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Abstract
Maritime transportation plays a crucial role in the international econ-

omy. Port container terminals around the world compete to attract more
traffic and are forced to offer better quality of service. This entails reduc-
ing operating costs and vessel service times. In doing so, one of the most
important problems they face is the Berth Allocation and quay Crane As-
signment Problem (BACAP). This problem consists of assigning a number
of cranes and a berthing time and position to each calling vessel, aiming to
minimize the total cost. An extension of this problem, known as the BA-
CAP Specific (BACASP), also involves determining which specific cranes
are to serve each vessel. In this paper, we address the variant of both
BACAP and BACASP consisting of a continuous quay, with dynamic
arrivals and time-invariant crane-to-vessel assignments. We propose a
metaheuristic approach based on a Biased Random-key Genetic Algo-
rithm with memetic characteristics and several Local Search procedures.
The performance of this method, in terms of both time and quality of the
solutions obtained, was tested in several computational experiments. The
results show that our approach is able to find optimal solutions for some
instances of up to 40 vessels and good solutions for instances of up to 100
vessels.

Keywords: Container terminal, Berth Allocation, Quay Crane assignment,
Metaheuristic, Genetic Algorithm, Local Search.

1 Introduction

Since the 1960s, the traffic of goods by means of standardized containers has
become widespread and specialized facilities and cargo ships have been devel-
oped to manage them efficiently. According to UNCTAD (2016), more than 175
million TEUs (Twenty-foot Equivalent Units) were moved in 2015, while in the
decade 2006–2015 the number of container movements increased by more than
55%. This evidences the high impact that containerized maritime commerce
continues to attain worldwide.
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Container terminals are the special docks and facilities dedicated to the man-
agement of container traffic at seaports. Due to the pressures of competition
in international trade, they attempt to improve their processes to reduce costs,
enhance their capacity, and offer better quality of service to their clients. There-
fore, they are interested in optimizing the allocation of the berth positions to
calling vessels, the use of the quay cranes, the container stacking procedures,
and other operational processes. The efficient management of such operations is
the key to reducing costs, avoiding contractual penalties, and decreasing waiting
and processing times of vessels.

The main areas in a container terminal are the seaside, the yard, and the
landside. The first is the quay, where the vessels are moored and the quay
cranes load and unload the containers. The yard is the place where containers
are stacked up temporarily, while the landside is the interchange area where
trucks and trains carry containers to and from the hinterland. Several overviews
of container terminal operations have been presented by Stahlbock and Voß
(2008), Rashidi and Tsang (2013), and Li et al. (2015).

One of the most important problems at the seaside is the Berth Allocation
Problem (BAP), the problem of determining a minimum-cost plan for the as-
signment of berthing times and positions to calling vessels. The cost includes
the waiting time before berthing, the delay in the departure date, and the devia-
tion from the desired position at the quay. Several versions of this problem have
been proposed depending on the type of berth considered (discrete, continuous,
or hybrid), the arrival time of vessels (dynamic, static), their processing times
(fixed or depending on the number of cranes), the different costs involved, and
other factors. The most up-to-date reviews of the problems and approaches
related to seaside operations were presented by Bierwirth and Meisel (2010,
2015).

The standard BAP considers the processing times to be given in advance
as an estimate, thus assuming a predetermined number of cranes assigned to
each vessel. However, the number of cranes is a variable that influences the
berth allocation, and therefore the optimization process. For this reason, many
researchers now address the integrated problem called Berth Allocation and quay
Crane Assignment Problem (BACAP). In this problem, as well as assigning a
berthing time and position, a number of cranes also has to be assigned to each
vessel, thereby determining its processing time.

The crane assignment defines two variants of the problem. The number of
cranes assigned to each vessel can be time-invariant, i.e., fixed during the entire
processing of the vessel, or variable-in-time, allowing the number of cranes to
vary in each time period during its processing. The time-invariant version is eas-
ier to handle for human operators and does not require minimizing the number
of crane movements. By contrast, the variable-in-time version can achieve bet-
ter crane utilization at the expense of putting great pressure on dock operations
and making the plan more complicated and sensitive to unexpected incidents.

A further approximation to reality is attained by determining not only the
number of cranes, but also which specific cranes have to serve each vessel. This
problem is known as the BACAP Specific or BACASP and is attracting in-
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creasing attention in the field. As we will see in the literature review, one of
the limitations in time-invariant BACAP and BACASP research is the size of
the instances that proposed methods are able to address when considering a
continuous quay and dynamic vessel arrival. This is mostly due to the lack of
metaheuristic approaches tailored to this version of the problem and the com-
mon limitations of mathematical programming approaches, which up to now
have not been able to solve instances with more than 50 vessels within a plan-
ning horizon of one week in reasonable time (Correcher et al., 2017). Hence, the
main motivation of this study is to propose a metaheuristic approach capable
of obtaining good solutions regardless of the instance size.

In this paper we address both the time-invariant BACAP and BACASP
with continuous quay, dynamic arrival and, for each vessel, an estimate of its
processing time for each potential number of cranes admitted. We propose a new
Biased Random-Key Genetic Algorithm (BRKGA) with Memetic improvement
and Local Search (LS) to obtain good solutions in short computational time for
instances involving up to 100 vessels in a planning horizon of one week.

The remainder of this paper is organized as follows. In Section 2, the previous
studies on the problem are reviewed, and in Section 3 we describe the BACAP
variant addressed in this paper. In Section 4 we present the Genetic Algorithm,
the constructive algorithm, and the Local Search procedures. The BACASP is
explained as an extension of the BACAP in Section 5, where we also specify the
changes needed to adapt the algorithms to address it. In Section 6 we describe
the computational experiments conducted and discuss the results. Finally, in
Section 7, we draw some conclusions and propose future work.

2 Literature review

In this section we review closely related studies on the continuous BACAP and
BACASP. Comprehensive reviews that address the different versions of these
problems, including discrete and hybrid quay variants, are the aforementioned
papers of Bierwirth and Meisel (2010, 2015).

2.1 Variable-in-time crane assignment

The seminal work on the continuous BACAP was presented by Park and Kim
(2003). They formulated a Mixed Integer Linear Programming model (MILP)
for the problem with variable-in-time crane assignment. Moreover, they pro-
posed a Lagrangean relaxation of the model and used the subgradient method
to obtain near-optimal solutions on randomly generated instances of up to 40
vessels within a planning horizon of one week. They also presented a dynamic
programming algorithm to obtain solutions for the corresponding BACASP. On
the basis of this approach, Zhang et al. (2010) proposed a mixed integer linear
model for a BACASP that takes into account the limited range of movement of
each crane.
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Meisel and Bierwirth (2009) studied a continuous BACAP with variable-in-
time crane assignment and the possibility of speeding up the arrival of each
vessel, incurring a cost proportional to the time advanced. They also consid-
ered decreasing marginal crane productivity as the number of cranes serving a
vessel increases, due to interferences between them. The authors proposed an
MILP and two metaheuristic approaches: a Tabu Search and a Squeaky Wheel
Optimization. They reported good results on previous and newly generated in-
stances of up to 40 vessels within a planning horizon of one week. Elwany et al.
(2013) studied the same problem considering that water depth varies depending
on the position. They extended the model of Meisel and Bierwirth (2009) and
proposed a Simulated Annealing based on a heuristic capable of constructing
feasible solutions from ordered lists of vessels.

More recently, Iris et al. (2015) addressed the same problem in both the
variable-in-time and time-invariant versions. They proposed several novel set
partitioning formulations and some variable reduction techniques. They com-
pared with Meisel and Bierwirth (2009) on the same instances and reported
several improvements on previous results. Raa et al. (2011) and Xiao and Hu
(2014) proposed several MILPs for rolling time horizon schemes, and Hu (2015)
also considered a rolling horizon with the novelty of periodic balancing utiliza-
tion of the quay cranes.

Türkoğullari et al. (2016) proposed both an MILP for the deeply integrated
variable-in-time BACASP and a cutting plane algorithm based on a decom-
position scheme. The results reported show that their method could solve to
optimality instances of up to 60 vessels within a planning horizon of 600 hours.
Han et al. (2015) addressed a variable-in-time BACAP taking into consideration
the ranges of movement of the quay cranes. They proposed an MILP for the
BAP, another for the quay crane assignment problem (QCAP), and a Particle
Swarm Optimization heuristic. A related approach was proposed by Karam
and Eltawil (2016), who developed a functional integration of two independent
models for BAP and QCAP able to obtain good solutions on instances of up to
21 vessels arriving within an horizon of 168 hours.

A further approximation to reality was achieved by Rodriguez-Molins et al.
(2014a), who considered the moving time of cranes along the serving vessel and
along the quay in both the variable-in-time and the time-invariant BACASP.
They proposed a GRASP that was applied on real-life instances of up to 20
vessels. Rodriguez-Molins et al. (2014b) also proposed a multi-objective MILP
and a Multi-Objective Genetic Algorithm with Simulated Annealing to perform
robust scheduling on realistic instances. Likewise, Shang et al. (2016) considered
the setup times of quay cranes, including them in the mathematical formulation.
They proposed a Genetic Algorithm and three MILPs: a basic model, a robust
model capable of facing uncertainties, and a version of the latter with price
constraints. These methods were tested on the instances of Meisel and Bierwirth
(2009), in which they obtained optimal solutions on those involving up to 20
vessels.

Chang et al. (2010) introduced the energy consumption of quay cranes in a
multi-objective MILP and a Parallel Genetic Algorithm tailored to address a
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rolling horizon scheme for the BACASP. They reported good results on instances
of up to 40 vessels within a planning horizon of 72 hours. Hu et al. (2014) also
included fuel consumption and emissions incurred by vessels and quay cranes
in a new multi-objective programming model. Good solutions were obtained on
instances with up to 20 vessels within the same planning horizon. More recently,
He (2016) also considered energy consumption in the BACAP and proposed an
MILP and a Memetic Algorithm capable of obtaining both optimal solutions
on instances with up to 24 vessels and good solutions on those with up to 40
vessels.

Beyond that, Meisel and Bierwirth (2013) integrated the main optimization
problems that appear in the seaside of container terminals (BAP, QCAP and
QCSP: Quay Crane Scheduling Problem) in an iterative framework with three
phases in which several MILPs are solved. It was tested on instances of up to
40 vessels within a planning horizon of one week.

2.2 Time-invariant crane assignment

Blazewicz et al. (2011) addressed for the first time a continuous BACASP with
time-invariant crane assignments by formulating a moldable task scheduling
problem. This approach was tested on instances containing up to 45 vessels
within a time horizon of 100 hours. Yang et al. (2012) proposed a Nested
Loop-based Evolutionary Algorithm for the BACASP and obtained good results
compared with Park and Kim (2003). Le et al. (2012) addressed the BACASP by
proposing a multi-objective MILP model and a Multi-Objective Particle Swarm
Optimization.

A different approach was proposed by Chen et al. (2012), who developed
a combinatorial Bender’s cuts algorithm based on a previous BACASP model.
They were able to obtain good solutions on instances with up to 26 vessels within
a planning horizon of one week. As we have already mentioned, Iris et al. (2015)
also developed a generalized set partitioning formulation for the time-invariant
BACAP, while Rodriguez-Molins et al. (2014a) developed a GRASP for the
time-invariant BACASP.

Türkoğullari et al. (2014) tackled both the BACAP and the BACASP with
time-invariant crane assignment, for which they proposed two MILPs, an algo-
rithm to get a BACASP solution from a BACAP solution, and a cutting plane
algorithm. The authors reported that their model for the BACAP and the cut-
ting plane algorithm for the BACASP obtained optimal solutions on instances
of up to 60 vessels within a planning horizon of 600 hours. Along this line, we
have also addressed these problems in a recent work by developing new MILPs
that are capable of attaining optimal solutions on instances of up to 50 vessels
within a planning horizon of one week (Correcher et al., 2017).

After reviewing the most recent works on the continuous BACAP and BA-
CASP, we can conclude that the time-invariant version has received less atten-
tion than the variable-in-time one and that the largest instances addressed in
the literature consist of around 40-50 vessels within a one-week planning hori-
zon. Moreover, only a few of the methods proposed are able to produce good
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solutions for instances of this size. This contrasts with the actual traffic in the
largest container terminals, which nowadays are required to deal with more than
50 vessels in a week. Therefore, we consider it interesting to address this issue
by proposing a metaheuristic approach not restricted by the size of the problem.

In the following section, we describe the time-invariant BACAP addressed
in this study, which is the same problem studied by Türkoğullari et al. (2014)
and Correcher et al. (2017).

3 Description of the BACAP

The Berth Allocation and quay Crane Assignment Problem (BACAP) is the
optimization problem of assigning berth position, number of cranes, and moor-
ing time to calling vessels, minimizing the total assignment cost. We deal with
the version of the problem in which there is only one continuous quay and the
number of quay cranes serving a vessel, once assigned, is kept fixed during its
processing. The arrival time of each vessel is known in advance, as well as the
maximum and minimum number of cranes that can be assigned to the vessel
and an estimate of its processing time for each number of cranes.

A berth plan can be rendered as a space-time layout (see Figure 1) where the
vertical axis represents the mooring positions on the quay and the horizontal axis
represents time. Each vessel is rendered as a rectangle whose base represents
its processing time and the height its length. Vessels can be moored along the
quay, while quay cranes can move along the quay to serve the vessels provided
that they do not cross each other. For each vessel, we consider three different
costs: the cost of waiting before berthing, the cost of delay after the desired
departure time, and the cost of deviating from the desired position on the quay.

v1

(2)

v5

(3)

v2

(3)

v4

(2)

v3

(2)

berthing time departure time

position

processing time

length

Quay
(m)

Time (h)

100

200

300

400

2 4 6 8 10

Figure 1: A solution with 5 vessels and a quay 400 m long with 5 cranes. The
numbers in parentheses are the quantity of cranes assigned to each vessel
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3.1 Parameters

The following parameters are assumed to be given:

• Set of time periods: T = {1, 2, . . . ,H, . . .}, H being the planning horizon

• Length of the quay: L

• Number of quay cranes: Q

• Set of calling vessels: V ; where N = |V | is the number of vessels

For each vessel i, we know:

– length: li

– expected arrival time: ai

– desired departure time: si

– minimum and maximum number of quay cranes that can be assigned
to the vessel: qmini , qmaxi

– estimated processing time considering q cranes: uqi

– desired position on the quay: di

– cost per waiting time period for berthing: Cwi

– cost per delay time period: Cdi

– cost per unit length away from the desired position on the quay: Cpi

– cost per period of berthing time exceeding the time horizon: Chi

The desired position on the quay is usually the position closest to the location
in the yard where the containers to be loaded onto/unloaded from the vessel
are placed. Therefore, the deviation from the desired position is the distance
between that position and the assigned berthing position. The waiting time is
the difference between its berthing time and its expected arrival time, while the
delay is the difference between the actual and desired departure times, if it is
greater than zero.

The planning time horizon H is given in advance, but for instances with
many vessels or with vessels arriving at the end of the planning interval, there
may not be feasible solutions in which all the vessels are moored within it. For
this reason, we also admit solutions in which one or more vessels are berthed
beyond the time horizon at the expense of incurring a special cost. This cost
for each vessel is proportional to the difference between its berthing time and
the time horizon, if it is greater than zero. Thus, solutions with all the vessels
moored within the time horizon are favoured.

7



3.2 Assumptions and constraints

The assumptions and constraints of the problem are as follows:

• Time

– The planning horizon is divided into multiple equal time segments.

– Vessels are to be moored within the planning horizon.

• Quay

– Each position on the quay can accommodate one vessel at a time.

• Vessels

– When a vessel is moored, the berthing position is kept fixed.

– Once started, the handling of a vessel cannot be interrupted.

– The handling time of each vessel is considered to be independent of
its berthing position. This assumption is reasonable if the quay has
enough machinery and workers for container transportation between
the yard and the quay at any moment. Hence, the cranes serving each
vessel do not need to wait for vehicles. The increased transportation
cost produced if the position of the vessel deviates from its desired
position is included in the objective function.

– The handling time of each vessel depends on the number of cranes
assigned to it. No specific relation between them is assumed, so it
can be either linear or non-linear.

– The time for docking and undocking maneuvers is considered to be
included in the vessel handling time.

– Vessels may have different relative importance. Therefore, cost coef-
ficients are specific to each vessel.

– The inter-ship clearance is included in the vessel length. In general,
for vessels longer than 130 m, this clearance corresponds to 10% of
its length. For small vessels, the minimum clearance is 10 m.

• Cranes

– The number of cranes available at the quay is fixed and all the cranes
have the same characteristics.

– All quay cranes can move along the whole length of the quay, but
they cannot cross each other.

– The time spent by cranes when moving along the quay is considered
negligible compared to the handling time of vessels.

– Each quay crane can be assigned to one vessel at most in each time
period.
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– The number of quay cranes assigned to a vessel does not change
during its stay at the quay.

– There is a minimum and a maximum number of cranes that can be
assigned to a vessel.

3.3 Variables and objective function

For each vessel i, the decision variables are: the berthing time, ti, the berthing
position at the quay, pi, and the number of cranes assigned, ri. Since we intend
to minimize the overall cost, the objective function is the minimization of the
waiting cost, delay cost, deviation cost, and exceeding horizon cost incurred by
the terminal for each vessel i:

Min
∑
i∈V

(Cwi (ti− ai) +Cdi (ti + urii − si− 1)+ +Cpi |pi− di|+Chi (ti−H)+) (1)

Note that (expression)+ is to be interpreted as max(expression, 0).
These parameters and constraints, and this objective function define the

BACAP that is solved in the next section by means of a Biased Random-keys
Genetic Algorithm.

4 A Biased Random-Key Genetic Algorithm for
BACAP

Previous studies have shown that even simple versions of the BAP are NP-hard
(Lim, 1998), and therefore the BACAP is also NP-hard. As our objective is to
obtain good solutions in short computing times for all types of instances and
to have a flexible framework at our disposal, the best option is to make use
of metaheuristic strategies. Evolutionary Computation algorithms, especially
Genetic Algorithms, have proved to be a good approach to tackle similar Berth
Allocations problems (Bierwirth and Meisel, 2015, Nishimura et al., 2001, Lalla-
Ruiz et al., 2014) and closely related packing problems (Gonçalves and Resende,
2013, Hopper and Turton, 2001, Iori et al., 2003). Along these lines, we propose
a Biased Random-Key Genetic Algorithm with some memetic characteristics,
a constructive algorithm based on ordered lists of vessels, and several Local
Search procedures.

The Genetic Algorithm can be extended to consider multiple populations,
thus allowing parallel evolutions with sporadic migrations of individuals between
them. The scheme of the BRKGA applied in this work is inspired by Gonçalves
and Resende (2012).

4.1 The Genetic Algorithm

We consider a number Npop of populations with Nindiv = MultPop ∗ N indi-
viduals each. That is, the number of individuals in a population depends on
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the number of vessels N and on a constant MultPop that must be specified.
Each individual has one chromosome consisting of two lists: a list of keys-to-
vessels and a list of numbers of cranes-to-vessels. Each position in these lists
corresponds, respectively, to the random key and the number of cranes assigned
to the vessel with that index. The key is a number between 0 and 1, while the
number of cranes must be between the minimum and the maximum number of
cranes allowed for that vessel (Figure 2). The effective list of vessels is deter-
mined by decoding the list of random keys-to-vessels, which is done by sorting
the keys in non-decreasing order and then taking their indexes (Figure 3).

List of keys-to-vessels

Random key for
vessel 1

0.23 0.74 0.65 0.01 0.98

List of cranes-to-vessels

Number of cranes
for vessel 1

3 3 2 3 4

Figure 2: Chromosome of an individual for a BACAP instance with 5 vessels.

List of keys-to-vessels

List of vessels

0.23 0.74 0.65 0.01 0.98

4 1 3 2 5

Figure 3: Decoding a list of keys-to-vessels to a list of vessels.

The cranes-to-vessels list and the sequence of vessels obtained by sorting
the keys represent a solution as long as they are considered together with the
constructive algorithm (Section 4.2). The constructive algorithm uses this in-
formation to generate a feasible solution by adding the vessels one by one to the
berth plan. After the construction, a refinement procedure is applied, aiming
at improving the solution by reducing the idle time of the cranes to a minimum
(Section 4.3). It is thereby possible to obtain a new list of cranes which, used
together with the list of vessels, can produce a better solution. If this is the case,
the chromosome is updated with the new list and can influence the offspring.
This inheritance of acquired characteristics turns the Genetic Algorithm into a
kind of Memetic Algorithm.

The fitness of an individual is the negative of its objective function value,
since it is a minimization problem, and the genetic operators are: elite crossover,
immigration and migration. The crossover works between two parents, consid-
ering a bias CrossBias ∈ [0, 1] in favour of the chromosome coming from the
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first parent, which is taken from the elite (Figure 4). The same process is ap-
plied independently over the list of cranes-to-vessels. Besides the crossover, at
each generation we add new randomly generated individuals as a kind of im-
migration. Moreover, a migration is performed every GensMig generations,
adding the best individual among all the populations into the other populations
in which it is not present and removing the worst individual to keep the same
population size.

Lists of keys-to-vessels

Parent 1 (elite)

Parent 2

Descendant

Random numbers

0.23 0.74 0.65 0.01 0.98

0.82 0.71 0.29 0.45 0.03

0.23 0.71 0.65 0.01 0.03

0.12 0.89 0.67 0.24 0.77

Lists of cranes-to-vessels

3 3 2 3 4

2 3 3 2 3

3 3 2 2 3

0.32 0.51 0.02 0.73 0.86

Figure 4: Example of a crossover. A gene from the first parent passes to the
descendant if the random number is less than CrossBias = 0.7.

The initial population consists of individuals whose key-to-vessel lists are
generated according to several priority rules, which are defined using elements of
the problem: arrival time (ai), length (li), desired departure time (si), maximum

and minimum processing times (u
qmax
i
i , u

qmin
i
i ), maximum and minimum area

(liu
qmax
i
i , liu

qmin
i
i ), and maximum and minimum slack (si−(ai+u

qmax
i
i ), si−(ai+

u
qmin
i
i )). These rules sort the vessels in both non-increasing and non-decreasing

order, one of them to produce good solutions and the other to produce diverse
solutions. This provides the evolutionary process with information that may
help the search, as reported in previous works on Genetic Algorithms applied to
similar problems (Frojan et al., 2015). The crane lists are generated by assigning
to each vessel a random number of cranes from among its allowed values. This
ensures that the descendants’ crane lists will be valid too. As the population
size can be greater than the number of priority rules, the remaining individuals
in each population are generated randomly, thereby introducing more diversity.

The process applied to each population to generate a new generation is as
follows. First, the constructive algorithm is applied to each individual in the
population to obtain its corresponding feasible solution. Then, individuals are
sorted according to their fitness and the best E% individuals are marked as the
elite. The following generation will be composed of this elite, I% new individuals
randomly generated as immigration, and 100%−E%− I% individuals resulting
from the crossover between pairs of individuals randomly chosen, the first one
being from the elite and the other from the entire population. The parent
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from the elite is the one favoured by the bias. Migration is performed only
every GensMig generations. This process is repeated until a stopping criterion
is met, a time limit of TimeLimitGen seconds. Afterwards, a Local Search
procedure is applied to every individual in each population until a stopping
criterion is met, with the aim of refining the best solutions obtained by the
Genetic Algorithm (Section 4.4).

4.2 Constructive algorithm

An individual represents a solution only if it is considered together with a con-
structive algorithm. This algorithm builds a feasible berth plan from the list
of cranes-to-vessels and the list of vessels resulting from sorting the keys. We
propose a fast constructive algorithm which works by assigning position, time,
and number of cranes to vessels according to the order of the vessels in the list,
taking them one by one. It is based on the Exploratory Constructive Algorithm
(ECA) that we presented in a previous study (Frojan et al., 2015), with the
novelty that now it also assigns a number of cranes to each vessel and checks
each time that the number of cranes assigned to vessels does not exceed Q.

First we fix the number of cranes corresponding to each vessel according to
the cranes-to-vessels list. Therefore, the processing time of each vessel is known
and we can assign a berthing time and position to each vessel, taking them
sequentially from the ordered list of vessels. The objective is to achieve the best
allocation for each vessel in a berth plan in which the previous vessels in the list
have already been assigned. To do this, each time we extract a vessel from the
list we define a set K of candidate assignments ordered by non-decreasing cost.
The set K is filled and explored throughout the process, always extracting the
least-cost candidate. The first candidate assignment included in K is the one
consisting of the desired position and the arrival time of the vessel.

Once the least-cost candidate has been extracted from K, if the vessel cannot
be assigned to that position and time because it would not have enough cranes
throughout its processing, a new candidate consisting of the same position and
the earliest berthing time in which there are enough cranes is included in K
(Figure 5(a)). If the vessel at that time and position would overlap with one or
more existing vessels in the space-time layout, the best candidate assignments
in their contour are included in K (Figure 5(b)). Then, the next least-cost can-
didate in K is extracted and the process is repeated until a feasible assignment
is found (Figure 5(c)). This is done for all the vessels in the list until the berth
plan is completed.
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(a) We try to assign vessel i at (ai, di).
Vessel i requires 2 cranes and the quay
has only 3 cranes, so we look for a new
assignment with enough cranes (empty
circle).

i

v1

(3)

v2

(1)

ai
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L
Quay

Time

100

200

300

400

1 2 3 4 5

(b) In the new assignment, vessel i
would overlap with v2, so we propose
new candidates in the contour of v2
(empty circles).

i
(2)

v1

(3)

v2

(1)

ai

di

L
Quay

Time

100

200

300

400

1 2 3 4 5

(c) Vessel i is assigned to the location
of the least-cost feasible candidate.

Figure 5: Process of the Exploratory Constructive Algorithm for the BACAP.

4.3 Memetic improvement

Once the constructive algorithm has obtained a solution, we examine it looking
for idle cranes, because it may be possible that the crane-to-vessel assignments
do not require all Q cranes in each period. We go through the list of vessels,
ordered by non-decreasing departure time, and if a crane is idle throughout the
processing of a vessel, it is assigned to it. The reduction in processing time thus
achieved can reduce or even eliminate the delay incurred by the vessel, and so
its corresponding cost.

It is possible to attain a further improvement if we now feedback the con-
structive algorithm with the new list of cranes and the same list of vessels. The
reduction in processing times previously obtained may now allow other vessels
to be moored earlier. Therefore, the constructive algorithm is applied again
and, if a better solution is obtained, the chromosome is updated with the re-
fined list of cranes. This process is repeated until no further improvement is
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achieved. The memetic scheme thus performed is known in the literature as
the Lamarckian Memetic Algorithm, since the local improvements are reflected
in the chromosome and can therefore be inherited by the offspring (Le et al.,
2009).

4.4 Local Search procedures

The Genetic Algorithm does not explore the entire solution space, but rather a
subspace defined by the way in which the constructive algorithm generates fea-
sible solutions following a list of vessels sequentially. In order to reach solutions
that cannot be reached when allocating all the vessels one by one, we propose
three different local search procedures based on directly moving vessels in an
existing berth plan: two heuristics and one matheuristic. These LS procedures
are used only as a final attempt to refine the best solutions attained by the
BRKGA, so they are applied to all the individuals of each population as soon as
the genetic process has ended. These individuals are sorted by non-increasing
value, and starting from the best one, the procedure is applied until the stopping
criterion, a time limit of TimeLimitLS seconds, is met.

4.4.1 Simple ruin-and-recreate heuristic

The first heuristic is based on the ruin-and-recreate strategy, so we remove some
vessels from the solution and then we use the constructive algorithm to reassign
them.

This procedure first generates a list of vessels ordered by non-increasing
score, which is, for each vessel, the sum of its cost and the cost of the vessels be-
longing to its cluster, which is determined by a neighbourhood function applied
to the vessel. Then, a vessel is selected from the list with a probability SelProb,
starting from the first element. The selected vessel and the vessels in its cluster
are removed from the solution and reallocated in non-increasing cost order by
means of the constructive algorithm, using the list of crane assignments of the
original solution together with the refinement seen in Section 4.3, but without
performing the feedback phase (Figure 6).

Additional solutions are generated by changing the number of cranes as-
signed to those vessels. We perform a Path Relinking on the list of cranes,
keeping the list of vessels to be reassigned unchanged. The Path Relinking
technique generates intermediate solutions in the trajectory between a initiat-
ing solution and a guiding solution by systematically changing elements of the
initiating solution, step by step, until the guiding solution is reached. The initi-
ating list is the original list of cranes, while the guiding list is selected between
two alternatives: the list with the maximum number of cranes allowed for each
of those vessels and the list with the minimum number of cranes. We consider
that these candidates are ideal as guiding lists because they lead to extreme
solutions. The constructive algorithm builds the solution corresponding to each
list and the list leading to the best solution is selected.
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Once a guiding solution has been chosen, the list of cranes at each step results
from changing one crane-to-vessel assignment, replacing it with the number of
cranes in the guiding list. Hence, a new solution is obtained for each new list of
cranes. We generate a number Paths of different paths between the initiating
and the guiding lists. For the first path, the sequence of indexes that must be
changed corresponds to the order in the list of vessels, while for the rest it is
determined randomly.

We store the best solution obtained, and if it is not better than the original
one, the whole process is repeated with the next vessel in the list of vessels
ordered by score. The number of tries is limited by a parameter MaxTries.
Otherwise, if the solution is better, the whole process is repeated on the new
best solution until no further improvement is achieved or until the stopping
criterion is met.

We defined the following neighbourhood functions, which lead to different
variants of the procedure:

• Overlapping vessels. Given a vessel v, this function returns the vessels
that would overlap with v if it were moved to its ideal location, that is,
the one consisting of its desired position on the quay and its expected
arrival time.

• Adjacent vessels. Given a vessel v, it returns the vessels adjacent to v: the
vessels whose rectangles are touching the rectangle representing v in the
graphic representation of the solution.

• Connected component of vessel. Given a vessel v, it returns the vessels
adjacent to v and, recursively, all the vessels that are adjacent to them.
In other words: if we consider the vessels as the vertices of a graph, con-
nected by edges representing adjacency relations, the function returns the
connected component to which v belongs.
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(a) Vessel i is removed jointly with its adja-
cent vessel v1. The quay has 5 cranes.
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(b) Vessels i and v1 are reassigned and sev-
eral configurations of cranes are tested. This
is a possible output.

Figure 6: Simple ruin-and-recreate Local Search using the adjacency neighbour-
hood function.

4.4.2 Pushing ruin-and-recreate heuristic

This heuristic also removes a cluster of vessels, but before reassigning them,
the ideal berthing time and position of a vessel is modified, so the constructive
algorithm will try to put it at this new allocation. Looking at the solutions
obtained by the Genetic Algorithm, we noticed a case in which the optimal
solution cannot be reached due to the way in which the constructive algorithm
builds the solutions. When assigning berthing times and positions to the vessels
in a cluster, the first vessel was allocated with no cost, in its ideal assignment, at
the expense of increasing the cost of all the other vessels. The optimal solution
in those cases was reached by moving that vessel to a new position and/or time,
increasing its cost, but allowing the other vessels to be better allocated so that
the overall cost of the cluster was reduced. The best way to achieve this cluster
reassignment would be to apply a mathematical programming model to the
cluster, as we do in Section 4.4.3; however, the model can only be applied to
small clusters. An alternative is to push the first vessel to a new location and
reallocate the remaining vessels using the constructive algorithm. This requires
determining heuristically the extent of the movement applied to that vessel, so
we test different values calculated by considering the other vessels’ deviations
from their ideal assignments. In particular, we calculate maximum, minimum
and average deviations in both time and position, so that we can try small and
large displacements from the current location of the vessel. Figures 7 and 8
illustrate this process. In Figure 7 the target vessel is moved down slightly and
the relative positions of the vessels in the cluster are not changed. In Figure 8
the target vessel is moved to a later time, allowing other vessels to be moored
before it.
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(a) The target vessel is in its ideal assign-
ment. Vessels v1 and v2 are assigned to
their arrival time, but deviate from their
desired positions.
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(b) The movement (0,minPosDev) is ap-
plied to target. The other vessels are re-
assigned in order of non-increasing cost.
Thus the overall cost is reduced.

Figure 7: Pushing ruin-and-recreate Local Search with the clustering neighbour-
hood function. Example of a position movement applied to the target vessel.
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(a) The target vessel is in its ideal assign-
ment. Vessels v1 and v2 are assigned to
their desired positions on the quay, but
deviate from their arrival time.
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(b) The movement (maxTimeDev, 0) is
applied to target. The other vessels are
reassigned in order of non-increasing cost.
Thus the overall cost is reduced.

Figure 8: Pushing ruin-and-recreate Local Search with the clustering neighbour-
hood function. Example of a time movement applied to the target vessel.

4.4.3 Matheuristic

An alternative method for improving the cluster reallocation is to use a math-
ematical programming model. In this case, we use a modified version of the
mixed integer linear model that we developed for this problem (Correcher et al.,
2017), which is summarized in Appendix A.

The initial steps of the procedure are similar to those of the previous one,
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but a cluster is selected only if its size is lower than or equal to a parameter
MaxClusterSize. The cluster is completely removed and the model is used to
reallocate the vessels in the cluster. We generate the model for the problem by
inserting additional constraints to keep the values of berthing time and position
variables fixed for the vessels not in the cluster. The only variables that the
solver can change are those corresponding to the vessels in the cluster, so the
size of the problem to be solved depends on the cluster size. This makes the
method very useful for small clusters, given that a model with few vessels can be
rapidly solved to optimality, as reported in the above-mentioned paper. Since
vessels are not able to berth after the time horizon in the model, we construct it
considering a planning horizon equal to the maximum of the original planning
horizon and the maximum berthing time among the vessels in the solution:
H ′ = max{H,maxi∈V (ti)}. However, the original H is used to calculate the
cost of exceeding the horizon. In order to reduce the search time, we also
provide the model with the upper bound value of the current solution.

5 Extending the algorithms to address the BA-
CASP

The Berth Allocation and Specific Quay Crane Assignment Problem (BACASP)
is a BACAP in which the set of specific cranes that serve each vessel also has
to be determined. This problem is important in the case of the time-invariant
BACAP, given that a solution for this problem can be infeasible for the time-
invariant BACASP. The difficulties arise when we face situations like the one
depicted in Figure 9, where we consider 5 cranes numbered from 1 to 5 from the
origin of the quay. It is impossible to assign the number of cranes determined by
the BACAP solution to vessel v3 without changing the specific cranes assigned
to vessel v5 during its processing. Alternatively, if we assigned cranes 4 and 5
to v3 and cranes 2 and 3 to v5, we would not be able to assign all the required
cranes to v1.
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(a) BACAP solution for a terminal with 5
quay cranes. The number of cranes assigned
is shown in parentheses.
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(b) Attempting to generate a BACASP solu-
tion from the BACAP solution. The set of
cranes assigned to each vessel is shown. It is
impossible to assign cranes to v3, as cranes
1–3 cannot cross working cranes 4 and 5.

Figure 9: A BACAP solution not feasible for the BACASP.

However, under certain conditions it is possible to obtain the optimal so-
lution of the BACASP from the optimal solution of the corresponding BA-
CAP in polynomial time. Türkoğullari et al. (2014) defined a vessel sequence
v1, v2, . . . , vn in a given feasible solution of BACAP to be complete if v1 is the
vessel closest to the beginning of the quay, vn is the closest to the end of the
quay, vi and vi+1 are two consecutive vessels with vi closer to the beginning of
the quay, and each pair of consecutive vessels in the sequence is concurrent dur-
ing at least one time period. A complete sequence is said to be proper when the
sum of the number of cranes assigned to the vessels in this sequence is less than
or equal to the number of cranes at the quay. Otherwise, it is called an improper
complete sequence. For example, in Figure 9(b) vessels v1, v5, and v3 form a
improper complete sequence. Using these definitions, Türkoğullari et al. (2014)
proved that, given an optimal solution X∗ of the BACAP, an optimal solution
of the BACASP can be obtained from it if and only if every complete sequence
of vessels extracted from X∗ is proper. They also provided a polynomial-time
algorithm which is useful when the condition is satisfied, whereas for cases where
it is not, they proposed a cutting plane algorithm based on their BACAP model.

We use these results to adapt our algorithms for the BACASP case. This
is done by changing the constructive algorithm so that it always generates so-
lutions not containing improper complete sequences. Thus, the proposed Local
Search procedures based on the constructive algorithm do not need additional
adjustments. By contrast, the matheuristic Local Search now applies the cut-
ting plane algorithm based on our BACAP model (Correcher et al., 2017). The
BACAP solutions thus obtained are easily transformed into BACASP solutions
by applying the polynomial-time algorithm (Türkoğullari et al., 2014).

The constructive algorithm is the same as that proposed in Section 4.2 for
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the BACAP, the only difference being that it now has to prevent vessels being
assigned to locations in which they would generate improper complete sequences.
Thus, when trying to assign berthing position and time to a vessel i, after
checking that the candidate assignment satisfies the number of cranes required
and does not overlap with any other vessel, we also check whether it creates
one or more improper complete sequences. If so, new minimum-cost alternative
candidate assignments that break all the improper complete sequences have to
be added. To prevent falling into cycles of repeated candidates, we include a
set of already visited candidates. Figure 10 illustrates this process for the case
in which vessel i would create an improper complete sequence when assigned to
its ideal location (ai, di). The constructive algorithm continues until each vessel
is assigned to a position and a time in which all constraints are satisfied.

v1
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3 cranes
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2 cranes
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LQuay
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Figure 10: Example of applying the BACASP constructive algorithm to a quay
with 5 cranes. Vessel i generates an improper complete sequence (v1, i, v2) in
its ideal assignment. Alternative assignments c1 . . . c4 are considered in order to
break the sequence. Note that candidate c1 is immediately discarded because
the time is lower than the arrival time ai.

6 Computational experiments

We conducted several computational experiments to evaluate the quality of
our approach. All of them were run on an Intel Core i7 2600 at 3.4 GHz
with 31.4 GiB of RAM. We used C++11 as the programming language and
the OpenMP parallel programming library. We evaluated as many individu-
als as possible in parallel threads, both in the Genetic Algorithm and in the
Local Search procedures. To solve the mathematical programming model, we
used CPLEX 12.6, limiting the size of the search tree to 30 GiB. The statistical
analysis was performed using the programming language R 3.3 and package ez
4.4.
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Several sets of instances were generated according to different criteria used
in previous papers. The first set of instances is inspired by the criteria applied
by Meisel and Bierwirth (2009). Henceforth, it will be referred to as InstMB.
It consists of 90 instances: 10 for each number of vessels considered, from 20 to
100. The time unit is 1 hour and the space unit is 10 meters. The quay is 1000
meters long and is equipped with 10 cranes. There are three different kinds of
vessels: Feeder, Medium and Jumbo. For each instance, 60%, 30% and 10%
of the vessels correspond to these classes respectively. The arrival time of the
vessels is uniformly distributed in [0, 168], and the time horizon is 210 hours in
instances of up to 70 vessels and 252 hours in those with 80–100 vessels. The
lengths, workloads, and min/max number of cranes of the vessels are computed
according to Table 1, while the desired position of each vessel i is generated
from U [1, L + 1 − li], rounding up to the nearest integer. For each vessel, its
processing time for a given number of cranes assigned to it results from dividing
its workload in crane-hours by the number of cranes, rounding up to the nearest

integer. The desired departure time of each vessel i is 1.5 · (ai + u
qmax
i
i ). The

costs are the same for all the vessels, so none of them is privileged over the
others: Cwi = 1000, Cdi = 2000, Cpi = 200 and Chi = 5000.

The second set was generated applying the criteria of Park and Kim (2003).
From now on, it will be referred to as InstPK. The quay is 1200 meters long
and the planning horizon is 300 hours discretized in units of 10 m and 1 hour
respectively. There are 11 quay cranes available and vessels can only use from 2
to 5 cranes. The set consists of 50 randomly generated instances, 10 instances for
each number of vessels considered: N ∈ {20, 25, 30, 35, 40}. The data relating to
each vessel are determined by uniform distributions as follows: U [1, 170] for the
arrival time, U [10, 48] for the number of crane-hours required, U [15, 35] for the
length, and U [1, 120] for the desired position on the quay. The processing time of
each vessel results from dividing the number of single-crane-hours by the number
of cranes, rounding up to the nearest integer. The desired departure time, which
is not specified in their paper, is determined by applying the criterion of Meisel

and Bierwirth (2009): si = 1.5 · (ai +u
qmax
i
i ). Finally, the costs are the same for

all the vessels: Cwi = 1000, Cdi = 2000, Cpi = 200 and Chi = 5000.

Table 1: Specifications for the different classes of vessels in set InstMB.

Class li (m) Workload (single-crane-hours) qmin
i qmax

i

Feeder U [8, 21] U [5, 15] 1 2
Medium U [21, 30] U [15, 50] 2 4
Jumbo U [30, 40] U [50, 65] 4 6

We conducted four different experiments on BACAP algorithms and after-
wards they were repeated for their BACASP versions. In the first one we looked
for a good configuration of the parameters of the Genetic Algorithm without
performing Local Search (Section 6.1). In the second, first we tried to determine
a good parameter configuration for each LS algorithm and then we compared
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them to select the best one (Section 6.2). In the third experiment, we eval-
uated the performance of the entire algorithm comparing its results with the
best solutions achieved by the MILP (Section 6.3). Finally, the forth experi-
ment compared the proposed Genetic Algorithm with an implementation of the
Discrete Differential Evolution metaheuristic (Section 6.4).

In order to perform a correct adjustment of the algorithms we generated a
training set of instances, called InstAdjust, applying the same criteria as in
the set InstMB, since they are, to our knowledge, more realistic than those of
InstPK. The set IntAdjust consists of 45 instances in total: 5 for each number
of vessels considered, from 20 to 100.

6.1 Parameter adjustment of the Genetic Algorithm

The objective of the first experiment was to determine the best values of the
parameters of the Genetic Algorithm. The parameters E = 15%, I = 15%, and
CrossBias = 0.7 were fixed, since we considered that these were reasonable
values that produced good results, according to previous studies (Gonçalves
and Resende, 2012) and our preliminary experiments. In these preliminary
experiments we also noticed that the most influential parameters seemed to
be: MultPop, Npop, and GensMig. Hence we decided to test different val-
ues for them: MultPop ∈ {1, 10, 20}, Npop ∈ {1, 10, 20}, and GensMig ∈
{10, 30}. This resulted in a total of 15 combinations. The time limit was set to
TimeLimitGen = N seconds, so that the computation time for each instance
depended on its size.

For each parameter configuration we ran five independent random repeti-
tions of the BRKGA on each instance in InstAdjust. For each repetition we
recorded the value of the best solution achieved and the running time. We
then calculated the deviation percentage (DFB) of the result obtained in each
repetition (value) from the minimum value attained among the repetitions
of all the configurations tested on the same instance (minV alue): DFB =
100 · (value−minV alue)/minV alue.

In order to determine whether the differences in DFB were statistically sig-
nificant, we conducted a repeated measures design, taking the average DFB ob-
tained for each instance from its five repetitions as the dependent variable. Since
we ran each configuration over the same instances, we considered the instances
as the subjects of the analysis, while configuration was considered a within-
subjects fixed factor with 15 levels corresponding to the different configurations
studied. Thus, the 15 DFB means obtained for each instance were considered
different measures on the same subject. Moreover, as the performance of the
algorithm may be different for different problem sizes, we considered the number
of vessels in the instance as a between-subjects fixed factor, with 9 levels (20–
100 vessels). Including these factors allows the statistical analysis to manage
the variability they introduce, thereby increasing its sensitivity. We established
a significance level of α = 0.05 for all the statistical tests. The assumptions
of validity of this analysis (Maxwell and Delaney, 2004) were tested on each
experiment and considered acceptable.
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6.1.1 Adjustment of the BACAP Genetic Algorithm

The ANOVA tested the effect of configuration, the effect of the number of ves-
sels and the interaction between them. All these effects proved to be statis-
tically significant, with p < 0.0001 in all of them. The effect that explained
the largest proportion of the sample DFB variability was the number of ves-
sels. This indicates that regardless of the algorithm configuration applied, the
size of the instance has a strong impact on the performance. Such evidence is
consistent with our expectations, given that heuristics also suffer the effects of
the combinatorial explosion, although they can withstand it better than solvers
implementing mathematical programming models.

Given that we were interested in the configuration effect to determine which
is the best regardless of the size of the instance and within the margins of our
study, we conducted the Holm-Bonferroni multiple comparison tests for this
effect alone, specifying that they were paired samples. we thereby obtained the
groups of configurations within which their average DFB cannot be considered
statistically different. Table 2 shows the average number of generations done and
the mean and the standard deviation of DFB for each configuration, together
with the homogeneous groups. According to the results, configurations with the
highest total number of individuals (N ·MultPop · Npop) show a performance
clearly worse than the rest. Examining the data we observed that in those
configurations, the DFB in instances with more than 50 vessels was higher
than in any other configuration. This is due to the small number of generations
performed. Indeed, the configurations that obtained the best DFB results
completed more than 24 times the number of generations completed by the
worst. Therefore, performing more generations is preferable to increasing the
number of populations and individuals therein. Apart from this, the GensMig
values tested do not seem to make a significant and consistent difference. The
configurations of group B are those with the lowest means, so for the rest
of the study we chose the one with the lowest sample average among them:
MultiPop = 1, Npop = 20, and GensMig = 30.
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Table 2: Results of the BACAP Genetic Algorithm on the set InstAjust.

Configuration Generations DFB (%) Group

MultPop Npop GensMig Mean Mean Std. Dev. A B C

1 1 10 30612.8 7.29 6.60 ×
1 10 10 3177.3 5.18 4.30 ×
1 10 30 3180.4 4.96 4.41 ×
1 20 10 1576.1 4.76 4.17 ×
1 20 30 1585.7 4.44 3.89 ×

10 1 10 3017.0 5.89 6.22 × ×
10 10 10 283.9 5.10 5.32 ×
10 10 30 284.6 5.33 5.82 ×
10 20 10 139.3 8.36 8.48 ×
10 20 30 140.8 8.28 8.45 ×
20 1 10 1420.5 5.77 6.47 × ×
20 10 10 130.7 8.99 8.92 ×
20 10 30 131.8 8.99 8.87 ×
20 20 10 64.4 14.30 13.90 ×
20 20 30 64.7 14.18 13.68 ×

6.1.2 Adjustment of the BACASP Genetic Algorithm

The same experiment was conducted on the BACASP Genetic Algorithm and
the results were studied with the same type of ANOVA. The tests showed statis-
tically significant differences in the average DFB due to the interaction between
number of vessels and configuration, configuration alone, and number of vessels
alone, with p < 0.0001 in all of them. These values are similar to those obtained
with the BACAP version, so the same conclusions can be drawn from them.
In order to assess the differences between the configurations, we applied the
Holm-Bonferroni multiple comparisons again, specifying that they were paired
samples. Table 3 shows the results, in which we can appreciate the same effect of
the total number of individuals on the number of generations completed and the
consequent differences in performance. Compared with the BACAP Genetic Al-
gorithm, this algorithm performs approximately half the number of generations,
which clearly reflects the complexity of the BACASP and the additional time
spent on generating solutions without improper complete sequences. Group B
consists of the best configurations, from which we selected the one with the
lowest sample average for the rest of the study: MultiPop = 10, Npop = 1, and
GensMig = 10.
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Table 3: Results of the BACASP Genetic Algorithm on the set InstAjust.

Configuration Generations DFB (%) Group

MultPop Npop GensMig Mean Mean Std. Dev. A B C D

1 1 10 13768.1 9.56 8.21 ×
1 10 10 1375.6 6.28 4.99 ×
1 10 30 1377.5 6.71 5.51 ×
1 20 10 684.8 5.91 5.02 ×
1 20 30 685.8 6.94 5.79 ×

10 1 10 1511.0 5.16 5.04 ×
10 10 10 141.4 13.38 13.77 ×
10 10 30 141.3 13.71 14.08 ×
10 20 10 68.8 21.59 20.36 ×
10 20 30 68.8 21.70 20.36 ×
20 1 10 694.5 5.42 4.98 ×
20 10 10 63.5 22.40 20.81 ×
20 10 30 63.6 22.70 20.58 ×
20 20 10 30.7 33.72 29.82 ×
20 20 30 30.8 33.58 29.46 ×

6.2 Adjustment of the Local Search procedures

After determining a proper configuration for each Genetic Algorithm, we con-
ducted analogous experiments to adjust the parameters of the local search pro-
cedures. In particular, we evaluated the following algorithms: the simple ruin-
and-recreate heuristic with the overlap neighbourhood function (SimpleOver-
lap), with the adjacency function (SimpleAdjacency), and with the connected
component function (SimpleConnected); the pushing ruin-and-recreate heuristic
with the connected component function (Pushing); and the matheuristic with
the adjacency function (ModelAdjacency) and with the connected component
function (ModelConnected). The pushing heuristic was used only with the con-
nected component function due to its very design, which is tailored to it. As for
the matheuristic, the overlap function was not considered because it performed
worse in preliminary experiments.

We set an overall time limit of one second per vessel in each instance (N),
of which TimeLimitGen = 0.9N and TimeLimitLS = 0.1N seconds. In
preliminary experiments we noticed that all the local search algorithms ex-
cept the matheuristic were able to finish within this time limit considering
MaxTries = N , hence we fixed that value for them. For the other parameters
of the algorithms we tried all the combinations: SelProb ∈ {0.5, 0.75, 1} and
Paths ∈ {30, 45, 60}. For the matheuristic we fixed MaxClusterSize = 15,
as we observed that greater values made it so slow that it could not solve
many models, and we tried all the combinations of SelProb ∈ {0.5, 0.75, 1} and
MaxTries ∈ {1, 5, 10}. This results in a total of 9 different configurations for
each LS procedure.

A single repetition of the experiment consisted of running the Genetic Algo-
rithm on each instance and applying each LS algorithm with each configuration
independently to its result. In this way we could properly compare their per-
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formance, since all of them were applied to the set of individuals resulting from
the same run of the Genetic Algorithm.

6.2.1 Adjustment and comparison of the Local Search procedures
for the BACAP

First we performed six separate ANOVAs, one for each Local Search procedure,
in order to study the effect of the parameters, to identify homogeneous groups,
and finally to determine the best configuration of each algorithm. Then we did
an ANOVA to compare the six LS algorithms and the Holm-Bonferroni multiple
comparisons over the algorithm factor in order to identify groups of algorithms
with non-significantly different averages of DFB.

The results of the ANOVA for the BACAP Local Search algorithms showed
that the interaction of number of vessels and algorithm, algorithm alone, and
number of vessels alone produced statistically significant differences between
the means, with p values less than 0.001 in all of them. Table 4 shows the
best configuration of each algorithm in columns 2-4 and the mean and stan-
dard deviation of DFB as well as the homogeneous groups in the remaining
columns. One group clearly stands out: group C, with the lowest mean val-
ues of DFB, corresponding to the two matheuristics, so we can conclude that
matheuristics clearly outperform the other Local Search procedures. Therefore,
out of all the algorithms we selected ModelAdjacency, as it belongs to the best
homogeneous group and its sample mean is slightly lower than that obtained
by ModelConnected.

Table 4: Results of the multiple comparisons between the LS algorithms for the
BACAP.

Algorithm Configuration DFB (%) Group

MaxTries SelProb Paths Mean Std. Dev. A B C

SimpleOverlap N 1 60 5.36 3.40 ×
SimpleAdjacency N 1 60 4.97 3.32 ×
SimpleConnected N 0.75 30 5.43 3.44 ×
Pushing N 0.5 30 5.21 3.58 × ×
ModelAdjacency 10 1 - 2.88 2.06 ×
ModelConnected 10 1 - 3.35 2.94 ×

The selected Local Search procedure shows a performance better than the
others, but it is important to analyse whether it is better than using the Genetic
Algorithm without any LS algorithm applied at the end. This was analysed
through an ANOVA similar to the previous ones. The ANOVA revealed that
number of vessels, algorithm, and their interaction were all significant effects,
with p values less than 0.0001. Taking into account that the sample mean DFB
obtained by the Genetic Algorithm alone was 5.45% and the one obtained by
ModelAdjacency was 2.88%, we can conclude that there is a clear performance
gain when using this Local Search algorithm.
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6.2.2 Comparison between the BACASP Local Search procedures

The results for the BACASP, applying the same analysis as in the previous
case, are shown in Table 5. In this case, the algorithm ModelAdjacency, the
only element in group C, shows the lowest mean. Therefore, we selected this
algorithm for the final version of the complete algorithm.

Table 5: Results of the multiple comparisons between the LS algorithms for
BACASP.

Algorithm Configuration DFB (%) Group

MaxTries SelProb Paths Mean Std. Dev. A B C

SimpleOverlap N 1 60 6.18 4.81 ×
SimpleAdjacency N 1 60 5.71 4.66 ×
SimpleConnected N 0.75 30 6.36 4.81 ×
Pushing N 0.75 30 6.28 4.85 ×
ModelAdjacency 10 1 - 3.51 3.11 ×
ModelConnected 10 1 - 4.95 4.31 ×

In order to assess whether the Local Search improves significantly on the
results obtained by the Genetic Algorithm alone, we conducted an analogous
ANOVA. The analysis showed that number of vessels, algorithm, and their in-
teraction were all statistically significant, with p values less than 0.0001. The
sample mean DFB of the Genetic Algorithm was 6.39%, and the one for Mod-
elAdjacency was 3.51%, which is significantly lower. Consequently, we conclude
that the selected LS procedure is worth applying after the BRKGA, as it sig-
nificantly improves on its results.

6.3 Evaluation of the Genetic Algorithm with the best
Local Search

The selected configuration of the Genetic Algorithm with LS was evaluated
over the sets of instances InstMB and InstPK. In this section, its results are
compared with those achieved by CPLEX 12.6 solving the integer linear model
reported in Correcher et al. (2017) with a time limit of 3600 seconds. In the next
section, the evaluation is completed comparing the proposed algorithm with an
implementation of the Discrete Differential Evolution algorithm.

We performed five random repetitions of the Genetic Algorithm on each in-
stance in both sets. As we were interested in obtaining results in short times, the
overall time limit was set toN seconds (one second per vessel), dedicating 90% of
the time to the Genetic Algorithm itself and 10% to the Local Search. For each
instance and repetition we recorded the cost of the best solution achieved by the
Genetic Algorithm alone (resultGen) and the one attained after applying the LS
procedure (resultGenLS). Then we obtained the minimum result of the five rep-
etitions (minResultGenLS) and the deviation percentage of this result from the
result of the integer model (resultModel) for the same instance: minDFM =
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(minResultGenLS − resultModel)/resultModel. We also calculated the aver-
age resultGenLS over the five repetitions (avgResultGenLS) and the devia-
tion percentage: avgDFM = (avgResultGenLS − resultModel)/resultModel.
The average resultGen over the five repetitions (avgResultGen) was com-
puted as well to obtain the mean improvement achieved by the LS: ILS =
(avgResultGen − avgResultGenLS)/avgResultGenLS. In order to assess the
performance of this approach with other reasonable time limits, we repeated the
experiment for 3N , keeping the same time proportions for the BRKGA and the
LS. Even for the larger instances of 100 vessels, these results are obtained in 5
minutes, which seems acceptable in practical situations.

6.3.1 Evaluation of the BACAP Genetic Algorithm

The mixed integer linear model was solved to optimality for all the instances
in InstMB with up to 40 vessels and seven of those containing 50 vessels. In
two of the instances with 70 vessels, the model could not even obtain a feasible
solution, and this also occurred in all the instances containing more than 70
vessels. In one instance of 40 vessels in InstPK, optimality was not proven.

The results of the BACAP Genetic Algorithm are summarised in Table 6.
For each instance size, it shows the mean running time of the MILP; the mean
and maximum minDFM and avgDFM , considering only the instances for
which both the MILP and the algorithm obtained feasible solutions; the percent-
age of instances solved to optimality by the BRKGA in at least one repetition
relative to the number solved optimally by the model, and the percentage of
instances solved optimally in all the repetitions; the mean ILS; and the mean
cost. The missing values indicate that it was impossible to compare with the
model because it could not achieve even feasible solutions. In the case of the
number of optimums, it indicates that it is impossible to know whether any
optimum was reached, as the model did not achieved any optimal solution.

It can be observed in column 2 that the integer model works well on small
instances and can be considered a good solution strategy when the number of
vessels does not exceed 60, although with sharply increasing computing times.
In fact, 60 vessels seems to be the limit for the MILP. For instances with 70
vessels, no solution was found for some instances, and when a feasible solution
was found, it was not very good, as compared with the solution obtained by the
Genetic Algorithm. The remaining columns in Table 6 show the performance of
the BRKGA. On very short computing times (1 second per vessel), it is able to
obtain solutions quite close to the optimal solutions, with average distance no
greater than 5% if we consider the best solution obtained in the 5 independent
runs on each instance and no greater than 9% if we consider the average value of
the 5 runs, although columns 4 and 6 indicate that there are some instances for
which the Genetic Algorithm fails to obtain a really good result. In addition,
the contribution of the LS, shown in column 9, is notable, reaching a mean of
2.29% in InstMB and 0.59% in InstPK, complementing the solution space
search done by the Genetic Algorithm in a very efficient way. The last column
shows the average cost of the solutions. The sharply increasing values indicate
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that if a large number of vessels have to be allocated within a planning horizon
of one week, the problem is highly complex and many conflicts between vessels
have to be solved.

Table 6: Results of the BACAP algorithm on InstMB and InstPK with an
overall time limit of one second per vessel (N).

N Mean time minDFM (%) avgDFM (%) Opt. (%) Mean Mean

MILP model (s) Avg. Max. Avg. Max. One All ILS (%) cost

InstMB

20 0.6 0 0 0.22 2.18 100 90 3.65 13224
30 4.5 0.97 9.36 1.93 9.36 80 30 2.63 41812
40 9.5 1.89 4.43 3.47 10.39 30 20 3.29 55632
50 2084.4 5.00 13.23 8.04 17.20 0 0 1.97 157796
60 3602.3 4.36 13.21 7.32 17.58 - - 2.48 304000
70 3601.8 -19.05 10.69 -15.78 15.02 - - 1.90 709388
80 - - - - - - - 2.21 1226960
90 - - - - - - - 1.36 3108228

100 - - - - - - - 1.09 4652508

InstPK

20 1.2 0.57 5.73 1.21 5.73 90 70 0.58 22300
25 1.7 1.01 10.05 1.21 12.06 90 90 0.05 31936
30 4.0 1.09 5.06 2.04 5.56 60 40 0.55 51224
35 53.8 3.19 10.23 4.92 12.92 40 30 0.40 85676
40 595.2 4.99 10.86 8.62 20.84 22 11 1.38 146680

The results obtained considering a time limit of 3N seconds per instance are
shown in Table 7. The Genetic Algorithm and the associated Local Search make
good use of this extended computing time. Minimum, average, and maximum
distances to optimal solutions decrease significantly and the number of optimal
solutions found by the metaheuristic increases. The average cost of instances in
InstMB and InstPK is reduced by 2.29% and 1.12% respectively.
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Table 7: Results of the BACAP algorithm on InstMB and InstPK with an
overall time limit of three seconds per vessel (3N).

N Mean time minDFM (%) avgDFM (%) Opt. (%) Mean Mean

MILP model (s) Avg. Max. Avg. Max. One All ILS (%) cost

InstMB

20 0.6 0 0 0 0 100 100 3.89 13200
30 4.5 0.94 9.36 1.61 9.36 90 40 3.03 41716
40 9.5 1.78 4.35 2.39 6.43 30 30 3.70 55104
50 2084.4 3.45 10.49 6.20 15.21 14 0 2.53 154760
60 3602.3 1.59 6.38 5.85 11.66 - - 2.39 299488
70 3601.8 -21.23 5.42 -17.65 12.11 - - 2.20 703168
80 - - - - - - - 2.39 1196556
90 - - - - - - - 1.44 3049068

100 - - - - - - - 1.22 4526332

InstPK

20 1.2 0.57 5.73 0.94 5.73 90 70 0.83 22252
25 1.7 1.01 10.05 1.14 11.43 90 90 0.04 31912
30 4.0 0.96 5.06 1.92 5.75 70 40 0.53 51176
35 53.8 2.69 9.65 3.64 9.65 50 30 0.48 84584
40 595.2 3.43 8.14 7.14 14.42 22 0 1.47 144140

In summary, these experiments show that the BACAP Genetic Algorithm
accomplishes the main objective of obtaining good solutions to both small and
large instances in short times. The percentage of optimal solutions attained
indicates that it performs a good exploration of the solution space. Indeed, the
mean deviations show that it is the best option for instances with more than 60
vessels and a fast solving method for the rest. The selection of a time limit above
3N makes it possible to improve on the results, but the Genetic Algorithm seems
close to convergence in most of the instances, so the improvement is expected
to decrease as the time is increased.

6.3.2 Evaluation of the BACASP Genetic Algorithm

The BACASP Genetic Algorithm was compared with the cutting plane algo-
rithm for the BACASP (CPA) proposed by Correcher et al. (2017), implemented
in C++ and CPLEX 12.6 and run for 3600 seconds (Appendix B) considering
MaxSizeSeqForPerm = 4. By using this method, it was possible to achieve
optimal solutions in all the instances with up to 40 vessels and in two instances
with 50 vessels in InstMB. In InstPK, only one instance with 35 vessels and
three with 40 vessels could not be solved to optimality.

In Table 8 we show the results obtained by the Genetic Algorithm in both
sets of instances. In general, they are similar to those obtained for the BACAP,
except for a slight decrease in the size of the instances that CPA was able to
solve. In fact, in 8 instances with 50 vessels and in all the instances with more
vessels no feasible solution was found. It can also be observed that the Genetic
Algorithm did not perform well on at least two instances, one with 20 vessels in
InstMB and the other with 40 vessels in InstPK, whose DFM exceeded 40%.
These values affected the means of their corresponding groups, hence the high
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avgDFM observed in the instances with 40 vessels in InstPK. Nevertheless,
it is worth noting that the BACASP is more difficult to solve than the BACAP
and the Genetic Algorithm provides a good alternative for larger instances. As
for the Local Search, it attained a mean improvement of 1.58%, proving again
to be a good complement to the Genetic Algorithm.

Table 8: Results of the BACASP algorithm on InstMB and InstPK with an
overall time limit of one second per vessel (N).

N Mean time minDFM (%) avgDFM (%) Opt. (%) Mean Mean

MILP model (s) Avg. Max. Avg. Max. One All ILS (%) cost

InstMB

20 0.7 5.14 40.48 5.14 40.48 80 80 0.18 14100
30 13.5 2.53 9.76 2.70 9.76 40 30 3.13 43316
40 85.8 2.24 4.80 4.44 12.44 20 10 3.15 59276
50 3292.1 4.06 6.43 6.51 8.80 0 0 1.29 177960
60 3604.5 - - - - - - 1.62 363836
70 3603.1 - - - - - - 1.92 838164
80 - - - - - - - 1.49 1438184
90 - - - - - - - 0.82 3311732

100 - - - - - - - 0.62 4778248

InstPK

20 1.8 0.97 8.33 1.14 8.33 80 70 0.00 22996
25 3.1 0.46 2.30 0.76 2.58 80 60 0.01 32240
30 15.4 0.17 1.11 2.14 6.33 80 50 0.44 53808
35 640.6 1.75 5.34 5.23 12.07 44 22 0.39 90884
40 1516.2 12.3 36.67 20.10 53.86 0 0 3.35 170744

The experiment conducted considering a time limit of 3N yielded some im-
provements relative to the results obtained in N seconds, especially by reducing
the maximum avgDFM (Table 9). It also reached new optimal solutions in five
instances in set InstPK and reduced the mean cost by 1.85% in InstMB and
2.68% in InstPK. Both experiments show that the proposed Genetic Algo-
rithm is also a good approach for solving the BACASP, particularly when more
than 40 vessels are expected to arrive within a time horizon of one week, as the
exact method cannot even find feasible solutions.
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Table 9: Results of the BACASP algorithm on InstMB and InstPK with an
overall time limit of three seconds per vessel (3N).

N Mean time minDFM (%) avgDFM (%) Opt. (%) Mean Mean

MILP model (s) Avg. Max. Avg. Max. One All ILS (%) cost

InstMB

20 0.7 1.33 10.91 4.38 32.86 80 80 0.64 13972
30 13.5 2.45 9.76 2.68 9.76 30 30 3.01 43300
40 85.8 2.03 4.80 2.97 5.84 20 10 2.31 58272
50 3292.1 4.06 6.43 4.61 6.64 0 0 1.79 174568
60 3604.5 - - - - - - 3.03 355704
70 3603.1 - - - - - - 1.90 818300
80 - - - - - - - 1.74 1390468
90 - - - - - - - 1.02 3231884

100 - - - - - - - 0.90 4738120

InstPK

20 1.8 0.97 8.33 0.97 8.33 80 80 0 22940
25 3.1 0 0 0.35 1.57 100 60 0.01 32068
30 15.4 0.53 1.94 1.65 6.96 70 60 0.32 53428
35 640.6 1.54 5.89 3.53 12.15 55 44 0.72 89516
40 1516.2 7.09 29.52 13.62 37.43 14 0 2.71 163052

6.4 Comparing the Genetic Algorithm with a Discrete
Differential Evolution algorithm

In order to assess the performance of the proposed Genetic Algorithm on large
instances for which the integer linear model did not obtain good solutions, we im-
plemented a Discrete Differential Evolution (DDE) algorithm, which has proven
to yield good results in scheduling problems. Differential Evolution was first pro-
posed by Storn and Price (1997) as a population-based metaheuristic to solve
continuous optimization problems. Later on it was adapted and applied by
Tasgetiren et al. (2007a,b) and Pan et al. (2007) to tackle combinatorial op-
timization problems, leading to the Discrete Differential Evolution algorithm.
This method also works with chromosomes representing diverse solutions to the
problem, which are mutated and recombined over several generations. Unlike
Genetic Algorithms, it focuses on the best individual achieved in the previous
generation (referred to hereafter as πt−1

g ) in order to generate new individuals.
In particular, the scheme of the DDE followed here is the same as in Pan et al.
(2008), except that we do not apply an internal Local Search and the single
initial population is generated exactly as in the case of the BRKGA proposed
here.

A mutated individual results from modifying πt−1
g with probability Pm. This

process first randomly selects d vessels and sets a random number of cranes for
each vessel out of its allowed number of cranes. Then, the Deconstruction-
Construction algorithm (DC) referred to in the cited paper is applied to the list
of vessels with parameter d, using the Exploratory Constructive Algorithm inter-
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nally with the memetic improvement that we proposed. The mutant population
thus consists of Nindiv individuals: the mutant individuals and the individuals
not affected according to Pm, which are copies of πt−1

g .
Next, the mutant population is paired with the population of the previous

generation according to the index of each individual. Each of these pairs is
recombined to generate a new individual with a probability Pc. The list of
cranes of the child results from randomly selecting the list of cranes of one of
the parents with probability 0.5. Then, two positions in the list are randomly
selected and the numbers of cranes corresponding to the vessels within them
(inclusive) are replaced with those in the same positions in the other parent.
The list of vessels is created analogously, applying the PTL algorithm referred
to in the cited paper. The resulting population of Nindiv individuals consists
of these individuals and those not recombined according to Pc, which will be
the individuals already in the mutant population. This population is called the
trial population and is evaluated to determine the fitness of each individual.

Finally, the population of the next generation is created by pairing the trial
population with the population of the previous generation and choosing, for
each index, the least-cost individual in each pair. The stopping criterion for the
iterative process is a time limit, after which the ModelAdjacency Local Search
procedure with its best parameter configuration is applied to all the individuals
in the last population until a time limit is reached, as in the case of the BRKGA.

The DDE algorithm was implemented and run on the same computer under
the same conditions, using OpenMP to make the most of the processors in both
the evaluation of the individuals and the DC mutation phase, which makes
intensive use of the constructive algorithm. The parameters chosen were those
used in the cited paper (d = 4, Pm = 0.2, and Pc = 0.8), the population size was
Nindiv = 10N and the overall time limit was N in the first experiment and 3N in
the second, devoting 90% of the time to the DDE and 10% to the Local Search,
as in the BRKGA. The DDE algorithm for the BACASP was implemented
analogously, using the modified versions of the constructive algorithm and the
ModelAdjacency Local Search procedure. The algorithms were run on the same
sets of instances, performing 5 repetitions on each instance.

Tables 10 and 11 show for each group of instances the average and maximum
percentage deviations of the results of the BRKGA from the results of the DDE,
where avgDFD is the deviation of the average result obtained by the BRKGA
in the five runs from the average result obtained by the DDE algorithm in
the five runs (avgResultDDE), calculated as avgDFD = (avgResultGen −
avgResultDDE)/avgResultDDE. The deviation obtained from the results of
the algorithms applying the Local Search procedure as well (avgDFDLS) is
calculated analogously.
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Table 10: Comparison of the BRKGA with the DDE algorithm for the BACAP
on InstMB and InstPK, considering N and 3N seconds as time limits

N seconds 3N seconds

avgDFD (%) avgDFDLS (%) avgDFD (%) avgDFDLS (%)

Vessels Avg. Max. Avg. Max. Avg. Max. Avg. Max.

InstMB

20 -0.83 0 0 0 -0.22 0 0 0
30 -1.91 0 -1.85 1.27 -1.42 0 -2.12 0.65
40 -3.19 0 -3.08 1.15 -3.62 0 -2.77 0
50 -4.27 0.70 -3.23 1.20 -4.15 -0.22 -3.32 2.06
60 -6.13 -0.21 -5.46 1.86 -5.69 0.89 -4.33 0.87
70 -9.56 -6.98 -8.70 -4.79 -7.20 0.14 -6.57 -0.71
80 -13.96 -3.81 -13.80 -3.67 -10.29 -1.06 -9.88 -0.91
90 -11.51 -7.12 -10.91 -6.57 -5.50 -3.02 -4.95 -1.77

100 -11.60 -8.64 -11.05 -8.06 -7.65 -1.89 -6.97 -1.15

InstPK

20 -0.17 0 0.13 3.36 -0.18 0.32 0.03 2.09
25 -0.02 1.83 0.09 2.42 -0.13 0.67 -0.05 1.45
30 -4.99 0 -3.54 0 -2.11 0 -0.08 2.17
35 -3.00 -0.73 -1.92 -0.32 -3.22 0.57 -2.64 0
40 -6.74 -0.67 -6.47 -0.50 -4.49 -1.49 -4.48 -0.63

In Table 10 the average deviations show that the BRKGA outperformed
the DDE algorithm in all the groups of BACAP instances, both in N and 3N
seconds. The LS only marginally reduced the deviation in some groups, so the
differences in performance observed were consistently caused by the behaviour of
each algorithm itself. The DDE algorithm clearly performed worse with increas-
ing instance size in N seconds, although this effect decreased when considering
3N seconds. Therefore, the BRKGA seems to explore the solution space more
efficiently. Nevertheless, in some instances the DDE occasionally found better
solutions, albeit close to those obtained by the Genetic Algorithm in terms of
cost. The results obtained for the BACASP (Table 11) lead to the same con-
clusions, so in summary the BRKGA seems to achieve good solutions even on
large instances.
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Table 11: Comparison of the BRKGA with the DDE algorithm for the BACASP
on InstMB and InstPK, considering N and 3N seconds as time limits

N seconds 3N seconds

avgDFD (%) avgDFDLS (%) avgDFD (%) avgDFDLS (%)

Vessels Avg. Max. Avg. Max. Avg. Max. Avg. Max.

InstMB

20 -0.03 0 0.99 8.54 -0.10 0 0.71 10.91
30 -6.42 0 -5.11 6.97 -4.00 0 -1.63 7.66
40 -4.49 0 -3.33 3.97 -6.16 0 -3.86 5.00
50 -5.32 -3.03 -3.37 3.94 -3.77 -0.12 -2.70 0.26
60 -5.10 3.20 -2.94 4.29 -0.74 9.42 0.61 12.54
70 -14.59 -1.46 -13.06 -0.93 -9.61 -0.70 -6.14 2.57
80 -24.60 -17.97 -23.52 -16.12 -16.80 -7.79 -13.55 -4.31
90 -22.11 -17.91 -20.95 -16.41 -17.12 -12.56 -14.76 -11.53

100 -25.92 -20.64 -25.39 -20.87 -18.87 -14.42 -17.53 -13.66

InstPK

20 -1.81 0 -1.63 0 -0.86 0.52 -0.40 3.72
25 -0.91 0 -0.77 0 -0.77 0 -0.65 0
30 -5.47 0 -2.25 0 -3.99 0 -1.73 0.5
35 -5.29 -1.12 -3.46 0.11 -2.99 0 -2.04 0.31
40 -5.91 8.69 -6.05 7.70 -5.38 3.30 -3.36 1.92

7 Conclusions

In this study we have addressed the Berth Allocation and quay Crane Assign-
ment Problem (BACAP) and the Berth Allocation and specific quay Crane As-
signment Problem (BACASP) in their continuous, dynamic and time-invariant
variants. The objective was to develop a metaheuristic approach capable of
obtaining good solutions in short times for both small and large instances. We
have proposed a Biased Random-Key Genetic Algorithm with memetic charac-
teristics, a constructive algorithm, and several Local Search procedures. Thus
we developed different versions of these algorithms for both the BACAP and
the BACASP, and their parameters were adjusted through extensive experi-
ments and statistical analysis. It has been observed that the solutions based
on the ordering of the vessels provided by the Genetic Algorithm are not good
enough in cases in which clusters of vessels arriving at similar times and pre-
ferring similar positions on the quay have to be allocated in a globally optimal
way. To address this issue, we proposed a matheuristic Local Search which can
dramatically improve the solutions.

The results obtained in instances generated according to well-known criteria
show that our approach is able to achieve good, and even optimal solutions, in
less than 5 minutes on instances of less than 60 vessels within a planning horizon
of one week, while it clearly outperforms the most efficient exact methods to
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date on instances with up to 100 vessels within the same time horizon. Indeed,
those methods cannot even produce feasible solutions for such large instances,
so our approach broadens the computational capabilities in the field for tackling
both the BACAP and the BACASP.

Further future work could address other variants of the problem heuris-
tically, such as the BACAP with variable-in-time crane assignment, which is
computationally more complex and poses some problems with the number of
crane movements. Another variant could address the case in which the termi-
nal has more than a single continuous quay and the quay to which each vessel
is assigned has also to be determined. Furthermore, new mathematical pro-
gramming models could be developed to capture more details of the real berth
allocation problem encountered at container terminals. All these attempts may
enhance our tools for improving the efficiency of the terminal and the quality
of service.
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Appendix A An MILP for the BACAP

This model was presented in Correcher et al. (2017). Here we propose a mod-
ified version in which the cost of exceeding the planning horizon is taken into
consideration.

The following variables are defined:

ti = berthing time of vessel i

pi = berthing position of vessel i

riqt =

{
1, if the handling of vessel i with q cranes starts at time t
0, otherwise

σij =

 1, if vessel i is completely to the left of vessel j, that is,
vessel i is completely processed before vessel j

0, otherwise

δij =

 1, if vessel i is completely below vessel j, that is, vessel i is
completely to the right of vessel j, looking at them from the quay

0, otherwise

hi = delay incurred in the handling of vessel i

ei = deviation of vessel i from its desired position

exci = difference between the berthing time of vessel i and the planning horizon

These variables and the parameters defined in Section 3 are the elements of
the following model:
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Min
∑
i∈V

(Cwi (ti − ai) + Cdi hi + Cpi ei + Chi exci) (2)

s. t.:

H∑
t=ai

qmax
i∑

q=qmin
i

riqt = 1, ∀i ∈ V (3)

ti =

H∑
t=ai

qmax
i∑

q=qmin
i

riqt · t, ∀i ∈ V (4)

tj − ti −
H∑
t=ai

qmax
i∑

q=qmin
i

(riqt · uqi )− (σij − 1)H ≥ 0, ∀i, j ∈ V, i 6= j (5)

pj − (pi + li)− (δij − 1)L ≥ 0, ∀i, j ∈ V, i 6= j (6)

σij + σji + δij + δji ≥ 1, ∀i, j ∈ V, i 6= j (7)

pi + li ≤ L+ 1, ∀i ∈ V (8)∑
i∈V

qmax
i∑

q=qmin
i

t∑
τ=max(ai,t−uq

i +1)

riqτ · q ≤ Q, ∀t ∈ T (9)

hi ≥ ti − si +

H∑
t=ai

qmax
i∑

q=qmin
i

(riqt · uqi )− 1, ∀i ∈ V (10)

ei ≥ pi − di, ∀i ∈ V (11)

ei ≥ di − pi, ∀i ∈ V (12)

σij , δij ,∈ {0, 1}, ∀i, j ∈ V, i 6= j (13)

riqt ∈ {0, 1}, ∀i ∈ V,∀t ∈ {ai, . . . ,H},
∀q ∈ {qmini , . . . , qmaxi } (14)

hi, ei ≥ 0, ∀i ∈ V (15)

pi ≥ 1, ∀i ∈ V (16)

exci ≥ ti −H, ∀i ∈ V (17)

exci ≥ 0, ∀i ∈ V (18)
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Appendix B A cutting plane algorithm for BA-
CASP

The following cutting plane algorithm was proposed in Correcher et al. (2017):

Algorithm 1 Cutting plane algorithm for the BACAP–BACASP

Require: A formulation P for BACAP. See Appendix A
Ensure: A solution for the BACAP without improper complete sequences

1: Solve P
2: while there is at least one improper complete sequence in an optimal solu-

tion of P do
3: for all improper complete vessel sequence S found do
4: Insert in P a cut for S based on (19)
5: if S ≤MaxSizeSeqForPerm vessels then
6: Insert in P such a cut for each other permutation of the vessels in S
7: end if
8: end for
9: Solve P

10: end while

The following constraint prevents the vessels in the sequence S = s1, . . . , sn
from being assigned forming an improper complete sequence in that specific
order in any time and position:

∑
i∈S

H∑
t=ai

qmax
i∑

q=qmin
i

q riqt ≤ Q+M

sn−1∑
j=s1

(σj,j+1 + σj+1,j − δj,j+1) + n− 1

 (19)

considering that:

M =
∑
i∈S

qmaxi −Q
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