ∈ Rn

+

and z∗ ∈ Rn together with x∗ satisfying

0 ∈ ∇f(x∗) + ∂g(x∗) +∇c(x∗)µ∗ +∇d(x∗)ν∗1 − ν∗2 + ν∗3 + z,
(ν∗1 )idi(x

∗) = 0, i = 1, . . . , p
(ν∗2 )j(al∗j j − x

∗
j ) = 0, (ν∗3 )j(x

∗
j − bl∗j j) = 0, j ∈ J∗,

(ν∗2 )j = 0, (ν∗3 )j = 0, j ∈ J̄∗ ∪ J̄ ; z∗j = 0, j ∈ J∗ ∪ J̄ ,

(10)

where J̄ = {1, . . . , n} \ J and l∗j are defined as in Definition 1.
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Proof It is obvious that x∗ is a local minimizer of problem (2) if and only if
x∗ is a local minimizer of the tightened problem:

min
x

f(x) + g(x)

s.t. c(x) = 0,

d(x) ≤ 0,

al∗j j ≤ xj ≤ bl∗j j , j ∈ J
∗,

xj = 0, j ∈ J̄∗.

(11)

Together with the BQ (7) and the MFCQ (5) condition and the corollaries of
[27], the conclusion holds.

It is obvious that, for fixed x∗, J∗ and J̄∗, the MFCQ condition and the
first-order necessary conditions of problems (1) and (2) described above are
the MFCQ condition and the first-order necessary conditions of the tightened
problems (9) and (11). Furthermore, the MFCQ condition and the first-order
necessary conditions defined above are the generalizations of the CC-MFCQ
condition and the M-stationarity conditions in [22], respectively.

If the l0-norm and the discrete constraints are the only nonconvex parts
of problems (1) and (2), the tightened problems (9) and (11) for x∗ is convex.
Using this observation and the conclusion in [23] we can establish the first-
order sufficient optimality conditions for problems (1) and (2).

Theorem 3 Assume that f , g and d’s are convex functions, and c’s are affine
functions. Let x∗ be a feasible point of problem (1), J∗ ⊆ J be an index set
with |J∗| = K such that x∗j = 0 for all j ∈ J̄∗, where J̄∗ = J \J∗. Suppose that
for such J∗, there exists some µ∗ ∈ Rm, ν∗1 ∈ Rp

+, ν∗2 , ν
∗
3 ∈ Rn

+ and z∗ ∈ Rn

satisfying (8). Then, x∗ is a local minimizer of problem (1).

Proof : By the assumptions and the corollaries of [27], for constant J∗, x∗ is
a minimizer of the tightened problem (9). Then there exists ε1 > 0 such that
f(x) + g(x) ≥ f(x∗) + g(x∗) for all x ∈ OJ∗(x∗; ε1) where

OJ∗(x∗; ε1) = {x ∈ Rn : c(x) = 0, d(x) ≤ 0,
al∗j j ≤ xj ≤ bl∗j j , j ∈ J

∗ \ ZJ∗(x∗), xJ̄∗∪ZJ∗ (x∗) = 0, ‖x− x∗‖ < ε1}

with J̄∗ = J \J∗ and ZJ∗(x∗) = {j ∈ J∗ : x∗j = 0}. Let J ∗1 = {J∗1 ⊆ J : |J∗1 | =
K, x∗j = 0, ∀j ∈ J \ J∗1 }, then we can observe from (1) that there exists ε2

such that for any x ∈ O(x∗; ε2), where

O(x∗; ε2) = {x ∈ Rn : c(x) = 0, d(x) ≤ 0,
xj ∈ Dj , j ∈ J, ‖xJ‖0 ≤ K, ‖x− x∗‖ < ε2},

there exists J∗1 ∈ J ∗ satisfying x ∈ OJ∗1 (x∗; ε2). Let ε̄ = min{ε1, ε2}, from the
definition of OJ∗(x∗; ε̄) and OJ∗1 (x∗; ε̄) we have that OJ∗(x∗; ε̄) = OJ∗1 (x∗; ε̄).
Hence, for any x ∈ O(x∗; ε̄), it has f(x)+g(x) ≥ f(x∗)+g(x∗). It then implies
that x∗ is a local minimizer of (1).
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Theorem 4 Assume that f , g and d’s are convex functions, and c’s are affine
functions. Let x∗ be a feasible point of problem (2), and let J∗ = {j ∈ J :
x∗j 6= 0}, J̄∗ = J \ J∗. Suppose that for such J∗, there exists some µ∗ ∈ Rm,
ν∗1 ∈ Rp

+, ν∗2 , ν
∗
3 ∈ Rn

+ and z∗ ∈ Rn satisfies (10). Then, x∗ is a local minimizer
of problem (2).

Proof : By the above assumptions and the corollaries of [27], x∗ is a minimizer
of the tightened problem (11) with J̄∗. We can observe that any point is a
local minimizer of problem (2) if and only if it is a minimizer of the tightened
problem (11). Then, it implies that x∗ is a local minimizer of problem (2).

From the conclusions of (3) and (4), we observe that if the l0-norm and the
discrete constraints are the only nonconvex parts of problems (1) and (2), then
for any feasible point x of problem (1) or (2), which satisfies the first-order
necessary conditions of problem (1) or (2), x is a local minimizer of problem
(1) or (2).

3 Augmented Lagrangian Proximal Alternating Method

In this section, we propose an ALPA method for solving problems (1) and (2).
And we introduce the projection techniques and the closed-form solutions of
two types of special l0 minimization problems which are utilized in solving the
augmented Lagrangian (AL) subproblems in the ALPA Method.

3.1 Augmented Lagrangian proximal alternating method for problem (1)

In this subsection, we propose an ALPA method for solving problem (1). In-
spired by the PD method and the penalty PALM method, we reformulated
problem (1) as

min
x,y

f(x) + g(x)

s.t. c(x) = 0,

d(x) ≤ 0,

xJ = y,

yi ∈ DJ(i), i = 1, . . . , |J |,
‖y‖0 ≤ K,

(12)

where x ∈ Rn, y ∈ R|J|. Let E1 =
{
y ∈ R|J| : yi ∈ DJ(i), i = 1, . . . , |J |, ‖y‖0 ≤ K

}
denote the feasible set of the cardinality constraint and the discrete constraints.

For any given penalty parameter ρ > 0, we define the augmented La-
grangian (AL) function for (1) (or equivalently (12)) as following

L1(x, y, µ, ν, η, ρ) = f(x) + g(x) + 1
2ρ (‖µ+ ρc(x)‖2 − ‖µ‖2)

+ 1
2ρ (‖[ν + ρd(x)]+‖2 − ‖ν‖2) + 1

2ρ (‖η + ρ(xJ − y)‖2 − ‖η‖2).
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Similarly with [28,29], at each outer iteration we approximately solve prob-
lem (1) by solving the following AL subproblem:

min
x,y

L1(x, y, µ, ν, η, ρ)

s.t. y ∈ E1,
(13)

For convenience, we write the AL function as a sum of a smooth term and
a nonsmooth term: L1(x, y, µ, ν, η, ρ) = ϕ(x, y, µ, ν, η, ρ) + g(x) where

ϕ(x, y, µ, ν, η, ρ) := f(x) + 1
2ρ (‖µ+ ρc(x)‖2 − ‖µ‖2)

+ 1
2ρ (‖[ν + ρd(x)]+‖2 − ‖ν‖2) + 1

2ρ (‖η + ρ(xJ − y)‖2 − ‖η‖2).
(14)

The minimization problem (13) can be rewritten as the following uncon-
strained minimization problem:

min
x,y

Ψ1(x, y, µ, ν, η, ρ) = g(x) + ϕ(x, y, µ, ν, η, ρ) + h1(y)

over all (x, y) ∈ Rn × R|J|,
(15)

where h1(y) = IE1(y) and IE1(y) denotes the indicator function of E1. We
can observe that problem (15) is a nonconvex and nonsmooth minimization
problem. From Fermat’s rule, if a point x is a local minimizer of a proper and
lower semi-continuous function σ, then x is a critical point of σ.

Recently, Bolte et al. developed a novel PALM method [24] which build on
the Kurdyka- Lojasiewicz (KL) property for solving a broad class of nonconvex
and nonsmooth minimization problems. The PALM method can be viewed as
alternating the steps of the proximal forward-backward scheme. Without the
convexity assumption, it is shown in [24] that for any proper and lower semi-
continuous functions g(x), h(y) and smooth function ϕ(x, y) in the form of

min
x,y

Ψ(x, y) = g(x) + ϕ(x, y) + h(y), over all (x, y) ∈ Rn × Rm (16)

if g(x), h(x) and ϕ(x, y) satisfy Assumption A and B in [24] and Ψ(x, y) is
a KL function then each bounded sequence generated by the PALM method
globally converges to a critical point of problem (16). If a proper and lower
semi-continuous function h satisfies the KL property at each point of dom ∂h
then h is called a KL function. The KL property plays a central role in the
convergence analysis of the PALM method. We can see [24] and [30,31] for the
details of the definition of the KL property and more important results on the
KL theory.

Hence, for ensuring the convergence of the PALM method for problem (15)
we take the following as our assumption.

Assumption 1 (i) infx∈Rn g(x) > −∞, and for any constant µ, ν, η and ρ
it has inf(x,y)∈Rn×R|J| Ψ1(x, y, µ, ν, η, ρ) > −∞.

(ii) For any fixed y and constant µ, ν, η and ρ the function x→ ϕ(x, y, µ, ν,
η, ρ) is C1,1

L1(y), namely the partial gradient ∇xϕ(x, y, µ, ν, η, ρ) is globally Lip-

schitz with moduli L1(y), that is

‖∇xϕ(x1, y, µ, ν, η, ρ)−∇xϕ(x2, y, µ, ν, η, ρ)‖ ≤ L1(y)‖x1−x2‖, ∀x1, x2 ∈ Rn.
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(iii) There exists L−1 , L
+
1 > 0 such that

inf{L1(yl) : l ∈ N} ≥ L−1 and sup{L1(yl) : l ∈ N} ≤ L+
1 ,

where {yl} is a sequence of variable y generated by the PALM method.
(iv) For constant µ, ν, η and ρ, ∇ϕ(x, y, µ, ν, η, ρ) is Lipschitz continuous

on bounded subsets of Rn ×R|J|, that is, for each bounded subsets B1 ×B2 of
Rn × R|J| there exists M > 0 such that for all (xi, yi) ∈ B1 ×B2, i = 1, 2:

‖(∇xϕ(x1, y1, µ, ν, η, ρ)−∇xϕ(x2, y2, µ, ν, η, ρ)
,∇yϕ(x1, y1, µ, ν, η, ρ)−∇yϕ(x2, y2, µ, ν, η, ρ))‖ ≤M‖(x1 − x2, y1 − y2)‖.

(v) For constant µ, ν, η and ρ, function Ψ1(x, y, µ, ν, η, ρ) is a KL function
and the level set of Ψ1(x, y, µ, ν, η, ρ) is bounded.

Remark 1 We can obvious that, for any fixed x and constant µ, ν, η and ρ
the function y → ϕ(x, y, µ, ν, η, ρ) is C1,1

L2
, where L2 = ρ. Function h1(y) is

the indicator function of E1 then we have h1(y) is lower semi-continuous and
infy∈R|J| h1(y) > −∞. Hence functions g(x), ϕ(x, y, µ, ν, η, ρ) and h1(y) satisfy
Assumption A and B in [24]. In addition, in the assumption (v) the condition
of the level set of function Ψ1(x, y, µ, ν, η, ρ) is bounded can be replaced by the
condition that the sequence generated by the PALM method is bounded or
some other conditions which can guarantee the boundedness of the sequence
generated by the PALM method.

Next, we use the framework of the PALM method to solve problem (15)
as well as the AL subproblem (13). For constant µ, ν, η and ρ, the PALM
method updates the iterative sequence {(xl, yl)} via solving the following two
proximal problems:

xl+1 ∈ arg min
x

g(x) + 〈x− xl,∇xϕ(xl, yl, µ, ν, η, ρ)〉+
t1l
2
‖x− xl‖2, (17)

yl+1 ∈ arg min
y

h1(y) + 〈y − yl,∇yϕ(xl+1, yl, µ, ν, η, ρ)〉+
t2l
2
‖y − yl‖2,(18)

where t1l = γ1L1(yl), t2l = γ2L2, γ1, γ2 > 1 are two appropriately chosen step
sizes, L1(yl), L2 are the lipschitz constants in Assumption 1 and Remark 1.
Using the proximal map notation in [27], we get the minimization problems
(17), (18) are equivalent to the following two proximal problems:

xl+1 ∈ Proxg
t1l

(xl − 1

t1l
∇xϕ(xl, yl, µ, ν, η, ρ)), (19)

yl+1 ∈ Proxh1

t2l
(yl − 1

t2l
∇yϕ(xl+1, yl, µ, ν, η, ρ)). (20)

Here, we assume that proximal problem (19) can be handled easily. For
convenience of presentation, set w1 = xl−(1/t1l )∇xϕ(xl, yl, µ, ν, η, ρ) and w2 =
yl − (1/t2l )∇yϕ(xl+1, yl, µ, ν, η, ρ). Note that h1(y) = IE1(y), it is a indicator
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function of set E1. The proximal problem (20) reduce to a projection problem
onto E1, defined by

yl+1 ∈ PE1(w2) := arg min
y
{‖y − w2‖ : y ∈ E1} .

Set E1 is a nonempty closed set and PE1(w2) is a projection onto a sparse
and discrete feasible set. Hence, PE1 defines in a general multi-valued map, for
convenience, we also call PE1 a sparse projection. Suppose ȳ∗ ∈ PE1(w2) then
ȳ∗ can be computed as follows:

ȳ∗i =

{
ȳi, if i ∈ S∗,
0, otherwise,

i = 1, . . . , |J |,

where

ȳi ∈ arg min
yi

{
(yi − (w2)i)

2 : yi ∈ DJ(i)

}
, i = 1, . . . , |J |, (21)

and S∗ ⊆ {1, . . . , |J |} is the index set corresponding to K largest value of

{((w2)i)
2 − (ȳi − (w2)i)

2}|J|i=1. And from (3) and (21) we observe that for
i = 1, . . . , |J |, if there exists 0 ≤ l̄ ≤ pj(i) such that (w2)i ∈ [al̄J(i), bl̄J(i)],
then ȳi = (w2)i, otherwise it has

ȳi ∈ arg min
yi

{
(yi − (w2)i)

2 : yi ∈ {alJ(i), blJ(i)}
pJ(i)

l=1 ∪ {0}
}
.

Therefore, problem (15) can be solved by iteratively solving a proximal
problem and a sparse projection problem. We rewrite the PALM method for
solving problem (15) as following:

PALM method for (15):
Choose an initial point (x0, y0) ∈ Rn × R|J|. Set l = 0.

(1) Take γ1 > 1, t1l = γ1L1(yl) and compute

xl+1 ∈ Proxg
t1
l

(xl −
1

t1l
∇xϕ(xl, yl, µ, ν, η, ρ)).

(2) Take γ2 > 1, t2l = γ2L2 and compute

yl+1 ∈ arg min
y

{
‖y − (yl −

1

t2l
∇yϕ(xl+1, yl, µ, ν, η, ρ))‖ : y ∈ E1

}
.

(3) Set l← l + 1 and go to step (1).

We are now ready to propose the ALPA method for (approximate) solving
problem (12) (or equivalently problem (1)) in which each AL subproblem is
solved by the PALM method. Let xfeas be a feasible point of problem (1).

Augmented Lagrangian Proximal Alternating Method for (1):
Let {εk} be a positive decreasing sequence. Let µ0 ∈ Rm, ν0 ∈ Rp+, η0 ∈ R|J|, ρ0 > 0,

σ > 1, 0 < τ, θ < 1, γ1, γ2 > 1 be given. Choose an arbitrary point (x00, y
0
0) ∈ Rn × R|J|

and a constant Υ ≥ max{f(xfeas) + g(xfeas),L(x00, y
0
0 , µ

0, ν0, η0, ρ0)}. Set k = 0.
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(1) Set l = 0 and apply the PALM method to find an approximate critical point (xk, yk) ∈
Rn × R|J| of the AL subproblem

min
x,y

Ψ1(x, y, µk, νk, ηk, ρk) = g(x) + ϕ(x, y, µk, νk, ηk, ρk) + h1(y), (22)

by performing steps (1.1)-(1.4):

(1.1) Set tk1,l = γ1Lk1(ykl ), w1 = xkl −
1
tk
1,l

∇xϕ(xkl , y
k
l , µ

k, νk, ηk, ρk),

compute xkl+1 ∈ Proxg
tk
1,l

(w1).

(1.2) Set tk2,l = γ2Lk2 , w2 = ykl −
1
tk
2,l

∇yϕ(xkl+1, y
k
l , µ

k, νk, ηk, ρk),

compute ykl+1 ∈ PE1 (w2),

(1.3) If (xkl+1, y
k
l+1) satisfies

dist(0, ∂Ψ1(xkl+1, y
k
l+1, µ

k, νk, ηk, ρk) < εk, (23)

set (xk, yk) := (xkl+1, y
k
l+1) and go to step (2).

(1.4) Set l← l + 1 and go to step (1.1).

(2) Set µk+1 = µk + ρkc(x
k), νk+1 = [νk + ρkd(xk)]+, ηk+1 = ηk + ρk(xkJ − yk) and

ζk+1 = min{νk+1,−d(xk)}.
(3) If k = 0 or

max
{
‖c(xk)‖, ‖xkJ − y

k‖, ‖ζk+1‖
}
≤ θmax{‖c(xk−1)‖, ‖xk−1

J − yk−1‖, ‖ζk‖},

then set ρk+1 = ρk. Otherwise, set

ρk+1 = max{σρk, ‖µk+1‖1+τ , ‖νk+1‖1+τ , ‖ηk+1‖1+τ}

(4) If L(xk, yk, µk+1, νk+1, ηk+1, ρk+1)} > Υ , set (xk+1
0 , yk+1

0 ) = (xfeas, xfeasJ ). Otherwise,

set (xk+1
0 , yk+1

0 ) := (xk, yk).

(5) Set k ← k + 1 and go to step (1).

Remark 2 The condition (23) will be used in the analysis of the global conver-
gence of the ALPA method, but it may not be easily confirmed. Just like the
PD method, this condition can be replaced by another practical termination
condition which is based on the relative change of the sequence {(xkl , ykl )},
that is,

max

{
‖xkl+1 − xkl ‖∞
max(‖xkl ‖∞, 1)

,
‖ykl+1 − ykl ‖∞
max(‖ykl ‖∞, 1)

}
≤ εI (24)

for some εI > 0. In addition, we can terminate the out iterations of the ALPA
method by condition

‖xk − yk‖∞ ≤ εO or
‖(xk+1, yk+1)− (xk, yk)‖∞

max(‖(xk, yk)‖∞, 1)
≤ εO, (25)

for some εO > 0. For enhancing the performance and convergence of the ALPA
method, we may recompute the AL subproblem multiple times from a suitable
perturbation of the current best approximate solution.
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In the practical calculation, for speeding up the computation we can use
an end game strategy which needs not necessary to set the parameters of the
termination conditions too strict (small) and find a very accurate solution. We
can choose some moderate parameters and find a accurate distribution of a
solution in less time, this distribution indicates the intervals or point sets in
which the components of the solution are contained. Then we use a heuristic
method that restricts the discrete variables to constant intervals or point sets
and solves a tightened problem by an efficient method to find an accurate
solution of problem (1).

3.2 Augmented Lagrangian proximal alternating method for problem(2)

In this subsection, we propose an ALPA method for solving problem (2). Sim-
ilarly with the ALPA method for problem (1), we reformulate problem (2)
as

min
x,y

f(x) + g(x) + λ‖y‖0

s.t. c(x) = 0,

d(x) ≤ 0,

xJ = y,

yi ∈ DJ(i), i = 1, . . . , |J |.

(26)

Let E2 =
{
y ∈ R|J| : yi ∈ DJ(i), i = 1, . . . , |J |

}
denote the feasible set of the

discrete constraints. Similarly, for any given penalty parameter ρ > 0 we define
the AL function of problem (2) (or equivalently (26)) as following:

L2(x, y, µ, ν, η, ρ) = f(x) + g(x) + 1
2ρ (‖µ+ ρc(x)‖2 − ‖µ‖2)

+ 1
2ρ (‖[ν + ρd(x)]+‖2 − ‖ν‖2) + 1

2ρ (‖η + ρ(xJ − y)‖2 − ‖η‖2) + λ‖y‖0.

By utilizing (14), the AL function of problem (2) can be rewritten as:
L2(x, y, µ, ν, η, ρ) = g(x) + ϕ(x, y, µ, ν, η, ρ) + λ‖y‖0 and the associated AL
subproblem for problem (2) can be rewritten as the following unconstrained
minimization problem:

min
x,y

Ψ2(x, y, µ, ν, η, ρ) = g(x) + ϕ(x, y, µ, ν, η, ρ) + h2(y)

over all (x, y) ∈ Rn × R|J|,
(27)

where h2(y) = IE2(y) + λ‖y‖0 and IE2(y) denotes the indicator function of E2.

Similarly with the PALM method for problem (15), for ensuring the conver-
gence of the PALM method for problem (27) we take the following assumption.

Assumption 2 Replace Ψ1(x, y, µ, ν, η, ρ) in the conditions of Assumption 1
by Ψ2(x, y, µ, ν, η, ρ) and assume that all the conditions are satisfied.
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Remark 3 Function ‖y‖0 is a lower semi-continuous and bounded function
thus h2(y) is lower semi-continuous and infy∈R|J| h2(y) > −∞. Similarly with
Remark 1, we have that for any fixed x the function y → ϕ(x, y, µ, ν, η, ρ)
is C1,1

L2
where L2 = ρ and functions g(x), ϕ(x, y, µ, ν, η, ρ) and h2(y) satisfy

Assumption A and B in [24]. Like Assumption 1, in the assumption (v) the
condition of the boundedness of the level set of function Ψ2(x, y, µ, ν, η, ρ) can
be replaced by other conditions which can guarantee the boundedness of the
sequence generated by the PALM method.

Hence, problem (27) can be solved by utilizing the PALM framework. For
constant µ, ν, η and ρ, the iterative sequence {(xl, yl)} are updated by solving
the following two proximal problems:

xl+1 ∈ Proxg
t1l

(w1),

yl+1 ∈ Proxh2

t2l
(w2) = arg min

y

{
t2l
2
‖y − w2‖2 + λ‖y‖0 : y ∈ E2

}
,

where w1 = xl−(1/t1l )∇xϕ(xl, yl, µ, ν, η, ρ), w2 = yl−(1/t2l )∇yϕ(xl+1, yl, µ, ν,
η, ρ), t1l = γ1L1(yl), t2l = γ2L2 γ1, γ2 > 1 are two appropriately chosen step
sizes and L1(yl), L2 are the lipschitz constants in Assumption 1 and Remark
1.

It is obvious that Proxh2

t2l
is a generalized hard thresholding operator. Sim-

ilarly to PE1 , Proxh2

t2l
is a multi-valued map. Suppose ȳ∗ ∈ Proxh2

t2l
(w2), then

ȳ∗ can be computed as follows:

ȳ∗i =

{
ȳi, if v̄i ≥ 0;
0, otherwise,

i = 1, . . . , |J |,

where ȳi ∈ arg min
yi
{(yi − (w2)i)

2 : yi ∈ DJ(i)} and v̄i = (t2l /2)((w2)i)
2 − λ −

(t2l /2)(ȳi − (w2)i)
2 for i = 1, . . . , |J |.

We now present the ALPA method for problem (2) which is similar to the
ALPA method for problem (1). Let xfeas be a feasible point of problem (2).

Augmented Lagrangian Proximal Alternating Method for (2):
Let {εk} be a positive decreasing sequence. Let µ0 ∈ Rm, ν0 ∈ Rp+, η0 ∈ R|J|, ρ0 > 0,

σ > 1, 0 < τ, θ < 1, γ1 > 1, γ2 > 1 be given. Choose an arbitrary point (x00, y
0
0) ∈ Rn×R|J|

and a constant Υ ≥ max{f(xfeas)+g(xfeas)+λ‖xfeasJ ‖0,L(x00, y
0
0 , µ

0, ν0, η0, ρ0)}. Set k = 0.

(1) Set l = 0 and apply the PALM method to find an approximate critical point (xk, yk) ∈
Rn × R|J| of the AL subproblem

min
x,y

Ψ2(x, y, µk, νk, ηk, ρk) = g(x) + ϕ(x, y, µk, νk, ηk, ρk) + h2(y), (28)

by performing steps (1.1)-(1.4):
(1.1) Set tk1,l = γ1Lk1(ykl ), w1 = xkl −

1
tk
1,l

∇xϕ(xkl , y
k
l , µ

k, νk, ηk, ρk),

compute xkl+1 ∈ Proxg
tk
1,l

(w1).

(1.2) Set tk2,l = γ2Lk2 , w2 = ykl −
1
tk
2,l

∇yϕ(xkl+1, y
k
l , µ

k, νk, ηk, ρk),

compute ykl+1 ∈ Proxh2

tk
2,l

(w2),
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(1.3) If (xkl+1, y
k
l+1) satisfies

dist(0, ∂Ψ2(xkl+1, y
k
l+1, µ

k, νk, ηk, ρk) < εk, (29)

set (xk, yk) := (xkl+1, y
k
l+1) and go to step (2).

(1.4) Set l← l + 1 and go to step (1.1).
(2) Set µk+1 = µk + ρkc(x

k), νk+1 = [νk + ρkd(xk)]+, ηk+1 = ηk + ρk(xkJ − yk) and

ζk+1 = min{νk+1,−d(xk)}.
(3) If k = 0 or

max
{
‖c(xk)‖, ‖xkJ − y

k‖, ‖ζk+1‖
}
≤ θmax{‖c(xk−1)‖, ‖xk−1

J − yk−1‖, ‖ζk‖},

then set ρk+1 = ρk. Otherwise, set

ρk+1 = max{σρk, ‖µk+1‖1+τ , ‖νk+1‖1+τ , ‖ηk+1‖1+τ}

(4) If L(xk, yk, µk+1, νk+1, ηk+1, ρk+1)} > Υ , set (xk+1
0 , yk+1

0 ) = (xfeas, xfeasJ ). Otherwise,

set (xk+1
0 , yk+1

0 ) := (xk, yk).
(5) Set k ← k + 1 and go to step (1).

Remark 4 The practical termination criteria (24) and (25) used in the ALPA
method for problem (1) can also be applied to this method for problem (2).

For speeding up the ALPA method, the end game strategy used in problem
(1) can also be used in problem (2).

4 Convergence Analysis

In this section we establish the convergence of the ALPA method for prob-
lems (1) and (2) in which each AL subproblem is a nonconvex and nonsmooth
problem and approximately solved by the PALM method. For notational con-
venience, we omit the index k of the parameters in the subproblem of the
ALPA method for problems (1) and (2) and rewrite them as

min
x,y

Ψ1(x, y, µ, ν, η, ρ) = g(x) + ϕ(x, y, µ, ν, η, ρ) + h1(y), (x, y) ∈ Rn × R|J|.

(30)
and

min
x,y

Ψ2(x, y, µ, ν, η, ρ) = g(x) + ϕ(x, y, µ, ν, η, ρ) + h2(y), (x, y) ∈ Rn × R|J|.

(31)
Bolte et al. showed that for any nonconvex and nonsmooth problem, if the
objective function of the problem satisfies the assumptions A and B in [24] and
is a KL function, then any bounded sequence generated by the PALM method
globally converges to a critical point of the problem. From Assumption 1 and
2, we can confirm that the lower semi-continuous functions Ψ1(x, y, µ, ν, η, ρ)
and Ψ2(x, y, µ, ν, η, ρ) satisfy the assumptions in [24] and are KL functions.
Hence, utilizing Assumption 1, 2 and the conclusions of [24,32], we give the
convergence theorem which ensures the convergency of the iterative sequence
generated in solving the AL subproblem.
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Theorem 5 Let µ, ν, η and ρ be given. Under Assumption 1 or 2, the se-
quence {(xl, yl)} generated by the PALM method in solving the AL subproblem
(30) or (31) converges to a critical point of (30) or (31). And for given ε > 0
there exists L̄ > 0 such that for all l > L̄ it has

dist(0, ∂Ψ1(xl, yl, µ, ν, η, ρ) < ε or dist(0, ∂Ψ2(xl, yl, µ, ν, η, ρ) < ε. (32)

Proof The level set of the function Ψ1(x, y, µ, ν, η, ρ) is bounded, and it is
shown in [24] that the function value sequence {Ψ1(xl, yl, µ, ν, η, ρ)} is nonin-
creasing. Therefore the sequence {(xl, yl)} is bounded. By Assumption 1 and
the conclusions in [24], we have that the sequence {(xl, yl)} converges to a
critical point of subproblem (30). It follows from Lemma 3.4, Lemma 3.5 and
Theorem 3.1 of [24] that

lim
l→∞

dist(0, ∂Ψ1(xl, yl, µ, ν, η, ρ) = 0.

Hence, the first part of (32) immediately follows. The proof of the PALM
method for problem (31) is analogous to the proof of the PALM method for
problem (30).

From the theorem above, the sequence generated by the PALM method
converges to a critical point of the AL subproblem (30) or (31). Now we show
that under some suitable assumption, any accumulation point of the sequence
generated by the ALPA method for problem (1) satisfies the first-order neces-
sary conditions of problem (1). Moreover, when the l0-norm and the discrete
constraints are the only nonconvex parts of problem (1), we can show that any
accumulation point is a local minimizer of problem (1).

Theorem 6 Assume that {εk} → 0. Let {(xk, yk)} be the sequence generated
by the ALPA method for problem (1), Ik = {ik1 , . . . , ikK} be a set of K distinct
indices in {1, · · · , |J |} such that (yk)i = 0 for any i /∈ Ik and let Jk = {J(i) :
i ∈ Ik}. Then the following statements hold:

(i) Suppose (x∗, y∗) is an accumulation point of {(xk, yk)}. Then x∗J = y∗

and x∗ is a feasible point of problem (1). Moreover, there exists a subsequence
Q such that {(xk, yk)}k∈Q → (x∗, y∗), Ik = I∗ and Jk = J∗ := {J(i) : i ∈ I∗}
for some index set I∗ ⊆ {1, · · · , |J |} when k ∈ Q is sufficiently large.

(ii) Let x∗, Q, and J∗ be defined as above, and let J̄∗ = J \ J∗. Suppose
that the BQ (6) and the MFCQ condition (4) hold at x∗ for such J∗ and J̄∗.
Then x∗ satisfies the first-order optimality conditions (8). Moreover, if f , g
and d’s are convex functions, and c’s are affine functions, then x∗ is a local
minimizer of (1).

Proof Without loss of generality, we can assume that (xk, yk) → (x∗, y∗) as
k →∞. Then we consider the following two separate cases:

case(a): {ρk} is bounded. By the updating rule in Step 3) of the ALPA
method, we can observe that for any sufficiently large k,

max
{
‖c(xk)‖, ‖xkJ − yk‖, ‖ζk+1‖

}
≤ θmax{‖c(xk−1)‖, ‖xk−1

J − yk−1‖, ‖ζk‖},
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which implies that c(x∗) = 0, x∗J = y∗ and

−d(x∗) = lim
k→∞

−d(xk) ≥ lim
k→∞

ζk+1 = 0.

Case (b): {ρk} is unbounded. Considering a subsequence if necessary, for
convenience we assume that {ρk} strictly increases and goes to infinity as
k →∞. Hence, ρk+1 = max{σρk, ‖µk+1‖1+τ , ‖νk+1‖1+τ , ‖ηk+1‖1+τ} for all k,
then as k →∞

0 ≤ ‖µ
k‖
ρk

,
‖νk‖
ρk

,
‖ηk‖
ρk
≤ (ρk)−

τ
1+τ → 0. (33)

From Step 4) of the ALPA method and the nonincreasing property of the
sequence generated by the PALM method, we have that

f(xk) + g(xk) + 1
2ρk

(‖µk + ρkc(xk)‖2 − ‖µk‖2)

+ 1
2ρk

(‖[νk + ρkd(xk)]+‖2 − ‖νk‖2) + 1
2ρk

(‖ηk + ρk(xkJ − yk)‖2 − ‖ηk‖2) ≤ Υ.

It follows that

‖c(xk) + µk

ρk
‖2 + ‖[d(xk) + νk

ρk
]+‖2 + ‖xkJ − yk + ηk

ρk
‖2

≤ 2
ρk

[Υ − f(xk)− g(xk)] + ‖µk‖2+‖νk‖2+‖ηk‖2
ρ2k

.

Taking limits on both sides of this relation as k →∞, and using (33), we can
obtain

‖c(x∗)‖2 + ‖[d(x∗)]+‖2 + ‖x∗J − y∗‖2 = 0,

which implies that c(x∗) = 0, x∗J = y∗ and d(x∗) ≤ 0. Hence, we can obtain
that x∗J = y∗ and x∗ is a feasible point of problem (1). Next we discuss
the second part of statement (i). Since (x∗, y∗) is an accumulation point of
{(xk, yk)}, there exists a subsequence {(xk, yk)}k∈Q̄ → (x∗, y∗). Recall that

Ik is an index set. It follows that {(ik1 , . . . , ikK)}k∈Q̄ is bounded for all k. Thus

there exists a subsequence Q ⊆ Q̄ such that {(ik1 , . . . , ikK)}k∈Q → (i∗1, . . . , i
∗
K)

for some K distinct indices i∗1, . . . , i
∗
K . Since ik1 , . . . , i

k
K are K distinct integers,

we can obtain that (ik1 , . . . , i
k
K) = (i∗1, . . . , i

∗
K) when k ∈ Q is sufficiently large.

Let I∗ = {i∗1, . . . , i∗K}. Then, we obtain that {(xk, yk)}k∈Q → (x∗, y∗) and
Ik = I∗ and Jk = J∗ for sufficiently large k ∈ Q. Therefore statement (i)
holds.

From the termination condition of the PALM method, there exist vectors
skx, sky with ‖(skx, sky)‖ ≤ εk such that for any k sufficiently large,

skx ∈ ∂g(xk) +∇xϕ(xk, yk, µk, νk, ηk, ρk),

sky ∈ ∂h1(yk) +∇yϕ(xk, yk, µk, νk, ηk, ρk).

From h1(y) = IE1(y) and the property of the indicator function, we have
∂h1(yk) = ∂IE1(yk) = NE1(yk). Since νk+1 = [νk + ρkd(xk)]+ and ‖νk‖/ρk →
0 as k → ∞, it follows that for any k sufficiently large, it has νk+1

i = 0,
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i /∈ I∗d := Id(x∗) where Id(z) := {i : di(z) = 0}, ∀z ∈ Rn. Furthermore, from
Step 2) in the ALPA method we have

skx ∈ ∂g(xk) +∇f(xk) +

m∑
i=1

µk+1
i ∇ci(xk) +

∑
i∈I∗d

νk+1
i ∇di(xk) + η̄k+1, (34)

sky ∈ NE1(yk)− ηk+1, (35)

where η̄k+1 is the expansion of ηk+1 in Rn with η̄k+1
J = ηk+1 and η̄k+1

J̄
= 0 for

J̄ = {1, . . . , n} \ J .
From (34) and (35), we obtain that

skx + s̄ky ∈ ∂g(xk) +∇f(xk) +
∑m
i=1 µ

k+1
i ∇ci(xk)

+
∑
i∈I∗d

νk+1
i ∇di(xk) +NE1(yk)× {0}n−|J|, (36)

where (s̄ky)J = sky and (s̄ky)J̄ = 0.

Let tk := max{|µk+1
i |, |νk+1

j | : i ∈ {1, . . . ,m}, j ∈ I∗d}. Next, we prove that
{tk} is bounded. Suppose on the contrary that {tk} is unbounded. Without
loss of generality, we assume that as k →∞, tk → +∞ and

µk+1
i

tk
→ µ∗i i ∈ {1, . . . ,m},

νk+1
j

tk
→ ν∗j j ∈ I∗d .

It is clear that

max{|µ∗i |, |ν∗j | : i ∈ {1, . . . ,m}, j ∈ I∗d} = 1. (37)

Moreover, since νkj ≥ 0, j ∈ I∗d for any sufficiently large k , we have ν∗j ≥ 0,
j ∈ I∗d . Dividing (36) by tk and taking limits on both sides as k →∞, it from
the definition of horizon subdifferential, the outer semi-continuity of limiting
subdifferential and limiting normal cone that

0 ∈ ∂∞g(x∗) +

m∑
i=1

µ∗i∇ci(x∗) +
∑
i∈I∗d

ν∗i∇di(x∗) +NE1(x∗)× {0}n−|J|.

Then, there exists β∗ ∈ NE1(x∗)× {0}n−|J| such that

m∑
i=1

µ∗i∇ci(x∗) +
∑
i∈I∗d

ν∗i∇di(x∗) + β∗ ∈ −∂∞g(x∗).

Moreover, we can observe that

m∑
i=1

µ∗i∇ci(x∗) +
∑
i∈I∗d

ν∗i∇di(x∗) + β∗ ∈ NF1(x∗).
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Then it follows from the BQ (6) and the last relations that

m∑
i=1

µ∗i∇ci(x∗) +
∑
i∈I∗d

ν∗i∇di(x∗) + β∗ = 0. (38)

If β∗ = 0 then (38) together with (37) and ν∗j ≥ 0, j ∈ I∗d implies that

{∇ci(x∗),∇di(x∗) : i ∈ {1, . . . ,m}, j ∈ I∗d}

is positively linearly dependent. This contradicts with the MFCQ condition.
If β∗ 6= 0 then (38) together with (37) and ν∗j ≥ 0, j ∈ I∗d implies that

{∇ci(x∗),∇di(x∗), β∗ : i ∈ {1, . . . ,m}, j ∈ I∗d}

is positively linearly dependent. This also contradicts with the MFCQ condi-
tion. Hence, tk is bounded and it follows that {µk+1

i }, {νk+1
j } are bounded

for all i ∈ {1, . . . ,m}, j ∈ I∗d . Without loss of generality, we assume that as
k →∞,

µk+1
i → µ∗i i ∈ {1, . . . ,m}, νk+1

j → ν∗j j ∈ I∗d .

Moreover, since νkj ≥ 0, j ∈ I∗d for any sufficiently large k , we have ν∗j ≥ 0,
j ∈ I∗d . Then taking limits on both sides of (36), we have

0 ∈ ∂g(x∗) +∇f(x∗) +

m∑
i=1

µ∗i∇ci(x∗) +
∑
i∈I∗d

ν∗i∇di(x∗) +NE1(x∗)× {0}n−|J|.

(39)
By the assumption and (39), we have that x∗ satisfies the first-order optimality
conditions (8) for problem (1). Further, if f , g and d’s are convex functions,
and c’s are affine functions, the assumptions of Theorem 3 hold. It then follows
from Theorem 3 that x∗ is a local minimizer of problem (1). Statement (ii)
holds.

We next show that under some suitable assumption, any accumulation
point of the sequence generated by the ALPA method for problem (2) satisfies
the first-order necessary conditions of problem (2). Moreover, when the l0-
norm and the discrete constraints are the only nonconvex parts of problem
(2), we can show that any accumulation point is a local minimizer of problem
(2).

Theorem 7 Assume that {εk} → 0. Let {(xk, yk)} be the sequence generated
by the ALPA method for problem (2). Then the following statements hold:

(i) Suppose (x∗, y∗) is an accumulation point of
{

(xk, yk)
}

. Then x∗J = y∗

and x∗ is a feasible point of problem (2).
(ii) Let (x∗, y∗) be defined as above, and assume that {(xk, yk)}k∈Q →

(x∗, y∗) for some subsequence Q. Let J∗ = {j ∈ J : x∗j 6= 0}, J̄∗ = J \ J∗.
Suppose that the BQ (7) and the MFCQ condition (5) hold at x∗ for such J∗

and J̄∗. Then x∗ satisfies the first-order optimality conditions (10). Moreover,
if f , g and d’s are convex functions, and c’s are affine functions, then x∗ is a
local minimizer of problem (2).
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Proof The proofs of statement (i) and the first part of statement (ii) are similar
to that of Theorem 6. It follows from Theorem 4 and the first conclusion of
statement (ii) that x∗ is a local minimizer of problem (2). Statement (ii) holds.

5 Numerical experiments

In this section, we provide numerical results that show the efficiency and ad-
vantage of the ALPA method for finding good quality suboptimal solutions of
problems (1) and (2). We compared our method with the PD method and the
standard CPLEX(12.6) solver by solving following sparse portfolio selection
problems with generalized minimum transaction levels:

min
1

2
x>Qx

s.t. e>x = 1,

R>x ≥ r,
x ∈ D,
‖x‖0 ≤ K,

(40)

and

min
1

2
x>Qx+ λ‖x‖0

s.t. e>x = 1,

R>x ≥ r,
x ∈ D,

(41)

where x ∈ Rn denotes the proportion of the total funds invested on n assets,
Q denotes the covariance matrix, R denotes the expected return of n assets,
e is a n-dimensional vector with all components one, r is a minimum profit
target, and D = {x ∈ Rn : (l1)i ≤ xi ≤ (u1)i or (l2)i ≤ xi ≤ (u2)i or xi =
0, i = 1, . . . , n}, (l1)i < (u1)i < 0, 0 < (l2)i < (u2)i for i = 1, . . . , n are bounds
of the transaction levels, l1, u1, l2, u2 are transaction level vectors.

For constructing large-scale test problems, the data sets used in our ex-
periments were selected from the index tracking problem data in ORlibrary
[33]. We chose the weekly return data of the constituent stocks of Nikkei index
(Japan), Standard and Poor’s 500 (USA), Russell 2000 (USA) and Russell 3000
(USA) to structure four groups of test problems with the variable dimension
n = 225, 457, 1319 and 2152. In each group, we used the weekly return data
to estimate the expected return and the covariance matrix. For convenience,
in each group the minimum profit target r was chosen to be the average of the
expected return of all assets and all the components of the transaction level
vectors l1, u1, l2, u2 were equal to −1, −0.01, 0.01, 1 respectively. The AL-
PA method and the PD method were coded in Matlab (R2014b), the penalty
subproblems of the PD method were solved by Matlab optimization software
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package OptiToolbox, and all the computations were performed on a PC (Intel
core i7-4790 CPU, 3.6GHz, 16GB RAM).

For problem (40), the upper bounds of the numbers of selected assets
(nonzero components) K were chosen as 5, 10, 15, 20, 30 and 40, respec-
tively. We chose ρ0 = 10−6, σ = 1.1, γ1 = 1.001, γ2 = 1.001, θ = 0.9, τ = 0.01
for the ALPA method and set the initial Lagrangian multiplier to zero. For the
PALM method, for any x, y ∈ Rn, Lk1 = ‖Q‖ + ρk, Lk2 = ρk. In addition, we
used (24) and (25) as the inner and outer termination criteria for the ALPA
method with εI = 10−5, εO = 10−6, respectively. For the PD method, we
chose the initial penalty parameter ρ0 from 10−3 to 0.1, the increasing rate of
the penalty parameter σ from 1.2 to 5, and used the termination criteria in
[23] with εI = 10−3, εO = 10−4, respectively. For the CPLEX solver, we used
the default parameters of the software.

Table 1 Comparison of the methods of ALPA and PD for (40)

ALPA PD
n K obj time obj time imp

225 5 1.3825e-04 1.2712 1.6854e-04 18.2191 0.1449(10)
10 1.0472e-04 1.3312 1.2230e-04 18.8968 0.1324(10)
15 8.5015e-05 1.4364 1.0489e-04 14.9526 0.1697(10)
20 7.2863e-05 1.3511 9.3096e-05 15.2011 0.1720(10)
30 5.7799e-05 1.2338 7.1688e-05 14.7974 0.1779(10)
40 4.7481e-05 1.2480 5.8551e-05 14.5048 0.1739(10)

457 5 1.2506e-04 2.9671 2.5258e-04 229.1533 0.5959(10)
10 9.5219e-05 3.0476 1.3161e-04 133.7818 0.3443(10)
15 8.0248e-05 3.0964 1.0431e-04 87.3111 0.3174(10)
20 6.5320e-05 2.7954 9.3869e-05 49.6248 0.3333(10)
30 5.0777e-05 2.6540 7.0128e-05 45.2400 0.3033(10)
40 3.8746e-05 2.6300 5.8572e-05 40.8366 0.3818(10)

1319 5 1.0149e-04 46.3189 3.8429e-04 1335.8849 0.7243(10)
10 6.3368e-05 45.3852 2.1794e-04 748.0053 0.7749(10)
15 4.4908e-05 42.6478 1.1597e-04 447.8651 0.7087(10)
20 3.6899e-05 42.1432 1.2465e-04 384.8168 0.7890(10)
30 2.2996e-05 43.9572 1.0347e-04 307.5458 0.7924(10)
40 1.5917e-05 39.8018 9.0856e-05 247.3906 0.8438(10)

2152 5 1.2987e-04 93.1092 2.7692e-04 3177.9061 0.2668(10)
10 7.4435e-04 93.3688 2.2765e-04 1728.6431 0.4065(10)
15 5.8224e-04 91.2005 1.6444e-04 1271.4945 0.6234(10)
20 4.6336e-05 92.3795 1.5889e-04 915.3815 0.7165(10)
30 2.7064e-05 92.1395 1.5146e-04 488.6003 0.8337(10)
40 1.5757e-05 90.9637 1.4839e-04 411.9239 0.9046(10)

For problem (41), we chose six different values of the regular parameter λ,
namely, λmax, 0.5λmax, 0.25λmax, 0.1λmax, 0.01λmax, 0.001λmax where λmax =
10−6. For the ALPA method, we chose the same parameters as that of problem
(40). For the PD method, we chose ρ0 from 0.01 to 0.1, σ = 2 and other
parameters were same to the parameters of problem (40).



Title Suppressed Due to Excessive Length 23

Table 2 Comparison of the ALPA method and the CPLEX solver for (40)

ALPA Cplex
n K obj time obj time

225 5 1.3825e-04* 0.8260 1.3825e-04* 334.5133
10 1.0274e-04 0.8503 1.0354e-04 3600.8769
15 8.5015e-05 0.9197 8.5729e-05 3600.6741
20 7.2188e-05 0.9500 7.2188e-05 740.5071
30 5.7229e-05 0.9751 5.7744e-05 3600.3321
40 4.6976e-05 1.0036 4.6897e-05 3488.6749

457 5 1.2306e-04 2.8900 1.3591e-04 3600.1434
10 9.3597e-05 2.7391 1.1462e-04 3600.0935
15 7.7035e-05 2.6996 1.1236e-04 3600.1051
20 6.4775e-05 2.7571 8.9337e-05 3600.1126
30 4.8152e-05 2.5401 - -
40 3.7776e-05 2.3478 6.9483e-05 3600.2012

1319 5 6.3658e-05 40.6254 - -
10 4.1685e-05 43.0943 - -
15 3.1370e-05 43.3311 - -
20 2.4146e-05 41.1389 - -
30 1.5849e-05 39.3120 - -
40 1.2770e-05 38.5303 - -

2152 5 6.1421e-05 71.3342 - -
10 3.7015e-05 79.3973 - -
15 2.7164e-05 84.8183 - -
20 2.1251e-05 90.9375 - -
30 1.4785e-05 87.0291 - -
40 1.0978e-05 82.3379 - -

Table 1 summarizes the numerical results of the ALPA method and the
PD method for problem (40). In each test problem of Table 1, we randomly
generated ten groups of initial points and solved the test problem by using
the ALPA method and the PD method ten times to find the best approximate
solution. The PD method needs a feasible initial point and a sparse initial
point, while the ALPA method needs a feasible initial point and two arbitrary
initial points. Hence, for comparing these two methods, we chose these initial
points to be the same one point. The method of random generating the initial
points was that randomly chose K assets whose expected returns were no less
than r, and set the components of the initial point corresponding to these
assets to 1/K and set other components to zero. If the number m of assets
whose expected returns were no less than r was less than K, we just chose
these m assets and set the components of the initial point corresponding to
these assets to 1/m and set other components to zero. For measuring the
quality of the suboptimal solution x∗a found by the ALPA method and the
suboptimal solution x∗p found by the PD method in each time, we used the
following relative improvement of the objective function value of the solution
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x∗a over the solution x∗p:

imp =
fobj(x

∗
p)− fobj(x

∗
a)

|fobj(x∗p)|
(42)

where fobj(x) = (1/2)x>Qx.
Table 2 summarizes the numerical results of the ALPA method and the

standard CPLEX(12.6) solver for problem (40). It shall be mentioned that for
using the CPLEX solver we need to reformulate problem (40) to a standard
mixed-integer quadratic program (MIQP) problem. By replacing x by x1 +x2

and adding 0-1 variables z1, z2 problem (40) can be equivalently reformulated
as following MIQP problem

min
1

2
(x1 + x2)>Q(x1 + x2)

s.t. e>(x1 + x2) = 1,

R>(x1 + x2) ≥ r,
z1 + z2 ≤ e,
e>(z1 + z2) ≤ K,
L1z1 ≤ x1 ≤ U1z1,

L2z2 ≤ x2 ≤ U2z2,

(z1)i, (z2)i ∈ {0, 1}, i = 1, . . . , n,

(43)

where x1, x2 ∈ Rn, L1, L2, U1, U2 are diagonal matrixes whose main diagonal
are made up by elements of vectors l1, l2, u1, u2 respectively. In order to com-
pare with the CPLEX solver, in each test problem, we chose the variables with
the K + m largest absolute values of the solution of the relaxation of prob-
lem (43) in which the binary constraints were replaced by the box constraints
0 ≤ z1, z2 ≤ 1 in the usual way, where m was from 10 to 20, to randomly
generate ten groups of different initial points and solved the test problem by
using the ALPA method ten times. Then, we solved the MIQP problem (43)
by using the CPLEX solver and compared how much time the CPLEX solver
needed to find a solution as good as the best solution found by the ALPA
method. If the computing time of the CPLEX solver was more than one hour,
we just stopped the CPLEX solver and output the optimal solution which the
CPLEX solver had found.

Table 3 summarizes the numerical results of the ALPA method and the
PD method for problem (41). As in Table 1, for each test problem we ran-
domly generated ten initial points by the method in Table 1 and solved the
test problem by using the ALPA method and the PD method to find the
best suboptimal solution. We also used the relative improvement in (42) with
fobj(x) = (1/2)x>Qx+ λ‖x‖0 to measure the quality of the suboptimal solu-
tions found by the two methods.

In Tables 1, 2 and 3, “ALPA” stands for the ALPA method; “PD” stands
for the PD method; “Cplex” stands for the standard CPLEX solver; “time” (in
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Table 3 Comparison of the methods of ALPA and PD for (41)

ALPA PD
n λ/λmax obj time obj time Imp

225 1 8.6561e-05 1.0951 2.2917e-04 7.0730 0.6994(10)
0.5 6.5802e-05 1.0422 2.1266e-04 7.0397 0.7233(10)
0.25 4.9246e-05 1.0979 2.1177e-04 7.0047 0.7815(10)
0.1 3.4940e-05 1.2043 2.0509e-04 7.2560 0.8429(10)
0.01 2.1131e-05 1.3248 1.9283e-04 7.3545 0.9042(10)
0.001 1.9235e-05 1.3106 1.8453e-04 7.0163 0.9131(10)

457 1 8.0056e-05 2.1413 2.0385e-04 32.7012 0.6490(10)
0.5 5.2868e-05 2.1001 1.9071e-04 34.5735 0.7457(10)
0.25 3.5468e-05 2.0741 1.8765e-04 31.1474 0.8269(10)
0.1 1.8057e-05 2.2807 1.8475e-04 31.2997 0.9128(10)
0.01 3.1988e-06 1.5409 1.8164e-04 31.2353 0.9840(10)
0.001 4.0979e-07 1.5607 1.8140e-04 29.4073 0.9979(10)

1319 1 5.3470e-05 30.4594 1.7935e-04 243.3121 0.7279(10)
0.5 3.6469e-05 30.6705 1.4865e-04 218.8169 0.8040(10)
0.25 2.3588e-05 26.2088 1.5329e-04 204.9859 0.8548(10)
0.1 1.4241e-05 19.1274 1.2385e-04 181.4983 0.8991(10)
0.01 5.7736e-06 8.4926 1.0916e-04 174.5865 0.9338(10)
0.001 2.9876e-06 8.1691 1.0351e-04 164.4820 0.9618(10)

2152 1 6.0273e-05 92.1587 2.1755e-04 426.8685 0.7317(10)
0.5 3.6670e-05 81.9204 1.8041e-04 405.2515 0.8129(10)
0.25 2.6168e-05 69.2267 1.7287e-04 402.8543 0.8660(10)
0.1 1.6373e-05 39.1844 1.7571e-04 401.7480 0.9005(10)
0.01 5.4977e-06 24.4754 1.6928e-04 390.3046 0.9594(10)
0.001 3.1789e-06 24.5883 1.6660e-04 386.9057 0.9743(10)

seconds) and “obj” are the average computation time and the best objective
value, respectively; “imp” stands for the average relative improvement of the
objective function value of the ALPA method to the PD method in ten times
tests, and the integers in the brackets stand for the numbers of times the ALPA
method finds a better suboptimal solution such that imp > 0; “*” stands that
the CPLEX solver or the ALPA method finds the optimal solution of the test
problem; “-” stands that the CPLEX solver does not find a effective solution
and the operation is terminated by the CPLEX solver automatically.

From Table 1 and 3, we observe that the solutions obtained from the AL-
PA method are often better than the solutions from the PD method and the
computation time of the ALPA method is less than that of the PD method es-
pecially for the large-scale problems. In order to compare with the PD method
we choose the initial points of the ALPA method to be same, in generally if we
choose two different initial points the computation time of the ALPA method
will be reduced.

We can see from Table 2 that for the first group of the test problems,
the best objective value of the solutions obtained from the ALPA method is
approximate to the objective value of the solution obtained from the CPLEX
solver and for the first example the ALPA method and the CPLEX solver find
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the global minimizer of the test problem, but the computation time of the
ALPA method is less than the time of the CPLEX solver. For the other test
problems, the best objective value of the solutions and the computation speed
of the ALPA method are better than that of the CPLEX solver. It can suggest
that the ALPA method is a efficient computing method for problem (1).

6 Conclusion

In this paper we propose an ALPA method for two class of large-scale sparse
discrete constrained optimization problems (1) and (2). In solving process, the
ALPA method generates a sequence of AL subproblems, each of these subprob-
lems is a nonconvex and nonsmooth problem, and utilizes the PALM method
framework and the sparse projection techniques to solve these subproblems.
Based on some suitable assumptions, we can establish that any accumulation
point of the sequence generated by the ALPA method for problems (1) and
(2) satisfies the first-order necessary optimality conditions of problems (1)
and (2). In addition, under another assumption it is also a local minimizer of
problems (1) and (2). The utilizing of the PALM method and the sparse pro-
jection techniques can exploit the structure of problems (1) and (2) and reduce
the computation complexity. The computational results demonstrate that for
problems (1) and (2) our method generally has better solution quality and
needs lesser computation time than the PD method especially for the large-
scale problems. And compare to the standard integer programming method
our method can find a KKT point or a local minimizer with a good quality.
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