
Forecast-based scenario-tree
generation method

Michal Kaut∗

March 10, 2017

Sometimes, the best available information about an uncertain future is a single
forecast. On the other hand, stochastic-programming models need future data
in the form of scenario trees. While a single forecast does not provide enough
information to construct a scenario tree, a forecast combined with historical data
does—but none of the standard scenario-generation methods is suited to handle
this combination.

In this paper, we present a new scenario-generation method that combines a
single forecast with historical forecast errors. �e method is purely data driven
and can take into account dependencies between errors of forecasts of di�erent
lengths.

Keywords: stochastic programming; scenario generation

Introduction
In stochastic programming, the standard way of describing the stochastic parameters is in the
form of a scenario tree (Kall and Wallace, 1994; Birge and Louveaux, 1997; P�ug and Pichler,
2014). �ere are many methods to construct such trees, using di�erent approaches to do so
and requiring di�erent type of information about the stochastic parameters (Dupačová et al.,
2000; King and Wallace, 2012).

In this paper, we focus on the situation where the only (or the best) information about the
future values of stochastic parameters comes in the form of a forecast. �is can be a price
coming from a deterministic equilibrium model, or a weather forecast in situation where the
forecaster does not provide information about the uncertainty. In addition to the current
forecast, we assume that we have access to historical forecasts and actual observed values,
in order to estimate the the historical forecast errors.

∗SINTEF Technology and Society, Trondheim, Norway; michal.kaut@sintef.no

1

michal.kaut@sintef.no

In such a case, most of the standard scenario-generation methods cannot be applied, since
they typically require more input data. In practice, this is usually tackled by one of the
following approaches: if we have access to historical data and/or forecasts, one can try to
�nd periods with forecasts or observations similar to the current forecasts and use data from
those periods as extra scenarios. �e challenge of this approach is the de�nition of ‘similar’,
especially in multi-period and/or multi-variate cases. In addition, this approach generates a
collection of scenarios (o�en referred to as a ‘fan’), so one would need to use some reduction
technique (Heitsch and Römisch, 2003; Dupačová et al., 2003; Heitsch and Römisch, 2009) if
one needed multi-stage trees. An alternative is to construct the scenarios in the form ft ±kϵt
or ft (1 ± kϵt), where ft is the forecast and k ∈ {1, . . . ,K}. �e step sizes ϵt are either �xed
values, or they can be related to some measure of variability (such as the standard deviation)
of historical forecast errors of the given length. Just like the above approach, this generates
a ‘fan’, not a scenario tree.

A natural extension of the last method is computing the historical forecast errors and then
using some of the standard scenario-generation tools to create a scenario tree for the error
term. �is tree would then be combined with the latest forecast to obtain a scenario tree
for the future values. �e challenge with this approach is that the historical forecast errors
are di�erent from usual historical data in that we normally have several forecasts errors for
each observed value, coming from forecasts with di�erent forecast lengths. In other words,
the forecast errors do not form simple linear history, which prohibits direct use of standard
data-analysis approaches.

In this paper, we describe a method that uses the historical forecast errors in a new way to
generate the scenario trees for the errors. �e method is purely data driven (no distributional
assumptions) and allows modelling dependencies between errors of forecasts of di�erent
lengths.

1 The method

1.1 Notation
ωt historical observations (vector of size N)
ω̃t+∆t |t forecast for time t + ∆t made at time t
ε̃t+∆t |t forecast error of ω̃t+∆t |t
ε̄ s∆t error of forecast of length ∆t in scenario s
ωs
t scenario-tree value for scenario s at time t
�e forecast error ε̃t+∆t |t can be de�ned in several di�erent ways, dependent on the nature

of the data. �e most common choices are simple di�erences

ε̃t+∆t |t = ω̃t+∆t |t − ωt+∆t (1a)
and relative di�erences

ε̃t+∆t |t =
ω̃t+∆t |t
ωt+∆t

− 1 , (1b)

2

[ε̄ 1
1 , ε̄

1
2 , ε̄

1
3]

[ε̄ 2
1 , ε̄

2
2 , ε̄

2
3]

[ε̄ 3
1 , ε̄

3
2 , ε̄

3
3]

[ε̄ 4
1 , ε̄

4
2 , ε̄

4
3]

dim = 3N

[ε̄ 1
1] [ε̄ 1

2] [ε̄ 1
3]

[ε̄ 2
1] [ε̄ 2

2] [ε̄ 2
3]

[ε̄ 3
1] [ε̄ 3

2] [ε̄ 3
3]

[ε̄ 4
1] [ε̄ 4

2] [ε̄ 4
3]

dim = N

∆t1
∆t2

∆t3

Figure 1: Generating a two-stage tree with four scenarios and three periods. Each ε̄ s∆t is a
vector of size N .

where the operations are meant to be done element-wise. Obviously, the la�er de�nition
cannot be used if zero is a feasible value for ωt .

1.2 Two-stage case
Let’s assume that we have historical forecasts ω̃t+∆t |t for t ∈ {Ts , . . . ,Te} and ∆t ∈ {1, . . . ,T },
together with observations ωt for t ∈ {Ts , . . . ,Te +T }. In addition, we have a forecast ω̂t for
t periods ahead, i.e., for t ∈ {1, . . . ,T }. Based on this data, we want to generate S scenarios
for T periods ahead.

First, we compute the historical forecast errors ε̃t+∆t |t for t ∈ {Ts , . . . ,Te} and∆t ∈ {1, . . . ,T },
using one of the formulas from (1). �is means that for each time t from the historical data,
we haveT forecast errors for each element n ∈ {1, . . . ,N }. In total, we thus haveT N values
for each t ∈ {Ts , . . . ,Te}.

Now, we can view the historical forecast errors as a data set with dimension T N and
use any suitable method to generate S two-stage scenarios that approximate it; we denote
the results by ε̄ s∆t . �e next step is to ‘re-interpret’ the two-stage scenarios with dimension
T N as scenarios T periods ahead with dimension N . �is is illustrated in Fig. 1, with the
generated two-stage tree on the le� and the �nal, re-interpreted tree on the right.

�e �nal step is to combine the generated prediction errors with the forecast ω̂t , using the
inverse of the formulas de�ning the forecast error. For the two examples from (1), this means

ωs
t = ω̂t − ε̄ s∆t

and
ωs
t =

ω̂t

1 + ε̄ s∆t
.

1.3 Extension to multi-stage trees
To generate multi-stage trees, we add the additional assumption that the employed two-stage
scenario generator allows �xing of some margins to pre-speci�ed values. �is is not a limit-

3

ing assumption, since we can always take the �xed margins out of the scenario-generation
process and generate scenarios for the rest.

�e method is best explained on a simple example, illustrated in Fig. 2. �ere, the goal
is to generate the three-stage tree from Fig. 2a. We start by identifying the �rst two-stage
subtree (2b) and generating its values using the two-stage method described in the previous
section. �e next step (2c) duplicates the subtree in the target tree to remove the stage.
�en we again identify the �rst two-stage subtree—in our case, this is the whole tree. Before
generating scenarios for the new tree, we copy the values from the �rst two-stage tree and �x
them (2d). Note that this means that the generated scenario tree will have duplicate values
in the �rst two periods. Finally, a�er we have generated scenarios for the two-stage tree,
we collapse the resulting ‘fan’ into the desired multi-stage tree. Note that we do not need
any special reduction method for this, since all scenario-tree nodes we need to collapse are
generated with equal values.

If the tree had more than three stages, we would repeat the steps (2c) and (2d) until we
covered the whole tree. A pseudo-code for the complete algorithm is presented in Fig. 3. In
the example in Fig. 2, we have T = 4 and the counter τ would have values 0, 2, and 4.

2 Our implementation
Our implementation uses the copula-based heuristic from Kaut (2014) as the two-stage sce-
nario generator. �is method generate scenarios by matching the (univariate) distribution
functions of all the margins, plus pairwise dependencies using bivariate copulas. �e la�er
can be done for all the margins, or only a speci�ed subset. �e main reasons for choosing
this algorithm, apart from the fact that we are familiar with it, is that it can be made com-
pletely non-parametric, using only historical data. Moreover, the method works by adding
one margin at a time, so it was easy to modify for this paper’s multi-stage algorithm, where
we need to �x the �rst τ margins.

�e major challenge in using the method is the dimension of the generated scenarios, com-
bined with the fact that the method matches pairwise copulas: with N T stochastic variables
(error terms), this means N T (N T − 1)/2 pairs to match. For most applications, this is too
many. Instead, we should focus on matching dependency only between pairs that we can
expect to ma�er. For example, we might not be concerned about dependence between the
error of the forecast of wind power at one location, one hour ahead, and the error of forecast
at another location, 24 hours ahead.

For this reason, we match dependency of a forecast error of variable xi for forecasts ∆t1
ahead, denoted (xi ,∆t1), with:

• forecast errors of (xi ,∆t2) with 0 < ∆t2 − ∆t1 ≤ U i

• forecast errors of (xj ,∆t2) with j , i and ∆t2 − ∆t1 ≤ U e ,

where U i ≥ 1 and U e ≥ 0 are case-dependent parameters. In our implementation, we use
the minimal values, so we match dependencies between two consecutive forecast lengths
for each variable and between all variables for each forecast length. �is implies matching
N (T − 1) +T N (N − 1)/2 = N (N T +T − 2)/2 variable pairs.

4

(a) the target three-stage
tree

(b) �rst two-stage tree

(c) duplicating the subtree corresponding to (b)

fixed

(d) copying and �xing values from the �rst tree

(e) collapsing the equal nodes

Figure 2: Illustration of the method on a three-stage scenario tree

5

τ ← 0
while τ < T do

if τ > 0 then
duplicate subtree with t ∈ {1, . . . ,τ } to remove stage at τ See Fig. 2c.
copy values for t ∈ {1, . . . ,τ } from the last generated tree See Fig. 2d.

identify the first two-stage subtree
generate values for the subtree, with the first τ periods fixed
τ ← last period of the generated tree

collapse the tree . See Fig. 2e.

Figure 3: Pseudo-code of the multi-stage generator

We have integrated the presented method into the copula-based generator. �e result is
released under a dual LGPL/EPL open-source license and is available from the author’s web
page1.

3 Test case
Ideally, we would like to test quality of solutions obtained from an optimization model using
scenario trees generated with the presented method. �is is not possible in our case, since
have not yet integrated the method into the optimization model for which it was developed.
Moreover, the optimization model is complex, making it di�cult to separate the e�ects of
the scenario-generation method. For this reason, we instead look at how well the generated
scenarios represent the observed uncertainty, based on real data and forecasts. Note that,
since our method adds noise to the externally provided forecast, the quality of the scenarios
depends on the forecasting method, as well as the scenario-generation method.

We have tested the method on Norwegian electricity prices, with price forecasts from
Statkra�, a major Norwegian power company. �e data set includes forecasts generated at
each working day from January 2014 until April 2016, always one week ahead with hourly
resolution (168 observations), as well as the actual prices. From this we calculate relative
forecast errors (1b) and then use a rolling window of the last 100 observations to estimate
the distribution of forecast errors. �is implies that we can test forecasts from April 2014,
which gives us 450 test days.

At each day, we build a symmetric 5-stage scenario tree for the forecast errors, with 5
branches at t ∈ {1, 7} and 2 branches at t ∈ {16, 25}; in total 100 scenarios. �e forecast
errors are then combined with the actual forecast at the test day, to create a scenario tree for
the prices, one week ahead. We have used the relative errors from (1b) and estimated their
distribution based on a rolling window of 100 days.

An example of such a tree is presented in Fig. 4, which shows a ‘normal’ week. �e forecast
was done on Friday, so the forecasted period is Saturday to Friday. In the chart, we can see
the forecast, the 100-scenario tree, as well as the actual values.

1http://work.michalkaut.net/

6

http://work.michalkaut.net/

Figure 4: Example week showing the original forecast, 100 generated scenarios, and the
actual observed prices.

Figure 5: Two consecutive weeks, showing unexpectedly low prices and their e�ect on the
scenarios.

7

Figure 5 shows how the method reacts to unexpectedly high forecast errors. In the le� �g-
ure, we can see that the prices �ve and six days ahead are not only lower than the forecast,
but also outside of the range covered by the scenarios. In the right �gure, representing fore-
cast one week later, we see that the scenario-generation method has reacted to the observed
errors by increasing the downward variability of the longer forecast. As a result, when the
prices again end up signi�cantly lower than the forecast in the second half of the week, this
drop is mostly covered by at least one scenario. In other words, if we use the method in an
actual optimization model, the model would have taken into account the possibility of such
a price drop. Naturally, the model reacts in the same way to unusual price peaks as well.

Naturally, we would like to know how well the scenarios represent the actual uncertainty.
For this, we do the following percentile-based test: for each test day d and forecast length
∆t , we compute the percentile of the observed value within the generated scenarios:

pd,∆t =
��{s ∈ 1, . . . , S∆t : xs∆t ≤ x̄∆t }

�� /S∆t , (2)

where xs∆t are the scenario values and x̄∆t the actual observed value. �is means that pd,∆t is
zero/one if the value is lower/higher than in any scenarios.

Now, if the scenarios represented the uncertainty perfectly, we should seepd,∆t ≤ q in 100q
percent of the cases, for each ∆t . To test this, we compute the frequencies of the quantiles

F∆t =
��{d ∈ D : pd,∆t ≤ q}

�� /|D| ,
for each q ∈ {0, 0.1, . . . , 1} and then plot these against q. �e result is a probability plot
presented in Fig. 6. �ere, the horizontal axis represent q and the vertical axis F∆t , and each
line corresponds to one forecast length ∆t .

We can see that most of the lines are close to the ideal line (0, 1)–(1, 1). However, a couple
of lines are di�erent, with several intervals of constant values. �ese correspond to the
shortest forecasts, where the scenario tree has only 5 scenarios. Since these are equiprobable,
the values of pd,∆t must be multiples of 0.2. In other words, the percentiles have only �ve
possible values, leading to the step-wise nature of the curves. For all the other forecasts, the
lines are very close to the diagonal, so we can conclude that the scenario trees provide a good
approximation of the actual distribution.2

Conclusions
We have presented a new scenario-generation method for situations where our information
about future values of random parameters is limited to a single forecast. Our initial testing
suggests that the method works as expected and generates scenario trees with distributions
covering the actual observed uncertainty.

2Note that this is, in fact, a joint test of the forecasting method and the scenario generation. We could not
achieve such good results if the forecasting method did not work.

8

Figure 6: Probability plot showing actual vs. expected percentiles of the generated scenar-
ios. Each line represents one forecast length.

Acknowledgements
�is work was done as a part of KPN3 project Day-ahead Bidding with Multiple Short-term
Markets, a Research Council of Norway Project No. 243964/E20.

References
John R. Birge and François Louveaux. Introduction to stochastic programming. Springer-

Verlag, New York, 1997. ISBN 0-387-98217-5.

Jitka Dupačová, Giorgio Consigli, and Stein W. Wallace. Scenarios for multistage stochas-
tic programs. Annals of Operations Research, 100(1–4):25–53, 2000. ISSN 0254-5330.
doi:10.1023/A:1019206915174.

Jitka Dupačová, Nicole Gröwe-Kuska, and Werner Römisch. Scenario reduction in stochastic
programming: An approach using probability metrics. Mathematical Programming, 95(3):
493–511, 2003. doi:10.1007/s10107-002-0331-0.

H. Heitsch and W. Römisch. Scenario reduction algorithms in stochastic pro-
gramming. Computational Optimization and Applications, 24(2–3):187–206, 2003.
doi:10.1023/A:1021805924152.

3From Norwegian ‘Kompetanseprosjekt for næringslivet’, meaning ‘knowledge-building project for industry’.

9

http://dx.doi.org/10.1023/A:1019206915174
http://dx.doi.org/10.1007/s10107-002-0331-0
http://dx.doi.org/10.1023/A:1021805924152

Holger Heitsch and Werner Römisch. Scenario tree reduction for multistage stochastic pro-
grams. Computational Management Science, 6(2):117–133, 2009. doi:10.1007/s10287-008-
0087-y.

Peter Kall and Stein W. Wallace. Stochastic Programming. John Wiley & Sons, Chichester,
1994.

Michal Kaut. A copula-based heuristic for scenario generation. Computational Management
Science, 11(4):503–516, 2014. doi:10.1007/s10287-013-0184-4.

Alan J. King and Stein W. Wallace. Modeling with Stochastic Programming. Springer Series
in Operations Research and Financial Engineering. Springer, 2012. doi:10.1007/978-0-387-
87817-1.

Georg Ch. P�ug and Alois Pichler. Multistage Stochastic Optimization. Springer Series in
Operations Research and Financial Engineering. Springer, 2014. doi:10.1007/978-3-319-
08843-3.

10

http://dx.doi.org/10.1007/s10287-008-0087-y
http://dx.doi.org/10.1007/s10287-008-0087-y
http://dx.doi.org/10.1007/s10287-013-0184-4
http://dx.doi.org/10.1007/978-0-387-87817-1
http://dx.doi.org/10.1007/978-0-387-87817-1
http://dx.doi.org/10.1007/978-3-319-08843-3
http://dx.doi.org/10.1007/978-3-319-08843-3

	The method
	Notation
	Two-stage case
	Extension to multi-stage trees

	Our implementation
	Test case

