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Abstract

In this paper we consider the problem of minimizing a convex differentiable function
subject to sparsity constraints. Such constraints are non-convex and the resulting optimization
problem is known to be hard to solve. We propose a novel generalization of this problem
and demonstrate that it is equivalent to the original sparsity-constrained problem if a certain
weighting term is sufficiently large. We use the proximal gradient method to solve our
generalized problem, and show that under certain regularity assumptions on the objective
function the algorithm converges to a local minimum. We further propose an updating
heuristic for the weighting parameter, ensuring that the solution produced is locally optimal
for the original sparsity constrained problem. Numerical results show that our algorithm
outperforms other algorithms proposed in the literature.

I. INTRODUCTION

We consider the following optimization problem

minimize f(z)
subject to z € B (P)
card(z) < k,

where f : R — R is a differentiable convex function, B = {z € R" |I < x; < u}, with
—l,u € Ry U{o0}, and k € N is a given positive integer. Such problems arise in a number of
engineering applications, such as compression [1], sparse regression [2], image processing [3],
and sparse controller design [4].

The cardinality constraint in problem P is used to impose sparsity of some degree on the
optimal solution. However, such a constraint is non-convex and the resulting optimization
problem is known to be AN/P-hard in general. A widely used heuristic approach for enforcing
sparsity of the solution is to add the ¢; regularization term in the objective [5], i.e. to solve
the following convex relaxation of problem P

minimize  f(z) + v||z|1
) (1)
subject to = € B
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for different values of the weighting parameter 7, and to find a ~ sufficiently large to obtain
a solution in which the original cardinality constraint is satisfied. However, any such solution
to (1) is not guaranteed to be optimal for the original problem P.

This approach to obtaining a sparse solution has received significant attention, because the
resulting convex problem can be solved very efficiently. Since the problem (1) has special
structure, proximal methods can be used to obtain a solution when the dimension of the
optimization variable is very large [6]. A related approach is to replace the ¢; norm in (1)
by a weighted ¢; norm, and to then solve a sequence of weighted ¢; optimization problems
wherein the weights are updated based on previously obtained solutions [7].

However, the quality of a solution obtained by relaxing the non-convex constraint is not always
satisfactory. One alternative approach is to tackle the non-convex problem P directly. The exact
minimization of such a non-convex problem is possible using techniques such as branch-and-
bound, but the approach is only applicable to problems of relatively low dimension. The
authors in [8], [9] proposed a projected gradient method for solving a variant of problem P
that does not consider the constraint x € B, and established convergence of the algorithm to
a local minimum under some regularity assumptions on the objective function. The authors
in [10] use the alternating direction method of multipliers (ADMM) to solve problem P, with
additional heuristic steps that may improve quality of the solution obtained. However, this
method is not guaranteed to converge and the authors propose to terminate the algorithm after
some predefined number of iterations.

In this paper we reformulate problem P by replacing the ¢; regularization term in (1) by a
function that penalizes only the (n — k) smallest elements in magnitude of x, rather than all
the elements of x. We then apply the proximal gradient method (PGM) to the reformulated
problem, and show that under some regularity assumptions on the objective function our
algorithm converges to a local minimum. We show that, given a suitable selection of the
weighting parameter, our algorithm is equivalent to the projected gradient method for solving
problem P. However, we propose an update scheme of the weighting parameter which often
yields a better solution than when the parameter is held fixed.

The remainder of the paper is organized as follows. In Section II we show how to reformulate
problem P. In Section III we propose an algorithm for solving such a reformulated prob-
lem and establish convergence of the algorithm. Section IV provides a numerical example
which shows that our algorithm outperforms other methods proposed in the literature. Finally,
Section V concludes the paper.

Notation

Let R denote the set of real numbers, R, the set of nonnegative real numbers, R := R U{oo}
the extended real line, and R" the n-dimensional real space equipped with inner product
(x,y) and induced norm ||z||. Given a vector x € R", we denote its cardinality by card(z),



i.e. the number of nonzero elements in x, and its i-th element by x;. We define a sequence
of indices {is(z)}"_; such that
iy @) = 2 |2, @)

We denote the largest-k norm of a vector x € R" by || - || : R" — R, defined as the sum
of the k elements of largest magnitude in z, i.e.

k
2l = 2, @)
s=1

Observe that ||z[|[;; corresponds to the /o, norm and |||l to the /1 norm, and that ||z||; >
2 llx) = [|2]lco-

Let dom f := {z € R" | f(z) < oo} denote the effective domain of a function f : R” — R.
The proximal operator of f is given by prox,(z) € argmin, {f(y) + %Hy — z||?}. The direc-
tional derivative of f at z € dom f in the direction d € R"™ is denoted by f'(x, d). If f is differ-
entiable, then V f(x) denotes the gradient of f evaluated at x, and V; f(x) the i-th element of
V f(x). The distance of = to a closed set C C R" is denoted by dist(z,C) := min.ec ||z — |,
and the projection of  onto C by proje(x) € argmin.ce ||z — c||. Projection of « onto R
is denoted by x := max(z,0). The indicator function of a set C is given by

0, xzeC
Ze(z) = { .
oo, otherwise.
The soft thresholding operator S, : R — R, with x > 0, is given by
r+kK IT<-—K
Su(x) =<0, T € [—K, K]

r—K, T>K,

and the saturation operator sat,, : R — R, with —{,u € R} U{oco}, as

I, =<l
saty(z) =z, €[l u]
u, T > U.

II. PROBLEM REFORMULATION

We make the following standing assumptions about the cardinality constrained optimization
problem P:

Assumption 1.

a) The function f is convex and differentiable.

b) The gradient NV f is Lipschitz continuous on B with Lipschitz constant Ly, i.e.
IVf(x) = Vil < Lellz —yll, Va,yeB.



¢) The function f is lower bounded on B, i.e. there exists ¢ € R such that f(x) > ( for all
x € B.

Notice that a sufficient condition for f to be lower bounded on B is that B is bounded.

In this section we will show how to reformulate problem P. Observe that the cardinality
constraint can be equivalently written as ||z1 = ||/ [11]. Since [lz([1 > ||z is always
true, the cardinality constraint in problem P can be replaced by |z|1 — [|z[/ < 0. By
representing the resulting problem in the Lagrangian form, we obtain

minimize  f(x) + v ¢ (2)

subject to x € B ()

where @, () = ||z[[1— |71}, and v € R, is a weighting parameter. Observe that, compared
to problem (1), in problem R only the (n — k) smallest elements in magnitude of x are
penalized, rather than all the elements of x.

We show in the sequel that, for an appropriately selected parameter ~, local minimizers of
problems P and ‘R coincide. We first recall local optimality conditions for a nondifferentiable
function h.

Lemma 1 (see e.g. [12]). Let the function h : R™ — R be proper and let x* € dom h. Then
x* is a local minimizer of h if and only if h'(x*,d) > 0 for all d € R™.

By introducing the following functions

hp(l') = f(x) +Il§’(x) +Icard(x)§k($)
hr(z) = f(z) +Ip(x) +vpm(2),

we can characterize local minimizers of problems P and R in a way that they are equivalent
to local minimizers of hp and hg, respectively.

Theorem 1. If x* € B is locally optimal for problem R with v > max; |V f;(z*)|, then x*
is locally optimal for problem P, and vice versa.

Proof: 1) Suppose that z* is locally optimal for problem P, and thus ¢ (z*) = 0. Let
G be the set of indices ¢ for which z} # 0, and d € R"™ any vector such that ||d||- <
min;eg |7 |/2 =: e. Then the set of indices of the & largest elements in magnitude of (z*+d)
is equivalent to G, and thus ¢y (z* 4+ d) = 3,4 |d;|- Due to the convexity of f and Zp,
and separability of Zp, we have

hR(LU* + d) — hR(Z‘*)
> (Vf(@¥), d) + T(x*,d) + 7 ) |d;|
Jj¢g
= (Vif(z")di + Tpg(a}, di))+
i€g
> (Vif(a*) dj+ I, dj) +v > ld]

i¢9 i¢9



Observe that Ziz(2%,d;) is 0 if (2% + d;) € B, and oo otherwise. In particular, we always
have Zz(2%,d;) > 0. On the other hand, since z* is a local minimizer of problem P, this
means that moving = from z* along coordinates ¢ € G either leads to infeasibility or does
not improve f, i.e. the first sum in the above equality is nonnegative. Therefore, the above
inequality reduces to

hr(z* +d) = he(a*) = > Vif(a*)d;+v)_ |d]

29 29
> —maXW FE@ Y ldjl ) 1djl

J¢9g i¢9

= (- maxl¥,70) Sl
1Y
Provided that v > max; |V f;(z*)| > max;¢¢ |V fj(2*)|, the above inequality implies
hr(z* +d) > hr(z"), 2)

for all d such that ||d||o < €, i.e. 2* is a local minimizer of R [13]. This concludes the first
direction of the proof.

2) Suppose that z* is locally optimal for problem R with v > max; |V f;(z*)|. We first show
that @) (z*) = 0. Assume that oy (2*) # 0 which means that the (k + 1)-th largest element
in magnitude of x*, whose index is denoted by 4, is not equal zero. Then the directional
derivative of hg at z* in the direction d = (0,---,0, —x7,0,---,0) is

W (%, d) = (V1 (%), d) + Ti(a*, d) + 7 ¢y (™, d)
= —Vif(z") aj — v |a7]
< (IVfia™)] =) |7
<0,
where we used the fact that Zz(z}, —z¥) = 0 coming from 0 € B, v > |V fi(z*)|, and

|| > 0. In the sense of Lemma 1, the above inequality means that z* is not a local minimizer
of R, which is a contradiction.

Now observe that if d € R" points in a feasible direction from z* with respect to the cardinality
constraints, then Igard(x)%(:v* d) = 7<p/[ }(1:* d) = 0, and otherwise Icard( y<p (@, d) =00
and ’ycp[k](x d) < 7[|d|[g) < oco. Thus we have Icard( y<p (@ d) = fyap[ ](ac ,d) for all d,
and therefore

Wp(a*,d) = (VF(2*), d) + Tp(", d) + Thngaycn(a* )
> (Vf(z*), d) + Tg(x*, d) + v gpyy (¥, d)
= hg (z*,d)
>0,

The above inequality means that x* is a local minimizer of problem P. This concludes the
proof. [ ]



III. SOLUTION METHOD

Operator splitting methods were originally designed for solving optimization problems in the
form
minimize f(z) + g(z) (3)

where both f and g are convex. However, they are sometimes used as heuristics in non-convex
optimization [4], [6], [9], [10]. The advantage of these methods is that the functions f and
g can be tackled separately. For instance, in the PGM the function f is tackled through its
gradient, and g through its proximal operator. In the case when both f and g are convex, and
V f is Lipschitz continuous, the method converges to a global minimum [14]. Another method
that can be used for solving problem (3) is ADMM, which uses the proximal operators of
both f and g. This method does not require any differentiability assumptions on the functions
and, provided that both f and g are convex and that problem (3) is solvable, the method
always converges to a global minimum [14].

If we set
g(z;7, L w) = Tp(x) + vou (), “4)

where (7,l,u) are parameters of the function, then problem R can be represented in the
form (3). In order to use proximal methods for solving problem R efficiently, the proximal
operator of the function g should be easy to evaluate. We will show in the sequel how to
evaluate the proximal operator of g, and that the PGM can be used for computing a local
minimum of problem R.

Note that the authors in [15] use the same reformulation to tackle problem P, but have a
different approach for solving it. In particular, the authors represent the objective in problem R
as a difference of convex functions (i.e. a DC function) and apply so-called DC algorithms
to the problem.

A. Evaluating the proximal operator

The authors in [9] show that projection of a vector in R" onto subset of R" with cardinality
k can be obtained by setting its (n — k) smallest elements in magnitude to zero. Since
the choice of these elements does not have to be unique, neither is the projection on the
cardinality constraint. This corresponds to a projection onto the constraint set in P when
setting —! = u = oo. In the case that — = v = M > 0, the projection can be obtained
by additional clipping of the elements with magnitude larger than M, as shown in [10]. It is
easy to show that in the case when [ = 0 and v = M > 0, the projection can be obtained
by first setting all the nonnegative elements to zero, and then performing projection as in the
case when -l =u =M > 0.

We can similarly evaluate the proximal operator of functions g/ (z;7y) = g(x;y, —M, M)

sat_ps v (S’y(xzé(x))) , s>k
Sath,M (mzs(z)) ) s<k

(prox,,, (2;7))i.(z) = {



Algorithm 1 Proximal gradient method
1: Initialization
22 t=0
3: Setxg€B
4: Repeat until convergence
Y1 = x — (1/L)V f ()
Tiy1 € Proxy)r, (Ye+1)
t—t+1

A

and gnr, (x;7) = g(z;7,0, M)

. _ Jsatoar (Sy(2i,2,)) . s>k
(prOnger (.’17,’}/))25(1_*_) - {SatO’M (':U’Lb(-l’Jr)) s S S k

Note that in order to evaluate the proximal operators of gps and gpz,, we must first sort
the vectors = and x4, respectively. Notice that when v = oo, the proximal operator of g is
equivalent to projection onto the constraint set in P. This implies that the PGM for solving
problem R generalizes the projected gradient method for solving problem P for which the
convergence to a local minimum was established in [9]. We will show in the next subsection
that we can extend this result to any v > 0 in the PGM.

B. Convergence of the proximal gradient method

The proximal gradient method, described in Algorithm 1, is known to converge when f and g
are convex, V f has Lipschitz continuous gradient with constant Ly, and L > Ly /2 [16]. The
authors in [9] establish convergence of the PGM when g is an indicator function of a general
closed set, provided that L > L. We will use similar arguments to establish convergence of
the PGM for an arbitrary non-convex function g. We first require a supporting lemma:

Lemma 2. Any fixed-point x* of Algorithm 1, i.e. a point satisfying
1
a* € proxyp, (¢* — sz(m*))
is a local minimizer of problem (3).

Proof: From the definition of the proximal operator, 2* must satisfy
* : L * 1 * 2
x* € argmin < g(z) + §||z — (2" - EVf(x NIZ e (5)
z
According to Lemma 1, the above inclusion is equivalent to

g(a*,d) + (VF(a*),d) >0, VdeR",

which again by Lemma 1 implies that z* is a local minimizer of problem (3). This concludes
the proof. [ ]



Theorem 2. Let {z:}+>0 be a sequence of iterates generated by Algorithm 1 for solving
problem (3). Suppose that (f + g) is lower bounded, f is convex, ¥V f is Lipschitz continuous
with constant Ly, inf L > Ly and sup L < oo. Then the sequence {f(x:) + g(x¢)}i>0
converges to a local minimum of problem (3).

Proof: Let h(z) == f(z) + g(x) and
hi(e3) = F() +{VF(@),2 — o) + 2z = 2l + g(2).

We first show that Algorithm 1 generates a non-increasing sequence {h(x¢) }+>0. Similar to (5),
;41 can be characterized as

: L 1
s € argmin {g(:) + e - o0 - LS | ©®
z
Lipschitz continuity of V f implies that hy(z;x) is an upper bound on h(z) [16], ie.
hp,(z;x) > h(z), VzeR". 7

Since
hp(z;z) = g(2) + gﬂz - (azt - %Vf(ajt))uz

1
+ f@) = S IVl
where the last two summands do not depend on z, inclusion (6) is equivalent to

Ziq1 € argmin by (z;x¢),
z

which implies
hi(zi1;3e) < hp(ze ) = h(z). 8)

Inequalities (7) and (8) imply

h(z¢) — h(zt41) > ho(werr;w0) — hr, (2015 24)
_L-Ly

2
The last inequality shows that {h(x¢)}+>0 is a strictly decreasing sequence but for the case
where x:y1 = x4, for which x; is a fixed-point of Algorithm 1 and, according to Lemma 2,
a local minimizer of (3). Lower boundedness of h together with monotonicity of {h(z:)}i>0
implies convergence by the monotone convergence theorem. [ ]

€))

21 — 2

Corollary 1. Suppose that Assumption 1 holds, inf L > Ly, sup L < oo, and let {:Ut}tzo be
a sequence of iterates generated by Algorithm 1 for solving problem R. Then {hgr(z¢)}+>0
converges to a local minimum of R.



C. Termination criterion

As shown in the previous subsection, the Algorithm 1 for solving problem R always produces
a monotonically decreasing sequence {hg(z:)}+>0 that eventually converges to some local
minimum h%. Since we do not know h}, a reasonable termination criterion is that the
difference in objective value in subsequent iterations is small relative to the objective value,
ie.

hr(zt) — hr(wt41) < € hr(i41),

where ¢ € R, is the optimality tolerance. Notice from (9) that this condition implies that
|xtr1 — x¢] is also small.

D. Heuristic for selection of the weighting parameter

In Section II we showed that local minimizers of problems P and R coincide provided that
v > max; |V fi(z*)|. Although V f(2*) is not known prior to the algorithm runtime, in some
cases we can find an upper bound on max; |V f;(x*)| over B, and use it in order to select
an appropriate 7. However, such a selection rule usually results in a relatively large value of
v, and consequently in equivalence between our proposed method and the projected gradient
method for solving problem P.

We thus propose a heuristic for updating the weighting parameter  at each iteration. After
yi+1 i1s computed, we update the weighting parameter in each iteration according to the
following rule

Ve+1 = max \Vif(ys+1)]- (10)

According to Theorem 1, this selection rule does not guarantee that a limit point of the
algorithm will satisfy the original cardinality constraint. In order to obtain a vector that satisfies
the cardinality constraint, it is sufficient to project the obtained vector onto the constraint set
in problem P. We will show in the next section that this strategy usually results in higher
quality solutions.

IV. NUMERICAL RESULTS

We consider the following sparse least-squares problem

minimize || Az — b||3
subject to  [|z||cc < M (11)
card(z) < k,

with decision variable x € R™ and problem data A € R™*"™, b € R™, M € R, and k € N.

This problem arises, for instance, in compressed sensing where a sparse vector x must
be recovered from linear measurements Ax = b [9]. Observe that problem (11) satisfies
Assumption 1 with ( = 0 and Ly = 2 || AT A|z where || - [|2 denotes the matrix spectral norm.
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Algorithm 2 ADMM

1

A A T

. Initialization

t=20
Set zg € B, up =0

: Repeat until t = NV

T41 = ProXy, (2t — ut)
Zt41 = ProXy,(Te1 + ue)
Upt] = Ut + Teq1 — 241
t+—t+1

We will show in the sequel that for problem (11) the algorithm proposed in the previous sec-
tion, denoted here by prox-PGM, produces solutions of a higher quality than other algorithms
reported in the literature. We briefly describe these algorithms.

o Lasso: The least absolute shrinkage and selection operator (Lasso) is a well-known

heuristic for solving problem (11) and is based on a convex relaxation as in problem (1).
We solve the problem for different values of the weighting parameter v, and keep the
solution obtained with the smallest value of the parameter for which the cardinality
constraint is satisfied.

proj-PGM: The projected gradient method was used in [9] for solving a variant of
problem (11), and is equivalent to Algorithm 1 when v = oco. The method converges to
a local minimum, and the same termination criterion can be used as proposed for the
prox-PGM.

proj-ADMM: A method proposed in [10] for solving problem (11) is equivalent to
Algorithm 2, when v = oo. We set the algorithm parameter p = L. The method does
not necessarily converge, and we terminate the algorithm after some fixed number of
iterations is reached, as proposed in [10]. Here, we stop the algorithm after 100 iterations.
Notice that evaluating the proximal operator of f requires solving a linear system, which
is computationally more expensive than evaluating the gradient of f. However, since the
left-hand side of the linear system does not change, we can factor the matrix once and
use the cached factorization in the subsequent iterations.

prox-ADMM: As Algorithm 1 can be used for solving both problems P and R, we can
use Algorithm 2 also for solving problem R. We denote this method by prox-ADMM
and it can be seen as a generalization of proj-ADMM. We use the same strategy as
in (10) to update the weighting parameter of the problem, with y;,; replaced by x;1.

The data are generated as described in [10, Section 6.1], i.e. A € R™*?™ with i.i.d. N(0,1)
entries, b = A% + v with £ drawn uniformly at random from the set of vectors satisfying
card(z) < |m/5] and ||z]|cc < M = 1, and v € R™ being a noise vector drawn from
N(0,0%I). We set o = ||AZ||/(204/m) so that the signal-to-noise ratio is near 20.

For each value of m we generate 100 instances of the problem. Since the quality of the
solutions obtained depends on the initial point (except for the Lasso method), for each problem
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(A 10 <m <35 (b) 50 < m < 300

Fig. 1. The average objective function of solutions found by various algorithms for 100 instances of problem (11).

instance we run the algorithms from 10 initial points drawn from A(0,I), and keep the
solution with the smallest objective value. The resulting solution is then polished in a sense
that we replace the cardinality constraint in (11) with the sparsity pattern of the solution,
and solve the resulting convex optimization problem to obtain a final solution. Although the
authors in [10] propose additional heuristic steps such as the neighbor search that may improve
quality of the obtained solutions, we do not include these heuristics in our implementations.
Note that these heuristics are not restricted to a specific algorithm, but can be used in any of
the proposed methods that solve non-convex problems.

To make the comparison fair, we run all the algorithms for solving non-convex problems for
not more than 100 iterations. We use Gurobi [17] to solve convex quadratic programs (QPs)
arising in Lasso and solution polishing, and mixed-integer QPs.

The numerical results obtained are shown in Figure 1. For each value of m we show the
average value of the objective function over the 100 generated instances. The exact solutions
are obtained for small values of m by solving mixed-integer QPs. Solutions obtained with the
Lasso approach have values of the objective function around one order of magnitude larger
than solutions obtained by prox-PGM. Also, prox-PGM consistently outperforms all the other
methods by at least a factor of 2 (relative to the exact solution for m < 35 and relative to
zero for m > 50) for all values of m.

Figure 2 shows the average times for solving one instance of the problem. The time required to
solve mixed-integer QPs grows rapidly with m and the approach is applicable only for solving
small problems. On the other hand, runtimes of the operator splitting methods scale much
better with the problem dimensions making them suitable for solving large-scale problems.



12

10° T T
—&—proj-PGM
prox-PGM
—A—proj-ADMM
—s7—prox-ADMM | }
MIQP

102 -

10t -

100 L

Time [s]

10-3 I I I I I
0 50 100 150 200 250 300

Fig. 2. The average runtimes of various algorithms for solving 100 instances of problem (11).

V. CONCLUSION

In this paper we propose a method for minimizing a convex differentiable function subject to
sparsity constraints. We show that under suitably selected weighting parameter of a reformu-
lated problem, the proximal gradient method converges to a local minimum of the original
problem. We also propose a heuristic that updates the weighting parameter in each iteration
of the algorithm. The performance of our method is compared to other methods proposed in
the literature for solving such problems. Our method consistently outperforms all the other
solution methods considered in this paper by more than a factor of 2.
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