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Abstract

Efficient management of operations in seaport container terminals has become a critical issue, due to the increase
in maritime traffic and the strong competition between ports. In this paper we focus on two seaside operational
problems: the Berth Allocation Problem and the Quay Crane Assignment Problem, which are considered in
an integrated way. For the continuous BACAP problem with time-invariant crane assignment we propose a
new mixed integer linear model in which the vessels can be moored at any position on the quay, not requiring
any quay discretization. The model is enhanced by adding several families of valid inequalities. The resulting
model is able to solve instances with up to 50 vessels and outperforms other recently published proposals. In
a second part, the model is extended to include the assignment of specific cranes to each vessel: the BACASP.
This assignment ensures that the handling of each vessel can be carried out without disruptions, thus producing
solutions that can be applied in practice. We also propose an iterative procedure for the BACASP in which
the BACAP model is solved, and whenever its solution is not feasible for the BACASP, specific constraints are
added until an optimal solution for the BACASP is found. Additionally, a branch-and-cut algorithm is proposed
based on the cuts used in the iterative procedure. The computational study on several classes of test instances
shows that problems with up to 40 vessels can be solved to optimality.

Keywords: Combinatorial optimization, Container terminal, Berth allocation, Quay crane

assignment, Integer programming.

1. Introduction

Seaports are a key factor in maritime commerce and the global market economy. Most manufactured

goods are carried in standardized containers, which are handled by specialized facilities implemented

in ports all over the world. This kind of transportation provides great advantages: protection for

goods, standardization, easy interchange between different transportation modes, and consequently

cost reduction and increased productivity. In 2016, the total volume of containerized trade exceeded

140 million TEUs (Twenty-foot Equivalent Units), and the most important ports, such as Shanghai

and Singapore, handled more than 30 million TEUs. Overall, in the decade 2007–2016, the increase in

containerized trade volume was more than 40% (UNCTAD, 2017).
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The specialized facilities dedicated to these tasks are container terminals. They consist of three

main areas: seaside, yard, and landside. In the first area, container ships are moored at the quay and

quay cranes perform the loading and unloading operations. Then vehicles move containers to and from

the yard, which is used as a buffer between ships and land modes of transportation such as trains or

trucks. Finally, the third area is set up to make this interchange effective.

Marine container terminals compete to offer better conditions to their clients, and this involves

improving the efficiency of their operations. Waiting times of vessels, terminal operational costs, con-

tractual penalties, and other costs depend on the efficient management of such operations. Their

number and complexity is so large that an integrated mathematical programming approach has nowa-

days become impracticable. Hence, they are commonly grouped by the aforementioned areas (landside,

yard, and seaside operations) and tackled separately. General literature overviews of container terminal

operations were presented by Stahlbock & Voß (2008), Rashidi & Tsang (2013), and Li et al. (2015).

In the seaside area, the most important operational problem is the Berth Allocation Problem (BAP).

It concerns the assignment of a berthing position and a berthing time to every vessel projected to be

served within a given planning horizon. In this problem, the handling times of vessels are usually

assumed to be fixed and known in advance. In addition to quay space, quay cranes (QCs) are also a

scarce resource. Whenever several vessels moor simultaneously at the quay, a Quay Crane Assignment

Problem (QCAP) arises. The number of QCs serving a vessel simultaneously is often restricted within

a minimum and a maximum number, for technical and contractual reasons.

There is an increasing trend to consider these two problems together, because the number of quay

cranes assigned to a vessel determines its handling time. In the combined Berth Allocation and quay

Crane Assignment Problem (BACAP), as well as the time and berthing position, a number of cranes is

also assigned to each vessel.

Two versions of the BACAP have been tackled in the literature. In the time-invariant version,

the number of cranes assigned to each vessel remains constant throughout its handling, while in the

variable-in time version this number can be changed in each period. The variable-in-time version allows

a more efficient use of cranes, as those initially assigned to a vessel can be reassigned to newly arrived

vessels. This is useful, for example, when the processing of a large vessel is nearly finished and only

a few cranes are needed to complete it. The outer cranes may be reassigned to other vessels, thereby

accelerating their handling. Terminal operating systems try to achieve this variable-in-time assignment

whenever possible; however, this advantage can turn into a big problem when applying the plan to

real situations. The solutions may entail more complex crane-to-vessel assignments and thus become

more difficult for human operators to handle. Moreover, they can also result in a greater number of
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crane movements, thereby demanding a more effective and efficient management of operations at the

docks, including the organization of workers and machines. As a consequence, variable-in-time plans

are more sensitive to contingencies and elements not usually considered in models and thus the real

execution may rapidly deviate from the theoretical schedule. In this respect, an especially relevant case

is the common assumption that the time required by cranes when moving from one vessel to another is

negligible. A large number of movements substantially increases the time lost in setup operations and

makes the optimal variable-in-time schedule less and less realistic as it is implemented. For this reason

and to prevent other unrealistic schedules, the number of crane movements must be minimized in these

models, taking them into account in the objective function. In contrast, time-invariant models may

accept several estimates of the handling time for each vessel considering various numbers of cranes and

their corresponding setup times. Moreover, as the assignment of each specific crane has to be carried

out for each vessel and not for each time period, they lead to solutions with fewer crane movements,

so in general the resulting schedules may keep closer to their real execution and thus become more

trustworthy in themselves. For the same reason, time-invariant models require fewer variables, which

makes these models computationally easier to handle, and therefore the size of the instances that they

can solve to optimality is usually larger than in the case of variable-in-time models. From a theoretical

perspective, the main disadvantage of time-invariant models is that they nearly always waste crane

capacity; in practice, however, this shortcoming turns out to be an interesting alternative to provide

conservative schedules useful for guiding real operations.

Although both versions of the problem are interesting in real practice and are receiving increasing

attention in the literature, in this paper we limit our study to the time-invariant with continuous quay.

The main objective is to conduct a more in-depth study of models and exact methods capable of dealing

with this version of the BACAP in realistic situations. In the first half of the paper, a new mixed integer

linear model is proposed and several families of valid inequalities are identified and added to enhance

the formulation. The resulting model is able to obtain optimal solutions for different classes of instances

with up to 50 vessels per week. In the second half, we address the BACASP, the problem in which not

a number of cranes but a set of specific cranes must be assigned to each vessel, thus ensuring that the

solution is physically realizable. For this problem we have also developed a mixed integer model and

two exact algorithms, based on the BACAP model, which can optimally solve instances with up to 40

vessels per week and thus provide more realistic solutions to this berth allocation problem. The exact

methods proposed require fewer variables and outperform the state-of-the-art approaches in realistic

problem instances. Moreover, they prevent the poor allocation of quay space that may result from using

integer variables to represent the continuous berth, which is common practice in the literature.
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The rest of this paper is organized as follows. In Section 2, we review the previous work. In Section 3,

we describe the problem and the specific assumptions of our approach. In Section 4, we propose a new

mixed integer linear programming model for the BACAP. Several constraints are added to reinforce

the proposed formulation in Section 5. The model is extended to solve the BACASP in Section 6. In

Section 7, we describe the experiments conducted and discuss their results. Finally, in Section 8, we

draw some conclusions and indicate future research.

2. Literature review

In this section we review the academic literature on problems that integrate BAP and QCAP,

focusing on the continuous quay version of both BACAP and BACASP. Readers interested in the

discrete variant can consult recent studies such as those by Hsu (2016), Lalla-Ruiz et al. (2014) and

Ursavas (2014). Additionally, for a detailed review of the approaches that address these problems and

the different integrated versions, see the surveys by Bierwirth & Meisel (2010, 2015) and Carlo et al.

(2015).

2.1. BACAP studies

The first work on the integration of BAP and QCAP was presented by Park & Kim (2003). This

pioneering paper formulated an integer model for continuous BACAP and variable-in-time crane assign-

ment. In order to obtain a near-optimal solution they proposed a Lagrangean relaxation of the model

and used the subgradient method. Additionally, the specific sets of QCs assigned to each vessel are

determined using a dynamic programming procedure that minimizes the number of QC changes among

vessels. On the basis of this approach, Zhang et al. (2010) proposed a MILP for a BACASP that takes

into account the limited range of movement of each crane.

Other authors have also studied the continuous BACAP with variable-in-time crane assignment.

Meisel & Bierwirth (2009) included the possibility of speeding up the arrival of each vessel, incurring

a cost proportional to the time advanced, and considered a decreasing marginal crane productivity as

the number of cranes serving a vessel increases, due to interferences between them. They proposed

a mixed integer linear model and two metaheuristic approaches: a tabu search and a squeaky wheel

optimization which obtained good results over previous and newly generated instances. Xuelian &

Zhiying (2012) proposed an integer linear model and a decomposition heuristic procedure to assign

quay cranes and berthing positions and times. Liang et al. (2012) first applied the BAP model of Kim

& Moon (2003) and then assigned a number of QCs to each vessel assuming that it is dependent on its

requested departure time. To do so, they developed several heuristics and applied them in a Sequence

4



Optimized Particle Swarm Optimization framework. Elwany et al. (2013) considered the case in which

the water depth is not the same in all berthing positions. They extended the model presented by Meisel

& Bierwirth (2009) and proposed a heuristic to construct feasible solutions from ordered lists of vessels

used in a Simulated Annealing framework. He (2016) formulated a bi-objective model in which, besides

the minimization of delay costs, the minimization of handling energy consumption was also considered.

An integrated simulation and optimization method was also developed, in which the simulation was

designed for evaluation and a memetic algorithm was designed for searching the solution space. Karam

& Eltawil (2016) also solved the BACAP by decomposing it into two subproblems, BAP and QCAP,

that are iteratively solved until the complete solution cannot be improved. A similar approach was

followed by Han et al. (2015), but including other considerations related to the efficient use of the

cranes.

The continuous BACAP with time-invariant crane assignment has also been studied by several

authors. Blazewicz et al. (2011) formulated the problem as a moldable task scheduling problem in

which the durations of tasks are non-linear functions of the resources assigned to them. They proposed

a heuristic algorithm which obtained good average results. Yang et al. (2012) solved the BACAP by

developing genetic algorithms that solved the BAP and the QCAP separately and combining them by

means of a Nested Loop-based Evolutionary Algorithm (NLEA), which obtained good results compared

with Park & Kim (2003). Yang et al. (2013) formulated a MILP for the integrated problem and proposed

a Particle Swarm Optimization heuristic. More recently, Türkoǧullari et al. (2014) proposed a new

integer linear model, discretizing both the planning horizon and the quay length. Iris et al. (2015)

proposed generalized set partitioning formulations (GSPP) for the BACAP considering both time-

variant and time-invariant QC assignment policies. Computational results show that both formulations

performed well with respect to both upper and lower bounds and can provide optimal solutions for

small and medium sized instances.

2.2. BACASP studies

The BACASP with continuous dynamic berth allocation and variable-in-time QC-to-vessel assign-

ment was studied by Chang et al. (2010), who proposed a multi-objective mixed integer linear model.

The authors also applied a rolling time horizon strategy and proposed a heuristic algorithm to con-

struct feasible solutions and a Hybrid Parallel Genetic Algorithm. Another study in the same vein is

Raa et al. (2011), in which a MILP is proposed and tested. Rodriguez-Molins et al. (2014) solved the

BACASP using a GRASP metaheuristic algorithm. Recently, Türkoǧullari et al. (2016) proposed an

integrated integer linear model and an iterative algorithm based on a decomposition scheme for the
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variable-in-time BACASP. This variant of the problem was also addressed by Agra & Oliveira (2018),

who proposed a new model avoiding the use of the Big-M of previous formulations, new valid inequalities

and a branch-and-cut algorithm.

The BACASP with time-invariant quay crane assignment was studied by Le et al. (2012), who

proposed a multi-objective MILP model and a multi-objective PSO. Türkoǧullari et al. (2014) also

proposed a MILP and an iterative algorithm based on their BACAP model.

Broadening the scope of the BACASP, Meisel & Bierwirth (2013) addressed, in an integrative

manner, the main optimization problems that can be found on the seaside of container terminals (BAP,

QCAP and QCSP: Quay Crane Scheduling Problem). They proposed a three-phase framework, and one

of these phases involves the solution of a continuous BACAP with variable-in-time crane assignment by

means of a MILP similar to the one presented in Meisel & Bierwirth (2009).

In this paper we address the state-of-the-art versions of both the time-invariant BACAP and BA-

CASP presented by Türkoǧullari et al. (2014). Unlike that approach, we propose various MILP models,

iterative procedures and branch-and-cut algorithms which do not require the use of integer variables

to represent quay positions. Consequently, the number of variables involved is dramatically reduced

and solutions can be more useful in real situations without compromising the efficiency of the solution

process. Moreover, tackling the problem in this way also prevents underuse of the quay space due to

reasons derived from the mathematical formulation of the problem. In summary, our contribution aims

at reducing the gap between the abstract representation of the problem and its applicability in real

situations by proposing tighter formulations which lead to more efficient methods.

3. Description of the problem

The Berth Allocation and quay Crane Assignment Problem (BACAP) is the optimization problem

of achieving the least-cost berth plan for a set of vessels calling at the port that have to be moored

at a quay with a given number of quay cranes available to serve them. We address the version of the

problem in which there is only one continuous quay and in which the number of quay cranes serving a

vessel, once assigned, is kept fixed until the end of its last loading/unloading operation. This berth plan

can be rendered as a space-time layout (see Fig. 1) in which the vertical axis represents the mooring

position at the quay and the horizontal axis represents the time. Each vessel is a rectangle whose length

represents its handling time and whose width represents its length. Thus, vessels can be moored along

the quay within a given time horizon, while quay cranes can move along the quay to serve the vessels

provided that they do not cross each other. According to the scheme proposed by Bierwirth & Meisel

(2015), this problem can be classified as cont | dyn |QCAP |
∑

(w1 pos+ w2 wait+ w3 tard).
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Figure 1: Graphical representation of a berth plan with 4 vessels and a quay of 400m long with 5 cranes. The number of
cranes appears in parentheses.

The objective is to assign a position on the quay, a berthing time, and a number of quay cranes to

each calling vessel, so as to minimize the overall assignment cost. For each vessel, we consider three

different kinds of costs: the cost of waiting before berthing, the cost of delay after the desired departure

time, and the cost of deviation from the desired position on the quay. To do this, we use the following

given data:

• Set of time periods: T = {1, 2, ...,H}, where H is the planning horizon.

• Length of the quay: L.

• Number of quay cranes: Q.

• Set of calling vessels: V , with N = |V |.

For each vessel i ∈ V , we know:

– length: li

– expected arrival time: ai

– desired departure time: si

– minimum and maximum number of cranes that can be assigned to the vessel: qmin
i , qmax

i

– estimated handling time if it is handled using q cranes: uq
i

– desired position at the quay: di

– cost per period of waiting for berthing after the expected arrival time: Cw
i
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– cost per period of delay after the desired departure time: Cd
i

– cost per length unit away from the desired position at the quay: Cp
i

The waiting time of a vessel is defined as the difference between its assigned berthing time and its

expected arrival time. The delay is the difference between the desired departure time and the assigned

departure time. Moreover, we consider that each vessel has an ideal position on the quay, which is

the position closest to the location of its related containers in the yard. Hence, the deviation from

the desired position is the distance between the ideal position and the assigned position on the quay.

The handling time of each vessel depends on the number of cranes assigned to it. It can be inversely

proportional to the number of cranes, as in Park & Kim (2003), or can take into account the decreasing

marginal productivity due to crane interferences, as in Meisel & Bierwirth (2009). Any relationship

between the number of cranes and the handling times can be included in the model by specifying the

particular handling times uq
i of each vessel i if q quay cranes are assigned to it.

The assumptions of our approach are the following:

• Time

– The planning horizon is divided into multiple equal time segments.

– Vessels are to be moored within the planning horizon.

• Quay

– Each position on the quay can accommodate one vessel at a time.

• Vessels

– When a vessel is moored, the berthing position is kept fixed.

– Once started, the handling of a vessel cannot be interrupted.

– The handling time of each vessel is considered to be independent of its berthing position.

This assumption is reasonable if the quay has enough machinery and workers for container

transportation between the yard and the quay at any moment. Hence, the cranes serving

each vessel do not need to wait for vehicles. The increased transportation cost produced

if the position of the vessel deviates from its desired position is included in the objective

function.

– The handling time of each vessel depends on the number of cranes assigned to it. No specific

relation between them is assumed, so it can be either linear or non-linear.
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– The setup and release times of the cranes may be included in the handling time estimates for

the vessels provided as parameters. The time spent by cranes in moving from one vessel to

another depends on the resulting berth plan and thus cannot be precisely anticipated. How-

ever, handling time estimates may include an additional time clearance for those movements.

– The time for docking and undocking maneuvers is considered to be included in the vessel

handling time.

– Vessels may have different relative importance. Therefore, cost coefficients are specific to

each vessel.

– The inter-ship clearance is included in the vessel length. In general, for vessels longer than

130m, this clearance corresponds to 10% of its length. For small vessels, the minimum

clearance is 10m.

• Cranes

– The number of cranes available at the quay is fixed and all the cranes have the same char-

acteristics.

– All quay cranes can move along the quay, but they cannot cross each other.

– The time taken by cranes to move along the quay is considered negligible compared to the

handling time of vessels and thus it is not taken into account in the schedule.

– Each quay crane can be assigned to one vessel at most in each time period.

– The number of quay cranes assigned to a vessel does not change during its stay at the quay.

– There is a minimum and a maximum number of cranes that can be assigned to a vessel.

4. A mixed integer linear model

We address the continuous BACAP with time-invariant quay crane assignment by proposing the

following MILP.

First, we define the following variables:

ti = berthing time of vessel i

pi = berthing position of vessel i

hi = delay incurred in the handling of vessel i
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ei = deviation of vessel i from its desired position on the quay

riqt =

 1, if the handling of vessel i with q cranes starts at time t

0, otherwise

σij =

 1, if the departure time of vessel i is prior to the berthing time of vessel j

0, otherwise

δij =


1, if vessel i is completely below vessel j in the space-time diagram, that is,

i is positioned completely to the right of j, looking at them from the quay

0, otherwise

These variables and the previously defined parameters are the elements of the following model:

Min
∑
i∈V

(Cw
i (ti − ai) + Cd

i hi + Cp
i ei) (1)

s. t.

H∑
t=ai

qmax
i∑

q=qmin
i

riqt = 1, ∀i ∈ V (2)

ti =

H∑
t=ai

qmax
i∑

q=qmin
i

riqt · t, ∀i ∈ V (3)

tj − ti −
H∑

t=ai

qmax
i∑

q=qmin
i

(riqt · uq
i )− (σij − 1)H ≥ 0, ∀i, j ∈ V, i ̸= j (4)

pj − (pi + li)− (δij − 1)L ≥ 0, ∀i, j ∈ V, i ̸= j (5)

σij + σji + δij + δji ≥ 1, ∀i, j ∈ V, i ̸= j (6)

pi + li ≤ L+ 1, ∀i ∈ V (7)

∑
i∈V

qmax
i∑

q=qmin
i

t∑
τ=max(ai,t−uq

i+1)

riqτ · q ≤ Q, ∀t ∈ T (8)
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hi ≥ ti − si +

H∑
t=ai

qmax
i∑

q=qmin
i

(riqt · uq
i )− 1, ∀i ∈ V (9)

ei ≥ pi − di, ∀i ∈ V (10)

ei ≥ di − pi, ∀i ∈ V (11)

σij , δij ,∈ {0, 1}, ∀i, j ∈ V, i ̸= j (12)

riqt ∈ {0, 1}, ∀i ∈ V,∀t ∈ {ai, . . . ,H},∀q ∈ {qmin
i , . . . , qmax

i } (13)

hi, ei ≥ 0, ∀i ∈ V (14)

pi ≥ 1, ∀i ∈ V (15)

The objective function (1) is the minimization of the overall planning cost, which consists of the

sum of the waiting cost, the delay cost, and the deviation cost incurred by the terminal for each vessel.

The handling of each vessel starts only once and with a fixed number of cranes (2). Constraints (3) link

the berthing time of a vessel to the variables riqt to prevent inconsistencies. Constraints (4)–(6) prevent

overlaps between vessels in space and time. Constraints (7) forbid berthing positions in which the vessel

would exceed the quay length. Moreover, the number of cranes assigned to vessels for each period of

time cannot be greater than the total number of cranes available at the quay due to constraints (8).

Constraints (9) define the delay of each vessel and constraints (10)–(11) the deviation from the desired

position. Finally, constraints (12)–(15) define the domain of the variables. Note that the first position

available at the quay is 1, according to constraints (15).

This model is different from previous models in various respects. Unlike the pioneering paper on the

variable-in-time BACAP by Park & Kim (2003), the model proposed here does not use a non-binary

variable (Yjk) representing the number of cranes assigned to a vessel (k) in a time period (j), nor a

binary variable (Xijk) representing whether a coordinate (i, j) of the space-time diagram is covered by

the rectangle representing the schedule of a vessel (k). The model we propose also differs from the

variable-in-time BACAP model presented by Meisel & Bierwirth (2009). They use a binary variable

(rit) which is set to 1 if at least one crane is assigned to a vessel (i) in a time period t and another

binary variable (ritq) which is set to 1 if exactly a certain number of cranes (q) are assigned to a vessel

(i) in a time period (t). In contrast, our model uses a binary variable riqt representing whether the

handling of a vessel i starts with q cranes in time period t, thereby involving a completely different

logic for the expression of the constraints and reducing the number of variables for the time-invariant

BACAP. Furthermore, Meisel & Bierwirth (2009)’s model assumes that vessels’ deviations from their

desired positions necessarily impact on their handling times, whereas in our formulation of the problem
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we assume that deviations force the terminal to incur more costs related to horizontal transport at the

yard. Moreover, unlike these previous works, in our proposed model the cost structure is different, as

vessels are not allowed to speed up their arrival and there is no tardiness penalty apart from the delay

cost. The objective function of our formulation, however, is the same as the one used by Türkoǧullari

et al. (2014), although their model differs in its proposed variables and thus in its constraints. In

particular, in their model a single sort of binary variable (Xk
ijt) is used, which represents whether a

vessel (i) berths at a section on the quay (j) in a time period (t) with a number of cranes (k) assigned

to it. This is only possible by discretizing the quay length, and for this reason the number of variables

increases considerably with the length and the discretization unit applied. Finally, our proposal also

differs from the generalized set partitioning models presented by Iris et al. (2015), since our formulation

is not based on such a modelling approach.

5. Enhancing the integer linear model for BACAP: valid inequalities

In this section we develop several families of valid inequalities for the model described in the previous

section. These inequalities will reduce the polyhedron of the solutions of the integer model linear

relaxation, making it closer to the convex hull of the set of integer solutions, thus improving the lower

bounds and hopefully reducing the search in a branch and bound algorithm. Nevertheless, we have to

be careful not to overload the model with too many new constraints, because the positive effects can

be counteracted by the extra effort needed to solve the linear relaxations. Therefore, in the description

of each type of valid inequality, together with the general expression we indicate the way in which we

implement it, based on the idea that most of the conflicts between vessels appear in the vicinity of their

ideal allocations.

5.1. Strengthening the non-overlapping constraints

If two vessels i and j are concurrent in time according to variables riqt and rjqt, then they must

be separated in space. Although this constraint can be built in general for any pair of times ti and tj

that ensure the concurrence, we describe it here for the particular case in which they are close to their

arrival times, because these are the times at which the vessels will try to be berthed and therefore the

constraint to solve the conflict between them will be active.

For each pair of vessels i, j, such that i ̸= j, ai+min(uq
i ) > aj and aj +min(uq

j) > ai, we can write:
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σij + σji +

qmax
i∑

q=qmin
i

aj+min(uq
j )−1∑

t=ai

riqt +

qmax
j∑

q=qmin
j

ai+min(uq
i )−1∑

t=aj

rjqt ≤ 2, (16)

If both terms involving variables riqt and rjqt take value 1, the vessels overlap in time and then

σij = σji = 0. According to constraint (6), δij + δji ≥ 1 and therefore the vessels will be separated in

space.

Figure 2 shows an example of concurrence in time. If vessel i starts at a time ti ∈ {ai, aj+min(uq
j)−1}

and vessel j starts at a time tj ∈ {aj , ai+min(uq
i )− 1}, they concur in time and therefore δij + δji ≥ 1,

separating them in space.

L

ai aj +min(uq
j)-1aj ai +min(uq

i )-1

i

j

Figure 2: If vessels concur in time, they must be separated in space.

5.2. Minimum separation in time and space for vessels in their desired positions

If a pair of vessels would overlap if they were moored in their desired positions at their arrival times,

a minimum separation between them would be needed, in time or in space. Figure 3 shows the case of

two vessels i and j at their least-cost assignment. If they are separated in time (σij + σji = 1), we can

compute the minimum separation minTimeMove (in the figure: ai +min(uq
i )− aj) and then we have:

ti + tj ≥ ai + aj +minTimeMove · (σij + σji), ∀i, j ∈ V, i ̸= j (17)

If they are separated in space (δij+δji = 1), we can compute the minimum separationminSpaceMove

(in the figure: di + li − dj) and we have:

ei + ej ≥ minSpaceMove · (δij + δji), ∀i, j ∈ V, i ̸= j (18)
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minSpaceMove

minT imeMove

L

di

di + li

dj

dj + lj

ai ai +min(uq
i )aj aj +min(uq

j)

i

j

Figure 3: Minimal separation in time and space.

5.3. Cover constraints on ordered sets of variables δ

If we have a set of vessels such that the sum of their lengths exceeds the quay length, then not

all of them can be concurrent in space and at least one of them must be separated in time. Figure 4

shows an example of three vessels i, j, k, with li + lj + lk > L. Therefore, we can add the inequality

δij + δjk + δki ≤ 1. As this condition is satisfied for any ordering of the vessels, we can add constraints

corresponding to other orderings, for instance, δji + δik + δkj ≤ 1.

In general, if we identify a subset of vessels S such that the sum of their lengths exceeds the length

of the quay, for each permutation of vessels in S, i, j, k, .., n,m we have a constraint:

δij + δjk + · · ·+ δnm + δmi ≤ |S| − 2, i, j, k, ..., n,m ∈ S (19)

We only consider minimal subsets S of vessels that do not fit together at the quay and concur in

time if they were moored at their arrival times, considering their maximum handling times. We also

limit the cardinality of the subsets, using a parameter α.

L

i

j

k

δij = 1

δjk = 1
δki = 0

Figure 4: Vessels that do not fit together at the quay.
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5.4. Cover constraints on non-ordered sets of variables δ

If we have a set of vessels S such that the sum of their lengths exceeds the quay length, as in the

previous case, but instead of taking it as an ordered set we consider simultaneously all its permutations

and all the variables separating them in space, as can be seen in Figure 5, a valid inequality for this set

is:

∑
i∈S

∑
j∈S,j ̸=i

δij ≤
|S|2 − |S|

2
− 1 (20)

Note that the total number of δ variables in set S is |S|(|S| − 1). Moreover, in each pair of variables

δij , δji, i, j ∈ S, if we assume one vessel in the pair is above the other in the space-time diagram, then

one of the variables must be equal to 1, while the other must be 0 by constraint (5). In Figure 5, for

example, δjk = 1 and δkj = 0. Consequently, the maximum value of the sum of the variables will be

(|S|2 − |S|)/2. If the sum of the vessel lengths exceeds L, not all the vessels in S can be stacked up one

above the other in the space-time diagram, so the sum of the variables must be lower than or equal to

(|S|2 − |S|)/2− 1.

As in the previous case, we only consider minimal subsets of vessels S that do not fit together at the

quay and concur in time if they are moored at their arrival times, considering their maximum handling

times.

L

i

j

k

δij

δjk
δki

δji

δkj
δik

Figure 5: Constraint on a non-ordered set of vessels.

5.5. Cover constraints on variables riqt

The last family of valid inequalities also refers to groups of vessels that cannot fit together at the

quay, but this time we add cover constraints on variables riqt. Now these subsets of vessels are identified

among the vessels that would concur in time if they were assigned to their ideal allocation, considering

their corresponding minimum handling times to ensure validity. Let S be a set of vessels satisfying
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these conditions and minDepSi the minimum departure time in the ideal assignment of the vessels in

S, not including vessel i. We can add the following inequality:

∑
i∈S

qmax
i∑

q=qmin
i

minDepS
i −1∑

t=ai

riqt ≤ |S| − 1 (21)

6. The problem of assigning specific cranes to vessels

A feasible solution for the BACAP only guarantees that in any period, the number of cranes being

used does not exceed the number of available cranes. However, it does not ensure that a feasible

assignment of cranes to vessels is possible. Figure 6 illustrates this situation. Each rectangle represents

a vessel and the number of the cranes assigned to it appears in parentheses. If there are 10 cranes

available, the solution in Figure 6(a) is feasible for the BACAP. Let us assume that the cranes are

numbered from 1 to 10, ordered from the beginning of the quay, and we assign cranes to vessels as

shown in Figure 6(b). Starting from the beginning of the planning period, cranes 1, 2, 3, and 4 are

assigned to vessel 1; cranes 5, 6, and 7 to vessel 2; and cranes 8, 9, and 10 to vessel 3. When vessel

7 starts being processed, vessel 3 has finished and so cranes 8, 9, and 10 can be assigned to vessel 7.

Similarly, we can assign cranes 1, 2, and 3 to vessel 4. When vessel 2 has finished, cranes 4 and 5 can

be assigned to vessel 6. However, no cranes can be assigned to vessel 8. When it starts being processed,

two cranes, 6 and 7, are available, but they cannot be moved to the position of vessel 8 without causing

a disruption in the handling of vessel 7. Therefore, in order to ensure a feasible crane assignment, the

model described in previous sections has to be extended to include the assignment of specific cranes to

each vessel in such a way that each vessel can be processed without interruptions or crane changes. In

this section we propose an integer linear model for the BACASP, extending the ideas of the BACAP

model, as well as an iterative procedure and a branch-and-cut algorithm, in which the model for the

BACAP can be used to obtain the solution for the BACASP.
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(a) Feasible solution for the BACAP.
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(b) Infeasible solution for the BACASP.

Figure 6: A solution of the BACAP not feasible for the BACASP.

6.1. An integer linear model for the BACASP

Let us consider that theQ cranes on the quay are numbered and ordered from 1 toQ starting from the

beginning of the quay. We define crane groups as groups of consecutive cranes, with cardinality varying

from 1 to Q. There will be Q groups composed of 1 crane, Q− 1 groups of 2 cranes: {1, 2}, {2, 3}, . . . ;

Q− 2 groups of 3 cranes, and so on, and a final group composed of the Q cranes. We denote the set of

these crane groups by QG. Each group g ∈ QG is defined by 3 parameters:

• ng= number of cranes in the group

• fg= number of the first crane in the group

• zg= number of the last crane in the group

As every vessel i has a minimum and a maximum number of cranes that can be assigned to it, qmin
i

and qmax
i , respectively, not all the crane groups can be assigned to every vessel. We define the set of

crane groups that can be assigned to vessel i as QGi = {g ∈ QG | qmin
i ≤ ng ≤ qmax

i }.

The variables defined in the previous sections also apply here, except that now rigt takes value 1 if

vessel i starts at time t being handled by crane group g, and 0 otherwise.

With these changes, a model for the BACASP is:
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Min
∑
i∈V

(Cw
i (ti − ai) + Cd

i hi + Cp
i ei) (22)

s. t.

H∑
t=ai

∑
g∈QGi

rigt = 1, ∀i ∈ V (23)

ti =

H∑
t=ai

∑
g∈QGi

rigt · t, ∀i ∈ V (24)

tj − ti −
H∑

t=ai

∑
g∈QGi

(rigt · u
ng

i )− (σij − 1)H ≥ 0, ∀i, j ∈ V, i ̸= j (25)

pj − (pi + li)− (δij − 1)L ≥ 0, ∀i, j ∈ V, i ̸= j (26)

σij + σji + δij + δji ≥ 1, ∀i, j ∈ V, i ̸= j (27)

pi + li ≤ L+ 1, ∀i ∈ V (28)∑
i∈V

∑
g∈QGi

t∑
τ=max(ai,t−u

ng
i +1)

rigτ · ng ≤ Q, ∀t ∈ T (29)

hi ≥ ti − si +

H∑
t=ai

∑
g∈QGi

(rigt · u
ng

i )− 1, ∀i ∈ V (30)

ei ≥ pi − di, ∀i ∈ V (31)

ei ≥ di − pi, ∀i ∈ V (32)

σij , δij ,∈ {0, 1}, ∀i, j ∈ V, i ̸= j (33)

rigt ∈ {0, 1}, ∀i ∈ V,∀g ∈ QGi∀t ∈ {ai, . . . ,H} (34)

hi, ei ≥ 0, ∀i ∈ V (35)

pi ≥ 1, ∀i ∈ V (36)

However, two more constraints have to be added:

• In each period t a crane group g can be assigned at most to one vessel

∑
i|g∈QGi

t∑
τ=max(ai,t−u

ng
i +1)

rigτ ≤ 1, ∀t ∈ T, ∀g ∈ QG (37)
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• If vessel i is moored to the right of vessel j, looking at them from the quay, the numbers of the

cranes assigned to i must be lower than the numbers of the cranes assigned to vessel j.

H∑
t=aj

∑
g∈QGj

fgrjgt −
H∑

t=ai

∑
g∈QGi

zgrigt ≥ 1−Q(δji + σij + σji), ∀i, j ∈ V, i ̸= j (38)

If δji = 1 or σij = 1 or σji = 1, the constraint is deactivated. But if δji = σij = σji = 0, then, by

constraint (27), δij = 1, and vessel i is to the right of vessel j, that is, i is below j in the space-time

diagram. In this case, the constraint ensures that the number of the first crane serving vessel j is greater

than the number of the last crane serving vessel i.

6.2. An iterative procedure using the BACAP model

The model described in Section 6.1 is necessarily more complex than the model previously presented

for the BACAP, because instead of having an index q for each crane, variables rigt have an index g

for each crane group admissible for vessel i. This added complexity resulting from a greater number

of variables may limit the applicability of the model for solving problems of large sizes. An alternative

procedure for solving the BACASP is to use the BACAP model in an iterative way, adding constraints

to the BACAP model if its solution is not feasible for the BACASP until a feasible and then optimal

solution is found.

Our iterative procedure takes as its starting point the following definitions and theorems proposed

by Türkoǧullari et al. (2014), which they use for a specific iterative procedure based on their model. A

vessel sequence v1, v2, . . . , vn in a given feasible solution of the BACAP is complete if v1 is the vessel

closest to the beginning of the quay, vn is the vessel closest to the end of the quay, vi and vi+1 are

two consecutive vessels with vi closer to the beginning of the quay, and two consecutive vessels in the

sequence concur at least for one time period. A complete sequence is said to be proper if the sum of

the number of cranes assigned to vessels in this sequence is less than or equal to the number of cranes

available at the quay. Otherwise, it is called an improper complete sequence. For example, in Figure

6(b) vessels v4, v6, v7, and v8 form a proper complete sequence, while vessels v1, v2, v7, and v8 form an

improper sequence. It is easy to show that given an optimal solution of the BACAP, an optimal solution

of the BACASP can be obtained from it if and only if every complete sequence of vessels extracted from

the solution of the BACAP is proper.

With regard to our iterative procedure, if a complete improper sequence S = s1, . . . , sn is found,

the following constraint can be added to our BACAP model to prevent vessels in the sequence from
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being assigned so as to form an improper complete sequence in that specific order at any given time

and position:

∑
i∈S

H∑
t=ai

qmax
i∑

q=qmin
i

q riqt ≤ Q+M

sn−1∑
j=s1

(σj,j+1 + σj+1,j − δj,j+1) + n− 1

 (39)

where: M =
∑

i∈S qmax
i − Q. If any pair of consecutive vessels in the sequence, vj and vj+1, are

separated in space, vj+1 being above vessel vj (δj,j+1 = 1), and are concurrent in time (σj,j+1 =

σj+1,j = 0), then the rightmost term in the expression takes value 0 and the assignment of a number of

cranes to each vessel, represented by variables riqt, must satisfy the condition that their sum does not

exceed Q. In any other case, the constraint is satisfied for any crane assignment.

Using this constraint, we have developed the iterative algorithm described in Algorithm 1. If just

one constraint is added for every improper sequence found, considering the vessels in the order in which

they appear in this sequence, the solution of the next BACAP model very frequently includes the same

set of vessels, but the order in which they appear in the sequence is changed. In order to prevent this

situation, at least partially, instead of including just one constraint for each improper sequence, we

also include other permutations of vessels. Nevertheless, as the length of the sequence can be great

in large instances, we only do this if the cardinality of the sequence does not exceed a parameter

MaxSizeSeqForPerm.

Unlike the iterative procedure presented by Türkoǧullari et al. (2014), the use of the relative position

variables σ and δ in our proposed constraint (39) allows us to prevent any specific improper complete

sequence from appearing in the integer solution regardless of the time and position of the vessels. In their

iterative procedure, for each improper complete sequence a constraint is added to prevent the vessels

from being placed in a position of time and space close to their specific locations in the solution in which

the sequence was found. Only a limited range of positions are forbidden in this way, so the procedure

might require additional iterations to prevent close positions. Moreover, no other permutations of the

same vessels are considered.
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Algorithm 1 Iterative algorithm for the BACAP–BACASP

Require: A formulation P for the BACAP.
Ensure: A solution for the BACAP without improper complete sequences
1: Solve P
2: while there is at least one improper complete sequence in an optimal solution of P do
3: for all improper complete vessel sequence S found do
4: Insert in P a cut for S using constraint (39)
5: if |S| ≤ MaxSizeSeqForPerm then
6: Insert in P such a cut for each other permutation of the vessels in S
7: end if
8: end for
9: Solve P

10: end while

6.3. A branch-and-cut procedure using the BACAP model

The iterative algorithm presented in the previous section involves solving the whole model with

the new cuts each time a new improper complete sequence is found in its optimal solution. From a

theoretical perspective, this method is not efficient and may be improved by identifying the cuts and

adding them to the model as soon as a new integer solution is obtained. Thus, if the integer solution

found contains new improper complete sequences, the corresponding cuts are added and the process

resumes, without having to start again from scratch.

Specifically, the algorithm can be described as a branch and bound applied to the BACAP model

in which at each node with a feasible integer solution a procedure is used to find all improper complete

sequences and introduce their corresponding cuts (39) as lazy constraints. Therefore, these new con-

straints only will be checked each time a new candidate integer solution is found during the process.

The candidate integer solution will be considered a feasible BACASP solution only if it has no new

improper complete sequences and all the lazy constraints checked are satisfied. As in the iterative

procedure previously explained, the parameter MaxSizeSeqForPerm is used to limit the number of

cuts introduced.

7. Computational experiments

The models and exact algorithms proposed were tested and compared with other recent proposals to

assess their efficiency and limits on instances of realistic size. In this section we describe the experiments

conducted and discuss their results.

21



7.1. Test instances and implementation issues

We have generated several sets of instances according to the criteria used in previous papers, extend-

ing them to consider the characteristics of the time-invariant BACAP and BACASP and the various

types of cost assumed in this study. The first set was generated applying the criteria of Park & Kim

(2003). From now on, it will be referred to as GenPK. For all the instances in this set we consider a

quay with length L = 1200 meters and a time horizon H = 300 hours, discretized in units of 10 meters

and 1 hour respectively. There are Q = 11 quay cranes available and qmin
i = 2, qmax

i = 5, ∀i ∈ V .

The set consists of 50 randomly generated instances, 10 instances for each number of vessels considered:

N ∈ {20, 25, 30, 35, 40}. The data relating to each vessel are determined by uniform distributions as

follows: U [1, 170] for the the arrival time, U [10, 48] for the number of crane-hours required, U [15, 35]

for the length, and U [1, 120] for the desired position on the quay. The desired departure time, which

is not specified in the paper, is determined by applying the criterion of Meisel & Bierwirth (2009):

si = ai + 1.5 ·min(uq
i ). The vessel handling time for each number of cranes results from dividing the

number of crane-hours specified for the vessel by the number of cranes, rounded up to the next integer.

Finally, the costs are the same for all vessels: Cw
i = 1000, Cd

i = 2000, Cp
i = 200, ∀i ∈ V .

We have also generated a set of instances based on the criteria applied by Meisel & Bierwirth (2009).

From this point on, it will be referred to as GenMB-10m. It consists of 50 instances, 10 for each number

of vessels considered: N ∈ {20, 30, 40, 50, 60}. The time unit is 1 hour, the planning horizon is 210

hours, and the quay is 1000 meters long. Moreover, there are 10 cranes on the quay and three different

kinds of vessels: Feeder, Medium and Jumbo. Within each instance, 60%, 30% and 10% of the vessels

correspond to these classes, respectively. The arrival times of vessels are uniformly distributed between

0 and 168 (one week). The reason why we chose a planning horizon of 210 hours instead of 168 is to

prevent the generation of infeasible instances. The lengths, workloads (in crane-hours), and min-max

number of cranes of the vessels are computed according to Table 1 taken from the cited paper, while

the desired position of each vessel i is generated from U [1, L + 1 − li]. For each vessel, each handling

time results from dividing its workload in crane-hours by the number of cranes assigned to it, rounding

up to the next integer. The desired departure time of each vessel i is ai+1.5 ·min(uq
i ). With respect to

the costs, we consider that they are the same for all the vessels: Cw
i = 1000, Cd

i = 2000, and Cp
i = 200.

We also generated a set, called GenMB-50m, with the same instances as GenMB-10m, changing

the discretization of vessel and quay lengths to 50 meters. In particular, the lengths were discretized

and rounded to the next integer, and the desired positions were discretized and rounded to the nearest

integer. The cost coefficients are also the same, except in the case of the deviation cost coefficient, which

was changed to maintain the same cost per meter as in GenMB-10m: Cp
i = 1000. The set GenMB-50m
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is only considered in comparisons with previous works.

Table 1: Specifications of the test instances generated by Meisel and Bierwirth

Class Length Crane-hours qmin
i qmax

i

Feeder U [8, 21] U [5, 15] 1 2
Medium U [21, 30] U [15, 50] 2 4
Jumbo U [30, 40] U [50, 65] 4 6

All the methods developed in the previous sections as well as those proposed by Türkoǧullari et al.

(2014) were implemented in C++ using GCC–G++ 6.2 and CPLEX 12.6, limiting the size of the search

tree to 30 GiB. The compilation was performed specifying the special parameters –O3 –march=corei7

in order to generate an executable file that makes the most of the processor. The experiments were

run on an Intel Core i7 2600 at 3.4GHz with 31.4GiB of RAM, running the operating system Ubuntu

14.04 GNU/Linux 3.13. The branch-and-cut algorithm was implemented on CPLEX defining a lazy

constraint callback so that the cuts introduced are considered as lazy constraints. As this option

disables the automatic parallel mode in CPLEX, the number of threads was manually set to 8 in order

to make the most of the processor.

7.2. Evaluation of the MILP for the BACAP and the proposed valid inequalities

In order to evaluate the quality of the model proposed for the BACAP and the influence of the

proposed valid inequalities, several experiments were conducted, first considering the proposed MILP

alone, and then adding each of the valid inequalities described in Section 5. Each configuration was run

on each instance with a time limit of 1 hour. In order to control the number of inequalities (19) added

to the model, the parameter α limiting the cardinality of the subsets of vessels involved in a constraint

was set to 4. This value was obtained in preliminary experiments, which showed that greater values led

to the introduction of so many constraints that computation time was dramatically increased. With

lower values very few cover constraints were added and thus their impact was in general very slight.

The results obtained for GenPK and GenMB-10m are shown in Tables 2 and 3, respectively. For

each subset of 10 instances of a given size, the tables show the number of instances solved to optimality,

the average computation time in seconds, and the average and maximum gap in percentage. For each

instance, the gap was provided by CPLEX as 100 · (ub− lb)/ub, where lb is the value of the best lower

bound obtained within the time limit, and ub is the value of the objective function corresponding to

the best integer solution achieved.
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Table 2: Solving the BACAP on instances GenPK

Model Vessels Optimum Time Avg. gap Max. gap
MILP 20 10 1.2 0 0

25 10 2.3 0 0
30 10 6.2 0 0
35 10 39.7 0 0
40 9 625.2 0.3 3.2

MILP + 20 10 1.2 0 0
constraints (16) 25 10 1.9 0 0

30 10 5.0 0 0
35 10 49.5 0 0
40 9 549.3 0.5 5.0

MILP + 20 10 1.1 0 0
constraints (17), (18) 25 10 2.0 0 0

30 10 4.8 0 0
35 10 48.0 0 0
40 9 585.0 0.5 4.9

MILP + 20 10 1.4 0 0
constraints (19) 25 10 2.1 0 0

30 10 5.0 0 0
35 10 72.5 0 0
40 9 494.5 0.5 4.6

MILP + 20 10 1.5 0 0
constraints (20) 25 10 2.4 0 0

30 10 5.6 0 0
35 10 51.6 0 0
40 9 561.7 0.8 8.0

MILP + 20 10 1.4 0 0
constraints (21) 25 10 2.4 0 0

30 10 5.2 0 0
35 10 39.6 0 0
40 9 532.1 0.5 5.2

MILP + 20 10 1.2 0 0
all constraints 25 10 1.7 0 0

30 10 4.0 0 0
35 10 53.8 0 0
40 9 595.2 0.6 6.4
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Table 3: Solving the BACAP on instances GenMB-10m

Model Vessels Optimum Time Avg. gap Max. gap
MILP 20 10 0.6 0 0

30 10 5.6 0 0
40 10 14.6 0 0
50 5 2440.3 2.6 7.7
60 0 3607.3 20.4 42.5

MILP + 20 10 0.6 0 0
constraints (16) 30 10 5.3 0 0

40 10 11.3 0 0
50 5 2455.6 3.0 8.7
60 0 3602.0 20.4 45.3

MILP + 20 10 0.7 0 0
constraints (17), (18) 30 10 4.8 0 0

40 10 15.3 0 0
50 6 2197.4 2.2 6.4
60 0 3604.2 16.6 27.5

MILP + 20 10 0.7 0 0
constraints (19) 30 10 4.3 0 0

40 10 12.5 0 0
50 5 2351.6 2.4 9.3
60 0 3602.2 18.8 40.1

MILP + 20 10 0.7 0 0
constraints (20) 30 10 5.6 0 0

40 10 16.1 0 0
50 5 2661.3 3.3 10.8
60 0 3602.3 19.8 39.9

MILP + 20 10 0.6 0 0
constraints (21) 30 10 5.4 0 0

40 10 19.0 0 0
50 5 2710.2 3.3 10.2
60 0 3601.8 18.4 36.2

MILP + 20 10 0.6 0 0
all constraints 30 10 4.5 0 0

40 10 9.5 0 0
50 7 2084.4 1.5 6.5
60 0 3602.3 16.2 30.0

The results in Table 2 show that all but one of the instances in the GenPK set were solved to

optimality. Only one instance of 40 vessels was not optimally solved, with a gap in the initial configu-

ration of 3.2%. Table 3 shows similar results for the GenMB-10m set. All the 40-vessel instances were

optimally solved, but only 5 of the instances of 50 vessels and none of the instances of 60 vessels could

be optimally solved. For instances of 50 vessels, the gaps for instances not optimally solved were quite

low, with a maximum of 7.7% in the initial configuration. For instances of 60 vessels, the gaps were

larger, with an average of 20.4% and a maximum of 42.5%. The information in these tables indicates

that 50 vessels is the maximum instance size for which the model can be used with a guarantee of

obtaining an optimal or quasi-optimal solution.

With respect to the influence of the valid inequalities, Table 2 also shows that the added inequalities,

separately or all together, do not improve the good performance of the initial model. However, in Table

3, we can observe that although each inequality by itself does not improve the results, by adding all the

valid inequalities two more instances were solved to optimality, the average running times were reduced,

except for the case of 60 vessels, and the average and maximum gaps were also decreased. For this

reason, we decided to use the model including all the valid inequalities in the next tests.
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7.3. Comparison with Türkoǧullari et al. (2014)

We compared our model with the BACAP model presented by Türkoǧullari et al. (2014), which

considers time-invariant crane assignment and solves exactly the same problem. Both models were run

over the same sets of instances: GenPK, GenMB-10m, and GenMB-50m, on the same computer. For

the set of instances GenPK, the model proposed by Türkoǧullari et al. (2014) could not even achieve

integer solutions for any of the instances within the time limit of 3600 seconds. The reason is that the

memory available in the computer (31.4 GiB) was not enough to construct the model. The results for

sets GenMB-10m and GenMB-50m are shown in Table 4. As in previous tables, times are given in

seconds and gaps in percentages. The number of instances in each group in which at least an integer

solution was found is shown in the rows labelled “Solved”. The empty fields indicate that no integer

solutions were found within the time limit and thus it was not possible to calculate the statistics.

Table 4: Results for the BACAP using the Türkoğullari et al. model and our MILP.

Vessels GenMB-10m GenMB-50m

Model by Our MILP with Model by Our MILP with
Türkoğullari et al. valid inequalities Türkoğullari et al. valid inequalities

20 Solved 10 10 10 10
Optimum 10 10 10 10
Avg. time 309.6 0.6 14.3 0.4
Avg. gap 0 0 0 0
Max. gap 0 0 0 0

30 Solved 10 10 10 10
Optimum 10 10 10 10
Avg. time 748.6 4.5 28.2 7.2
Avg. gap 0 0 0 0
Max. gap 0 0 0 0

40 Solved 5 10 10 10
Optimum 5 10 10 10
Avg. time 1567.0 9.5 47.6 17.0
Avg. gap 0 0 0 0
Max. gap 0 0 0 0

50 Solved 1 10 10 10
Optimum 0 7 9 4
Avg. time 2301.0 2084.4 963.4 2740.3
Avg. gap 62.4 1.5 0.2 3.8
Max. gap 62.4 6.5 2.2 15.1

60 Solved 0 10 10 10
Optimum 0 0 4 0
Avg. time 3602.3 2436.9 3601.9
Avg. gap 16.2 10.7 17.9
Max. gap 30.0 24.9 28.6

The results show that our approach clearly outperforms the results of the model presented by

Türkoǧullari et al. (2014) over the set of instances GenMB-10m (Table 4). We are able to solve to

optimality instances of up to 40 vessels in very short times, and almost all the instances of 50 vessels

in half an hour, attaining low gaps when optimality could not be proven within the time limit.

With respect to the set of instances GenMB-50m, the model proposed by Türkoǧullari et al. (2014)

obtains more optimal solutions and lower gaps for large instances with 50 and 60 vessels. The perfor-

mance of our model over this set of instances is similar to the one attained over the set GenMB-10m. The
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different performance of Türkoǧullari et al. (2014)’s model shown on the sets GenMB-10m and GenMB-

50m could be explained by its dependence on the discretization factor applied to the lengths of the quay

and the vessels. They consider the position at the berth as an index of their binary variables, and there-

fore the number of variables increases dramatically when the discretization is finer. In particular, their

model contains O(BNQH) binary variables, considering B as the number of quay sections resulting

from the discretization, whereas our model contains O(N2 + NQH) variables: O(NQH) variables r;

O(N) variables t, p, h and e; and O(N2) variables σ and δ. The considerably greater number of variables

in their model also explains the memory limitations it experienced in set GenPK.

All things considered, we can conclude that our model is a good approach to the BACAP, whatever

the discretization factor applied to the lengths, as it does not increase the number of variables. It can

be applied to any continuous berth allocation problem, regardless of the discretization used for quays

and vessels. As set GenMB-50m is a discretization of GenMB-10m, the results obtained by the BACAP

models on each instance can be compared. The costs of the solutions with a discretization of 10 meters

are lower than those with a discretization of 50 meters. Overall, the costs decrease 11% on average, since

the better utilization of the quay results in lower costs related to deviations from the desired position

of the vessels and better utilization of the cranes, which consequently reduces delays. Unless there are

specific reasons at a given terminal for using a discretization of 50 meters, a finer discretization, for

instance of 10 meters, will produce better solutions.

7.4. Evaluation of the exact methods for the BACASP

In this section we discuss the results of the MILP proposed for the BACASP as well as those of

the iterative procedure based on the BACAP described in Section 6. We also compare them with the

iterative procedure proposed by Türkoǧullari et al. (2014) on the sets of instances for which their model

could achieve feasible solutions. In Algorithm 1 we set MaxSizeSeqForPerm = 4, so the permutations

of an improper complete sequence are only included for sequences with up to 4 vessels. This value was

determined through preliminary experiments, in which lower values of MaxSizeSeqForPerm forced

the procedure to iterate over many specific permutations of 4 vessels, while a value of 5 caused the

introduction of too many constraints each time an improper complete sequence of 5 vessels was found.

MaxSizeSeqForPerm = 4 thus appeared as the value that leads to the best computation time.

Tables 5 and 6 contain the results on sets GenPK, GenMB-10m, and GenMB-50m. The tables have

the same structure as those of the previous section. The integer model (22)–(38) can fail to obtain an

integer solution within the time limit due to the size of the model. The iterative procedures can fail

because until they get to an optimal solution of the BACASP, the solutions obtained are not feasible
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and therefore the problem is not really solved. When using the model, if not all the instances of a

subgroup have been solved, the computation times and gaps are calculated considering only those for

which an integer solution has been found. In the case of the iterative procedures, there are no gaps,

because either the optimal solution is found or there is no feasible solution. Table 5 does not show

results for the iterative algorithm proposed by Türkoǧullari et al. (2014) because the model on which

it is based was not able to obtain even a feasible solution within the time limit for any instance.

Table 5: Comparing approaches to the BACASP on the set GenPK

MILP B&C Iterative
Vessels procedure
20 Solved 10 10 10

Optimum 10 10 10
Avg. time 153.3 20.3 1.8
Avg. gap 0 0
Max. gap 0 0

25 Solved 10 10 10
Optimum 10 10 10
Avg. time 329.3 48.0 3.1
Avg. gap 0 0
Max. gap 0 0

30 Solved 10 10 10
Optimum 10 10 10
Avg. time 955.3 304.4 15.4
Avg. gap 0 0
Max. gap 0 0

35 Solved 10 10 9
Optimum 6 6 9
Avg. time 2090.5 1547.2 640.6
Avg. gap 32.0 7.9
Max. gap 98.8 29.3

40 Solved 4 9 7
Optimum 1 1 7
Avg. time 3527.3 3359.2 622.7
Avg. gap 46.2 16.0
Max. gap 86.8 25.4
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Table 6: Comparing approaches to the BACASP on sets GenMB-10m and GenMB-50m

Vessels GenMB-10m GenMB-50m

MILP B&C Iterative Iterative by MILP B&C Iterative Iterative by
Türkoğullari Türkoğullari

20 Solved 10 10 10 9 10 10 10 10
Optimum 10 10 10 9 10 10 10 10
Avg. time 28.3 1.3 0.7 687.8 25.8 1.4 0.7 17.5
Avg. gap 0 0 0 0
Max. gap 0 0 0 0

30 Solved 10 10 10 6 10 10 10 10
Optimum 9 10 10 6 10 10 10 10
Avg. time 629.9 125.9 13.5 2077.3 551.2 53.4 18.1 238.9
Avg. gap 3.6 0 0 0
Max. gap 36.1 0 0 0

40 Solved 10 10 10 0 10 10 10 10
Optimum 8 9 10 0 8 8 10 10
Avg. time 1439.8 1000.0 85.8 3632.4 1353.7 1208.0 40.8 191.2
Avg. gap 4.0 1.4 5.9 2.0
Max. gap 22.3 14.0 42.4 12.2

50 Solved 6 10 2 0 8 10 2 4
Optimum 0 0 2 0 0 0 2 4
Avg. time 3611.7 3601.8 2059.0 3602.5 3601.8 1744.0 1132.3
Avg. gap 69.0 28.5 64.7 28.3
Max. gap 91.3 44.8 82.6 40.6

60 Solved 3 7 0 0 3 8 0 0
Optimum 0 0 0 0 0 0 0 0
Avg. time 3616.3 3602.1 3604.0 3602.3
Avg. gap 91.9 53.0 87.4 48.6
Max. gap 94.8 79.8 91.2 69.5

Tables 5 and 6 show that the proposed model for the BACASP is able to optimally solve most

instances with up to 35 vessels of set GenPK and up to 40 vessels of sets GenMB-10m and GenMB-

50m. As the model is more complex than that of the BACAP, the size of the instances optimally solved

decreases. Compared with the model, the branch-and-cut algorithm reduces the computation times

and gaps and also solves more instances in all sets. Unexpectedly, the proposed iterative procedure is

even faster than the branch-and-cut algorithm on the three test sets. This may be explained by the

special methods used by the solver when no user cuts are introduced. The main disadvantage of the

iterative procedure is that for instances in which the BACAP model is difficult to solve, very few, if any,

iterations can be done within the time limit and almost always the procedure fails to obtain a feasible

solution. The branch-and-cut, in contrast, is able to obtain feasible solutions for all instances with 50

vessels and most instances with 60 vessels.

Comparing with the iterative procedure proposed by Türkoǧullari et al. (2014) on sets GenMB-10m

and GenMB-50m, for which their BACAP model was able to obtain solutions, it can be observed that

their procedure works slightly better on instances with 50 vessels in set GenMB-50m and clearly worse

in general on set GenMB-10m, basically repeating the behaviour of the BACAP models. Again, our

exact methods have been shown to be very stable, regardless of the discretization factor used.
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8. Conclusions

The berth allocation and quay crane assignment problem (BACAP) has become an important topic

of research during the last decade. Researchers generally tackle this problem by considering either time-

invariant or variable-in-time crane assignment. Although terminal operators aim to maximize the use

of cranes, addressing the problem by considering a variable-in-time crane assignment usually introduces

important shortcomings in the optimization process, such as the need for too many variables, the need

to minimize the movements of the cranes between vessels and the considerable impact that the time

spent by the cranes to perform such movements —which is usually ignored in academic studies—, may

have on the overall plan. For this reason, the time-invariant version appears as an alternative in which

a little sacrifice in the optimal use of the cranes may lead to solutions that are easier to implement in

real terminals without further non-optimal changes.

The continuous time-invariant BACAP has received less attention in the academic literature than the

variable-in-time version. The models and exact methods in the state-of-the-art proposed for this variant

use too many variables and do not take advantage of the continuous nature of the quay. Consequently,

new approaches might outperform them in both the computation time required and the size of the

instances solved to optimality.

In this study we have proposed new mixed integer linear models and exact methods which overcome

the shortcomings in the state-of-the-art and do achieve better results in realistic problem instances.

Unlike other previously proposed formulations, the models presented here do not consider a discretized

quay length and use instead a continuous variable for the berthing position of the vessels. This makes

our methods truly continuous, and consequently their performance does not depend on the discretization

factor used for the lengths of the quay and the vessels.

Our initial formulation proposed for the BACAP has also been enhanced by adding several families

of valid inequalities, which are able to reduce computation times and gaps. As the computational study

shows, the model has a stable behaviour, obtaining optimal or near-optimal results on different classes

of instances with up to 50 vessels. In fact, it can solve optimally instances for which the state-of-the-art

methods are not able to achieve feasible solutions under the same experimental conditions.

We have also introduced a new mixed integer model for the BACASP, which assigns specific cranes

to the service of each vessel and thus produces more realistic solutions that can be used in practical

situations. Although this model is more complex than the BACAP model, it is useful to solve instances

with up to 40 vessels. Nevertheless, in order to solve larger instances of the BACASP, an iterative

procedure and a branch-and-cut algorithm have also been designed, using the BACAP model and a

new type of constraint.
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Our approach could be extended to the variable-in-time crane assignment version of the BACAP in

the future. Another potential line of research would be the integration of the BACAP with the Quay

Crane Scheduling Problem, in line with the increasing trend of integrating all problems arising in each

area of a container terminal. The BACAP could also be studied considering terminals consisting of a

number of quays with different characteristics and numbers of cranes.
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