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Abstract

We use one-step conditional risk mappings to formulate a risk averse version of a
total cost problem on a controlled Markov process in discrete time infinite horizon. The
nonnegative one step costs are assumed to be lower semi-continuous but not necessarily
bounded. We derive the conditions for the existence of the optimal strategies and solve
the problem explicitly by giving the robust dynamic programming equations under
very mild conditions. We further give an ε-optimal approximation to the solution
and illustrate our algorithm in two examples of optimal investment and LQ regulator
problems.

1 Introduction

Controlled Markov decision processes have been an active research area in sequential decision

making problems in operations research and in mathematical finance. We refer the reader to

[24, 2, 23] for an extensive treatment on theoretical background. Classically, the evaluation

operator has been the expectation operator, and the optimal control problem is to be solved

via Bellman’s dynamic programming [5]. This approach and the corresponding problems

continue to be an active research area in various scenarios (see e.g. the recent works [33, 34,

37] and the references therein)

On the other hand, expected values are not appropriate to measure the performance of

the agent. Hence, expected criteria with utility functions have been extensively used in the

literature (see e.g. [35, 36] and the references therein). Other than the evaluation of the
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performance via utility functions, to put risk aversion into an axiomatic framework, coherent

risk measures has been introduced in the seminal paper [1]. [7] has removed the positive

homogeneity assumption of a coherent risk measure and named it as a convex risk measure

(see [8] for an extensive treatment on this subject).

However, this kind of operator has brought up another difficulty. Deriving dynamic pro-

gramming equations with these operators in multistage optimization problems is challenging

or impossible in many optimization problems. The reason for it is that the Bellman’s op-

timality principle is not necessarily true using this type of operators. That is to say, the

optimization problems are not time-consistent. Namely, a multistage stochastic decision

problem is time-consistent, if resolving the problem at later stages (i.e., after observing some

random outcomes), the original solutions remain optimal for the later stages. We refer the

reader to [9, 10, 15, 38, 22] for further elaboration and examples on this type of inconsistency.

Hence, optimal control problems on multi-period setting using risk measures on bounded and

unbounded costs are not vast, but still, some works in this direction are [11, 12, 14, 13].

To overcome this deficit, dynamic extensions of convex/coherent risk measures so called

conditional risk measures are introduced in [25] and studied extensively in [18]. In [16],

so called Markov risk measures are introduced and an optimization problem is solved in a

controlled Markov decision framework both in finite and discounted infinite horizon, where

the cost functions are assumed to be bounded. This idea is extended to transient models

in [26, 27] and to unbounded costs with w-weighted bounds in [28, 29, 30] and to so called

process-based measures in [31] and to partially observable Markov chain frameworks in [32].

In this paper, we derive robust dynamic programming equations in discrete time on infi-

nite horizon using one step conditional risk mappings that are dynamic analogues of coherent

risk measures. We assume that our one step costs are nonnegative, but may well be un-

bounded from above. We show the existence of an optimal policy via dynamic programming

under very mild assumptions. Since our methodology is based on dynamic programming,

our optimal policy is by construction time consistent. We further give a recipe to construct

an ε-optimal policy for the infinite horizon problem and illustrate our theory in two examples

of optimal investment and LQ regulator control problem, respectively. To the best of our

knowledge, this is the first work solving the optimal control problem in infinite horizon with

the minimal assumptions stated in our model.

The rest of the paper is as follows. In Section 2, we briefly review the theoretical back-

ground on coherent risk measures and their dynamic analogues in multistage setting, and

further describe the framework for the controlled Markov chain that we will work on. In

Section 3, we state our main result on the existence of the optimal policy and the existence

of optimality equations. In Section 4, we prove our main theorem and present an ε algorithm
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to our control problem. In Section 5, we illustrate our results with two examples, one on an

optimal investment problem, and the other on an LQ regulator control problem.

2 Theoretical Background

In this section, we recall the necessary background on static coherent risk measures, and

then we extend this kind of operators to the dynamic setting in controlled Markov chain

framework in discrete time.

2.1 Coherent Risk Measures

Consider an atomless probability space (Ω,F ,P) and the space Z := L1(Ω,F ,P) of mea-

surable functions Z : Ω → R (random variables) having finite first order moment, i.e.

EP[|Z|] <∞, where EP[·] stands for the expectation with respect to the probability measure

P. A mapping ρ : Z → R is said to be a coherent risk measure, if it satisfies the following

axioms

• (A1)(Convexity) ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) ∀λ ∈ (0, 1), X, Y ∈ Z.

• (A2)(Monotonicity) If X � Y , then ρ(X) ≤ ρ(Y ), for all X, Y ∈ Z.

• (A3)(Translation Invariance) ρ(c+X) = c+ ρ(X), ∀c ∈ R, X ∈ Z.

• (A4)(Homogeneity) ρ(βX) = βρ(X), ∀X ∈ Z. β ≥ 0.

The notation X � Y means that X(ω) ≤ Y (ω) for P-a.s. Risk measures ρ : Z → R, which

satisfy (A1)-(A3) only, are called convex risk measures. We remark that under the fourth

property (homogeneity), the first property (convexity) is equivalent to sub-additivity. We

call the risk measure ρ : Z → R law invariant, if ρ(X) = ρ(Y ), whenever X and Y have

the same distributions. We pair the space Z = L1(Ω,F ,P) with Z∗ = L∞(Ω,F ,P), and the

corresponding scalar product

〈ζ, Z〉 =

∫
Ω

ζ(ω)Z(ω)dP (ω), ζ ∈ Z∗, Z ∈ Z. (2.1)

By [6], we know that real-valued law-invariant convex risk measures are continuous, hence

lower semi-continuous (l.s.c.), in the norm topology of the space L1(Ω,F ,P). Hence, it

follows by Fenchel-Moreau theorem that

ρ(Z) = sup
ζ∈Z∗
{〈ζ, Z〉 − ρ∗(ζ)}, for all Z ∈ Z, (2.2)
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where ρ∗(Z) = supZ∈Z{〈ζ, Z〉 − ρ(Z)} is the corresponding conjugate functional (see [20]).

If the risk measure ρ is convex and positively homogeneous, hence coherent, then ρ∗ is an

indicator function of a convex and closed set A ⊂ Z∗ in the respective paired topology. The

dual representation in Equation 2.2 then takes the form

ρ(Z) = sup
ζ∈A
〈ζ, Z〉, Z ∈ Z, (2.3)

where the set A consists of probability density functions ζ : Ω → R, i.e. with ζ � 0 and∫
ζdP = 1.

A fundamental example of law invariant coherent risk measures is Average- Value-at-

Risk measure (also called the Conditional-Value-at-Risk or Expected Shortfall Measure).

Average-Value- at-Risk at the level of α for Z ∈ Z is defined as

AV@Rα(Z) =
1

1− α

∫ 1

α

V@Rp(Z)dp, (2.4)

where

V@Rp(Z) = inf{z ∈ R : P(Z ≤ z) ≥ p} (2.5)

is the corresponding left side quantile. The corresponding dual representation for AV@Rα(Z)

is

AV@Rα(Z) = sup
m∈A
〈m,Z〉, (2.6)

with

A = {m ∈ L∞(Ω,F ,P) :

∫
Ω

mdP = 1, 0 ≤ ‖m‖∞ ≤
1

α
}. (2.7)

Next, we give a representation characterizing any law invariant coherent risk measure, which

is first presented in Kusuoka [19] for random variables in L∞(Ω,F ,P), and later further

investigated in Zp = Lp(Ω,F ,P) for 1 ≤ p <∞ in [17].

Lemma 2.1. [19] Any law invariant coherent risk measure ρ : Zp → R can be represented

in the following form

ρ(Z) = sup
ν∈M

∫ 1

0

AV@Rα(Z)dν(α), (2.8)

where M is a set of probability measures on the interval [0,1].

2.2 Controlled Markov Chain Framework

Next, we introduce the controlled Markov chain framework that we are going to study our

problem on. We take the control modelM = {Mn, n ∈ N0}, where for each n ≥ 0, we have
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Mn := (Xn, An,Kn, Qn, Fn, cn) (2.9)

with the following components:

• Xn and An denote the state and action (or control) spaces,which are assumed to be

complete seperable metric spaces with their corresponding Borel σ-algebras B(Xn) and

B(An).

• For each xn ∈ Xn, let An(xn) ⊂ An be the set of all admissible controls in the state

xn. Then

Kn := {(xn, an) : xn ∈ Xn, an ∈ An} (2.10)

stands for the set of feasible state-action pairs at time n.

• We let

xi+1 = Fi(xi, ai, ξi), (2.11)

for all i = 0, 1, ... with xi ∈ Xi and ai ∈ Ai as described above, with independent

random variables (ξi)i≥0 on the atomless probability space

(Ωi,Gi,Pi). (2.12)

We take that ξi ∈ Si, where Si are Borel spaces. Moreover, we assume that the system

equation

Fi : Ki × Si → Xi (2.13)

as in Equation (2.11) is continuous.

• We let

Ω = ⊗∞i=1X
i (2.14)

where X i is as defined in Equation (2.13). For n ≥ 0, we let

Fn = σ(σ(∪ni=0Gi) ∪ σ(X0, A0, X1, A1 . . . , An−1, Xn)) (2.15)

F = σ(∪∞i=0Fi) (2.16)

be the filtration of increasing σ-algebras. Furthermore, we define the corresponding

probability measures (Ω,F) as

P =
∞∏
i=1

Pi, (2.17)
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where the existence of P is justified by Kolmogorov extension theorem (see [24]). We

assume that for any n ≥ 0, the random vector ξ[n] = (ξ0, ξ1, . . . , ξn) and ξn+1 are

independent on (Ω,F ,P).

• The transition law is denoted by Qn+1(Bn+1|xn, an), where Bn+1 ∈ B(Xn+1) is the

Borel σ-algebra on Xn, and (xn, an) ∈ Xn × An is a stochastic kernel on Xn given Kn

(see [23, 24] for further details). We remark here that at each n ≥ 0 the stochastic

kernel depends only on (xn, an) rather than Fn. That is, for each pair (xn, an) ∈ Kn,

Qn+1(·|xn, an) is a probability measure on Xn+1, and for each Bn+1 ∈ Bn+1(Xn+1),

Qn+1(Bn+1|·, ·) is a measurable function on Kn. Let x0 ∈ X0 be given with the corre-

sponding policy Π = (πn)n≥0. By the Ionescu Tulcea theorem (see e.g. [24]), we know

that there exists a unique probability measure Pπ on (Ω,F) such that given x0 ∈ X0,

a measurable set Bn+1 ⊂ Xn+1 and (xn, an) ∈ Kn, for any n ≥ 0, we have

PΠ
n+1(xn+1 ∈ Bn+1) , Qn+1(Bn+1|xn, an). (2.18)

• Let Fn be the family of measurable functions πn : Xn → An for n ≥ 0. A sequence

(πn)n≥0 of functions πn ∈ Fn for n ≥ 0 is called a control policy (or simply a policy),

and the function πn(·) is called the decision rule or control at time n ≥ 0. We denote

by Π the set of all control policies. For notational convenience, for every n ∈ N0 and

(πn)n≥0 ∈ Π, we write

cn(xn, πn) := cn(xn, πn(xn))

:= cn(xn, an).

We denote by P(An(xn)) as the set of probability measures on An(xn) for each time

n ≥ 0. A randomized Markovian policy (πn)n≥0 is a sequence of measurable functions

such that πn(xn) ∈ P(An(xn)) for all xn ∈ Xn, i.e. πn(xn) is a probability measure on

An(xn). (πn)n≥0 is called a deterministic policy, if πn(xn) = an with an ∈ An(xn).

• cn(xn, an) : Kn → R+ is the real-valued cost-per-stage function at stage n ∈ N0 with

(xn, an) ∈ Kn.

Definition 2.1. A real valued function v on Kn is said to be inf-compact on Kn, if the set

{an ∈ An(xn)|v(xn, an) ≤ r} (2.19)

is compact for every xn ∈ Xn and r ∈ R. As an example, if the sets An(xn) are compact

and v(xn, an) is l.s.c. in an ∈ An(xn) for every xn ∈ Xn, then v(·, ·) is inf-compact on Kn.

Conversely, if v is inf-compact on Kn, then v is l.s.c. in an ∈ An(xn) for every xn ∈ Xn.
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We make the following assumption about the transition law (Qn)n≥1.

Assumption 2.1. For any n ≥ 0, the transition law Qn is weakly continuous; i.e. for any

continuous and bounded function u(·) on Xn+1, the map

(xn, an)→
∫
Xn+1

u(y)dQn(y|xn, an) (2.20)

is continuous on Kn.

Furthermore, we make the following assumptions on the one step cost functions and

action sets.

Assumption 2.2. For every n ≥ 0,

• the real valued non-negative cost function cn(·, ·) is l.s.c. in (xn, an). That is for any

(xn, an) ∈ Xn × An, we have

cn(xn, an) ≤ lim inf
(xkn,a

k
n)→(xn,an)

cn(xkn, a
k
n), (2.21)

as k →∞.

• The multifunction (also known as a correspondence or point-to-set function) xn →
An(xn), from Xn to An, is upper semicontinuous (u.s.c.) that is, if {xln} ⊂ Xn and

{aln} ⊂ An are sequences such that {xln} → x̄n with {aln} ⊂ An for all l, and aln → ān,

then ān is in An(x̄n).

• For every state xn ∈ Xn, the admissible action set An(xn) is compact.

2.3 Conditional Risk Mappings

In order to construct dynamic models of risk, we extend the concept of static coherent risk

measures to dynamic setting. For any n ≥ 1, we denote the space Zn := L1(Ω,Fn,Pπn) of

measurable functions with Z : Ω → R (random variables) having finite first order moment,

i.e. EPπn [|Z|] < ∞ Pπn-a.s., where EPπn stands for the conditional expectation at time n with

respect to the conditional probability measure Pπn as defined in Equation (2.18).

Definition 2.2. Let X, Y ∈ Zn+1. We say that a mapping ρn : Zn+1 → Zn is a one step

conditional risk mapping, if it satisfies following properties

• (a1) Let γ ∈ [0, 1]. Then,

ρn(γX + (1− γ)Y ) � γρn(X) + (1− γ)ρn(Y ) (2.22)



8

• (a2) If X � Y , then ρn(X) � ρn(Y )

• (a3) If Y ∈ Zn and X ∈ Zn+1, then ρn(X + Y ) = ρn(X) + Y .

• (a4) For λ � 0 with λ ∈ Zn and X ∈ Zn+1, we have that ρn+1(λX) = λρn+1(X).

Here, the relation Y (ω) � X(ω) stands for Y ≤ X Pπn-a.s. We next state the analogous

results for representation theorem for conditional risk mappings as in Equation (2.3) (see

also [18]).

Theorem 2.1. Let ρn : Zn+1 → Zn be a law-invariant conditional risk mapping satisfying

assumptions as stated in Definition 2.2. Let Z ∈ Zn+1. Then

ρn(Z) = sup
µ∈An+1

〈µ, Z〉, (2.23)

where An+1 is a convex closed set of conditional probability measures on (Ω,Fn+1), that are

absolutely continuous with respect to Pπn+1.

Next, we give the Kusuoka representation for conditional risk mappings analogous to

Lemma 2.1.

Lemma 2.2. Let ρn : Zn+1 → Zn be a law invariant one-step conditional risk mapping

satisfying Assumptions (a1)-(a4) as in Definition 2.2. Let Z ∈ Zn+1. Then, conditional

Average-Value-at-Risk at the level of 0 < α < 1 is defined as

AV@Rnα(Z) ,
1

1− α

∫ 1

α

V@Rnp (Z)dp, (2.24)

where

V@Rnp (Z) , ess inf{z ∈ R : Pπn+1(Z ≤ z) ≥ p}. (2.25)

Here, we note that V@Rnp (Z) is Fn-measurable by definition of essential infimum (see [8] for

a definition of essential infimum and essential supremum). Then, we have

ρn(Z) , ess sup
ν∈M

∫ 1

0

AV@Rnα(Z)dν(α), (2.26)

where M is a set of probability measures on the interval [0,1].

Remark 2.1. By Equations (2.24),(2.25) and (2.26), it is easy to see that the corresponding

optimal controls at each time n ≥ 0 is deterministic, if the one step conditional risk mappings

are AV@Rnα : Zn+1 → Zn as defined in (2.24). On the other hand, by Kusuoka representation,

Equation (2.26), it is clear that for other coherent risk randomized policies might be optimal.

In this paper, we restrict our study to deterministic policies.
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Definition 2.3. A policy π ∈ Π is called admissible, if for any n ≥ 0, we have

cn(xn, an) + lim
N→∞

γρn
(
cn+1(xn+1, an+1) (2.27)

+ γρn+1(cn+2(xn+2, an+2) . . .+ γρN−1(cN(xN , aN)))
)
<∞, Pπn a.s. (2.28)

The set of all admissible policies is denoted by Πad.

3 Main Problem

Under Assumptions 2.1, 2.2, our control problem reads as

inf
π∈Πad

(
c0(x0, a0) + lim

N→∞
γρ0(c1(x1, a1) + γρ1(c2(x2, a2) (3.29)

. . .+ γρN−1(cN(xN , aN)))

)
(3.30)

Namely, our objective is to find a policy (π∗n)n≥0 such that the value function in Equation

(3.29) is minimized. For convenience, we introduce the following notations that are to be

used in the rest of the paper

%n−1(
∞∑
t=n

ct(xt, πt)) := lim
N→∞

γρn−1(cn(xn, an) + γρn(cn+1(xn+1, an+1)

...+ ρN−1(cN(xN , aN)))

Vn(x, π) := cn(xn, an) + %n(
∞∑

t=n+1

ct(xt, at))

V ∗n (x) := inf
π∈Πad

cn(xn, an) + %n(
∞∑

t=n+1

ct(xt, at))

Vn,N(x, π) := cn(xn, an) + %n(
N−1∑
t=n+1

ct(xt, at))

VN,∞(x, π) := cN(xN , aN) + %N(
∞∑

t=N+1

ct(xt, at))

V ∗n,N(x) := inf
π∈Πad

cN(xN , aN) + %n(
N∑

t=n+1

ct(xt, at))

For the control problem to be nontrivial, we need the following assumption on the existence

of the policy.
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Assumption 3.1. There exists a policy π ∈ Πad such that

c0(x0, a0) + %0(x0) <∞. (3.31)

We are now ready to state our main theorem.

Theorem 3.1. Let 0 < γ < 1. Suppose that Assumptions 2.1, 2.2 and 3.1 are satisfied.

Then,

(a) the optimal cost functions V ∗n are the pointwise minimal solutions of the optimality

equations: that is, for every n ∈ N0 and xn ∈ Xn,

V ∗n (xn) = inf
a∈A(xn)

(
cn(xn, an) + γρn(V ∗n+1(xn+1))

)
. (3.32)

(b) There exists a policy π∗ = (π∗n)n≥0 such that for each n ≥ 0, the control attains the

minimum in (3.32), namely for xn ∈ Xn

V ∗n (xn) = cn(xn, π
∗
n) + γρn(V ∗n+1(xn+1)). (3.33)

4 Proof of Main Result

Lemma 4.1. [3] Fix an arbitrary n ∈ N0. Let K be defined as

K := {(x, a)|x ∈ X, a ∈ A(x)}, (4.34)

where X and A are complete seperable metric Borel spaces and let v : K → R be a given

B(X × A) measurable function. For x ∈ X, define

v∗(x) := inf
a∈A(x)

v(x, a). (4.35)

If v is non-negative, l.s.c. and inf-compact on K as defined in Definition 2.1, then for any

x ∈ X, there exists a measurable mapping πn : X → A such that

v∗(x) = v(x, πn) (4.36)

and v∗(·) : X → R is measurable, and l.s.c.

Lemma 4.2. For any n ≥ 1, let cn(xn, an) be in Zn. Then ρn−1(cn(xn, an)) is an element

of Zn−1 = L1(Ω,Fn,Pπn).
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Proof. Let µ ∈ An be as in Theorem 2.1. By non-negativity of the one step cost function

cn(·, ·) and by Fatou Lemma, we have

〈µ, cn(xn, an)〉 ≤ lim inf
(xkn,a

k
n)→(xn,an)

〈µ, cn(xkn, a
k
n)〉. (4.37)

Hence, 〈µ, cn(xn, an)〉 is l.s.c. for Pπn−1-a.s. Then, by Equation (2.23), we have

ρn−1(cn(xn, an)) = ess sup
µ∈An

〈µ, cn(xn, an)〉. (4.38)

Hence, by Equation (4.37) and by Equation (4.38) taking supremum of l.s.c. functions

being still l.s.c., we conclude that for fixed ω, ρn−1(cn(xn(ω), an(ω))) is l.s.c. with respect to

(xn, an).

Next, we show that ρn−1(cn(xn, an)) is Fn−1 measurable. By Lemma 2.2, we have

ρn−1(cn(xn, an)) = ess sup
ν∈M

∫
[0,1]

AV@Rn−1
α (cn(xn, an))dν, (4.39)

= ess sup
ν∈M

∫
[0,1]

1

1− α

∫ 1

α

V@Rn−1
p (cn(xn, an))dp dν (4.40)

= ess sup
ν∈M

∫
[0,1]

1

1− α

∫ 1

α

ess inf
(
z ∈ R : Pπn(cn(xn, an) ≤ z) ≥ p

)
dp dν, (4.41)

where M is a set of probability measures on the interval [0,1]. By noting that for any

p ∈ [α, 1], ess inf
(
z ∈ R : Pπn(cn(xn, an) ≤ z) ≥ p

)
is Fn−1-measurable, and then, by in-

tegrating from α to 1 and multiplying by 1
1−α , Fn−1 measurability is preserved. Similarly,

in Equation 4.39, integrating with respect to a probability measure ν on [0, 1] and taking

supremum of the integrals preserve Fn−1 measurability. Hence, we conclude the proof. �

Corollary 4.1. Let n ≥ 1, xn ∈ Xn and an ∈ An, where Xn and An are as introduced in

Equation (2.9). Then,

min
an∈π(xn)

ρn−1(cn(xn, an)) (4.42)

is l.s.c. in xn Pπn−1-a.s. Furthermore, min
an∈π(xn)

ρn−1(cn(xn, an)) is Fn−1 measurable.

Proof. We know by Lemma 4.2, ρn−1(cn(xn, an)) is l.s.c. Pπn−1-a.s. Hence, by Lemma 4.1,

min
an∈π(xn)

ρn−1(cn(xn, an)) (4.43)
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is l.s.c. in xn for any xn ∈ Xn Pπn−1-a.s. for n ≥ 1. Furthermore, by Lemma 4.1, we know

that there exists an π∗ ∈ Π such that

min
an∈π(xn)

ρn−1(cn(xn, an)) = ρn−1(cn(xn, π
∗(xn))) (4.44)

= ρn−1(cn(Fn−1(xn−1, an−1, ξn−1), (4.45)

π∗(Fn−1(xn−1, an−1, ξn−1)))), (4.46)

(4.47)

where Fn−1 is as defined in Equation (2.11), but we know that ρn−1(cn(xn, π
∗
n) is Fn−1 mea-

surable. Hence, the result follows by Lemma 4.2. �

For every n ≥ 0, let Ln(Xn) and Ln(Xn, An) be the family of non-negative mappings on

(Xn, An), respectively. Denote

Tn(vn+1) := min
an∈A(xn)

{
cn(xn, an) + γρn(vn+1(Fn(xn, an, ξn)))

}
. (4.48)

Lemma 4.3. Suppose that Assumption 2.1, 2.2 and 3.1 hold, then for every n ≥ 0, we have

(a) Tn maps Ln+1(Xn+1) into Ln(Xn).

(b) For every vn+1 ∈ Ln+1(Xn+1), there exists a policy π∗n such that for any xn ∈ Xn,

π∗n(xn) ∈ An(xn) attains the minimum in (4.48), namely

Tn(vn+1) := cn(xn, π
∗
n) + γρ(vn+1(Fn(xn, π

∗
n, ξn))) (4.49)

Proof. By assumption, our one-step cost functions cn(xn, an) are in Ln(Xn). By Corollary

4.1, γρn(vn+1(Fn(xn, π
∗
n, ξn))) is in Ln(Xn). Hence their sum is in Ln(Xn, An), as well. Hence,

the result follows via Corollary 4.1 again. �

By Lemma 4.3, we express the optimality equations (4.48) as

V ∗n = TnV
∗
n+1 for n ≥ 0. (4.50)

Next, we continue with the following lemma.

Lemma 4.4. Under the Assumptions 2.1 and 2.2, for n ≥ 0, let vn ∈ Ln(Xn) and vn+1 ∈
Ln+1(Xn+1).

(a) If vn ≥ Tn(vn+1), then vn ≥ V ∗n .
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(b) If vn ≤ Tn(vn+1) and in addition,

lim
N→∞

vN(xN+1(ω)) = 0, (4.51)

P-a.s., then vn ≤ V ∗n .

Proof. (a) By Lemma 4.3, there exists a policy π = (πn)n≥0 such that for all n ≥ 0,

vn(xn) ≥ cn(xn, πn) + ρn(vn+1(Fn(xn, πn, ξn))). (4.52)

By iterating the right hand side and by monotonicity of %n(·), we get

vn(xn) ≥ cn(xn, πn) + %n(
N−1∑
i=n+1

ci(xi, πi) + vN(xN)). (4.53)

Since vN(xN) ≥ 0, we have

vn(xn) ≥ cn(xn, πn) + %n(
N−1∑
i=n+1

ci(xi, πi)), a.s. (4.54)

Hence, letting N →∞, we obtain vn(x) ≥ Vn(x, π) and so vn(x) ≥ V ∗n (x).

(b) Suppose that vn ≤ Tnvn+1 for n ≥ 0, so that

vn(xn) ≤ cn(xn, πn) + ρn(cn+1(xn+1, πn+1) + vn+1(xn+1)) (4.55)

for any π ∈ Πad, Pπn-a,s. Summing from i = 1 to i = N − 1 gives

vn(xn) ≤ cn(xn, an) + %n(
N−1∑
i=1

cn+i(xn+i, an+i) (4.56)

+ %N(
∞∑

i=n+N

ci(xi, ai))) (4.57)

Letting N →∞ and by π ∈ Πad, we get that

lim
N→∞

%n(vn+N) = 0 (4.58)

so that we have

vn(xn) ≤ Vn(xn, π), (4.59)

Taking infimum, we have

vn(xn) ≤ V ∗n (xn) (4.60)

Thus, we conclude the proof.

�

To further proceed, we need the following technical lemma.
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Lemma 4.5. [24] For every N > n ≥ 0, let Xn, An be complete, seperable metric spaces

and Kn := {(xn, an) : xn ∈ Xn, an ∈ An} with wn and wn,N be functions on Kn that are

non-negative, l.s.c. and inf-compact on Kn. If wn,N ↑ wn as N →∞, then

lim
N→∞

min
an∈An

wn,N(xn, an) = min
an∈An

wn(xn, an), (4.61)

for all xn ∈ X.

The next result gives the validity of the convergence of value iteration.

Theorem 4.1. Suppose that Assumptions 2.1 and 2.2 are satisfied. Then, for every n ≥ 0

and xn ∈ Xn,

V ∗n,N(xn) ↑ V ∗n (xn) P-a.s. N →∞ (4.62)

and V ∗n (xn) l.s.c. P-a.s.

Proof. We obtain V ∗n,N by the usual dynamic programming. Indeed, let JN+1(xN+1) ≡ 0 for

all xN+1 ∈ XN+1 a.s. and going backwards in time for n = N,N − 1, . . ., let

Jn(xn) := inf
an∈A(xn)

cn(xn, an) + ρn(Jn+1(Fn(xn, an, ξn))). (4.63)

Since JN+1(·) ≡ 0 is l.s.c., by backward induction, JN is l.s.c. P-a.s. and FN -measurable.

Moreover, by Corollary 4.1, for every t = N − 1, ..., n, there exists πNt such that πNt (xt) ∈
At(xt) attains the minimum in Equation (4.63). Hence {πNN−1, ..., π

N
n } is an optimal pol-

icy. We note that cn(xn, an) as well as ρn(Jn+1(Fn(xn, an, ξn))) is l.s.c., Fn measurable,

inf-compact and non-negative. Hence their sum preserves those properties. Furthermore, Jn

is the optimal (N −n) cost by construction. Hence, Jn(x) = V ∗n,N(x) and since Jn(x) is l.s.c.

so is V ∗n,N(xn) with

V ∗n,N(xn) := inf
an∈A(xn)

(
cn(xn, an) + ρn(V ∗n+1,N(xn+1))

)
. (4.64)

By the non-negativity assumption on cn(·, ·) for all n ≥ 0, the sequence N → V ∗n,N is non-

decreasing and V ∗n,N(xn) ≤ V ∗n (xn), for every xn ∈ Xn and N > n. Hence, denoting

vn(xn) := sup
N>n

V ∗n.N(xn) for all xn ∈ Xn. (4.65)

and vn being supremum of l.s.c. functions is itself l.s.c. P-a.s. and F -measurable. Letting

N →∞ in (4.64) by Lemma 4.5, we have that

vn(xn) := inf
an∈A(xn)

(
cn(xn, an) + ρn(Vn+1(xn+1))

)
(4.66)
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for all n ∈ N0 and xn ∈ Xn. Hence, vn are solutions of the optimality equations, vn = Tnvn+1,

and so by Lemma 4.3, vn(xn) ≥ V ∗n (xn). This gives vn(x) = V ∗n (x). Hence, V ∗n,N ↑ V ∗n and

V ∗n is l.s.c. �

Now, we are ready to prove our main theorem.

Proof of Theorem 2.1. (a) By Theorem 4.1, the sequence (V ∗n )n≥0 is a solution to the op-

timality equations. By Lemma 4.3, it is the minimal such solution.

(b) By Theorem 4.1, the functions V ∗n are l.s.c. P-a.s. and Fn-measurable. Therefore,

cn(xn, π
∗
n) + ρn(V ∗n+1(xn+1)) (4.67)

is non-negative, l.s.c. P-a.s., Fn-measurable and inf-compact on Kn for any an ∈ An, for

every n ≥ 0. Thus, the existence of optimal policy π∗n follows from Lemma 4.1. Iterating

Equation (4.67) gives

V ∗n (xn) = cn(xn, π
∗
t ) + %n

( N−1∑
t=n+1

ct(xt, π
∗
t ) + V ∗N(xN)

)
(4.68)

≥ Vn,N(xn, π
∗
n). (4.69)

Letting N → ∞, we conclude that V ∗n (x) ≥ Vn(x, π∗). But by definition of V ∗n (x), we have

V ∗n (x) ≤ Vn(x, π∗). Hence, V ∗n (x) = Vn(x, π∗), and we conclude the proof. �

4.1 An ε-Optimal Approximation to Optimal Value

We note that our iterative scheme via validity of convergence of value iterations in Theorem

2.1 is computationally not effective for large horizonN problem, since we have to calculate the

dynamic programming equations for each time horizon n ≤ N . To overcome this difficulty,

we propose the following methodology, which requires only one time calculation of dynamic

programming equations of the optimal control problem and is able to give an ε-optimal

approximation to the original problem.

By Assumption 3.1, we have after some N0

%N0(
∞∑

n=N0+1

cn(xn, an)) < ε P-a.s. (4.70)

But, then this means for the theoretical optimal policy (π∗n)n≥0, justified in Theorem 2.1, we

have

%N0(
∞∑

n=N0+1

cn(xn, π
∗
n)) ≤ ε P-a.s. (4.71)
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Then, by monotonicity of %, for the optimal policy π∗ we have

%N0(
∞∑

n=N0+1

cn(xn, π
∗
n)) ≤ %N0(

∞∑
n=N0+1

cn(xn, πn)) ≤ ε P-a.s. (4.72)

Hence, we have proved the following theorem.

Theorem 4.2. Suppose that Assumptions 2.1 and 2.2 hold. Let π0 ∈ Πad be the policy in

Assumption 3.1 such that

%N0

( ∞∑
n=N0+1

cn(xn, an)
)
< ε P-a.s.. (4.73)

Then, we have for the optimal policy

%N0

( ∞∑
n=N0+1

cn(xn, a
∗
n)
)
≤ ε P-a.s. (4.74)

Hence π∗ = {π∗0, π∗1, π∗2, ..., π∗N0
, π0

N+1, . . . } is an ε-optimal policy for the original problem.

5 Applications

5.1 An Optimal Investment Problem

In this section, we are going to study a variant of mean-variance utility optimization (see e.g.

[21]). The framework is as follows. We consider a financial market on an infinite time horizon

[0,∞). The market consists of a risky asset Sn and a riskless asset Rn, whose dynamics are

given by

Sn+1 − Sn = µSn + σSnξn

Rn+1 −Rn = rRn

with R0 = 1, S0 = s0, where (ξn)n≥0 are i.i.d standard normal random variables having

distribution functions Φ on R with Z = L1(R,B(R),Φ) and µ, r, σ > 0. We consider a

self-financing portfolio composed of S and R. We let (π̃n)n≥0 denote the amount of money

invested in risky asset Sn at time n and Xn denote the investor’s wealth at time n. Namely,

X π̃
n = π̃nSn +Rn (5.75)

X π̃
n+1 −X π̃

n = π̃n(Sn+1 − Sn) + (X π̃
n − π̃n)rRn (5.76)
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For each n ≥ 0, we denote π̃n = X π̃
nπn so that πn stands for the fraction of wealth that is

put in risky asset. Hence, the wealth dynamics are governed by

Xπ
n+1 −Xπ

n = [rZπ
n + (µ− r)πn] + σπnξn (5.77)

with initial value x0 = S0 + B0. We further assume |πn| ≤ C for some constant C > 0 at

each time n ≥ 0.

The particular coherent risk measure used in this example is the mean-deviation risk

measure that is in static setting defined on Z as

%(X) := EP[X] + γg(X), (5.78)

with γ > 0 with

g(X) := EP(|X − EP[X]|
)
, (5.79)

for X ∈ Z, where EP stands for the expectation taken with respect to the measure P. Hence

γ determines our risk averseness level. For % to satisfy the properties of a coherent risk

measure, it is necessary that γ is in [0, 1/2]. In fact, γ being in [0, 1/2] is both necessary and

sufficient for % to satisfy monotonicity (see [6]). Hence, for fixed 0 ≤ γ ≤ 1/2 with X ∈ Z,

we have that

ρ(X) = sup
m∈A
〈m,X〉, (5.80)

where A is a subset of the probability measures, that are of the form (identifying them with

their corresponding densities)

A =

{
m ∈ L∞(R,B(R),Φ) :

∫
R
m(x)dΦ(x) = 1, (5.81)

m(x) = 1 + h(x)−
∫
R
h(x)dΦ(x), ‖h‖∞ ≤ γ Φ-a.s.

}
(5.82)

for some h ∈ L∞(R,B(R),Φ). Then, we define for each time n ≥ 0, the dynamic correspon-

dent of ρ as ρn : Zn+1 → Zn with

ρn(Xn+1) = sup
mn∈An+1

〈mn, Xn+1〉, (5.83)

as in Equation (2.14), (2.15), (2.17) using (R,B(R),Φ). Hence, the controlled one step con-

ditional risk mapping has the following representation

sup
mn∈An+1

〈mn, X
π
n 〉, (5.84)
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and our optimization problem reads as

min
πn∈Πad

sup
mn∈An+1

〈mn, X
π
n 〉, (5.85)

where An+1 are the sets of conditional probabilities analogous to Equation (5.81) with Πad as

defined in Definition 2.3. Namely, An+1 is a subset of the conditional probability measures

at time n+ 1 that are of the form (identifying them with their corresponding densities)

An+1 =

{
mn+1 ∈ L∞(Ω,Fn+1,Pπn+1) :

∫
Ω

mn+1dPπn+1 = 1, (5.86)

mn+1 = 1 + h−
∫

Ω

hdPπn+1, ‖h‖∞ ≤ γ Pπn-a.s.

}
(5.87)

for some h ∈ L∞(Ω,Fn+1,Pπn+1), where Pπn+1 stands for the conditional probability measure

on Ω at time n+ 1 as constructed in (2.18).

Our one step cost functions are cn(xn, an) = xn for n ≥ 0 for some discount factor

0 < γ < 1 that are l.s.c. (in fact continuous) in (xn, an) for n ≥ 0. Hence, starting with

initial wealth at time 0, denoted by x0, investor’s control problem reads as

x0 + min
π∈Πad

%0

( ∞∑
n=1

Xπ
n

)
(5.88)

, x0 + min
π∈Πad

lim
N→∞

(
c0(x0, a0) + γρ0(c1, (x1, a1) + . . .+ γρN−1(cN(xN , aN)) . . .)

)
(5.89)

We note that Πad is not empty so that our example satisfies Assumption 3.1. Indeed, by

choosing an ≡ 0 for n ≥ 0, i.e. investing all the current wealth into riskless asset Rn for

n ≥ 0, we have that

%

( ∞∑
n=0

γnx0

)
=

x0

1− γ
(5.90)

Hence, as in Theorem 4.2, we find N0 such that

x0

∞∑
n=N0

γn < ε. (5.91)

Thus, we write the corresponding robust dynamic programming equations as follows. Start-

ing with V ∗N0+1 ≡ 0 for n = 1, 2, ..., N0, we have by Equation (5.85)

V ∗n (Xπ
n ) = min

|πn|≤C
Xπ
n + γρn(V ∗n+1(Xπ

n+1)) (5.92)

= min
|πn|≤C

Xπ
n + γ sup

mn+1∈An+1

〈mn, V
∗
n+1(Xπ

n+1)〉 (5.93)
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going backwards iteratively at first stage, the problem to solve is then

V ∗0 (x0) = min
|a0|≤C

x0 + γρ0(V ∗1 (Xπ
1 )) (5.94)

= x0 + γ min
|a0|≤C

sup
m1∈A1

〈m1, V
∗

1 (Xπ
1 )〉 (5.95)

Hence, the corresponding policy

π̃ = {π∗0, π∗1, π∗2, . . . , π∗N0
, 0, 0, 0, . . . , } (5.96)

is ε-optimal with the optimal value V π
0 (x0) for our example optimization problem (5.88).

5.2 The Discounted LQ-Problem

We consider the linear-quadratic regulator problem in infinite horizon. We refer the reader

to [24] for its study using expectation performance criteria. Instead of the expected value,

we use the AV@R operator to evaluate total discounted performance.

For n ≥ 0, we consider the scalar, linear system

xn+1 = xn + an + ξn, (5.97)

with X0 = x0, where the disturbances (ξn)n≥0 are independent, identically distributed ran-

dom variables on Z2
n = L2(R,B(R),Pn) with mean zero and EPn [ξ2

n] < ∞. The control

problem reads as

x0 + min
π∈Πad

%0

( ∞∑
n=1

xπn

)
(5.98)

, x0 + min
π∈Πad

lim
N→∞

(
(x2

0 + a2
0) + γρ0((x2

1 + a2
1) (5.99)

+ . . .+ γNρN−1((x2
N + a2

N)) . . .)

)
, (5.100)

where ρn(·) : Z2
n+1 → Z2

n is the dynamic AV@Rα : Z2
n+1 → Z2

n operator defined as

ρn(Z) , sup
mn+1∈An+1

〈mn+1, Z〉, (5.101)

with

An =
{
mn ∈ L∞(Ω,Fn,Pπn) :

∫
Ω

mndPπn = 1, (5.102)

0 ≤ ‖mn‖∞ ≤
1

α
,Pπn−1 − a.s.

}
(5.103)
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We note that Πad is not empty. Indeed, choose πn ≡ 0 for n ≥ 0 so that

xn = x0 +
n−1∑
i=0

ξi, (5.104)

with

%(
∞∑
n=0

x2
n) ≤ 2x2

0 + 2%(
∞∑
n=0

ξ2
n) (5.105)

≤ 2x2
0 + 2

∞∑
n=0

γnAV@Rα(ξ2
n) (5.106)

≤ 2x2
0 + 2

∞∑
n=0

γn
1

α
EP[ξ2

i ] (5.107)

≤ 2x2
0 +

2σ2

α(1− γ)
(5.108)

<∞, (5.109)

where we used Equation (5.102) in the third inequality. Hence, we find N0 such that

2σ2

α

∞∑
n=N0

γn < ε. (5.110)

Starting with JN0+1 ≡ 0, the corresponding ε-optimal policy for n = 0, 1, . . . , N0 is found via

Jn(xn) = min
|πn|≤C

(
(x2

n + a2
n) + γAV@Rnα

(
Jn+1(xn+1 + an+1)

))
, (5.111)

so that at the final stage, we have

J0(x0) = min
|a0|≤C

x0 + γAV@Rα(J1(xπ1 )) (5.112)

= x0 + γ min
|a0|≤C

sup
m1∈A1

〈m1, J1(x1)〉, (5.113)

where A is as defined in Equation (5.102). Thus, the corresponding policy

π̃ = {π∗0, π∗1, π∗2, . . . , π∗N0
, 0, 0, 0, . . . , } (5.114)

is ε-optimal with the optimal value V π
0 (x0) for problem (5.98).
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