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Abstract. Generalized matrix-fractional (GMF) functions are a class of matrix support func-4
tions introduced by Burke and Hoheisel as a tool for unifying a range of seemingly divergent matrix5
optimization problems associated with inverse problems, regularization and learning. In this paper6
we dramatically simplify the support function representation for GMF functions as well as the rep-7
resentation of their subdifferentials. These new representations allow the ready computation of a8
range of important related geometric objects whose formulations were previously unavailable.9
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1. Introduction. Generalized matrix-fractional (GMF) functions were intro-12

duced in [3] as a means to unify a range of seemingly divergent tools in matrix opti-13

mization related to inverse problems, regularization and machine learning. Somewhat14

surprisingly GMF functions coincide with the negative of the optimal value function15

for affinely constrained quadratic programs, and are representable as support func-16

tions on the matrix space E := Rn×m×Sn, where Rn×m and Sn are the vector spaces17

of real n×m and symmetric n× n matrices, respectively. The most significant chal-18

lenge in [3] is the derivation of an expression for the closed convex set associated19

with the support function representation. Unfortunately, the representation given in20

[3] is exceedingly complicated. The main contribution of this paper is to provide a21

simple, elegant, and intuitive representation for this set. We then use this represen-22

tation to provide a simplified expression for the subdifferential of a GMF function23

and to compute various related geometric objects that were previously unavailable.24

These representations dramatically simplify the use of these tools to a wide range of25

applications [4]. Before proceeding, we review the definition of a GMF function.26

Given (A,B) ∈ Rp×n×Rp×m with rgeB ⊂ rgeA, the graph of the matrix valued27

mapping Y 7→ − 1
2Y Y

T over an affine manifold {Y ∈ Rn×m | AY = B } is given by28

(1) D(A,B) :=

{(
Y,−1

2
Y Y T

)
∈ E

∣∣ Y ∈ Rn×m : AY = B

}
.29

The associated GMF function is the support function of the set D(A,B):30

σD(A,B)(X,V ) = sup
(Y,W )∈D(A,B)

〈(X,V ), (Y,W )〉 ,31

where we use the Frobenius inner product on E,32

〈(Y,W ), (X,V )〉 = tr (Y TX) + trWV = tr (XY T +WV ).33
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2 J. V. BURKE, Y. GAO, AND T. HOHEISEL

In [3, Theorem 4.1], it is shown that34

(2) σD(A,B)(X,V ) =

{
1
2 tr
((
X
B

)T
M(V )†

(
X
B

))
if rge

(
X
B

)
⊂ rgeM(V ), V ∈ KA,

+∞ else,
35

where KA :=
{
V ∈ Sn

∣∣ uTV u ≥ 0 (u ∈ kerA)
}

and M(V )† is the Moore-Penrose36

pseudo inverse of the matrix37

M(V ) =

(
V AT

A 0

)
.38

In particular, this implies that39

(3)

domσD(A,B) = dom ∂σD(A,B)

=

{
(X,V ) ∈ Rn×m × Sn

∣∣∣∣ rge

(
X

B

)
⊂ rgeM(V ), V ∈ KA

}
.

40

Note that domσD(A,B) is clearly not a closed set. To see this consider the case41

A = B = 0 and V = ηI so that any X 6= 0 has rgeX ∈ rgeV . But as η ↓ 0 it is not42

the case that rgeX ⊂ rge 0. Consequently, the statement in [3, Theorem 4.1] that this43

domain is closed is clearly false. This error does not affect the validity of the other44

results in [3] since none of them require that the set domσD(A,B) be closed.45

The representation (2) is the basis for the name generalized matrix-fractional46

function since the matrix-fractional functions [2, 5, 9, 10] are obtained when the47

matrices A and B are both taken to be zero.48

The paper is organized as follows: Section 2 begins with a study of the cones49

KA defined in (6) and their polars. This is immediately followed by deriving our new50

representation of the set Ω(A,B) := convD(A,B) in Theorem 2. With this repre-51

sentation in hand, we derive new simplified descriptions for the normal cone NΩ(A,B)52

and the subdifferential ∂σΩ(A,B) in Section 3. In Section 4 we explore the convex53

geometry of the set Ω(A,B), and conclude in Section 5 with the important special54

case where B = 0 and σΩ(A,0) is a gauge function.55

56

Notation: Let E be a finite dimensional Euclidean space with inner product de-57

noted by 〈·, ·〉 and the induced norm ‖ · ‖ :=
√
〈·, ·〉 with the closed ε-ball about a58

point x ∈ E denoted by Bε(x). Let S ⊂ E be nonempty. The (topological) closure59

and interior of S are denoted by clS and intS, respectively. The (linear) span of S60

will be denoted by spanS.61

The convex hull of S is the set of all convex combinations of elements of S and is62

denoted by convS. Its closure (the closed convex hull) is convS := cl (convS). The63

conical hull of S is the set64

R+S := {λx | x ∈ S, λ ≥ 0} .65

The convex conical hull of S is66

cone S :=

{
r∑
i=1

λixi | r ∈ N, xi ∈ S, λi ≥ 0

}
.67

It is easily seen that cone S = R+(convS) = conv (R+S). The closure of the latter68

is cone S := cl (cone S). The affine hull of S, denoted by aff S, is the smallest affine69

space that contains S.70
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CONVEX GEOMETRY OF THE GENERALIZED MATRIX-FRACTIONAL FUNCTION 3

The relative interior of a convex set C ⊂ E is its interior in the relative topology71

with respect to the affine hull, i.e.72

rintC = {x ∈ C | ∃ε > 0 : Bε(x) ∩ aff C ⊂ C } .73

It is well known, see e.g. [1, Section 6.2], that the points x ∈ rintC are characterized74

through75

(4) R+(C − x) = span (C − x),76

where the latter is the (unique) subspace parallel to aff C. In particular, we have77

R+C = aff C = spanC if and only if 0 ∈ rintC.78

The polar set of S is defined by79

S◦ := {v ∈ E | 〈v, x〉 ≤ 1 (x ∈ S)} .80

Moreover, we define the bipolar set of S by S◦◦ := (S◦)◦. It is well known that81

S◦◦ = cone (S ∪ {0}). If K ⊂ E is a cone (i.e. R+K ⊂ K) it can be seen by a82

homogeneity argument that83

K◦ = {v ∈ E | 〈v, x〉 ≤ 0 (x ∈ K)} ,84

and if S ⊂ E is a subspace, S◦ is the orthogonal subspace S⊥. The horizon cone of S85

is the set86

S∞ := {v ∈ E | ∃{λk} ↓ 0, {xk ∈ S} : λkxk → v }87

which is always a closed cone. For a convex set C ⊂ E , C∞ coincides with the recession88

cone of the closure of C, i.e.89

C∞ = {v | x+ tv ∈ clC (t ≥ 0, x ∈ C)} = {y | C + y ⊂ C } .90

For f : E → R ∪ {+∞} its domain and epigraph are given by91

dom f := {x ∈ E | f(x) < +∞} and epi f := {(x, α) ∈ E × R | f(x) ≤ α} .92

We call f convex if its epigraph epi f is a convex set.93

For a convex function f : E → R ∪ {+∞} its subdifferential at a point x̄ ∈ dom f94

is given by95

∂f(x̄) := {v ∈ E | f(x) ≥ f(x̄) + 〈v, x− x̄〉} .96

Given a nonempty set S ⊂ E , its indicator function δS : E → R ∪ {+∞} is given by97

δS (x) :=

{
0 if x ∈ S,

+∞ if x /∈ S.98

The indicator of S is convex if and only if S is a convex set, in which case the normal99

cone of S at x̄ ∈ S is given by100

NS (x̄) := ∂δS(x̄) = {v ∈ E | 〈v, x− x̄〉 ≤ 0 (x ∈ S)} .101

The support function σS : E → R∪{+∞} and the gauge function γS : E → R∪{+∞}102

of a nonempty set S ⊂ E are given by103

σS (x) := sup
v∈S
〈v, x〉 and γS (x) := inf {t ≥ 0 | x ∈ tS } ,104

respectively. Here we use the standard convention that inf ∅ = +∞. It is easy to see105

that106

(5) σS = σconv S .107
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4 J. V. BURKE, Y. GAO, AND T. HOHEISEL

2. New Representation of conv D(A,B). In view of (5), in order to obtain108

a complete understanding of the variational properties of σS , it is critical to have109

a useful description of the closed convex hull convS. This is often a non-trivial110

task. In [3, Proposition 4.3], a representation for convD(A,B) is obtained after111

great effort, and this representation is arduous. Although it is successfully used in112

[3, Section 5] in several important situations, the representation is an obstacle to a113

deeper understanding of the function σD(A,B) as well as its ease of use in applications.114

The focus of this section is to provide a new and intuitively appealing representation115

that dramatically facilitates the use of σD(A,B). The key to this new representation116

is the class of cones117

(6) KS :=
{
V ∈ Sn

∣∣ uTV u ≥ 0, (u ∈ S)
}
,118

where S is a subspace of Rn, that is, KS is the set of all symmetric matrices that are119

positive definite with respect to the given subspace S. Observe that if P ∈ Sn is the120

orthogonal projection onto S, then121

(7) KS = {V ∈ Sn | PV P ≥ 0} .122

Clearly, KS is a convex cone, and, for S = Rn, it reduces to Sn+. Given a matrix123

A ∈ Rp×n, the cones KkerA play a special role in our analysis. For this reason, we124

simply write KA to denote KkerA, i.e. KA := KkerA.125

Proposition 1 (KS and its polar). Let S be a nonempty subspace of Rn and126

let P be the orthogonal projection onto S. Then the following hold:127

a) K◦S = cone
{
−vvT | v ∈ S

}
= {W ∈ Sn |W = PWP � 0} .128

b) intKS =
{
V ∈ Sn

∣∣ uTV u > 0 (u ∈ S \ {0})
}
.129

c) aff (K◦S) = span
{
vvT | v ∈ S

}
= {W ∈ Sn | rgeW ⊂ S } .130

d) rint (K◦S) =
{
W ∈ K◦S

∣∣ uTWu < 0 (u ∈ S \ {0})
}

when S 6= {0} and131

rint (K◦{0}) = {0} (since K{0} = Sn).132

Proof.133

134

a) Put B :=
{
−ssT | s ∈ S

}
⊂ Sn− and observe that135

cone B =

{
−

r∑
i=1

λisis
T
i | r ∈ N, si ∈ S, λi ≥ 0 (i = 1, . . . , r)

}
.136

We have cone B =
{
W ∈ Sn− |W = PWP

}
: To see this, first note that137

cone B ⊂
{
W ∈ Sn− |W = PWP

}
. The reverse inclusion invokes the spec-138

tral decomposition of W =
∑n
i=1 λiqiq

T
i for λ1, . . . , λn ≤ 0. In particular,139

this representation of cone B shows that it is closed. We now prove the first140

equality in a): To this end, observe that141

KS =
{
V ∈ Sn

∣∣ sTV s ≥ 0 (s ∈ S)
}

142

=
{
V ∈ Sn

∣∣ 〈V, −ssT 〉 ≤ 0 (s ∈ S)
}

143

= (cone B)◦,144

where the third equality uses simply the linearity of the inner product in the145

second argument. Polarization then gives146

K◦S = (cone B)◦◦ = cone B = cone B.147
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CONVEX GEOMETRY OF THE GENERALIZED MATRIX-FRACTIONAL FUNCTION 5

b) The proof is straightforward and follows the pattern of proof for intSn+ = Sn++.148

c) With B as defined above, observe that149

aff K◦S = spanK◦S = spanB,150

since 0 ∈ K◦S , which shows the first equality. It is hence obvious that aff KS ⊂151

{W ∈ Sn | rgeW ⊂ S }. On the other hand, every W ∈ Sn such that rgeW ⊂152

S has a decomposition W =
∑rankW
i=1 λiqiq

T
i where λi 6= 0 and qi ∈ rgeW ⊂ S153

for all i = 1, . . . , rankW , i.e. W ∈ spanB = aff K◦S .154

d) Set R :=
{
W ∈ K◦S

∣∣ uTWu < 0 (u ∈ S \ {0})
}

and let W ∈ rint (K◦S) \R ⊂155

K◦S . Then there exists u ∈ S with ‖u‖ = 1 such that uTWu = 0. Then156

for every ε > 0 we have uT (W + εuuT )u = ε > 0. Therefore W + εuuT ∈157

(Bε(W ) ∩ aff (K◦S)) \ K◦S for all ε > 0, and hence W /∈ rint (K◦S), which158

contradicts our assumption. Hence, rint (K◦S) ⊂ R.159

To see the reverse implication assume there were W ∈ R \ rint (K◦S), i.e. for160

all k ∈ N there exists Wk ∈ B 1
k

(W )∩aff (K◦S)\K◦S . In particular, there exists161

{uk ∈ S | ‖uk‖ = 1} such that uTkWkuk ≥ 0 for all k ∈ N. W.l.o.g. we can162

assume that uk → u ∈ S \{0}. Letting k →∞, we find that uTWu ≥ 0 since163

Wk →W . This contradicts the fact that W ∈ R.164

We are now in a position to prove the main result of this paper which gives a new,165

simplified description of the closed convex hull of Ω(A,B).166

Theorem 2. Let D(A,B) be as given by (1), then convD(A,B) = Ω(A,B),167

where168

(8) Ω(A,B) :=

{
(Y,W ) ∈ E

∣∣∣∣ AY = B and
1

2
Y Y T +W ∈ K◦A

}
.169

Proof. We first show that Ω(A,B) is itself a closed convex set. Obviously, Ω(A,B)170

is closed since K◦A is closed and the mappings Y 7→ AY and (Y,W ) 7→ 1
2Y Y

T + W171

are continuous.172

So we need only show that Ω(A,B) is convex: To this end, let (Yi,Wi) ∈173

Ω(A,B), i = 1, 2 and 0 ≤ λ ≤ 1. Then there exist Mi ∈ K◦A, i = 1, 2 such that174

Wi = − 1
2YiY

T
i +Mi. Observe that A((1− λ)Y1 + λY2) = B. Moreover, we compute175

that176

1

2
((1− λ)Y1 + λY2)((1− λ)Y1 + λY2)T + ((1− λ)W1 + λW2)

=
1

2
((1−λ)Y1+λY2)((1−λ)Y1+λY2)T +

(
(1−λ)(−1

2
Y1Y

T
1 +M1)+λ(−1

2
Y2Y

T
2 +M2)

)
=

1

2
λ(1− λ)(−Y1Y

T
1 + Y1Y

T
2 + Y2Y

T
1 − Y2Y

T
2 ) + (1− λ)M1 + λM2

=λ(1− λ)

(
−1

2
(Y1 − Y2)(Y1 − Y2)T

)
+ (1− λ)M1 + λM2.

177

Since rge (Y1−Y2) ⊂ kerA, this shows λ(1−λ)
(
− 1

2 (Y1 − Y2)(Y1 − Y2)T
)
+(1−λ)M1+178

λM2 ∈ K◦A. Consequently, Ω(A,B) is a closed convex set.179

Next note that if (Y,− 1
2Y Y

T ) ∈ D(A,B), then (Y,− 1
2Y Y

T ) ∈ Ω(A,B) since180

0 ∈ K◦A. Hence, convD(A,B) ⊂ Ω(A,B).181

It therefore remains to establish the reverse inclusion: For these purposes, let182

(Y,W ) ∈ Ω(A,B). By Carathéodory’s theorem, there exist µi ≥ 0, vi ∈ kerA (i =183
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6 J. V. BURKE, Y. GAO, AND T. HOHEISEL

1, . . . , N) such that184

W = −1

2
Y Y T −

N∑
i=1

µiviv
T
i ,185

where N = n(n+1)
2 + 1. Let 0 < ε < 1. Set λ1 := 1 − ε and λ2 = . . . = λN+1 = λ :=186

ε/N . Denote Y1 := Y/
√

1− ε. Take Zi ∈ Rn×m, i = 1, . . . , N such that AZi = B.187

Finally, set188

Vi =

[√
2µi
λ
vi, 0, . . . , 0

]
∈ Rn×m and Yi+1 = Zi + Vi, (i = 1, . . . , N).189

Observe that190

N+1∑
i=1

λiYi =
√

1− εY +
ε

N

N+1∑
i=2

Yi =
√

1− εY +
ε

N

N∑
i=1

Zi +

√
ε

N

N∑
i=1

V̄i,191

where V̄i = [
√

2µivi, 0, . . . , 0], i = 1, . . . , N , and192

−1

2

N+1∑
i=1

λiYiY
T
i = −1

2
Y Y T − 1

2

N∑
i=1

ε

N

(
ZiZ

T
i + ZiV

T
i + ViZ

T
i

)
−

N∑
i=1

µiviv
T
i

= W −
N∑
i=1

1

2

(
ε

N
ZiZ

T
i +

√
ε

N
ZiV̄

T
i +

√
ε

N
V̄iZ

T
i

)
,

.193

Therefore194 (
√

1− εY +
ε

N

N∑
i=1

Zi +

√
ε

N

N∑
i=1

V̄i, W −
N∑
i=1

1

2

(
ε

N
ZiZ

T
i +

√
ε

N
ZiV̄

T
i +

√
ε

N
V̄iZ

T
i

))
195

=

(
N+1∑
i=1

λiYi, −1

2

N+1∑
i=1

λiYiY
T
i

)
.(9)196

197

Set κ := dimE. By Carathéodory’s theorem,198

convD(A,B)=

{(
κ+1∑
i=1

λiYi,−
1

2

κ+1∑
i=1

λiYiY
T
i

)∣∣∣∣λ ∈ Rκ+1
+ ,

∑κ+1
i=1 λi = 1, Yi ∈ Rn×m

AYi = B (i = 1, . . . , κ+ 1)

}
.199

By letting ε ↓ 0 in (9), we find (Y,W ) ∈ convD(A,B) thereby concluding the proof.200

3. Normal cone of Ω(A,B) and the subdifferential of σD(A,B). The new201

representation for convD(A,B) allows us to dramatically simplify the representation202

for the subdifferential of σD(A,B) given in [3, Theorem 4.8]. For this we use the203

well-established relation204

(10) ∂σC(x) = {z ∈ convC | x ∈ NconvC (z)} ,205

where C ⊂ E is nonempty and convex.206

Proposition 3 (The normal cone to Ω(A,B)). Let Ω(A,B) be as given by (8)207

and let (Y,W ) ∈ Ω(A,B). Then208

NΩ(A,B) (Y,W ) =

(X,V ) ∈ E

∣∣∣∣∣∣∣
V ∈ KA,

〈
V,

1

2
Y Y T +W

〉
= 0

and rge (X − V Y ) ⊂ (kerA)⊥

209
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CONVEX GEOMETRY OF THE GENERALIZED MATRIX-FRACTIONAL FUNCTION 7

Proof. Observe that Ω(A,B) = C1 ∩ C2 ⊂ E where210

C1 :=
{
Y ∈ Rn×m | AY = B

}
× Sn and C2 := {(Y,W ) | F (Y,W ) ∈ K◦A } ,211

with F (Y,W ) := 1
2Y Y

T + W . Clearly, C1 is affine, hence convex, and C2 is also212

convex, which can be seen by an analogous reasoning as for the convexity of Ω(A,B)213

(cf. the proof of Theorem 2). Therefore, [11, Corollary 23.8.1] tells us that214

(11) NΩ(A,B) (Y,W ) = NC1 (Y,W ) +NC2 (Y,W ) ,215

where216

NC1
(Y,W ) =

{
R ∈ Rn×m

∣∣ rgeR ⊂ (kerA)⊥
}
× {0}.217

We now compute NC2 ((Y,W )). First recall that for any nonempty closed convex cone218

C ⊂ E , we have NC (x) = {z ∈ C◦ | 〈z, x〉 = 0} for all x ∈ C. Next, note that219

∇F (Y,W )∗U = (UY, U) (U ∈ Sn),220

so that ∇F (Y,W )∗U = 0 if and only if U = 0. Hence, by [12, Exercise 10.26 Part221

(d)],222

NC2
(Y,W ) =

{
(V Y, V )

∣∣∣∣ V ∈ KA, 〈V, 1

2
Y Y T +W

〉
= 0

}
.223

Therefore, by (11), NΩ(A,B) (Y,W ) is given by224 {
(X,V )

∣∣∣∣ rge (X − V Y ) ⊂ (kerA)⊥, V ∈ KA,
〈
V,

1

2
Y Y T +W

〉
= 0

}
,225

which proves the result.226

By combining (10) and Proposition 3 we obtain a simplified representation of the227

subdifferential of the support function σD(A,B).228

Corollary 4 (The subdifferential of σD(A,B)). Let D(A,B) be as given in (1).229

Then, for all (X,V ) ∈ domσD(A,B) (see (3)) we have230

∂σD(A,B) (X,V ) =

(Y,W ) ∈ Ω(A,B)

∣∣∣∣∣∣∣
∃Z ∈ Rp×m : X = V Y +ATZ,〈
V,

1

2
Y Y T +W

〉
= 0

 .231

Proof. This follows directly from the normal cone description in Proposition 3232

and the relation (10).233

4. The geometry of Ω(A,B). We first compute the relative interior and the234

affine hull of Ω(A,B). For these purposes, we recall an established result on the235

relative interior of a convex set in a product space.236

Proposition 5 ([11, Theorem 6.8]). Let C ⊂ E1 × E2. For each y ∈ E1 we237

define Cy := {z ∈ E2 | (y, z) ∈ C } and D := {y | Cy 6= ∅}. Then238

rintC = {(y, z) | y ∈ rintD, z ∈ rintCy } .239

We use this result to get a representation for the relative interior of Ω(A,B) directly,240

and then mimic its technique of proof to tackle the affine hull.241

Lemma 6. Let A,B ⊂ E be convex with rintA ∩ rintB 6= ∅. Then aff (A ∩ B) =242

aff A ∩ aff B.243
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8 J. V. BURKE, Y. GAO, AND T. HOHEISEL

Proof. The inclusion aff (A∩B) ⊂ aff A∩aff B is clear since the latter set is affine244

and contains A ∩B.245

For proving the reverse inclusion, we can assume w.l.o.g. that 0 ∈ rintA∩rintB =246

rint (A∩B), where for the latter equality we refer to [11, Theorem 6.5]. In particular247

we have248

(12) aff A = R+A, aff B = R+B and aff (A ∩B) = R+(A ∩B),249

see (4) and the discussion afterwards. Now, let x ∈ aff A ∩ aff B. If x = 0 there is250

nothing to prove. If x 6= 0, by (12), we have x = λa = µb for some λ, µ > 0 and251

a ∈ A, b ∈ B. W.l.o.g we have λ > µ, and hence, by convexity of B, we have252

a =
(

1− µ

λ

)
0 +

µ

λ
b ∈ B.253

Therefore x = λa ∈ R+(A ∩B) = aff (A ∩B), see (12).254

We now prove a result analogous to Proposition 5.255

Proposition 7. In addition to the assumptions of Proposition 5 assume that D256

is affine. Then (y, z) ∈ aff C if and only if y ∈ D and z ∈ aff Cy.257

Proof. We imitate the proof of [11, Theorem 6.8]: Let L : (y, z) 7→ z. Since D is258

assumed to be affine (hence D = aff D = rintD), we have259

(13) D = L(C) = L(rintC) = L(aff C),260

where we invoke the fact that linear mappings commute with the relative interior and261

the affine hull, see [11, Theorem 6.7 and p. 8].262

Now fix y ∈ D = rintD and define the affine set My := {(y, z) | z ∈ E2 } =263

{y}×E2. Then, by (13), there exists z ∈ E2 such that y = L(y, z) and (y, z) ∈ rintC.264

Hence, rintMy ∩ rintC 6= ∅ and we can invoke Lemma 6 to obtain265

aff My ∩ aff C = aff (My ∩ C) = aff ({y} × Cy) = {y} × aff Cy.266

Hence, if y ∈ D, z ∈ aff Cy, we have (y, z) ∈ {y} × aff Cy = My ∩ aff C ⊂ aff C.267

In turn, for (y, z) ∈ C, we have (y, z) ∈My ∩aff C = {y}×Cy, hence z ∈ Cy 6= ∅,268

so y ∈ D.269

We are now in a position to prove the desired result on the relative interior and the270

affine hull of Ω(A,B).271

Proposition 8. For Ω(A,B) given by (8) the following hold:272

a) rint Ω(A,B) =
{

(Y,W ) ∈ E
∣∣ AY = B and 1

2Y Y
T +W ∈ rint (K◦A)

}
.273

b) aff Ω(A,B) =
{

(Y,W ) ∈ E
∣∣ AY = B and 1

2Y Y
T +W ∈ spanK◦A

}
,274

where spanK◦A = span
{
vvT | v ∈ kerA

}
.275

Proof. We apply the format of Proposition 5 and 7, respectively, for C := Ω(A,B).276

Then277

D = {Y | AY = B } and Cy =

{
K◦A − 1

2Y Y
T , if AY = B,
∅, else.

(Y ∈ Rn×m),278

a) Apply Proposition 5 and observe that rint (K◦A− 1
2Y Y

T ) = rint (K◦A)− 1
2Y Y

T .279

b) Apply Proposition 7 and observe that D is affine, and that aff (K◦A− 1
2Y Y

T ) =280

aff (K◦A)− 1
2Y Y

T .281
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As a direct consequence of Propositions 1 and 8, we obtain the following result for282

the special case (A,B) = (0, 0).283

Corollary 9. It holds that284

conv

{
(Y,−1

2
Y Y T )

∣∣ Y ∈ Rn×m
}

=

{
(Y,W ) ∈ E

∣∣∣∣W +
1

2
Y Y T � 0

}
,285

and286

int

(
conv

{
(Y,−1

2
Y Y T )

∣∣ Y ∈ Rn×m
})

=

{
(Y,W ) ∈ E

∣∣∣∣W +
1

2
Y Y T ≺ 0

}
.287

We conclude this section by giving representations for the horizon cone and polar of288

Ω(A,B).289

Proposition 10 (The polar of Ω(A,B)). Let Ω(A,B) be as given in (8). Then290

Ω(A,B)◦ =

{
(X,V )

∣∣∣∣∣ rge
(
X
B

)
⊂ rgeM(V ), V ∈ KA,

1
2 tr

((
X
B

)T
M(V )†

(
X
B

))
≤ 1

}
.291

Moreover,292

Ω(A,B)∞ = {0n×m} × K◦A(14)293

and294

(Ω(A,B)◦)∞=

{
(X,V )

∣∣∣∣∣ rge
(
X
B

)
⊂ rgeM(V ), V ∈ KA,

1
2 tr

((
X
B

)T
M(V )†

(
X
B

))
≤ 0

}
.(15)295

296

Proof. Given any nonempty closed convex set C ⊂ E, it is easily seen that C◦ =297

{z | σC (z) ≤ 1}. Consequently, our expression for Ω(A,B)◦ follows from (2).298

To see (14), let (Y,W ) ∈ Ω(A,B) and recall that (S, T ) ∈ Ω(A,B)∞ if and only299

if (Y + tS,W + tT ) ∈ Ω(A,B) for all t ≥ 0. In particular, for (S, T ) ∈ Ω(A,B)∞, we300

have A(Y + tS) = B and301

(16)
1

2

[
Y Y T + t(SY T + Y ST ) +

t2

2
SST

]
+ (W + tT ) ∈ K◦A (t > 0).302

Consequently, AS = 0 and, if we divide (16) by t2 and let t ↑ ∞, we see that303

SST ∈ K◦A. But SST ∈ KA since rgeS ⊂ kerA, so we must have S = 0. If we now304

divide (16) by t and let t ↑ ∞, we find that T ∈ K◦A. Hence the set on the left-hand305

side of (14) is contained in the one on the right. To see the reverse inclusion, simply306

recall that K◦A is a closed convex cone so that K◦A +K◦A ⊂ K◦A.307

Finally, we show (15). Since (0, 0) ∈ Ω(A,B)◦, we have (S, T ) ∈ (Ω(A,B)◦)∞ if308

and only if (tS, tT ) ∈ Ω(A,B)◦ for all t > 0, or equivalently, for all t > 0,309

tT ∈ KA and ∃ (Yt, Zt) ∈ Rn×m × Rp×m s.t.

(
tS

B

)
= M(tT )

(
Yt
Zt

)
310

with
1

2
tr

((
Yt
Zt

)T
M(tT )

(
Yt
Zt

))
≤ 1,311

312
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or equivalently, by taking Ẑt := t−1Zt,313

T ∈ KA and ∃ (Yt, Ẑt) ∈ Rn×m × Rp×m s.t.

(
S

B

)
= M(T )

(
Yt

Ẑt

)
314

with
t

2
tr

((
Yt

Ẑt

)T
M(T )

(
Yt

Ẑt

))
≤ 1.315

316

If we take
(Yt

Ẑt

)
:= M(T )†

(
S
B

)
, we find that (S, T ) ∈ (Ω(A,B)◦)∞ if and only if317

T ∈ KA and
t

2
tr

((
S

B

)T
M(T )†

(
S

B

))
≤ 1 (t > 0),318

319

which proves the result.320

5. σΩ(A,0) as a gauge. Note that the origin is an element of Ω(A,B) if and only321

if B = 0. In this case the support function of Ω(A, 0) equals the gauge of Ω(A, 0)◦.322

Gauges are important in a number of applications and they posses their own duality323

theory [6, 7, 8]. An explicit representation for both γΩ(A,0)◦ and γΩ(A,0) will be given324

in the following theorem.325

Theorem 11 (σD(A,0) is a gauge). Let Ω(A,B) be as given in (8). Then326

(17) σΩ(A,0) (X,V ) = γΩ(A,0)◦ (X,V ) = γ◦Ω(A,0)(X,V ),327

and328

(18)

γΩ(A,0) (Y,W )=σΩ(A,0)◦ (Y,W )

=

{
1
2σ
−1
min(−Y †W (Y †)T ) if rgeY ⊂kerA ∩ rgeW,W ∈ K◦A,

+∞ else,

329

where σmin(−Y †W (Y †)T ) is the smallest nonzero singular-value of −Y †W (Y †)T when330

such an eigenvalue exists and +∞ otherwise, e.g. when Y = 0. Here we interpret 1
∞331

as 0 (0 = 1
∞ ), and so, in particular, γΩ(A,0) (0,W ) = δK◦

A
(W ).332

Proof. The expression (17) follows from [11, Theorem 14.5]. To show (18), first333

observe that334

tΩ(A, 0)=

{
(Y,W )

∣∣∣∣ AY = 0 and
1

2
Y Y T + tW ∈ K◦A

}
,(19)335

336

whose straightforward proof is left to the reader.337

Given t̄ ≥ 0, by (19), (Y,W ) ∈ tΩ(A, 0) for all t > t̄ if and only if AY = 0 and338
1
2Y Y

T + tW ∈ K◦A for all t > t̄. By Proposition 1 a), this is equivalent to AY = 0339

and340

(20)
1

2
Y Y T + tW = P

(
1

2
Y Y T + tW

)
P � 0 (t > t̄),341

where, again, P is the orthogonal projection onto kerA. Dividing this inequality by342

t and taking the limit as t ↑ ∞ tells us that W = PWP � 0. Since Y Y T is positive343

semidefinite, inequality (20) also tells us that kerW ⊂ kerY T , i.e. rgeY ⊂ rgeW .344

Consequently,345

dom γΩ(A,0) ⊂ {(Y,W ) | rgeY ⊂kerA ∩ rgeW,W ∈ K◦A } .346
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Now suppose (Y,W ) ∈ dom γΩ(A,0). Let Y = UΣV T be the reduced singular-value347

decomposition of Y where Σ is an invertible diagonal matrix and U, V have orthonor-348

mal columns. Since rgeY ⊂ rgeW = (kerW )⊥, we know that UTWU is negative349

definite, and so Σ−1UTWUΣ−1 is also negative definite. Multiplying (20) on the left350

by Σ−1UT and on the right by UΣ−1 gives351

µI � −2Σ−1UTWUΣ−1 (0 < µ ≤ µ̄),352

where µ̄ = t̄−1. The largest µ̄ satisfying this inequality is353

σmin(−2Y †W (Y †)T ) = σmin(−2Σ−1UTWUΣ−1) > 0,354

or equivalently, the smallest possible t̄ in (20) is 1/σmin(−2Y †W (Y †)T ), which proves355

the result.356

6. Conclusions. The representation Ω(A,B) for the closed convex hull of the357

set D(A,B) in Theorem 2 is a dramatic simplification of the one given in [3]. As358

a consequence, we also obtain simplified expressions for both the normal cone to359

Ω(A,B) and the subdifferential for generalized matrix-fractional functions in Section360

3. In addition, representations for several important geometric objects related to361

the set Ω(A,B) are computed in Section 4. These results provide the key to the362

applications discussed in [3], and open the door to the numerous further applications363

discussed in [4].364
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[7] M. P. Friedlander and I. Macêdo. Low-rank spectral optimization via gauge duality. SIAM379

Journal on Scientific Computing, 28(3):A1616–A1638, 2016.380
[8] M. P. Friedlander, I. Macedo, and T. K. Pong. Gauge optimization and duality. SIAM Journal381

on Optimization, 24(4):1999–2022, 2014.382
[9] J. Gallier: Geometric Methods and Applications: For Computer Science and Engineering.383

Texts in Applied Mathematics, Springer New York, Dordrecht, London, Heidelberg, 2011.384
[10] C.-J. Hsieh and P. Olsen: Nuclear Norm Minimization via Active Subspace Selection. JMLR385

W&CP 32 (1) :575-583, 2014.386
[11] R. T. Rockafellar, Convex analysis, Princeton University Press, 1970.387
[12] R. T. Rockafellar and R. J.-B. Wets, Variational analysis, vol. 317, Springer, 1998.388

This manuscript is for review purposes only.


	Introduction
	New Representation of convD(A, B)
	Normal cone of (A, B) and the subdifferential of D(A,B)
	The geometry of (A, B)
	(A, 0) as a gauge
	Conclusions
	References

