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Abstract We study the smooth structure of convex functions by generalizing a powerful con-
cept so-called self-concordance introduced by Nesterov and Nemirovskii in the early 1990s to a
broader class of convex functions, which we call generalized self-concordant functions. This notion
allows us to develop a unified framework for designing Newton-type methods to solve convex opti-
mization problems. The proposed theory provides a mathematical tool to analyze both local and
global convergence of Newton-type methods without imposing unverifiable assumptions as long
as the underlying functionals fall into our class of generalized self-concordant functions. First, we
introduce the class of generalized self-concordant functions, which covers the class of standard self-
concordant functions as a special case. Next, we establish several properties and key estimates of
this function class which can be used to design numerical methods. Then, we apply this theory to
develop several Newton-type methods for solving a class of smooth convex optimization problems
involving generalized self-concordant functions. We provide an explicit step-size for a damped-step
Newton-type scheme which can guarantee a global convergence without performing any globaliza-
tion strategy. We also prove a local quadratic convergence of this method and its full-step variant
without requiring the Lipschitz continuity of the objective Hessian mapping. Then, we extend our
result to develop proximal Newton-type methods for a class of composite convex minimization
problems involving generalized self-concordant functions. We also achieve both global and local
convergence without additional assumptions. Finally, we verify our theoretical results via several
numerical examples, and compare them with existing methods.

Keywords Generalized self-concordance · Newton-type method · proximal Newton method ·
quadratic convergence · local and global convergence · convex optimization

Mathematics Subject Classification (2000) 90C25 · 90-08

1 Introduction

The Newton method is a classical numerical scheme for solving systems of nonlinear equations
and smooth optimization [46,49]. However, there are at least two reasons that prevent the use
of such methods from solving large-scale problems. Firstly, while these methods often offer a fast
local convergence rate, which can be up to a quadratic rate, their global convergence has not
been well-understood [45]. In practice, one can use a damped-step scheme utilizing the Lipschitz
constant of the objective derivatives to compute a suitable step-size as often done in gradient-type
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methods, or incorporate the algorithm with a globalization strategy such as line-search, trust-
region, or filter to guarantee a descent property [46]. Both strategies allow us to prove a global
convergence of the underlying Newton-type method in some sense. Unfortunately, in practice,
there exist several problems whose objective function does not have global Lipschitz gradient or
Hessian such as logarithmic or reciprocal functions. This class of problems does not provide us some
uniform bounds to obtain a constant step-size in optimization algorithms. On the other hand,
using a globalization strategy for determining step-sizes often requires centralized computation
such as function evaluations, which prevent us from using distributed computation, and stochastic
descent methods. Secondly, Newton algorithms are second-order methods, which often require a
high per-iteration complexity due to the operations on the Hessian of the objective function or its
approximations. In addition, these methods require the underlying functionals to be smooth up to
a given smoothness levels, which does not often hold in many practical models.

Motivation: In recent years, there has been a great interest in Newton-type methods for solving
convex optimization problems and monotone equations due to the development of new techniques
and mathematical tools in optimization, machine learning, and randomized algorithms [6,11,15,
17,33,41,42,52,53,55,56,59]. Several combinations of Newton-type methods and other techniques
such as proximal operators [8], cubic regularization [41], gradient regularization [53], randomized
algorithms such as sketching [52], subsampling [17], and fast eigen-decomposition [25] have opened
up a new research direction and attracted a great attention in solving nonsmooth and large-
scale problems. Hitherto, research in this direction remains focusing on specific classes of problems
where standard assumptions such as nonsingularity and Hessian Lipschitz continuity are preserved.
However, such assumptions do not hold for many other examples as shown in [60]. Moreover, if
they are satisfied, we often get a lower bound of possible step-sizes for our algorithm, which may
lead to a poor performance, especially in large-scale problems.

In the seminar work [44], Nesterov and Nemirovskii showed that the class of log-barriers does
not satisfy the standard assumptions of the Newton method if the solution of the underlying prob-
lem is closed to the boundary of the barrier function domain. They introduced a powerful concept
called “self-concordance” to overcome this drawback and developed new Newton schemes to achieve
global and local convergence without requiring any additional assumption, or a globalization strat-
egy. While the self-concordance notion was initially invented to study interior-point methods, it is
less well-known in other communities. Recent works [1,13,37,60,65,70] have popularized this con-
cept to solve other problems arising from machine learning, statistics, image processing, scientific
computing, and variational inequalities.

Our goals: In this paper, motivated by [1,61,70], we aim at generalizing the self-concordance
concept in [44] to a broader class of smooth and convex functions. To illustrate our idea, we
consider a univariate smooth and convex function ϕ : R→ R. If ϕ satisfies the inequality |ϕ′′′(t)| ≤
Mϕϕ

′′(t)3/2 for all t in the domain of ϕ and for a given constant Mϕ ≥ 0, then we say that ϕ is
self-concordant (in Nesterov and Nemirovskii’s sense [44]). We instead generalize this inequality to

|ϕ′′′(t)| ≤Mϕϕ
′′(t)

ν
2 , (1)

for all t in the domain of ϕ, and for given constants ν > 0 and Mϕ ≥ 0.
We emphasize that generalizing from univariate to multivariate functions in the standard self-

concordant case (i.e., ν = 3) [44] preserves several important properties including the multilinear
symmetry [39, Lemma 4.1.2], while, unfortunately, they do not hold for the case ν 6= 3. We therefore
modify the definition in [44] to overcome this drawback. Note that a similar idea has been also
studied in [1,61] for a class of logistic-type functions. Nevertheless, the definition using in these
papers is limited, and still creates certain difficulty for developing further theory in general cases.

Our second goal is to develop a unified mechanism to analyze convergence (including global
and local convergence) of the following Newton-type scheme:

xk+1 := xk − skF ′(xk)−1F (xk), (2)
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where F can be represented as the right-hand side of a smooth monotone equation F (x) = 0, or
the optimality condition of a convex optimization or a convex-concave saddle-point problem, F ′

is the Jacobian map of F , and sk ∈ (0, 1] is a given step-size. Despite the Newton scheme (2) is
invariant to a change of variables [15], its convergence property relies on the growth of the Hessian
mapping along the Newton iterative process. In classical settings, the Lipschitz continuity and the
non-degeneracy of the Hessian mapping in a neighborhood of a given solution are key assumptions
to achieve local quadratic convergence rate [15]. These assumptions have been considered to be
standard, but they are often very difficult to check in practice, especially the second requirement.
A natural idea is to classify the functionals of the underlying problem into a known class of
functions to choose a suitable method for minimizing it. While first-order methods for convex
optimization essentially rely on the Lipschitz gradient continuity, Newton schemes usually use the
Lipschitz continuity of the Hessian mapping and its non-degeneracy to obtain a well-defined Newton
direction as we have mentioned. For self-concordant functions, the second condition automatically
holds, while the first assumption fails to satisfy. However, both full-step and damped-step Newton
methods still work in this case by appropriately choosing a suitable metric. This situation has been
observed and standard assumptions have been modified in different directions to still guarantee
the convergence of Newton-type methods, see [15] for an intensive study of generic Newton-type
methods, and [44,39] for the self-concordant function class.

Our approach: We first attempt to develop some background theory for a broad class of smooth
and convex functions under the structure (1). By adopting the local norm defined via the Hessian
mapping of such a convex function from [44], we can prove some lower and upper bound estimates
for the local norm distance between two points in the domain as well as for the growth of the
Hessian mapping. Together with this background theory, we also identify a class of functions using
in generalized linear models [36,38] as well as in empirical risk minimization [66] that falls into our
generalized self-concordance class for many well-known loss-type functions as listed in Table 1.

Applying our generalized self-concordant theory, we then develop a class of Newton-type meth-
ods to solve the following composite convex minimization problem:

F ? := min
x∈Rp

{
F (x) := f(x) + g(x)

}
, (3)

where f is a generalized self-concordant function in our context, and g is a proper, closed, and
convex function that can be referred to as a regularization term. We consider two cases. The first
case is a non-composite convex problem in which g is vanished (i.e., g = 0). In the second case, we
assume that g is equipped with a “tractably” proximal operator (see (34) for the definition).

Our contribution: To this end, our main contribution can be summarized as follows.

(a) We generalize the self-concordant notion in [39] to a more broader class of smooth convex
functions, which we call generalized self-concordance. We identify several loss-type functions
that can be cast into our generalized self-concordant class. We also prove several fundamental
properties and show that the sum and linear transformation of generalized self-concordant
functions are generalized self-concordant for a given range of ν or under suitable assumptions.

(b) We develop lower and upper bounds on the Hessian matrix, the gradient map, and the function
values for generalized self-concordant functions. These estimates are key to analyze several
numerical optimization methods including Newton-type methods.

(c) We propose a class of Newton methods including full-step and damped-step schemes to mini-
mize a generalized self-concordant function. We explicitly show how to choose a suitable step-
size to guarantee a descent direction in the damped-step scheme, and prove a local quadratic
convergence for both the damped-step and the full-step schemes using a suitable metric.

(d) We also extend our Newton schemes to handle the composite setting (3). We develop both full-
step and damped-step proximal Newton methods to solve this problem and provide a rigorous
theoretical convergence guarantee in both local and global sense.
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(e) We also study a quasi-Newton variant of our Newton scheme to minimize a generalized self-
concordant function. Under a modification of the well-known Dennis-Moré condition [14] or a
BFGS update, we show that our quasi-Newton method locally converges at a superlinear rate
to the solution of the underlying problem.

Let us emphasize the following aspects of our contribution. Firstly, we observe that the self-
concordance notion is a powerful concept and has widely been used in interior-point methods as
well as in other optimization schemes [27,34,60,70], generalizing it to a broader class of smooth
convex functions can substantially cover a number of new applications or can develop new methods
for solving old problems including logistic and multimonomial logistic regression, optimization
involving exponential objectives, and distance-weighted discrimination problems in support vector
machine (see Table 1 below). Secondly, verifying theoretical assumptions for convergence guarantees
of a Newton method is not trivial, our theory allows one to classify the underlying functions into
different subclasses by using different parameters ν and Mϕ in order to choose suitable algorithms
to solve the corresponding optimization problem. Thirdly, the theory developed in this paper can
potentially apply to other optimization methods such as gradient-type, sketching and sub-sampling
Newton, and Frank-Wolfe’s algorithms as done in the literature [48,52,55,56,60]. Finally, our
generalization also shows that it is possible to impose additional structure such as self-concordant
barrier to develop path-following scheme or interior-point-type methods for solving a subclass of
composite convex minimization problems of the form (3). We believe that our theory is not limited
to convex optimization, but can be extended to solve convex-concave saddle-point problems, and
monotone equations/inclusions involving generalized self-concordant functions [65].

Summary of generalized self-concordant properties: For our reference convenience, we pro-
vide a short summary on the main properties of generalized self-concordant (gsc) functions below.

Result Property Range of ν

Definitions 1 and 2 definitions of gsc functions ν > 0

Proposition 1 sum of gsc functions ν ≥ 2

Proposition 2 affine transformation of gsc functions
with A(x) = Ax+ b

ν ∈ (0, 3] for general A
ν > 3 for over-completed A

Proposition 3(a) non-degenerate property ν ≥ 2

Proposition 3(b) unboundedness ν > 0

Proposition 4(a) gsc and strong convexity ν ∈ (0, 3]

Proposition 4(b) gsc and Lipschitz gradient continuity ν ≥ 2

Proposition 6 if f∗ is the conjugate of a gsc function
f , then ν + ν∗ = 6

ν∗ ∈ (0, 6) if p = 1 (univariate)
ν∗ ∈ [3, 6) if p > 1 (multivariate)

Propositions 7, 8,
9, and 10

local norm, Hessian, gradient, and
function value bounds

ν ≥ 2

Although several results hold for a different range of ν, the complete theory only holds for ν ∈ [2, 3].
However, this is sufficient to cover two important cases: ν = 2 in [1,2] and ν = 3 in [44].

Related work: Since the self-concordance concept was introduced in 1990s [44], its first extension
is perhaps proposed by [1] for a class of logistic regression. In [61], the authors extended [1] to
study proximal Newton method for logistic, multinomial logistic, and exponential loss functions. By
augmenting a strongly convex regularizer, Zhang and Lin in [70] showed that the regularized logistic
loss function is indeed standard self-concordant. In [2] Bach continued exploiting his result in [1] to
show that the averaging stochastic gradient method can achieve the same best known convergence
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rate as in strongly convex case without adding a regularizer. In [60], the authors exploited standard
self-concordance theory in [44] to develop several classes of optimization algorithms including
proximal Newton, proximal quasi-Newton, and proximal gradient methods to solve composite
convex minimization problems. In [34], Lu extended [60] to study randomized block coordinate
descent methods. In a recent paper [21], Gao and Goldfarb investigated quasi-Newton methods for
self-concordant problems. As another example, [51] proposed an alternative to the standard self-
concordance, called self-regularity. The authors applied this theory to develop a new paradigm for
interior-point methods. The theory developed in this paper, on the one hand, is a generalization of
the well-known self-concordance notion developed in [44]; on the other hand, it also covers the work
in [1,59,70] as specific examples. Several concrete applications and extensions of self-concordance
notion can also be found in the literature including [27,31,48,51]. Recently, [13] exploited smooth
structures of exponential functions to design interior-point methods for solving two fundamental
problems in scientific computing called matrix scaling and balancing.
Paper organization: The rest of this paper is organized as follows. Section 2 develops the foun-
dation theory for our generalized self-concordant functions including definitions, examples, basic
properties, Fenchel’s conjugate, smoothing technique, and key bounds. Section 3 is devoted to
studying full-step and damped-step Newton schemes to minimize a generalized self-concordant
function including their global and local convergence guarantees. Section 4 considers to the com-
posite setting (3) and studies proximal Newton-type methods, and investigates their convergence
guarantees. Section 5 deals with a quasi-Newton scheme for solving the noncomposite problem of
(3). Numerical examples are provided in Section 6 to illustrate advantages of our theory. Finally,
for clarity of presentation, several technical results and proofs are moved to the appendix.

2 Theory of generalized self-concordant functions
We generalize the class of self-concordant functions introduced by Nesterov and Nemirovskii in [39]
to a broader class of smooth and convex functions. We identify several examples of such functions.
Then, we develop several properties of this function class by utilizing our new definitions.
Notation: Given a proper, closed, and convex function f : Rp → R ∪ {+∞}, we denote by
dom(f) := {x ∈ Rp | f(x) < +∞} the domain of f , and by ∂f(x) :=

{
w ∈ Rp | f(y) ≥ f(x) +

〈w, y−x〉, ∀y ∈ dom(f)
}

the subdifferential of f at x ∈ dom(f). We use C3(dom(f)) to denote the
class of three times continuously differentiable functions on its open domain dom(f). We denote
by ∇f its gradient map, by ∇2f its Hessian map, and by ∇3f its third-order derivative. For a
twice continuously differentiable convex function f , ∇2f is symmetric positive semidefinite, and
can be written as ∇2f(·) � 0. If it is positive definite, then we write ∇2f(·) � 0.

Let R+ and R++ denote the sets of nonnegative and positive real numbers, respectively. We
use Sp+ and Sp++ to denote the sets of symmetric positive semidefinite and symmetric positive
definite matrices of the size p× p, respectively. Given a p× p matrix H � 0, we define a weighted

norm with respect to H as ‖u‖H := 〈Hu, u〉1/2 for u ∈ Rp. The corresponding dual norm is

‖v‖∗H :=
〈
H−1v, v

〉1/2
. If H = I, the identity matrix, then ‖u‖H = ‖u‖∗H = ‖u‖2, where ‖·‖2 is the

standard Euclidean norm. Note that ‖ · ‖∗2 = ‖ · ‖2.

We say that f is strongly convex with the strong convexity parameter µf ≥ 0 if f(·)− µf
2 ‖·‖

2
is

convex. We also say that f has Lipschitz gradient if ∇f is Lipschitz continuous with the Lipschitz
constant Lf ∈ [0,+∞), i.e., ‖∇f(x)−∇f(y)‖∗ ≤ Lf ‖x− y‖ for all x, y ∈ dom(f).

For f ∈ C3(dom(f)), if ∇2f(x) � 0 at a given x ∈ dom(f), then we define a local norm
‖u‖x := 〈∇2f(x)u, u〉1/2 as a weighted norm of u with respect to ∇2f(x). The corresponding dual

norm ‖v‖∗x, is defined as ‖v‖∗x := max {〈v, u〉 | ‖u‖x ≤ 1} =
〈
∇2f(x)−1v, v

〉1/2
for v ∈ Rp.

2.1 Univariate generalized self-concordant functions

Let ϕ : R→ R be a three times continuously differentiable function on the open domain dom(ϕ).
Then, we write ϕ ∈ C3 (dom(ϕ)). In this case, ϕ is convex if and only if ϕ′′(t) ≥ 0 for all t ∈ dom(ϕ).
We introduce the following definition.
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Definition 1 Let ϕ : R→ R be a C3 (dom(ϕ)) and univariate function with open domain dom(ϕ),
and ν > 0 and Mϕ ≥ 0 be two constants. We say that ϕ is (Mϕ, ν)-generalized self-concordant if

|ϕ′′′(t)| ≤Mϕϕ
′′(t)

ν
2 , ∀t ∈ dom(ϕ). (4)

The inequality (4) also indicates that ϕ′′(t) ≥ 0 for all t ∈ dom(f). Hence, ϕ is convex. Clearly, if
ϕ(t) = a

2 t
2+bt for any constants a ≥ 0 and b ∈ R, we have ϕ′′(t) = a and ϕ′′′(t) = 0. The inequality

(4) is automatically satisfied for any ν > 0 and Mϕ ≥ 0. The smallest value of Mϕ is zero. Hence,
any convex quadratic function is (0, ν)-generalized self-concordant for any ν > 0. While (4) holds
for any other constant M̂ϕ ≥Mϕ, we often require that Mϕ is the smallest constant satisfying (4).

Example 1 Let us now provide some common examples satisfying Definition 1.

(a) Standard self-concordant functions: If we choose ν = 3, then (4) becomes |ϕ′′′(t)| ≤Mϕϕ
′′(t)3/2,

which is the standard self-concordant functions in R introduced in [44].

(b) Logistic functions: In [1], Bach modified the standard self-concordant inequality in [44] to
obtain |ϕ′′′(t)| ≤ Mϕϕ

′′(t), and showed that the well-known logistic loss ϕ(t) := log(1 + e−t)
satisfies this definition. In [61] the authors also exploited this definition, and developed a class of
first-order and second-order methods to solve composite convex minimization problems. Hence,
ϕ(t) := log(1 + e−t) is a generalized self-concordant function with Mϕ = 1 and ν = 2.

(c) Exponential functions: The exponential function ϕ(t) := e−t also belongs to (4) with Mϕ = 1
and ν = 2. This function is often used, e.g., in Ada-boost [32], or in matrix scaling [13].

(d) Distance-weighted discrimination (DWD): We consider a more general function ϕ(t) := 1
tq on

dom(ϕ) = R++ and q ≥ 1 studied in [35] for DWD using in support vector machine. As shown

in Table 1, this function satisfies Definition 1 with Mϕ = q+2
(q+2)
√
q(q+1)

and ν = 2(q+3)
q+2 ∈ (2, 3).

(e) Entropy function: We consider the well-known entropy function ϕ(t) := t ln(t) for t > 0. We
can easily show that |ϕ′′′(t)| = 1

t2 = ϕ′′(t)2. Hence, it is generalized self-concordant with ν = 4
and Mϕ = 1 in the sense of Definition 1.

(f) Arcsine distribution: We consider the function ϕ(t) := 1√
1−t2 for t ∈ (−1, 1). This function is

convex and smooth. Moreover, we verify that it satisfies Definition 1 with ν = 14
5 ∈ (2, 3) and

Mϕ = 3
√

495−105
√

21

(7−
√

21)7/5
< 3.25. We can generalize this function to ϕ(t) := [(t− a)(b− t)]−q for

t ∈ (a, b), where a < b and q > 0. Then, we can show that ν = 2(q+3)
q+2 ∈ (2, 3).

(g) Robust Regression: Consider a monomial function ϕ(t) := tq for q ∈ (1, 2) studied in [69] for

robust regression using in statistics. Then, Mϕ = 2−q
(2−q)
√
q(q−1)

and ν = 2(3−q)
2−q ∈ (4,+∞).

As concrete examples, the following table, Table 1, provides a non-exhaustive list of generalized
self-concordant functions used in the literature.

Table 1 Examples of univariate generalized self-concordant functions (F1,1
L means that∇ϕ is Lipschitz continuous).

Function name Form of ϕ(t) ν Mf dom(ϕ) Application F1,1
L Reference

Log-barrier − ln(t) 3 2 R++ Poisson no [10,39,44]

Entropy-barrier t ln(t)− ln(t) 3 2 R++ Interior-point no [39]

Logistic ln(1 + e−t) 2 1 R Classification yes [28]

Exponential e−t 2 1 R AdaBoost, etc no [13,32]

Negative power t−q, (q > 0)
2(q+3)
q+2

q+2
(q+2)
√
q(q+1)

R++ DWD no [35]

Arcsine distribution 1√
1−t2

14
5 < 3.25 (−1, 1) Random walks no [23]

Positive power tq, (q ∈ (1, 2))
2(3−q)

2−q
2−q

(2−q)√q(q−1)
R+ Regression no [69]

Entropy t ln(t) 4 1 R+ KL divergence no [10]
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Remark 1 All examples given in Table 1 fall into the case ν ≥ 2. However, we note that Definition 1
also covers [70, Lemma 1] as a special case when ν ∈ (0, 2). Unfortunately, as we will see in what
follows, it is unclear how to generalize several properties of generalized self-concordance from
univariate to multivariable functions for ν ∈ (0, 2), except for strongly convex functions.

Table 1 only provides common generalized self-concordant functions using in practice. However,
it is possible to combine these functions to obtain mixture functions that preserve the generalized
self-concordant inequality given in Definition 1. For instance, the barrier entropy t ln(t) − ln(t) is
a standard self-concordant function, and it is the sum of the entropy t ln(t) and the negative loga-
rithmic function − log(t), which are generalized self-concordant with ν = 4 and ν = 3, respectively.

2.2 Multivariate generalized self-concordant functions

Let f : Rp → R be a C3(dom(f)) smooth and convex function with open domain dom(f). Given∇2f
the Hessian of f , x ∈ dom(f), and u, v ∈ Rp, we consider the function ψ(t) := 〈∇2f(x+ tv)u, u〉.
Then, it is obvious to show that

ψ′(t) := 〈∇3f(x+ tv)[v]u, u〉.

for t ∈ R such that x+ tv ∈ dom(f), where ∇3f is the third-order derivative of f . It is clear that

ψ(0) = 〈∇2f(x)u, u〉 = ‖u‖2x. By using the local norm, we generalize Definition 1 to multivariate
functions f : Rp → R as follows.

Definition 2 A C3-convex function f : Rp → R is said to be an (Mf , ν)-generalized self-concordant
function of the order ν > 0 and the constant Mf ≥ 0 if, for any x ∈ dom(f) and u, v ∈ Rp, it holds∣∣〈∇3f(x)[v]u, u〉

∣∣ ≤Mf ‖u‖2x ‖v‖
ν−2
x ‖v‖3−ν2 . (5)

Here, we use a convention that 0
0 = 0 for the case ν < 2 or ν > 3. We denote this class of functions

by F̃Mf ,ν(dom(f)) (shortly, F̃Mf ,ν when dom(f) is explicitly defined).

Let us consider the following two extreme cases:

1. If ν = 2, (5) leads to
∣∣〈∇3f(x)[v]u, u〉

∣∣ ≤ Mf ‖u‖2x ‖v‖2, which collapses to the definition
introduced in [1] by letting u = v.

2. If ν = 3 and u = v, (5) reduces to
∣∣〈∇3f(x)[u]u, u〉

∣∣ ≤ Mf ‖u‖3x, Definition 2 becomes the
standard self-concordant definition introduced in [39,44].

We emphasize that Definition 2 is not symmetric, but can avoid the use of multilinear mappings
as required in [1,44]. However, by [44, Proposition 9.1.1] or [39, Lemma 4.1.2], Definition 2 with
ν = 3 is equivalent to [39, Definition 4.1.1] for standard self-concordant functions.

2.3 Basic properties of generalized self-concordant functions

We first show that if f1 and f2 are two generalized self-concordant functions, then β1f1 + β2f2 is
also a generalized self-concordant for any β1, β2 > 0 according to Definition 2.

Proposition 1 (Sum of generalized self-concordant functions) Let fi be (Mfi , ν)-generalized
self-concordant functions satisfying (5), where Mfi ≥ 0 and ν ≥ 2 for i = 1, · · · ,m. Then, for βi >
0, i = 1, 2, · · · ,m, the function f(x) :=

∑m
i=1 βifi(x) is well-defined on dom(f) =

⋂m
i=1 dom(fi),

and is (Mf , ν)-generalized self-concordant with the same order ν ≥ 2 and the constant

Mf := max
{
β

1− ν2
i Mfi | 1 ≤ i ≤ m

}
≥ 0.
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Proof It is sufficient to prove for m = 2. For m > 2, it follows from m = 2 by induction. By [39,
Theorem 3.1.5], f is a closed and convex function. In addition, dom(f) = dom(f1) ∩ dom(f2). Let
us fix some x ∈ dom(f) and u, v ∈ Rp. Then, by Definition 2, we have∣∣〈∇3fi(x)[v]u, u〉

∣∣ ≤Mfi〈∇2fi(x)u, u〉〈∇2fi(x)v, v〉
ν−2

2 ‖v‖3−ν2 , i = 1, 2.

Denote wi := 〈∇2fi(x)u, u〉 ≥ 0 and si := 〈∇2fi(x)v, v〉 ≥ 0 for i = 1, 2. We can derive∣∣〈∇3f(x)[v]u, u〉
∣∣

〈∇2f(x)u, u〉〈∇2f(x)v, v〉 ν−2
2

≤
β1

∣∣〈∇3f1(x)[v]u, u〉
∣∣+ β2

∣∣〈∇3f2(x)[v]u, u〉
∣∣

〈∇2f(x)u, u〉〈∇2f(x)v, v〉 ν−2
2

≤

[
Mf1β1w1s

ν−2
2

1 +Mf2β2w2s
ν−2

2
2

(β1w1 + β2w2)(β1s1 + β2s2)
ν−2

2

]
[T ]

‖v‖3−ν2 . (6)

Let ξ := β1w1

β1w1+β2w2
∈ [0, 1] and η := β1s1

β1s1+β2s2
∈ [0, 1]. Then, β2w2

β1w1+β2w2
= 1 − ξ ≥ 0 and

β2s2
β1s1+β2s2

= 1− η ≥ 0. Hence, the term [T ] in the square brackets of (6) becomes

h(ξ, η) := β
1− ν2
1 Mf1ξη

ν−2
2 + β

1− ν2
2 Mf2(1− ξ)(1− η)

ν−2
2 , ξ, η ∈ [0, 1].

Since ν ≥ 2 and ξ, η ∈ [0, 1], we can upper bound h(ξ, η) as

h(ξ, η) ≤ β1− ν2
1 Mf1

ξ + β
1− ν2
2 Mf2

(1− ξ), ∀ξ ∈ [0, 1].

The right-hand side function is linear in ξ on [0, 1]. It achieves the maximum at its boundary.
Hence, we have

max
ξ∈[0,1],η∈[0,1]

h(ξ, η) ≤ max
{
β

1− ν2
1 Mf1

, β
1− ν2
2 Mf2

}
.

Using this estimate into (6), we can show that f(·) := β1f1(·) + β2f2(·) is (Mf , ν)-generalized

self-concordant with Mf := max
{
β

1− ν2
1 Mf1 , β

1− ν2
2 Mf2

}
. �

Using Proposition 1, we can also see that if f is (Mf , ν)-generalized self-concordant, and β > 0,
then g(x) := βf(x) is also (Mg, ν)-generalized self-concordant with the constant Mg := β1− ν2Mf .
The convex quadratic function q(x) := 1

2 〈Qx, x〉 + c>x with Q ∈ Sp+ is (0, ν)-generalized self-
concordant for any ν > 0. Hence, by Proposition 1, if f is (Mf , ν)-generalized self-concordant,
then f(x) + 1

2 〈Qx, x〉+ c>x is also (Mf , ν)-generalized self-concordant.
Next, we consider an affine transformation of a generalized self-concordant function.

Proposition 2 (Affine transformation) Let A(x) := Ax+ b be an affine transformation from
Rp to Rq, and f be an (Mf , ν)-generalized self-concordant function with ν > 0. Then, the following
statements hold:

(a) If ν ∈ (0, 3], then g(x) := f(A(x)) is (Mg, ν)-generalized self-concordant with Mg := Mf ‖A‖3−ν .

(b) If ν > 3 and λmin(A>A) > 0, then g(x) := f(A(x)) is (Mg, ν)-generalized self-concordant with

Mg := Mfλmin(A>A)
3−ν

2 , where λmin(A>A) is the smallest eigenvalue of A>A.

Proof Since g(x) = f(A(x)) = f(Ax + b), it is easy to show that ∇2g(x) = A>∇2f(A(x))A and
∇3g(x)[v] = A>(∇3f(A(x)[Av])A. Let us denote by x̃ := Ax + b, ũ := Au, and ṽ := Av. Then,
using Definition 2, we have

|〈∇3g(x)[v]u, u〉| = |〈A>(∇3f(x̃)[ṽ])Au, u〉| = |〈∇3f(x̃)[ṽ]ũ, ũ〉|
(5)

≤ Mf 〈∇2f(x̃)ũ, ũ〉〈∇2f(x̃)ṽ, ṽ〉
ν
2−1 ‖ṽ‖3−ν2

= Mf 〈A>∇2f(A(x))Au, u〉〈A>∇2f(A(x))Av, v〉
ν
2−1‖Av‖3−ν2

= Mf 〈∇2g(x)u, u〉〈∇2g(x)v, v〉 ν2−1‖Av‖3−ν2 .

(7)
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(a) If ν ∈ (0, 3], then we have ‖Av‖3−ν2 ≤ ‖A‖3−ν‖v‖3−ν2 . Hence, the last inequality (7) implies

|〈∇3g(x)[v]u, u〉| ≤Mf‖A‖3−ν〈∇2g(x)u, u〉〈∇2g(x)v, v〉 ν2−1‖v‖3−ν2 ,

which shows that g is (Mg, ν)-generalized self-concordant with Mg := Mf‖A‖3−ν .

(b) Note that ‖Av‖22 = v>A>Av ≥ λmin(A>A) ‖v‖22 ≥ 0, where λmin(A>A) is the smallest eigen-

value of A>A. If λmin(A>A) > 0 and ν > 3, then we have ‖Av‖3−ν2 ≤ λmin(A>A)
3−ν

2 ‖v‖3−ν2 .
Combining this estimate and (7), we can show that g is (Mg, ν)-generalized self-concordant with

Mg := Mfλmin(A>A)
3−ν

2 . �

Remark 2 Proposition 2 shows that generalized self-concordance is preserved via an affine trans-
formations if ν ∈ (0, 3]. If ν > 3, then it requires A to be over-completed, i.e., λmin(A>A) > 0.
Hence, the theory developed in the sequel remains applicable for ν > 3 if A is over-completed.

The following result is an extension of standard self-concordant functions (ν = 3), whose proof
is very similar to [39, Theorems 4.1.3, 4.1.4] by replacing the parameters Mf = 2 and ν = 3 with
the general parameters Mf ≥ 0 and ν > 0 (or ν ≥ 2), respectively. We omit the detailed proof.

Proposition 3 Let f be an (Mf , ν)-generalized self-concordant function with ν > 0. Then:

(a) If ν ≥ 2 and dom(f) contains no straight line, then ∇2f(x) � 0 for any x ∈ dom(f).

(b) If there exists x̄ ∈ bd(dom(f)), the boundary of dom(f), then, for any x̄ ∈ bd(dom(f)), and
any sequence {xk} ⊂ dom(f) such that limk→∞ xk = x̄, we have limk→∞ f(xk) = +∞.

Note that Proposition 3(a) only holds for ν ≥ 2. If we consider g(x) := f(A(x)) for a given
affine operator A(x) = Ax + b, then the non-degenerateness of ∇2g is only guaranteed if A is
full-rank. Otherwise, it is non-degenerated in a given subspace of A.

2.4 Generalized self-concordant functions with special structures

We first show that if a generalized self-concordant function is strongly convex or has a Lipschitz
gradient, then it can be cast into the special case ν = 2 or ν = 3.

Proposition 4 Let f ∈ F̃Mf ,ν be an (Mf , ν)-generalized self-concordant with ν > 0. Then:

(a) If ν ∈ (0, 3] and f is also strongly convex on dom(f) with the strong convexity parameter µf > 0

in `2-norm, then f is also (M̂f , ν̂)-generalized self-concordant with ν̂ = 3 and M̂f :=
Mf

(
√
µf )3−ν .

(b) If ν ≥ 2 and ∇f is Lipschitz continuous with the Lipschitz constant Lf ∈ [0,+∞) in `2-norm,

then f is also (M̂f , ν̂)-generalized self-concordant with ν̂ = 2 and M̂f := MfL
ν
2−1

f .

Proof (a) If f is strongly convex with the strong convexity parameter µf > 0 in `2-norm, then we

have 〈∇2f(x)v, v〉 ≥ µf‖v‖22 for any v ∈ Rp. Hence,
‖v‖2
‖v‖x ≤

1√
µf

. In this case, (5) leads to

∣∣〈∇3f(x)[v]u, u〉
∣∣ ≤Mf ‖u‖2x

(
‖v‖2
‖v‖x

)3−ν

‖v‖x ≤
Mf

(
√
µf )3−ν ‖u‖

2
x‖v‖x.

Hence, f is (M̂f , ν̂) - generalized self-concordant with ν̂ = 3 and M̂f :=
Mf

(
√
µf )3−ν .

(b) Since ∇f is Lipschitz continuous with the Lipschitz constant Lf ∈ [0,+∞) in `2-norm, we

have ‖v‖2x = 〈∇2f(x)v, v〉 ≤ Lf‖v‖22 for all v ∈ Rp, which leads to ‖v‖x‖v‖2 ≤
√
Lf for all v ∈ Rp. On

the other hand, f ∈ F̃Mf ,ν with ν ≥ 2, we can show that∣∣〈∇3f(x)[v]u, u〉
∣∣ ≤Mf ‖u‖2x

(
‖v‖x
‖v‖2

)ν−2

‖v‖2 ≤MfL
ν−2

2

f ‖u‖2x‖v‖2.

Hence, f is also (M̂f , ν̂)-generalized self-concordant with ν̂ = 2 and M̂f := MfL
ν−2

2

f . �
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Proposition 4 provides two important properties. If the gradient map ∇f of a generalized self-
concordant function f is Lipschitz continuous, we can always classify it into the special case ν = 2.
Therefore, we can exploit both structures: generalized self-concordance and Lipschitz gradient to
develop better algorithms. This idea is also applied to generalized self-concordant and strongly
convex functions.

Given n smooth convex univariate functions ϕi : R→ R satisfying (4) for i = 1, · · · , n with the
same order ν > 0, we consider the function f : Rp → R defined by the following form:

f(x) :=
1

n

n∑
i=1

ϕi(a
>
i x+ bi), (8)

where ai ∈ Rp and bi ∈ R are given vectors and numbers, respectively for i = 1, · · · , n. This
convex function is called a finite sum and widely used in machine learning and statistics. The
decomposable structure in (8) often appears in generalized linear models [7,11], and empirical risk
minimization [70], where ϕi is referred to as a loss function as can be found, e.g., in Table 1.

Next, we show that if ϕi is generalized self-concordant with ν ∈ [2, 3], then f is also generalized
self-concordant. This result is a direct consequence of Proposition 1 and Proposition 2.

Corollary 1 If ϕi in (8) satisfies (4) for i = 1, · · · , n with the same order ν ∈ [2, 3] and Mϕi ≥ 0,
then f defined by (8) is also (Mf , ν)-generalized self-concordant in the sense of Definition 2 with

the same order ν and the constant Mf := n
ν
2−1 max

{
Mϕi ‖ai‖

3−ν
2 | 1 ≤ i ≤ n

}
.

Finally, we show that if we regularize f in (8) by a strongly convex quadratic term, then the
resulting function becomes self-concordant. The proof can follow the same path as [70, Lemma 2].

Proposition 5 Let f(x) := 1
n

∑n
i=1 ϕi(a

>
i x+bi)+ψ(x), where ψ(x) := 1

2 〈Qx, x〉+c>x is strongly
convex quadratic function with Q ∈ Sp++. If ϕi satisfies (4) for i = 1, · · · , n with the same order

ν ∈ (0, 3] and a constant Mϕi > 0, then f is (M̂f , 3)-generalized self-concordant in the sense of

Definition 2 with M̂f := λmin(Q)
ν−3

2 max
{
Mϕi‖ai‖3−ν2 | 1 ≤ i ≤ n

}
.

2.5 Fenchel’s conjugate of generalized self-concordant functions

Primal-dual theory is fundamental in convex optimization. Hence, it is important to study the
Fenchel conjugate of generalized self-concordant functions.

Let f : Rp → R be an (Mf , ν)-generalized self-concordant function. We consider Fenchel’s
conjugate f∗ of f as

f∗(x) = sup
u
{〈x, u〉 − f(u) | u ∈ dom(f)} . (9)

Since f is proper, closed, and convex, f∗ is well-defined and also proper, closed, and convex.
Moreover, since f is smooth and convex, by Fermat’s rule, if u∗(x) satisfies ∇f(u∗(x)) = x, then
f∗ is well-defined at x. This shows that dom(f∗) = {x ∈ Rp | ∇f(u∗(x)) = x is solvable}.

Example 2 Let us look at some univariate functions. By using (9), we can directly show that:

1. If ϕ(s) = log(1 + es), then ϕ∗(t) = t log(t) + (1− t) log(1− t).
2. If ϕ(s) = s log(s), then ϕ∗(t) = et−1.

3. If ϕ(s) = es, then ϕ∗(t) = t log(t)− t.

Intuitively, these examples show that if ϕ is generalized self-concordant, then its conjugate ϕ∗ is
also generalized self-concordant. For more examples, we refer to [3, Chapter 13]. Let us generalize
this result in the following proposition, whose proof is given in Appendix A.1.
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Proposition 6 If f is (Mf , ν)-generalized self-concordant in dom(f) ⊆ Rp such that ∇2f(x) � 0
for x ∈ dom(f), then the conjugate function f∗ of f given by (9) is well-defined, and (Mf∗ , ν∗)-
generalized self-concordant on

dom(f∗) := {x ∈ Rp | f(u)− 〈x, u〉 is bounded from below on dom(f)} ,

where Mf∗ = Mf and ν∗ = 6− ν provided that ν ∈ [3, 6) if p > 1 and ν ∈ (0, 6) if p = 1.
Moreover, we have ∇f∗(x) = u∗(x) and ∇2f∗(x) = ∇2f(u∗(x))−1, where u∗(x) is a unique so-

lution of the maximization problem maxu {〈x, u〉 − f(u) | u ∈ dom(f)} in (9) for any x ∈ dom(f∗).

Proposition 6 allows us to apply our generalized self-concordance theory in this paper to the
dual problem of a convex problem involving generalized self-concordant functions, especially, when
the objective function of the primal problem is generalized self-concordant with ν ∈ (3, 4]. The
Fenchel conjugates are certainly useful when we develop optimization algorithms to solve con-
strained convex optimization involving generalized self-concordant functions, see, e.g., [63,64].

2.6 Generalized self-concordant approximation of nonsmooth convex functions

Several well-known convex functions are nonsmooth. However, they can be approximated (up to an
arbitrary accuracy) by a generalized self-concordant function via smoothing. Smoothing techniques
clearly allow us to enrich the applicability of our theory to nonsmooth convex problems.

Given a proper, closed, possibly nonsmooth, and convex function f : Rp → R ∪ {+∞}. One
can smooth f using the following Nesterov’s smoothing technique [40]

fγ(x) := sup
u∈dom(f∗)

{〈x, u〉 − f∗(u)− γω(u)} , (10)

where f∗ is the Fenchel conjugate of f , ω : dom(ω) ⊆ Rp → R is a smooth convex function
such that dom(f∗) ⊆ dom(ω), and γ > 0 is called a smoothness parameter. In particular, if f is
Lipschitz continuous, then dom(f∗) is bounded [3]. Hence, the sup operator in (10) reduces to the
max operator.

Our goal is to choose an appropriate smoothing function ω such that the smoothed function
fγ is well-defined and generalized self-concordant for any fixed smoothness parameter γ > 0.

Example 3 Let us provide a few examples with well-known nonsmooth convex functions:

(a) Consider the `1-norm function f(x) := ‖x‖1 in Rp. Then, it can be rewritten as

‖x‖1 = max
u
{〈x, u〉 | ‖u‖∞ ≤ 1} = max

u,v

{
〈x, u− v〉 |

p∑
i=1

(ui + vi) = 1, u, v ∈ Rp+
}
.

We can smooth this function by fγ by choosing ω(u, v) := ln(2p) +
∑p
i=1(ui ln(ui) + vi ln(vi)).

In this case, we obtain fγ(x) = γ ln
(∑p

i=1

(
exi/γ + e−xi/γ

))
− γ ln(2p). This function is clearly

generalized self-concordant with ν = 2, see [61, Lemma 4].
However, if we choose ω(u) := p −

∑p
i=1

√
1− u2

i , then we get fγ(x) =
∑p
i=1

√
x2
i + γ2 − γp.

In this case, fγ is also generalized self-concordant with ν = 8
3 and Mfγ = 3γ−

2
3 .

(b) Consider the `2-norm function f(x) := ‖x‖2 = maxu {〈x, u〉 | ‖u‖2 ≤ 1} in Rp. We can smooth

this function by fγ as fγ(x) =
√
‖x‖22 + γ2 − γ for γ > 0, by choosing ω(u) = 1−

√
1− ‖u‖22.

This function is also generalized self-concordant with ν = 8
3 .

(c) The hinge loss function ϕ(t) := max {0, 1− t} can be written as ϕ(t) = 1
2 |1− t|+

1
2 (1−t). Hence,

we can smooth this function by ϕγ(t) := γ ln

(
e

(1−t)
γ +e

− (1−t)
γ

2

)
+ 1

2 (1 − t) with a smoothness

parameter γ > 0. Clearly, ϕγ is generalized self-concordant with ν = 2.
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In many practical problems, the conjugate f∗ of f can be written as the sum f∗ = ϕ+δU , where
ϕ is a generalized self-concordant function, and δU is the indicator function of a given nonempty,
closed, and convex set U . In this case, fγ in (10) becomes

fγ(x) := sup
u
{〈x, u〉 − ϕ(u)− γω(u) | u ∈ U} . (11)

If ω is a generalized self-concordant such that νϕ = νω, and U = dom(ω) ∩ dom(ϕ), then fγ is
generalized self-concordant with νfγ = 6− νϕ as shown in Proposition 6.

2.7 Key bounds on Hessian map, gradient map, and function values

Now, we develop some key bounds on the local norms, Hessian map, gradient map, and function
values of generalized self-concordant functions. In this subsection, we assume that the Hessian map
∇2f of f is nondegenerate at any point in its domain.

For this purpose, given ν ≥ 2, we define the following quantity for any x, y ∈ dom(f):

dν(x, y) :=

{
Mf ‖y − x‖2 if ν = 2(
ν
2 − 1

)
Mf ‖y − x‖3−ν2 ‖y − x‖ν−2

x if ν > 2.
(12)

Here, if ν > 3, then we require x 6= y. Otherwise, we set dν(x, y) := 0 if x = y. In addition, we also
define the function ¯̄ων : R→ R+ as

¯̄ων(τ) :=


1

(1−τ)
2

ν−2
if ν > 2

eτ if ν = 2,
(13)

with dom(¯̄ων) = (−∞, 1) if ν > 2, and dom(¯̄ων) = R if ν = 2. We also adopt the Dikin ellipsoidal
notion from [39] as W 0(x; r) := {y ∈ Rp | dν(x, y) < r}.

The next proposition provides a bound on the local norm defined by a generalized self-concordant
function f . This bound is given for the local distances ‖y − x‖x and ‖y − x‖y between two points
x and y in dom(f).

Proposition 7 (Bound of local norms) If ν > 2, then, for any x ∈ dom(f), we have W 0(x; 1) ⊆
dom(f). For any x, y ∈ dom(f), let dν(x, y) be defined by (12), and ¯̄ων(·) be defined by (13). Then,
we have

¯̄ων (−dν(x, y))
1
2 ‖y − x‖x ≤ ‖y − x‖y ≤ ¯̄ων (dν(x, y))

1
2 ‖y − x‖x . (14)

If ν > 2, then the right-hand side inequality of (14) holds if dν(x, y) < 1.

Proof We first consider the case ν > 2. Let u ∈ Rp and u 6= 0. Consider the following univariate
function

φ(t) :=
〈
∇2f(x+ tu)u, u

〉1−ν2 = ‖u‖2−νx+tu .

It is easy to compute the derivative of this function, and obtain

φ′(t) =

(
2− ν

2

)
〈∇3f(x+ tu)[u]u, u〉
〈∇2f(x+ tu)u, u〉

ν
2

=

(
2− ν

2

)
〈∇3f(x+ tu)[u]u, u〉

‖u‖νx+tu

.

Using Definition 2 with u = v and x + tu instead of x, we have |φ′(t)| ≤ ν−2
2 Mf ‖u‖3−ν2 . This

implies that φ(t) ≥ φ(0) − ν−2
2 Mf ‖u‖3−ν2 |t|. On the other hand, we can see that dom(φ) =

{t ∈ R | φ(t) > 0}. Hence, we have dom(φ) contains
(
− 2φ(0)

(ν−2)Mf‖u‖3−ν2

, 2φ(0)

(ν−2)Mf‖u‖3−ν2

)
. Using this

fact and the definition of φ, we can show that dom(f) contains
{
y := x+ tu | |t| < 2‖u‖2−νx

(ν−2)Mf‖u‖3−ν2

}
.
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However, since |t| = ‖y−x‖ν−2
x

‖u‖ν−2
x

‖y−x‖3−ν2

‖u‖3−ν2

, the condition |t| < 2‖u‖2−νx

(ν−2)Mf‖u‖3−ν2

is equivalent to dν(x, y) <

1. This shows that W 0(x; 1) ⊆ dom(f).

Since
∣∣ ∫ 1

0
φ′(t)dt

∣∣ ≤ ∫ 1

0
|φ′(t)|dt, integrating φ′(t) over the interval [0, 1] we get∣∣∣ ‖u‖2−νx+u − ‖u‖

2−ν
x

∣∣∣ ≤ ν − 2

2
Mf ‖u‖3−ν2 .

Using u = y − x in the last inequality, we get | ‖y − x‖2−νy − ‖y − x‖2−νx | ≤ ν−2
2 Mf ‖y − x‖3−ν2 ,

which is equivalent to

‖y − x‖ν−2
y ≤ ‖y − x‖ν−2

x

(
1− ν−2

2 Mf ‖y − x‖ν−2
x ‖x− y‖3−ν2

)−1

= ‖y − x‖ν−2
x (1− dν(x, y))

−1

‖y − x‖ν−2
y ≥ ‖y − x‖ν−2

x

(
1 + ν−2

2 Mf ‖y − x‖ν−2
x ‖x− y‖3−ν2

)−1

= ‖y − x‖ν−2
x (1 + dν(x, y))

−1
,

given that dν(x, y) < 1. Taking the power of 1
ν−2 > 0 in both sides, we get (14) for the case ν > 2.

Now, we consider the case ν = 2. Let 0 6= u ∈ Rp. We consider the following function

φ(t) := ln
(〈
∇2f(x+ tu)u, u

〉)
= ln

(
‖u‖2x+tu

)
.

Clearly, it is easy to show that φ′(t) = 〈∇3f(x+tu)[u]u,u〉
〈∇2f(x+tu)u,u〉 = 〈∇3f(x+tu)[u]u,u〉

‖u‖2x+tu

. Using again Definition 2

with u = v and x+ tu instead of x, we obtain |φ′(t)| ≤Mf ‖u‖2.

Since
∣∣ ∫ 1

0
φ′(t)dt

∣∣ ≤ ∫ 1

0
|φ′(t)|dt, integrating φ′(t) over the interval [0, 1] we get∣∣∣ln(‖u‖2x+u

)
− ln

(
‖u‖2x

)∣∣∣ ≤Mf ‖u‖2 .

Substituting u = y − x into this inequality, we get
∣∣ ln ‖y − x‖y − ln ‖y − x‖x

∣∣ ≤ Mf

2 ‖y − x‖2.

Hence, ln ‖y − x‖x−
Mf

2 ‖y − x‖2 ≤ ln ‖y − x‖y ≤ ln ‖y − x‖x+
Mf

2 ‖y − x‖2. This inequality leads
to (14) for the case ν = 2. �

Next, we develop new bounds for the Hessian map of f in the following proposition.

Proposition 8 (Bounds of Hessian map) For any x, y ∈ dom(f), let dν(x, y) be defined by
(12), and ¯̄ων(·) be defined by (13). Then, we have

[1− dν(x, y)]
2

ν−2 ∇2f(x) � ∇2f(y) � [1− dν(x, y)]
−2
ν−2 ∇2f(x) if ν > 2, (15)

e−dν(x,y)∇2f(x) � ∇2f(y) � edν(x,y)∇2f(x) if ν = 2, (16)

where (15) holds if dν(x, y) < 1 for the case ν > 2.

Proof Let ν > 2 and 0 6= u ∈ Rn. Consider the following univariate function on [0, 1]:

ψ(t) :=
〈
∇2f(x+ t(y − x))u, u

〉
, t ∈ [0, 1].

If we denote by yt := x+ t(y − x), then yt − x = t(y − x), ψ(t) = ‖u‖2yt , and ψ′(t) = 〈∇3f(yt)[y −
x]u, u〉. By Definition 2, we have

|ψ′(t)| ≤Mf ‖u‖2yt ‖y − x‖
ν−2
yt
‖y − x‖3−ν2 = Mfψ(t)

[‖yt−x‖yt
t

]ν−2

‖y − x‖3−ν2 ,

which implies ∣∣∣∣d lnψ(t)

dt

∣∣∣∣ ≤Mf

[‖yt−x‖yt
t

]ν−2

‖y − x‖3−ν2 . (17)
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Assume that dν(x, y) < 1. Then, by the definition of yt and dν(·), we have dν(x, yt) = tdν(x, y)
and ‖yt − x‖x = t ‖y − x‖x. Using Proposition 7, we can derive

1
t ‖yt − x‖yt ≤

1
t

[
1−

(
ν
2 − 1

)
‖yt − x‖3−ν2 ‖yt − x‖ν−2

x

]− 1
ν−2 ‖yt − x‖x

= 1
t [1− dν(x, yt)]

− 1
ν−2 ‖yt − x‖x

= [1− dν(x, y)t]
− 1
ν−2 ‖y − x‖x .

Hence, we can further derive [
1

t
‖yt − x‖yt

]ν−2

≤
‖y − x‖ν−2

x

1− dν(x, y)t

Integrating d lnψ(t)
dt with respect to t on [0, 1] and using the last inequality and (17), we get∣∣∣∣∫ 1

0

d lnψ(t)

dt
dt

∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣d lnψ(t)

dt

∣∣∣∣ dt ≤ ‖y − x‖ν−2
x ‖y − x‖3−ν2

∫ 1

0

dt

1− dν(x, y)t
.

Clearly, we can compute this integral explicitly as∣∣∣∣∣ln
[
‖u‖2y
‖u‖2x

]∣∣∣∣∣ =

∣∣∣∣ln [ψ(1)

ψ(0)

]∣∣∣∣ ≤ −2dν(x, y)

(ν − 2)dν(x, y)
ln [1− dν(x, y)] = ln

[
(1− dν(x, y))

−2
ν−2

]
.

Rearranging this inequality, we obtain

[1− dν(x, y)]
2

ν−2 ≤
‖u‖2y
‖u‖2x

≡ 〈∇
2f(y)u, u〉

〈∇2f(x)u, u〉
≤ [1− dν(x, y)]

−2
ν−2 .

Since this inequality holds for any 0 6= u ∈ Rp, it implies (15). If u = 0, then (15) obviously holds.
Now, we consider the case ν = 2. It follows from (17) that∣∣∣∣∣ln

[
‖u‖2y
‖u‖2x

]∣∣∣∣∣ =

∣∣∣∣∫ 1

0

d lnψ(t)

dt
dt

∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣d lnψ(t)

dt

∣∣∣∣ dt ≤Mf

∫ 1

0

‖y − x‖2 dt = Mf ‖y − x‖2 .

Since this inequality holds for any u ∈ Rp, it implies (16). �

The following corollary provides a bound on the mean of the Hessian map G(x, y) :=
∫ 1

0
∇2f(x+

τ(y − x))dτ , whose proof is moved to Appendix A.2.

Corollary 2 For any x, y ∈ dom(f), let dν(x, y) be defined by (12). Then, we have

κν(dν(x, y))∇2f(x) �
∫ 1

0

∇2f(x+ τ(y − x))dτ � κν(dν(x, y))∇2f(x), (18)

where

κν(t) :=


1−e−t
t if ν = 2

1−(1−t)2

2t if ν = 4

(ν−2)
ν

[
1−(1−t)

ν
ν−2

t

]
if ν > 2 and ν 6= 4,

and

κν(t) :=


et−1
t if ν = 2

− ln(1−t)
t if ν = 4(

ν−2
ν−4

)[
1−(1−t)

ν−4
ν−2

t

]
if ν > 2 and ν 6= 4.

Here, if ν > 2, then we require dν(x, y) to satisfy dν(x, y) < 1 for x, y ∈ dom(f) in (18).
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We prove a bound on the gradient inner product of a generalized self-concordant function f .

Proposition 9 (Bounds of gradient map) For any x, y ∈ dom(f), we have

ω̄ν (−dν(x, y)) ‖y − x‖2x ≤ 〈∇f(y)−∇f(x), y − x〉 ≤ ω̄ν (dν(x, y)) ‖y − x‖2x , (19)

where, if ν > 2, then the right-hand side inequality of (19) holds if dν(x, y) < 1, and

ω̄ν(τ) :=


eτ−1
τ if ν = 2

ln(1−τ)
−τ if ν = 4(
ν−2
ν−4

)
1−(1−τ)

ν−4
ν−2

τ otherwise.

(20)

Here, ω̄ν(τ) ≥ 0 for all τ ∈ dom(ω̄ν).

Proof Let yt := x+ t(y − x). By the mean-value theorem, we have

〈∇f(y)−∇f(x), y − x〉 =

∫ 1

0

〈
∇2f(yt)(y − x), y − x

〉
dt =

∫ 1

0

1

t2
‖yt − x‖2yt dt. (21)

We consider the function ¯̄ων defined by (13). It follows from Proposition 7 that

¯̄ων (−dν(x, yt)) ‖yt − x‖2x ≤ ‖yt − x‖
2
yt
≤ ¯̄ων (dν(x, yt)) ‖yt − x‖2x .

Now, we note that dν(x, yt) = tdν(x, y) and ‖yt − x‖x = t ‖y − x‖x, the last estimate leads to

¯̄ων (−tdν(x, y)) ‖y − x‖2x ≤
1

t2
‖yt − x‖2yt ≤ ¯̄ων (tdν(x, y)) ‖y − x‖2x .

Substituting this estimate into (21), we obtain

‖y − x‖2x
∫ 1

0

¯̄ων (−tdν(x, y)) dt ≤ 〈∇f(y)−∇f(x), y − x〉 ≤ ‖y − x‖2x
∫ 1

0

¯̄ων (tdν(x, y)) dt.

Using the function ¯̄ων(τ) from (13) to compute the left-hand side and the right-hand side integrals,
we obtain (19). �

Finally, we prove a bound on the function values of an (Mf , ν)-generalized self-concordant
function f in the following proposition.

Proposition 10 (Bounds of function values) For any x, y ∈ dom(f), we have

ων (−dν(x, y)) ‖y − x‖2x ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ ων (dν(x, y)) ‖y − x‖2x , (22)

where, if ν > 2, then the right-hand side inequality of (22) holds if dν(x, y) < 1. Here, dν(x, y) is
defined by (12) and ων is defined by

ων(τ) :=



eτ−τ−1
τ2 if ν = 2

−τ−ln(1−τ)
τ2 if ν = 3

(1−τ) ln(1−τ)+τ
τ2 if ν = 4(

ν−2
4−ν

)
1
τ

[
ν−2

2(3−ν)τ

(
(1− τ)

2(3−ν)
2−ν − 1

)
− 1
]

otherwise.

(23)

Note that ων(τ) ≥ 0 for all τ ∈ dom(ων).
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Proof For any x, y ∈ dom(f), let yt := x + t(y − x). Then, yt − x = t(y − x). By the mean-value
theorem, we have

f(y)− f(x)− 〈∇f(x), y − x〉 =

∫ 1

0

1
t 〈∇f(yt)−∇f(x), yt − x〉dt.

Now, by Proposition 9, we have

ω̄ν (−dν(x, yt)) ‖yt − x‖2x ≤ 〈∇f(yt)−∇f(x), yt − x〉 ≤ ω̄ν (dν(x, yt)) ‖yt − x‖2x .

Clearly, by the definition (12), we have dν(x, yt) = tdν(x, y) and ‖yt − x‖x = t ‖y − x‖x. Combining
these relations, and the above two inequalities, we can show that

‖y − x‖2x
∫ 1

0

tω̄ν (−tdν(x, y)) dt ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ ‖y − x‖2x
∫ 1

0

tω̄ν (tdν(x, y)) dt.

By integrating the left-hand side and the right-hand side of this estimate using the definition (20)
of ω̄ν(τ), we obtain (22). �

3 Generalized self-concordant minimization

We apply the theory developed in the previous sections to design new Newton-type methods to
minimize a generalized self-concordant function. More precisely, we consider the following non-
composite convex problem:

f? := min
x∈Rp

f(x), (24)

where f : Rp → R is an (Mf , ν)-generalized self-concordant function in the sense of Definition 2
with ν ∈ [2, 3] and Mf ≥ 0. Since f is smooth and convex, the optimality condition ∇f(x?f ) = 0 is
necessary and sufficient for x?f to be an optimal solution of (24).

The following theorem shows the existence and uniqueness of the solution x?f of (24). It can be
considered as a special case of Theorem 4 below with g ≡ 0.

Theorem 1 Suppose that f ∈ F̃Mf ,ν(dom(f)) for given parameters Mf > 0 and ν ∈ [2, 3]. Denote
by σmin(x) := λmin(∇2f(x)) and λ(x) := ‖∇f(x)‖∗x for x ∈ dom(f). Suppose further that there
exists x ∈ dom(f) such that σmin(x) > 0 and

λ(x) <
2 [σmin(x)]

3−ν
2

(4− ν)Mf
.

Then, problem (24) has a unique solution x?f in dom(f).

We say that the unique solution x?f of (24) is strongly regular if ∇2f(x?f ) � 0. The strong
regularity of x?f for (24) is equivalent to the strong second order optimality condition. Theorem 1
covers [39, Theorem 4.1.11] for standard self-concordant functions as a special case.

We consider the following Newton-type scheme to solve (24). Starting from an arbitrary initial
point x0 ∈ dom(f), we generate a sequence

{
xk
}
k≥0

as follows:

xk+1 := xk + τkn
k
nt, where nknt := −∇2f(xk)−1∇f(xk), (25)

and τk ∈ (0, 1] is a given step-size. We call nknt a Newton direction.

– If τk = 1 for all k ≥ 0, then we call (25) a full-step Newton scheme.

– Otherwise, i.e., τk ∈ (0, 1), we call (25) a damped-step Newton scheme.
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Clearly, computing the Newton direction nknt requires to solve the following linear system:

∇2f(xk)nknt = −∇f(xk). (26)

Next, we define a Newton decrement λk and a quantity βk, respectively as

λk := ‖nknt‖xk = ‖∇f(xk)‖∗xk and βk := Mf‖nknt‖2 = Mf‖∇2f(xk)−1∇f(xk)‖2. (27)

With λk and βk given by (27), we also define

dk :=

{
βk if ν = 2(
ν
2 − 1

)
Mν−2
f λν−2

k β3−ν
k if ν ∈ (2, 3].

(28)

Let us first show how to choose a suitable step-size τk in the damped-step Newton scheme and prove
its convergence properties in the following theorem, whose proof can be found in Appendix A.5.

Theorem 2 Let
{
xk
}

be the sequence generated by the damped-step Newton scheme (25) with the
following step-size:

τk :=


1
βk

ln(1 + βk) if ν = 2

1
dk

[
1−

(
1 + 4−ν

ν−2dk

)− ν−2
4−ν
]

if ν ∈ (2, 3],
(29)

where λk, βk are defined by (27), and dk is defined by (28). Then, τk ∈ (0, 1],
{
xk
}

in dom(f),
and this step-size guarantees the following descent property

f(xk+1) ≤ f(xk)−∆k, (30)

where ∆k := λ2
kτk − ων (τkdk) τ2

kλ
2
k > 0 with ων defined by (23).

Assume that the unique solution x?f of (24) exists. Then, there exists a neighborhood N (x?f )

such that if we initialize the Newton scheme (25) at x0 ∈ N (x?f )∩dom(f), then the whole sequence{
xk
}

converges to x?f at a quadratic rate.

Example 4 (Better step-size for regularized logistic and exponential models) Consider the
minimization problem (24) with the objective function f(·) := φ(·) + γ

2 ‖ · ‖
2
2, where φ is defined as

in (8) with ϕi(t) = log(1 + e−t) being the logistic loss. That is

f(x) :=
1

n

n∑
i=1

log(1 + e−a
>
i x) +

γ

2
‖x‖22.

As we shown in Section 2 that f is either generalized self-concordant with ν = 2 or generalized
self-concordant with ν = 3 but with different constant Mf .

Let us define RA := max {‖ai‖2 | 1 ≤ i ≤ n}. Then, if we consider ν = 2, then we have M
(2)
f =

RA due to Corollary 1, while if we choose ν = 3, then M
(3)
f = 1√

γRA due to Proposition 4. By the

definition of f , we have ∇2f(x) � γI. Hence, using this inequality and the definition of λk and βk
from (27), we can show that

βk = M
(2)
f ‖∇

2f(xk)−1∇f(xk)‖2 ≤ RA√
γ λk = M

(3)
f λk. (31)

For any τ > 0, we have ln(1+τ)
τ > 1

1+0.5τ . Using this elementary result and (31), we obtain

τ
(2)
k = ln(1+βk)

βk
> 1

1+0.5βk
≥ 1

1+0.5M
(3)
f λk

= τ
(3)
k .
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This inequality has shown that the step-size τk given by Theorem 2 satisfies τ
(2)
k > τ

(3)
k , where τ

(ν)
k

is a given step-size computed by (29) for ν = 2 and 3, respectively. Such a statement confirms that

the damped-step Newton method using τ
(2)
k is theoretically better than using τ

(3)
k . This result will

empirically be confirmed by our experiments in Section 6. �

Next, we study the full-step Newton scheme derived from (25) by setting the step-size τk = 1
for all k ≥ 0 as a full-step. Let

σk := λmin

(
∇2f(xk)

)
be the smallest eigenvalue of ∇2f(xk). Since ∇2f(xk) � 0, we have σk > 0. The following theorem
shows a local quadratic convergence of the full-step Newton scheme (25) for solving (24), whose
proof can be found in Appendix A.6.

Theorem 3 Let
{
xk
}

be the sequence generated by the full-step Newton scheme (25) by setting
the step-size τk = 1 for k ≥ 0. Let dkν := dν(xk, xk+1) be defined by (12) and λk be defined by (27).
Then, the following statements hold:

(a) If ν = 2 and the starting point x0 satisfies σ
−1/2
0 λ0 <

d?2
Mf

, then both sequences
{
σ
−1/2
k λk

}
and{

dk2
}

decrease and quadratically converge to zero, where d?2 ≈ 0.12964.

(b) If 2 < ν < 3, and the starting point x0 satisfies σ
− 3−ν

2
0 λ0 < 1

Mf
min

{
2d?ν
ν−2 ,

1
2

}
, then both

sequences
{
σ
− 3−ν

2

k λk

}
and

{
dkν
}

decrease and quadratically converge to zero, where d?ν is the

unique solution of the equation (ν − 2)Rν(dν) = 4(1− dν)
4−ν
ν−2 in dν with Rν(·) given by (55).

(c) If ν = 3 and the starting point x0 satisfies λ0 <
1

2Mf
, then the sequence {λk} decreases and

quadratically converges to zero.

As a consequence, if
{
dkν
}

locally converges to zero at a quadratic rate, then
{
‖xk − x?f‖Hk

}
also

locally converges to zero at a quadratic rate, where Hk = I, the identity matrix, if ν = 2; Hk =
∇2f(xk) if ν = 3; and Hk = ∇2f(xk)

ν
2−1 if 2 < ν < 3. Hence,

{
xk
}

locally converges to x?f , the
unique solution of (24), at a quadratic rate.

If we combine the results of Theorem 2 and Theorem 3, then we can design a two-phase Newton
algorithm for solving (24) as follows:

– Phase 1: Starting from an arbitrary initial point x0 ∈ dom(f), we perform the damped-step
Newton scheme (25) until the condition in Theorem 3 is satisfied.

– Phase 2: Using the output xj of Phase 1 as an initial point for the full-step Newton scheme
(25) with τk = 1, and perform this scheme until it achieves an ε-solution xk to (24).

We also note that the damped-step Newton scheme (25) can also achieve a local quadratic con-
vergence as shown in Theorem 2. Hence, we combine this fact and the above two-phase scheme to
derive the Newton algorithm as shown in Algorithm 1 below.

Per-iteration complexity: The main step of Algorithm 1 is the solution of the symmetric pos-
itive definite linear system (26). This system can be solved by using either Cholesky factorization
or conjugate gradient methods, which, in the worst case, requires O(p3) operations. Computing λk
requires the inner product 〈nknt,∇f(xk)〉 which needs O(p) operations.

Conceptually, the two-phase option of Algorithm 1 requires the smallest eigenvalue of ∇2f(xk)
to terminate Phase 1. However, switching from Phase 1 to Phase 2 can be done automatically
allowing some tolerance in the step-size τk. Indeed, the step-size τk given by (29) converges to 1 as
k →∞. Hence, when τk is closed to 1, e.g., τk ≥ 0.9, we can automatically set it to 1 and remove
the computation of λk to reduce the computational time.
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Algorithm 1 (Newton algorithm for generalized self-concordant minimization)

1: Inputs: Choose an arbitrary initial point x0 ∈ dom(f) and a desired accuracy ε > 0.

2: Output: An ε-solution xk of (24).

3: Initialization: Compute d?ν according to Theorem 3 if needed.

4: For k = 0, · · · , kmax, perform:

5: Compute the Newton direction nknt by solving ∇2f(xk)nknt = −∇f(xk).

6: Compute λk := ‖nknt‖∗xk , and compute βk := Mf‖nknt‖2 if ν 6= 3.

7: If λk ≤ ε, then TERMINATE and return xk.

8: If Phase 2 is used, then compute σk = λmin(∇2f(xk)) if 2 ≤ ν < 3.

9: If Phase 2 is used and (λk, σk) satisfies Theorem 3, then set τk :=1 (full-step).

Otherwise, compute the step-size τk by (29) (damped-step)

10: Update xk+1 := xk + τkn
k
nt.

11: End for

In the one-phase option, we can always perform only Phase 1 until achieving an ε-optimal
solution as shown in Theorem 2. Therefore, the per-iteration complexity of Algorithm 1 is O(p3)+
O(p) in the worst case. A careful implementation of conjugate gradient methods with a warm-start
can significantly reduce this per-iteration computation complexity.

Remark 3 (Inexact Newton methods) We can allow Algorithm 1 to compute the Newton direc-
tion nknt approximately. In this case, we approximately solve the symmetric positive definite system
(26). By an appropriate choice of stopping criterion, we can still prove convergence of Algorithm 1
under inexact computation of nknt. For instance, the following criterion is often used in inexact
Newton methods [15], but defined via the local dual norm of f :

‖∇2f(xk)nknt +∇f(xk)‖∗xk ≤ κ‖∇f(xk)‖∗xk ,

for a given relaxation parameter κ ∈ [0, 1). This extension can be found in our forthcoming work.

4 Composite generalized self-concordant minimization

Let f ∈ F̃Mf ,ν(dom(f)), and g be a proper, closed, and convex function. We consider the composite
convex minimization problem (3), which we recall here for our convenience of references:

F ? := min
x∈Rp

{
F (x) := f(x) + g(x)

}
. (32)

Note that dom(F ) := dom(f)∩dom(g) may be empty. To make this problem nontrivial, we assume
that dom(F ) is nonempty. The optimality condition for (32) can be written as follows:

0 ∈ ∇f(x?) + ∂g(x?). (33)

Under the qualification condition 0 ∈ ri (dom(g)− dom(f)), (33) is necessary and sufficient for x?

to be an optimal solution of (32), where ri (X ) is the relative interior of X .

4.1 Existence, uniqueness, and regularity of optimal solutions

Assume that ∇2f(x) is positive definite (i.e., nonsingular) at some point x ∈ dom(F ). We prove
in the following theorem that problem (32) has a unique solution x?. The proof can be found in
Appendix A.4. This theorem can also be considered as a generalization of [39, Theorem 4.1.11]
and [60, Lemma 4] in standard self-concordant settings in [39,60].
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Theorem 4 Suppose that the function f of (32) is (Mf , ν)-generalized self-concordant with Mf >
0 and ν ∈ [2, 3]. Denote by σmin(x) := λmin(∇2f(x)) and λ(x) := ‖∇f(x) + v‖∗x for x ∈ dom(F )
and v ∈ ∂g(x). Suppose further that there exists x ∈ dom(F ) such that σmin(x) > 0 and

λ(x) <
2 [σmin(x)]

3−ν
2

(4− ν)Mf
.

Then, problem (32) has a unique solution x? in dom(F ).

Now, we recall a condition such that the solution x? of (32) is strongly regular in the following
Robinson’s sense [54]. We say that the optimal solution x? of (32) is strongly regular if there exists
a neighborhood U(0) of zero such that for any δ ∈ U(0), the following perturbed problem

min
x∈Rp

{
〈∇f(x?)− δ, x− x?〉+ 1

2 〈∇
2f(x?)(x− x?), x− x?〉+ g(x)

}
has a unique solution x∗(δ), and this solution is Lipschitz continuous on U(0).

If ∇2f(x?) � 0, then x? is strongly regular. While the strong regularity of the solution x?

requires a weaker condition than ∇2f(x?) � 0. For further details of the regularity theory, we refer
the reader to [54].

4.2 Scaled proximal operators

Given a matrix H ∈ Sp++, we define a scaled proximal operator of g in (32) as

proxH−1g(x) := argmin
z

{
g(z) + 1

2 ‖z − x‖
2
H

}
. (34)

Using the optimality condition of the minimization problem under (34), we can show that

y = proxH−1g(x) ⇐⇒ 0 ∈ H(y − x) + ∂g(y) ⇐⇒ x ∈ y +H−1∂g(y) ≡ (I +H−1∂g)(y).

Since g is proper, closed, and convex, proxH−1g is well-defined and single-valued. In particular, if
we take H = I, the identity matrix, then proxH−1g(·) = proxg(·), the standard proximal operator
of g. If we can efficiently compute proxH−1g(·) by a closed form or by polynomial time algorithms,
then we say that g is proximally tractable. There exist several convex functions whose proximal
operator is tractable. Examples such as `1-norm, coordinate-wise separable convex functions, and
the indicator of simple convex sets can be found in the literature including [3,20,50].

4.3 Proximal Newton methods

The proximal Newton method can be considered as a special case of the variable metric proximal
method in the literature [8]. This method has previously been studied by many authors, see,
e.g., [8,33]. However, the convergence guarantee often requires certain assumptions as used in
standard Newton-type methods. In this section, we develop a proximal Newton algorithm to solve
the composite convex minimization problem (32) where f is a generalized self-concordant function.
This problem covers [60,62] as special cases.

Given xk ∈ dom(F ), we first approximate f at xk by the following convex quadratic surrogate:

Qf (x;xk) := f(xk) +
〈
∇f(xk), x− xk

〉
+ 1

2

〈
∇2f(xk)(x− xk), x− xk

〉
.

Next, the main step of the proximal Newton method requires to solve the following subproblem:

zk := argmin
x∈dom(g)

{
Qf (x;xk) + g(x)

}
= prox∇2f(xk)−1g

(
xk −∇2f(xk)−1∇f(xk)

)
. (35)

The optimality condition for this subproblem is the following linear monotone inclusion:

0 ∈ ∇f(xk) +∇2f(xk)(zk − xk) + ∂g(zk). (36)
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Here, we note that dom(Qf (·;xk)) = Rp. Hence, dom(Qf (·;xk) + g(·)) = dom(g). In the setting
(32), zk may not be in dom(F ). Our next step is to update the next iteration xk+1 as

xk+1 := xk + τkn
k
pnt = (1− τk)xk + τkz

k, (37)

where nkpnt := zk − xk is the proximal Newton direction, and τk ∈ (0, 1] is a given step size.

Associated with the proximal Newton direction nkpnt, we define the following proximal Newton

decrement and the `2-norm quantity of nkpnt as

λk := ‖nkpnt‖xk and βk := Mf‖nkpnt‖2. (38)

Our first goal is to show that we can explicitly compute the step-size τk in (37) using λk and βk
such that we obtain a descent property for F . This statement is presented in the following theorem,
whose proof is deferred to Appendix A.7.

Theorem 5 Let
{
xk
}

be the sequence generated by the proximal Newton scheme (37) starting

from x0 ∈ dom(F ). If we choose the step-size τk as in (29) of Theorem 2, then τk ∈ (0, 1],
{
xk
}

in dom(F ) and
F (xk+1) ≤ F (xk)−∆k, (39)

where ∆k := λ2
kτk − ων (τkdk) τ2

kλ
2
k > 0 for τk > 0 and dk as defined in Theorem 2.

There exists a neighborhood N (x?) of the unique solution x? of (32) such that if we initialize
the scheme (37) at x0 ∈ N (x?) ∩ dom(F ), then

{
xk
}

quadratically converges to x?.

Next, we prove a local quadratic convergence of the full-step proximal Newton method (37)
with the unit step-size τk = 1 for all k ≥ 0. The proof is given in Appendix A.8.

Theorem 6 Suppose that the sequence
{
xk
}

is generated by (37) with full-step, i.e., τk = 1 for
k ≥ 0. Let dkν := dν(xk, xk+1) be defined by (12) and λk be defined by (38). Then, the following
statements hold:

(a) If ν = 2 and the starting point x0 satisfies σ
−1/2
0 λ0 < d?2/Mf , then both sequences

{
σ
−1/2
k λk

}
and

{
dk2
}

decrease and quadratically converge to zero, where d?2 ≈ 0.35482.

(b) If 2 < ν < 3, and the starting point x0 satisfies σ
− 3−ν

2
0 λ0 < 1

Mf
min

{
2d?ν
ν−2 ,

1
2

}
, then both

sequences
{
σ
− 3−ν

2

k λk

}
and

{
dkν
}

decrease and quadratically converge to zero, where d?ν is the

unique solution to the equation (ν − 2)Rν(dν) = 4(1− dν)
4−ν
ν−2 in dν with Rν(·) given in (55).

(c) If ν = 3 and the starting point x0 satisfies λ0 <
2d?3
Mf

, then the sequence {λk} decreases and

quadratically converges to zero, where d?3 ≈ 0.20943.

As a consequence, if
{
dkν
}

locally converges to zero at a quadratic rate, then
{
‖xk − x?‖Hk

}
also

locally converges to zero at a quadratic rate, where Hk = I, the identity matrix, if ν = 2; Hk =
∇2f(xk) if ν = 3; and Hk = ∇2f(xk)

ν
2−1 if 2 < ν < 3. Hence,

{
xk
}

locally converges to x?, the
unique solution of (32), at a quadratic rate.

Similar to Algorithm 1, we can also combine the results of Theorems 5 and 6 to design a
proximal Newton algorithm for solving (32). This algorithm is described in Algorithm 2 below.
Implementation remarks: The main step of Algorithm 2 is the computation of the proximal
Newton step nkpnt, or the trial point zk in (35). This step requires to solve a composite quadratic-
convex minimization problem (35) with strongly convex objective function. If g is proximally
tractable, then we can apply proximal-gradient methods or splitting techniques [3,4,43] to solve this
problem. We can also combine accelerated proximal-gradient methods with a restarting strategy
[18,22,47] to accelerate the performance of these algorithms. These methods will be used in our
numerical experiments in Section 6.

As noticed in Remark 3, we can also develop an inexact proximal Newton variant for Algorithm 2
by approximately solving the subproblem (35). We leave this extension to our forthcoming work.



22 T. Sun and Q. Tran-Dinh

Algorithm 2 (Proximal Newton algorithm for composite generalized self-concordant minimization)

1: Inputs: Choose an arbitrary initial point x0 ∈ dom(F ) and a desired accuracy ε > 0.

2: Output: An ε-solution xk of (32).

3: Initialization: Compute d?ν according to Theorem 6 if needed.

4: For k = 0, · · · , kmax, perform:

5: Compute the proximal Newton direction nkpnt by solving (35).

6: Compute λk := ‖nkpnt‖∗xk , and compute βk := Mf‖nkpnt‖2 if ν 6= 3.

7: If λk ≤ ε, then TERMINATE.

8: If Phase 2 is used, then compute σk = λmin(∇2f(xk)) if 2 ≤ ν < 3.

9: If Phase 2 is used and (λk, σk) satisfies Theorem 6, then set τk :=1 (full-step).

Otherwise, compute the step-size τk by (29) (damped-step).

10: Update xk+1 := xk + τkn
k
pnt.

11: End for

5 Quasi-Newton methods for generalized self-concordant minimization

This section studies quasi-Newton variants of Algorithm 1 for solving (24). Extensions to the
composite form (32) can be done by combining the result in this section and the approach in [60].

A quasi-Newton method for solving (24) updates the sequence
{
xk
}

using

xk+1 := xk − τkBk∇f(xk), where Bk := H−1
k and Hk ≈ ∇2f(xk), (40)

where the step-size τk ∈ (0, 1] is appropriately chosen, and x0 ∈ dom(f) is a given starting point.
Matrix Hk is symmetric and positive definite, and it approximates the Hessian matrix ∇2f(xk)

of f at the iteration xk in some sense. The most common approximation sense is that Hk satisfies
the well-known Dennis-Moré condition [14]. In the context of generalized self-concordant functions,
we can modify this condition by imposing:

lim
k→∞

‖(Hk −∇2f(x?f ))(xk − x?f )‖∗x̂
‖xk − x?f‖x̂

= 0, where x̂ = x?f or x̂ = xk. (41)

Clearly, if we have limk→∞ ‖Hk−∇2f(xk)‖x̂ = 0, then, with a simple argument, we can show that
(41) automatically holds. In practice, we can update Hk to maintain the following secant equation:

Hk+1s
k = yk, where sk := xk+1 − xk, and yk := ∇f(xk+1)−∇f(xk). (42)

There are several candidates to update Hk to maintain this secant equation, see, e.g., [46]. Here,
we propose to use a BFGS update as

Hk+1 := Hk +
yk(yk)>

〈yk, sk〉
− (Hks

k)(Hks
k)>

(〈Hksk, sk〉
. (43)

In practice, to avoid the inverse Bk = H−1
k , we can update this inverse directly [46] in lieu of

updating Hk as in (43). Note that the BFGS update (43) or its inverse version may not maintain
the sparsity or block pattern structures of the sequence {Hk} or {Bk} even if ∇2f is sparse.

The following result shows that the quasi-Newton method (40) achieves a superlinear conver-
gence, whose proof can be found in Appendix A.9.

Theorem 7 Assume that x?f ∈ dom(f) is the unique solution of (24) and is strongly regular. Let{
xk
}

be the sequence generated by (40). Then, the following statements hold:
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(a) Assume, in addition, that the sequence of matrices {Hk} satisfies the Dennis-Moré cond-
tion (41) with x̂ = x?f . Then, there exist r̄ > 0, and k̄ ≥ 0 such that, for all k ≥ k̄, we

have ‖xk − x?f‖x?f ≤ r̄ and
{
xk
}

locally converges to x?f at a superlinear rate.

(b) Suppose that H0 is chosen such that H0 ∈ Sp++. Then, 〈yk, zk〉 > 0 for all k ≥ 0, and hence,
the sequence {Hk} generated by (43) is symmetric positive definite, and satisfies the secant
equation (42). Moreover, if the sequence

{
xk
}

generated by (40) satisfies
∑∞
k=0 ‖xk − x?f‖x?f <

+∞, then
{
xk
}

locally converges to the unique solution x?f of (24) at a superlinear rate.

Note that the condition
∑∞
k=0 ‖xk − x?f‖x?f < +∞ in Theorem 7(b) can be guaranteed if

‖xk+1− x?f‖x?f ≤ ρ‖x
k − x?f‖x?f for some ρ ∈ (0, 1) and k ≥ k̄ ≥ 0. Hence, if

{
xk
}

locally converges
to x?f at a linear rate, then it also locally converges to x?f at a superlinear rate.

6 Numerical experiments

We provide four examples to verify our theoretical results and compare our methods with existing
methods in the leterature. Our algorithms are implemented in Matlab 2014b running on a MacBook
Pro. Retina, 2.7 GHz Intel Core i5 with 16Gb 1867 MHz DDR3 memory.

6.1 Comparison with [70] on regularized logistic regression

In this example, we empirically show that our theory provides a better step-size for logistic regres-
sion compared to [70] as theoretically shown in Example 4. In addition, our step-size can be used
to guarantee a global convergence of Newton method without linesearch. It can also be used as a
lower bound for backtracking or forward linesearch to enhance the performance of Algorithm 1.

To illustrate these aspects, we consider the following regularized logistic regression problem:

f? := min
x∈Rp

{
f(x) :=

1

n

n∑
i=1

`(yi(a
>
i x+ µ)) +

γ

2
‖x‖22

}
, (44)

where `(s) = log(1 + e−s) is a logistic loss, µ is a given intercept, yi ∈ {−1, 1} and ai ∈ Rp are
given as input data for i = 1, · · · , n, and γ > 0 is a given regularization parameter.

As shown previously in Proposition 5, f can be cast into an (M
(3)
f , 3)-generalized self-concordant

function with M
(3)
f = 1√

γ max {‖ai‖2 | 1 ≤ i ≤ n}. On the other hand, f can also be considered as

an (M
(2)
f , 2)-generalized self-concordant with M

(2)
f := max {‖ai‖2 | 1 ≤ i ≤ n}.

We implement Algorithm 1 using two different step-sizes τ
(2)
k = ln(1+βk)

βk
and τ

(3)
k := 1

1+0.5M
(3)
f λk

as suggested by Theorem 2 for ν = 2 and ν = 3, respectively. We terminate Algorithm 1 if
‖∇f(xk)‖2 ≤ 10−8 max

{
1, ‖∇f(x0)‖2

}
, where x0 = 0 is an initial point. To solve the linear

system (26), we apply a conjugate gradient method to avoid computing the inverse ∇2f(xk)−1 of
the Hessian matrix ∇2f(xk) in large-scale problems. We also compare our algorithms with the fast
gradient method in [39] using the optimal step-size for strongly convex functions, which has the
optimal linear convergence rate.

We test all algorithms on a binary classification dataset downloaded from [12] at https://www.
csie.ntu.edu.tw/~cjlin/libsvm/. As suggested in [70], we normalize the data such that each
row ai has ‖ai‖2 = 1 for i = 1, · · · , n. The parameter is set to γ := 10−5 as in [70].

The convergence behavior of Algorithm 1 for ν = 2 and ν = 3 is plotted in Figure 1 for the
news20 problem. As we can see from this figure that Algorithm 1 with ν = 2 outperforms the case

ν = 3. The right-most plot reveals the relative objective residual f(xk)−f?
max{1,|f?|} , the middle one shows

the relative gradient norm ‖∇f(xk)‖2
max{1,‖∇f(x0)‖2} , and the left-most figure displays the step-size τ

(2)
k and

τ
(3)
k . Note that the step-size τ

(3)
k of Algorithm 1 depends on the regularization parameter γ. If γ

is small, then τ
(3)
k is also small. In contrast, the step-size τ

(2)
k of Algorithm 1 is independent of γ.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 1 The convergence of Algorithm 1 for news20.binary (Left: Relative objective residuals, Middle: Relative
norms of gradient, and Right: Stepsizes).

Our second test is performed on six problems with different sizes. Table 2 shows the performance
and results of the 3 algorithms: Algorithm 1 with ν = 2, Algorithm 1 with ν = 3, and the fast-
gradient method in [39]. Here, n is the number of data points, p is the number of variables, iter is
the number of iterations, error is the training error measured by 1

2n

∑n
i=1(1− sign(yi(a

>
i x+µ))),

and f(xk) is the objective value achieved by these three algorithms.

Table 2 The performance and results of the three algorithms for solving the logistic regression problem (44).

Problem Algorithm 1 (ν = 2) Algorithm 1 (ν = 3) Fast gradient method [39]

Name p n iter time[s] f(xk) error iter time[s] f(xk) error iter time[s] f(xk) error

a4a 122 4781 22 0.57 3.250e-01 0.150 177 4.99 3.250e-01 0.150 1396 2.13 3.250e-01 0.150

w4a 300 6760 27 1.14 5.297e-02 0.013 246 8.41 5.297e-02 0.013 863 1.71 5.297e-02 0.013

covtype 54 581012 23 17.22 7.034e-04 0.488 272 235.40 7.034e-04 0.488 1896 318.32 7.034e-04 0.488

rcv1 47236 20242 39 12.45 1.085e-01 0.009 218 60.80 1.085e-01 0.009 366 9.69 1.085e-01 0.009

gisette 5000 6000 40 109.23 1.090e-01 0.008 220 507.03 1.090e-01 0.008 2180 1183.67 1.090e-01 0.008

real-sim 20958 72201 39 22.69 1.287e-01 0.016 218 124.37 1.287e-01 0.016 271 24.74 1.287e-01 0.016

news20 1355191 19954 42 86.47 1.602e-01 0.005 197 420.87 1.602e-01 0.005 623 153.22 1.602e-01 0.005

We observe that our step-size τ
(2)
k using ν = 2 works much better than τ

(3)
k using ν = 3

as in [70]. This confirms the theoretical analysis in Example 4. This step-size can be useful for
parallel and distributed implementation, where evaluating the objective values often requires high
computational effort due to communication and data transferring. Note that the computation of

the step-size τ
(2)
k in Algorithm 1 only needs O(p) operations, and do not require to pass over all

data points. Algorithm 1 with ν = 2 also works better than the fast gradient method [39] in this
experiment, especially for the case n � 1. Note that the fast gradient method uses the optimal
step-size and has a linear convergence rate in this case.

Finally, we show that our step-size τ
(2)
k can be used as a lower bound to enhance a backtracking

linesearch procedure in Newton methods. The Armijo linesearch condition is given as

f(xk + τkn
k
nt) ≤ f(xk)− c1τk∇f(xk)>nknt, (45)

where c1 ∈ (0, 1) is a given constant. Here, we use c1 = 10−6, which is sufficiently small.

– In our backtracking linesearch variant, we search for the best step-size τ ∈ [τ
(2)
k , 1]. This variant

requires to compute τ
(2)
k , which needs O(p) operations.

– In the standard backtracking linesearch routine, we search for the best step-size τ ∈ (0, 1].

Both strategies use a bisection section rule as τ ← τ/2 starting from τ ← 1. The results on 3
problems are reported in Table 3.
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Table 3 The performance and results of the two linesearch variants of Algorithm 1 for solving (44).

Problem Algorithm 1 (Standard linesearch) Algorithm 1 (Linesearch with τ
(2)
k )

Name p n iter nfval time[s]
‖∇f(xk)‖2
‖∇f(x0)‖2

f(xk) error iter nfval time[s]
‖∇f(xk)‖2
‖∇f(x0)‖2

f(xk) error

covtype 54 581012 25 68 14.99 5.8190e-09 7.034e-04 0.488 14 31 9.89 1.3963e-11 7.034e-04 0.488

rcv1 47236 20242 9 21 1.85 1.3336e-11 1.085e-01 0.009 9 19 1.88 1.3336e-11 1.085e-01 0.009

gisette 5000 6000 8 22 18.28 1.2088e-09 1.090e-01 0.008 8 17 19.68 1.2088e-09 1.090e-01 0.008

As shown in Table 3, using the step-size τ
(2)
k as a lower bound for backtracking linesearch

also reduces the number of function evaluations in these three problems. Note that the number
of function evaluations depends on the starting point x0 as well as the factor c1 in (45). If we
set c1 too small, then the decrease on f can be small. Otherwise, if we set c1 too high, then our
decrement c1τk∇f(xk)>nknt may never be achieved, and the linesearch condition fails to hold. If
we change the starting point x0, the number of function evaluations can significantly be increased.

6.2 Distance-weighted discrimination regression: ν ∈ (2, 3).

In this example, we test the performance of Algorithm 1 on the distance-weighted discrimination
(DWD) problem introduced in [35]. In order to directly use Algorithm 1, we slightly modify the
setting in [35] to obtain the following form:

f? := min
x=[w,ξ,µ]>∈Rp

{
f(x) :=

1

n

n∑
i=1

1

(a>i w + µyi + ξi)q
+ c>ξ +

1

2

(
γ1‖w‖22 + γ2µ

2 + γ3‖ξ‖22
)}

, (46)

where q > 0, ai, yi (i = 1, · · · , n) and c are given, and γs > 0 (s = 1, 2, 3) are three regularization
parameters for w, µ and ξ, respectively. Here, the variable x consists of the support vector w, the
intercept µ, and the slack variable ξ as used in [35]. Here, we penalize these variables by using least
squares terms instead of the `1-penalty term as in [35]. Note that the setting (46) is not just limited
to the DWD application above, but can also be used to formulate other practical models such as
time optimal path planning problems in robotics [67] if we choose an appropriate parameter q.

Since ϕ(t) := 1
tq is (Mϕ, ν)-generalized self-concordant with Mϕ := q+2

(q+2)
√
q(q+1)

n
1
q+2 and ν :=

2(q+3)
q+2 ∈ (2, 3), using Proposition 1, we can show that f is (Mf ,

2(q+3)
q+2 )-generalized self-concordant

with Mf := q+2
(q+2)
√
q(q+1)

n
1
q+2 max

{∥∥(a>i , yi, e
>
i )>

∥∥q/(q+2)

2
| 1 ≤ i ≤ n

}
(here, ei is the i-th unit

vector). Problem (46) can be transformed into a second-order cone program [24], and can be solved
by interior-point methods. For instance, if we choose q = 1, then, by introducing intermediate
variables si and ri, we can transform (46) into a second-order cone program using the fact that
1
ri
≤ si is equivalent to

√
(ri − si)2 + 22 ≤ (ri + si).

We implement Algorithm 1 to solve (46) and compare it with the interior-point method im-
plemented in commercial software: Mosek. We experienced that Mosek is much faster than other
interior-point solvers such as SDPT3 [58] or SDPA [68] in this test. For instance, Mosek is from
52 to 125 times faster than SDPT3 in this example. Hence, we only present the results of Mosek.

We also incorporate Algorithm 1 with a backtracking linesearch using our step-size τk (LS with
τk) as a lower bound. Note that since f does not have a Lipschitz gradient map, we cannot apply
gradient-type methods to solve (46) due to the lack of a theoretical guarantee.

Since we cannot run Mosek on big data sets, we rather test our algorithms and this interior-
point solvers on the 6 small and medium size problems using data from [12] (https://www.csie.
ntu.edu.tw/~cjlin/libsvm/). We choose the regularization parameters as γ1 = γ2 = 10−5 and
γ3 = 10−7. Note that if the data set has the size of (n, p), then number of variables in (46) becomes

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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p+n+1. Hence, we use a built-in Matlab conjugate gradient solver to compute the Newton direction
nknt. The initial point x0 is chosen as w0 := 0, µ0 := 0 and ξ0 := 1. In our algorithms, we use
‖∇f(xk)‖2 ≤ 10−8 max

{
1, ‖∇f(x0)‖2

}
as a stopping criterion.

Note that, by the choice of γi for i = 1, 2, 3 as γmin := min {γ1, γ2, γ3} = 10−7 > 0. The
objective function of (46) is strongly convex. By Proposition 4(a), we can cast this function into

an (M̂f , ν̂)-generalized self-concordant with ν̂ = 3 and M̂f := γ
−q

2(q+2)

min Mf , where Mf is given above.
We also implement Algorithm 1 using ν̂ = 3 to solve (46).

Table 4 The performance and results of the four methods for solving the DWD problem (46).

Problem Algorithm 1 Algorithm 1 (LS with τk) Algorithm 1 (ν = 3) Mosek

Name n p iter time[s]
‖∇f(xk)‖2
‖∇f(x0)‖2

iter time[s]
‖∇f(xk)‖2
‖∇f(x0)‖2

iter time[s]
‖∇f(xk)‖2
‖∇f(x0)‖2

time[s]
‖∇f(xk)‖2
‖∇f(x0)‖2

q = 1

a1a 1605 119 170 1.35 9.038e-12 13 0.12 4.196e-13 574 5.77 7.031e-14 0.49 1.806e-08
a2a 2265 119 192 2.71 1.661e-13 12 0.15 8.549e-09 633 7.67 8.903e-09 0.50 2.858e-08
a4a 4781 122 247 5.60 1.180e-13 12 0.27 5.380e-10 790 21.06 3.171e-13 0.94 1.740e-08
leu 38 7129 54 2.71 2.214e-10 15 0.58 3.995e-13 193 10.64 5.275e-12 0.72 2.828e-07
w1a 2270 300 169 2.88 9.752e-09 13 0.17 4.968e-09 676 10.44 8.678e-09 0.50 1.561e-08
w2a 3184 300 193 3.32 4.532e-13 13 0.27 1.428e-09 751 15.02 7.662e-14 0.61 1.793e-08

q = 2

a1a 1605 119 166 2.28 6.345e-12 14 0.15 5.185e-13 1372 13.62 3.299e-09 0.48 1.617e-09
a2a 2265 119 186 2.63 3.028e-12 13 0.22 5.015e-09 1484 16.65 5.325e-09 0.56 3.070e-09
a4a 4781 122 235 5.03 8.676e-13 13 0.31 4.347e-10 1764 53.92 2.662e-09 1.25 4.039e-09
leu 38 7129 57 3.08 1.631e-10 16 0.63 2.754e-12 574 39.20 2.076e-12 0.73 6.436e-08
w1a 2270 300 146 2.15 1.311e-12 14 0.22 4.057e-09 1533 27.26 1.110e-09 0.59 1.295e-09
w2a 3184 300 165 3.43 3.397e-09 14 0.29 1.187e-09 1661 30.63 8.004e-09 0.71 1.653e-09

The results and performance of the four algorithms are reported in Table 4 for two cases: q = 1
and q = 2. We can see that Algorithm 1 with ν = 2 outperforms the case ν̂ = 3 in terms of
iterations. The case ν = 2 is approximately from 3 to 13 times faster than the case ν̂ = 3. This is
not surprising since M̂f depends on γmin, and it is large since γmin is small. Hence, the stepsize

τ
(3)
k computed by using M̂f is smaller than τ

(2)
k computed from Mf as we have seen in the first

example. Mosek works really well in this example and it is slightly better than Algorithm 1 with
ν = 2. If we combine Algorithm 1 with a backtracking linesearch, then this variant outperforms
Mosek. All the algorithms achieve a very high accuracy in terms of the relative norm of the gradient
‖∇f(xk)‖2
‖∇f(x0)‖2 , which is up to 10−8. We emphasize that our methods are highly parallelizable and their

performance can be improved by exploiting this structure as studied in [70] for the logistic case.

6.3 Portfolio optimization with logarithmic utility functions (ν = 3).

In this example, we aim at verifying Algorithm 2 for solving the composite generalized self-
concordant minimization problem (32) with ν = 3. We illustrate this algorithm on the following
portfolio optimization problem with logarithmic utility functions [57] (scaled by a factor of 1

n ):

f? = min
x∈Rp

{
f(x) := −

n∑
i=1

log(w>i x) | x ≥ 0, 1>x = 1

}
, (47)

where wi ∈ Rp+ for i = 1, · · · , n are given vectors presenting the returns at the i-th period of the
assets considered in the portfolio data. More precisely, as indicated in [9], wi measures the return
as the ratio wij = vi,j/vi−1,j between the closing prices vi,j and vi−1,j of the stocks on the current
day i and on the previous day i − 1, respectively; 1 ∈ Rp is a vector of all ones. The aim is to
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find an optimal strategy to assign the proportion of the assets in order to maximize the expected
return among all portfolios.

Note that problem (47) can be cast into an online optimization model [26]. The authors in [26]
proposed an online Newton method to solve this problem. In this case, the regret of such an online
algorithm showing the difference between the objective function of the online counterpart and the
objective function of (47) converges to zero at a rate of 1√

n
as n→∞. If n is relatively small (e.g.,

n = 1000), then the online Newton method does not provide a good approximation to (47).

Let ∆ :=
{
x ∈ Rp | x ≥ 0, 1>x = 1

}
be the standard simplex, and g(x) := δ∆(x) be the

indicator function of ∆. Then, we can formulate (47) into (32). The function f defined in (47) is
(Mf , ν)-generalized self-concordant with ν = 3 and Mf = 2.

We implement Algorithm 2 using an accelerated projected gradient method [4,39] to compute
the proximal Newton direction. We also implement the Frank-Wolfe algorithm and its linesearch
variant in [19,29], and a projected gradient method using Barzilai and Borwein’s step-size to solve
(47). We name these algorithms by FW, FW-LS, and PG-BB, respectively.

We emphasize that both PG-BB and FW-LS do not have a theoretical guarantee when solving
(47). FW has a theoretical guarantee as recently proved in [48], but the complexity bound is rather
pessimistic. We terminate all the algorithms using ‖xk+1 − xk‖2 ≤ εmax

{
1, ‖xk‖2

}
, where ε =

10−8 in Algorithm 2, ε = 10−6 in PG-BB, and ε = 10−4 in FW and FW-LS. We choose different
accuracies for these methods due to the limitation of first-order methods for attaining high accuracy
solutions in the last three algorithms.

We test these algorithms on two categories of dataset: synthetic and real stock data. For the
synthetic data, we generate matrix W with given price ratios as described above in Matlab. More
precisely, we generate W := ones(n, p) +N (0, 0.1), which allows the closing prices to vary about
10% between two consecutive periods. We test with three instances, where (n, p) = (1000, 800),
(1000, 1000), and (1000, 1200), respectively. We name these three datasets by PortfSyn1, PortfSyn2,
and PortfSyn3, respectively. For the real data, we download a US stock dataset using an excel
tool http://www.excelclout.com/historical-stock-prices-in-excel/. This tool gives us the
closing prices of the US stock market in a given period of time. We generate three datasets with
different sizes using different numbers of stocks from 2005 to 2016 as described in [9]. We pre-
processed the data by moving stocks that are empty or lacking of information in the time period
we specified. We name these three datasets by Stock1, Stocks2, and Stocks3, respectively.

The results and the performance of the four algorithms are given in Table 5. Here, iter gives
the number of iterations, time is the computational time in second, error measures the rela-
tive difference between the approximate solution xk given by the algorithms and the interior-
point solution provided by CVX [24] with the high precision configuration (up to 1.8 × 10−12):∥∥xk − x∗cvx

∥∥ /max {1, ‖x∗cvx‖}.

Table 5 The performance and results of the four algorithms for solving the portfolio optimization problem (47).

Problem Algorithm 2 PG-BB FW FW-LS

Name n p iter time[s] error iter time[s] error iter time[s] error iter time[s] error

Synthetic Data

PortfSyn1 1000 800 6 5.68 2.4e-04 645 3.98 2.3e-04 15530 96.47 2.3e-04 6509 47.88 2.3e-04
PortfSyn2 1000 1000 6 6.96 6.8e-05 1207 11.54 7.5e-05 17201 166.89 1.7e-04 6664 70.15 1.4e-04
PortfSyn3 1000 1200 7 12.91 3.2e-04 959 9.55 3.0e-04 16391 159.28 3.3e-04 5750 64.36 3.2e-04

Real Data

Stocks1 473 500 8 1.22 7.1e-06 736 1.22 1.9e-06 16274 24.93 7.0e-05 2721 5.28 4.1e-04
Stocks2 625 723 8 3.71 2.7e-05 1544 4.37 8.0e-06 11956 34.35 3.1e-04 2347 9.33 5.2e-04
Stocks3 625 889 10 6.83 5.6e-05 1074 6.54 5.4e-06 13027 52.89 1.7e-04 2096 8.46 7.4e-04

http://www.excelclout.com/historical-stock-prices-in-excel/
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From Table 5 we can see that Algorithm 2 has a comparable performance to the first-order
methods: FW-LS and PG-BB. While our method has a rigorous convergence guarantee, these first-
order methods remains lacking of a theoretical guarantee. Note that Algorithm 2 and PG-BB are
faster than the FW method and its linesearch variant although the optimal solution x? of this
problem is very sparse. We also note that PG-BB gives a smaller error to the CVX solution. This
CVX solution is not the ground-truth x? but gives a high approximation to x?. In fact, the CVX
solution is dense. Hence, it is not clear if PG-BB produces a better solution than other methods.

6.4 Sparse multinomial logistic regression (ν = 2).

We apply our proximal Newton and proximal quasi-Newton methods to solve the following sparse
multinomial logistic problem studied in various papers including [30]:

F ? :=min
x

{
F (x) :=

[ 1

n

n∑
j=1

(
log
( m∑
i=1

e〈w
(j),x(i)〉)− m∑

i=1

y
(j)
i 〈w

(j), x(i)〉
)]

f(x)
+
[
γ‖vec(x)‖1

]
g(x)

}
, (48)

where x can be considered as a matrix variable of size m× p formed from x(1), · · · , x(m), vec(·) is

the vectorization operator, and γ > 0 is a regularization parameter. Both y
(j)
i ∈ {0, 1} and w(j)

are given as input data for i = 1, · · · ,m and j = 1, · · · , n.
The function f defined in (48) has a closed form Hessian matrix. However, forming the full Hes-

sian matrix ∇2f(x) requires an intensive computation in large-scale problems when n� 1. Hence,
we apply our proximal-quasi-Newton methods in this case. As shown in [61, Lemma 4], the function

f is (Mf , ν)-generalized self-concordant with ν = 2 and Mf :=
√

6
n max

{
‖w(j)‖2 | 1 ≤ j ≤ n

}
.

We implement our proximal quasi-Newton methods to solve (48) and compare them with the
accelerated first-order methods implemented in a well-established software package called TFOCS
[5]. We use three different variants of TFOCS: TFOCS with N07 (using Nesterov’s 2007 method
with two proximal operations per iteration), TFOCS with N83 (using Nesterov’s 1983 method
with one proximal operation per iteration), and TFOCS with AT (using Auslender and Teboulle’s
accelerated method).

We test on a collection of 26 multi-class datasets downloaded from https://www.csie.ntu.

edu.tw/~cjlin/libsvm/. We set the parameter γ in (48) at γ := 0.5√
N

after performing a fine

tuning. We terminate all the algorithms if ‖xk+1 − xk‖ ≤ 10−6 max
{

1, ‖xk‖
}

.
We first plot the convergence behavior in terms of iterations of three proximal Newton-type

algorithms we proposed in this paper in Figure 2 (left) for the dna problem with 3 classes, 2000
data points, and 180 features.
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Fig. 2 Left: Convergence behavior of three methods, Right: Performance profile in time [second] of 5 methods.
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As we can see from this figure, the proximal Newton method takes fewer iterations than the
other two methods. However, each iteration of this method is more expensive than the proximal-
quasi-Newton methods due to the evaluation of the Hessian matrix. In our experiment, the quasi-
Newton method with L-BFGS outperforms the one with BFGS.

Next, we build a performance profile in time [second] to compare five different algorithms: two
proximal quasi-Newton methods proposed in this paper (BFGS and L-BFGS), and three variants
of the accelerated first-order methods implemented in TFOCS.

The performance profile was studied in [16], which can be considered as a standard way to
compare different optimization algorithms. A performance profile is built based on a set S of
ns algorithms (solvers) and a collection P of np problems. We build a profile based on com-
putational time. We denote by Tij := computational time required to solve problem i by solver j.
We compare the performance of solver j on problem i with the best performance of any algo-
rithm on this problem; that is we compute the performance ratio rij :=

Tij
min{Tik|k∈S} . Now,

let ρ̃j(τ̃) := 1
np

size {i ∈ P | rij ≤ τ̃} for τ̃ ∈ R+. The function ρ̃j : R → [0, 1] is the prob-

ability for solver j that a performance ratio is within a factor τ̃ of the best possible ratio.
We use the term “performance profile” for the distribution function ρ̃j of a performance met-
ric. In the following numerical examples, we plotted the performance profiles in log2-scale, i.e.
ρj(τ) := 1

np
size {i ∈ P | log2(ri,j) ≤ τ := log2 τ̃}.

Figure 2 (right) shows the performance profile of the five algorithms on a collection of 26
problems indicated above. The proximal quasi-Newton method with L-BFGS achieves 13/26 (50%)
with the best performance, while the BFGS obtains 10/26 (38%) with the best performance.
In terms of computational time, both proximal quasi-Newton methods outperform the optimal
proximal gradient methods in this experiment. It is also clear that our proximal quasi-Newton-
type methods achieve a higher accuracy solution in this experiment compared to the accelerated
proximal gradient-type methods implemented in TFOCS.

7 Conclusion

We have generalized the self-concordance notion in [44] to a more general class of smooth and
convex functions. Such a function class covers several well-known examples, including logistic,
exponential, reciprocal, and standard self-concordant functions, just to name a few. We have de-
veloped a unified theory with several basic properties to reveal the smoothness structure of this
functional class. We have provided several key bounds on local norms, Hessian mapping, gradient
mapping, and function value of this functional class. Then, we have illustrated our theory by ap-
plying it to solve a class of smooth convex minimization problems and its composite setting. We
believe that our theory provides an appropriate approach to exploit the curvature of these prob-
lems and allows us to compute an explicit step-size in Newton-type methods that have a global
convergence guarantee even for non-Lipschitz gradient/Hessian functions. While our theory is still
valid for the case ν > 3, we have not found yet a representative application in a high-dimensional
space. We therefore limit our consideration to Newton and proximal Newton methods for ν ∈ [2, 3],
but our key bounds in Subsection 2.7 remain valid for different ranges of ν with ν > 0.

Our future research is to focus on several aspects. Firstly, we can exploit this theory to develop
more practical inexact and quasi-Newton-type methods that can easily capture practical applica-
tions in large-scale settings. Secondly, we will combine our approach and stochastic, randomized,
and coordinate descent methods to develop new variants of algorithms that can scale better in
high-dimensional space. Thirdly, by exploiting both generalized self-concordant, Lipschitz gradi-
ent, and strong convexity, one can also develop first-order methods to solve convex optimization
problems. Finally, we plan to generalize our theory to primal-dual setting and monotone operators
to apply to other classes of convex problems such as convex-concave saddle points, constrained
convex optimization, and monotone equations and inclusions.

Acknowledgments: This work is partially supported by the NSF-grant No. DMS-1619884, USA.
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A Appendix: The proof of technical results

This appendix provides the full proofs of technical results presented in this paper. We prove some
technical results used in the paper, and missing proofs in the main text. We also provide a full
convergence analysis of the Newton-type methods presented in the main text.

A.1 The proof of Proposition 6: Fenchel’s conjugate

Let us consider the set X := {x ∈ Rp | f(u)− 〈x, u〉 is bounded from below on dom(f)}. We first
show that dom(f∗) = X .

By the definition of dom(f∗), we have dom(f∗) = {x ∈ Rp | f∗(x) < +∞}. Take any x ∈
dom(f∗), one has f∗(x) = maxu∈dom(f) {〈x, u〉 − f(u)} < +∞. Hence f(u) − 〈x, u〉 ≥ −f∗(x) >
−∞ for all u ∈ dom(f), which implies x ∈ X .

Conversely, assume that x ∈ X . By the definition of X , f(u) − 〈x, u〉 is bounded from below
for all u ∈ dom(f). That is, there exists M ∈ [0,+∞), such that f(u) − 〈x, u〉 ≥ −M for all
u ∈ dom(f). By the definition of the conjugate, f∗(x) = maxu∈dom(f) {〈x, u〉 − f(u)} ≤M < +∞.
Hence, x ∈ dom(f∗).

For any x ∈ dom(f∗), the optimality condition of maxu {〈x, u〉 − f(u)} is x = ∇f(u). Let us
denote by x(u) = ∇f(u). Then, we have f∗(x(u)) = 〈x(u), u〉 − f(u). Taking derivative of f∗ with
respect to x on both sides, and using x(u) = ∇f(u), we have

∇xf∗(x(u)) = u+ u′xx(u)− u′x∇f(u) = u.

We further take the second-order derivative of the above equation with respect to u to get

∇2f∗(x(u))x′u(u) = I.

Using the two relations above and the fact that x′u(u) = ∇2f(u), we can derive

〈∇f∗(x(u)), x′u(u)v〉 = 〈u, x′u(u)v〉 = 〈∇2f(u)v, u〉 (49)

〈∇2f∗(x(u))x′u(u)v, x′u(u)w〉 = 〈v, x′u(u)w〉 = 〈∇2f(u)v, w〉, (50)

where u ∈ dom(f), and v, w ∈ Rp. Using (49) and (50), we can compute the third-order derivative
of f∗ with respect to x(u) as

〈∇3f∗(x(u))[x′u(u)w]x′u(u)v, x′u(u)v〉 = 〈
(
〈∇2f∗(x(u))x′u(u)v, x′u(u)v〉

)′
u
, w〉

−2〈∇2f∗(x(u))x′u(u)v, (x′u(u)v)′uw〉
(49)
= 〈(〈x′u(u)v, v〉)′u, w〉 − 2〈∇2f∗(x(u))x′u(u)v, (x′u(u)v)′uw〉

(50)
= 〈∇3f(u)[w]v, v〉 − 2〈(x′u(u)v)′uw, v〉

= −〈∇3f(u)[w]v, v〉.

(51)

Denote ξ := x′u(u)w and η := x′u(u)v. Note that since x′u(u) = ∇2f(u), we have ξ = ∇2f(u)w,
η = ∇2f(u)v, and w = ∇2f(u)−1ξ. Using these relations and ∇2f∗(x(u))x′u(u) = I, we can derive

|〈∇3f∗(x(u))[ξ]η, η〉| (51)
= |〈∇3f(u)[w]v, v〉

(5)

≤ Mf ‖v‖2u ‖w‖
ν−2
u ‖w‖3−ν2

= Mf 〈∇2f(u)v, v〉〈∇2f(u)w,w〉 ν−2
2 ‖w‖3−ν2

= Mf 〈η,∇2f∗(x(u))x′(u)v〉〈ξ,∇2f∗(x(u))x′(u)w〉 ν−2
2 ‖∇2f(u)−1ξ‖3−ν

= Mf 〈∇2f∗(x(u))η, η〉〈∇2f∗(x(u))ξ, ξ〉 ν−2
2 〈∇2f∗(x(u))ξ,∇2f∗(x(u))ξ〉3−ν .

For any H ∈ Sp++, we have 〈Hξ, ξ〉 ≤ ‖Hξ‖2 ‖ξ‖2. For any ν ≥ 3, this inequality leads to

〈Hξ, ξ〉
ν−2

2 ‖Hξ‖3−ν ≤ 〈Hξ, ξ〉
4−ν

2 ‖ξ‖ν−3
2 .
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Using this inequality with H = ∇2f∗(x(u)) into the last expression, we obtain

|〈∇3f∗(x(u))[ξ]η, η〉| ≤Mf 〈∇2f∗(x(u))η, η〉〈∇2f∗(x(u))ξ, ξ〉 4−ν
2 ‖ξ‖ν−3

2

= Mf‖η‖2x(u) ‖ξ‖
4−ν
x(u) ‖ξ‖

ν−3
2 .

By Definition 2, we need ν − 3 = 3 − ν∗ and 4 − ν = ν∗ − 2, which hold if ν∗ = 6 − ν. Under
the choice of ν∗, the above inequality shows that f∗ is (Mf∗ , ν∗)-generalized self-concordant with
Mf∗ = Mf and ν∗ = 6− ν. However, to guarantee ν − 3 ≥ 0 and 6− ν > 0, we require 3 ≤ ν < 6.

Finally, we prove the case of univariate functions, i.e., p = 1. Indeed, we have

x(u) = f ′(u), (f∗)′(x(u)) = u, and (f∗)′′(x(u))x′(u) = 1. (52)

Here, f ′ is the derivative of f with respect to u. Taking the derivative of the last equation on both
sides with respect to u, we obtain

(f∗)′′′(x(u))(x′(u))2 + (f∗)′′(x(u))x′′(u) = 0.

Solving this equation for (f∗)′′′(x(u)) and then using (52) and x′′(u) = f ′′′(u), we get

|(f∗)′′′(x(u))| =
∣∣∣ (f∗)′′(x(u))x′′(u)

(x′(u))2

∣∣∣ =
∣∣((f∗)′′(x(u)))3f ′′′(u)

∣∣
≤ Mf

∣∣((f∗)′′(x(u)))3(f ′′(u))
ν
2

∣∣ = Mf ((f∗)′′(x(u)))
6−ν

2 .

This inequality shows that f∗ is generalized self-concordant with ν∗ = 6− ν for any ν ∈ (0, 6). �

A.2 The proof of Corollary 2: Bound on the mean of Hessian operator

Let yτ := x + τ(y − x). Then dν(x, yτ ) = τdν(x, y). By (15), we have ∇2f(x + τ(y − x)) �
(1− τdν(x, y))

−2
ν−2 ∇2f(x) and ∇2f(x+ τ(y − x)) � (1− τdν(x, y))

2
ν−2 ∇2f(x) . Hence, we have

Iν(x, y)∇2f(x) �
∫ 1

0

∇2f(x+ τ(y − x))dτ � Iν(x, y)∇2f(x),

where Iν(x, y) :=
∫ 1

0
(1− τdν(x, y))

2
ν−2 dτ and Iν(x, y) :=

∫ 1

0
(1− τdν(x, y))

−2
ν−2 dτ are the two

integrals in the above inequality. Computing these integrals explicitly, we can show that

– If ν = 4, then Iν(x, y) = 1−(1−d4(x,y))2

2d4(x,y) and Iν(x, y) = − ln(1−d4(x,y))
d4(x,y) .

– If ν 6= 4, then we can easily compute Iν(x, y) = (ν−2)
νdν(x,y)

(
1− (1− dν(x, y))

ν
ν−2

)
, and Iν(x, y) =

(ν−2)
(ν−4)dν(x,y)

(
1− (1− dν(x, y))

ν−4
ν−2

)
.

Hence, we obtain (18).

Finally, we prove for the case ν = 2. Indeed, by (16), we have e−d2(x,yτ )∇2f(x) � ∇2f(yτ ) �
ed2(x,yτ )∇2f(x). Since d2(x, yτ ) = τd2(x, y), the last estimate leads to(∫ 1

0

e−d2(x,y)τdτ

)
∇2f(x) �

∫ 1

0

∇2f(yτ )dτ �
(∫ 1

0

ed2(x,y)τdτ

)
∇2f(x),

which is exactly (18). �
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A.3 Techical lemmas

The following lemmas will be used in our analysis. Lemma 1 is elementary, but we provide its proof
for completeness.

Lemma 1 (a) For a fixed r ≥ 1 and t̄ ∈ (0, 1), consider a function ψr(t) := 1−(1−t)r−rt(1−t)r
rt2(1−t)r on

t ∈ (0, 1). Then, ψ is positive and increasing on (0, t̄] and

lim
t→0+

ψr(t) = r+1
2 , lim

t→1−
ψr(t) = +∞, and sup

0≤t≤t̄
|ψr(t)| ≤ C̄r(t̄) < +∞,

where C̄r(t̄) := 1−(1−t̄)r−rt̄(1−t̄)r
rt̄2(1−t̄)r ∈ (0,+∞).

(b) For t > 0, we also have et−1−t
t ≤

(
3
2 + t

3

)
tet.

Proof The statement (b) is rather elementary, we only prove (a). Since r ≥ 1, limt→0+(1 − (1 −
t)r − rt(1− t)r) = limt→0+ rt2(1− t)r = 0 and rt2(1− t)r > 0 for t ∈ (0, 1), applying L’Hôspital’s
rule, we have

lim
t→0+

ψr(t) =
limt→0+ r(r + 1)t(1− t)r−1

limt→0+ rt(2− (2 + r)t)(1− t)r−1
=

limt→0+(r + 1)

limt→0+(2− (2 + r)t)
=
r + 1

2
.

The limit limt→1− ψr(t) = +∞ is obvious.

Next, it is easily to compute ψ′r(t) = (1−t)r+1(rt+2)+(r+2)t−2
rt3(1−t)r+1 . Let mr(t) := (1− t)r+1(rt+ 2) +

(r + 2)t− 2 be the numerator of ψ′r(t).
We have m′r(t) = r + 2 − (1 − t)r(r2t + 2rt + r + 2), and m′′r (t) = r(r + 1)(r + 2)t(1 − t)r−1.

Clearly, since r ≥ 1, m′′r (t) ≥ 0 for t ∈ [0, 1]. This implies that m′r is nondecreasing on [0, 1].
Hence, m′r(t) ≥ m′r(0) = 0 for all t ∈ [0, 1]. Consequently, mr is nondecreasing on [0, 1]. Therefore,
mr(t) ≥ mr(0) = 0 for all t ∈ [0, 1]. Using the formula of ψ′r, we can see that ψ′r(t) ≥ 0 for all
t ∈ (0, 1). This implies that ψr is nondecreasing on (0, 1). Moreover, limt→0+ ψr(t) = r+1

2 > 0.
Hence, ψr(t) > 0 for all t ∈ (0, 1). This implies that ψr is bounded on (0, t̄] ⊂ (0, 1) by ψr(t̄). �

Similar to Corollary 2, we can prove the following lemma on the bound of the Hessian difference.

Lemma 2 Given x, y ∈ dom(f), the matrix H(x, y) defined by

H(x, y) := ∇2f(x)−1/2

[∫ 1

0

(
∇2f(x+ τ(y − x))−∇2f(x)

)
dτ

]
∇2f(x)−1/2, (53)

satisfies

‖H(x, y)‖ ≤ Rν (dν(x, y)) dν(x, y), (54)

where Rν(t) is defined as follows for t ∈ [0, 1):

Rν(t) :=


(

3
2 + t

3

)
et if ν = 2

1−(1−t)
4−ν
ν−2−( 4−ν

ν−2 )t(1−t)
4−ν
ν−2

( 4−ν
ν−2 )t2(1−t)

4−ν
ν−2

if 2 < ν ≤ 3.
(55)

Moreover, for a fixed t̄ ∈ (0, 1), we have sup
0≤t≤t̄

|Rν(t)| ≤ M̄ν(t̄), where

M̄ν(t̄) := max

1− (1− t̄)
4−ν
ν−2 −

(
4−ν
ν−2

)
t̄(1− t̄)

4−ν
ν−2(

4−ν
ν−2

)
t̄2(1− t̄)

4−ν
ν−2

,

(
3

2
+
t̄

2

)
et̄

 ∈ (0,+∞).
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Proof By Corollary 2, if we define G(x, y) :=
∫ 1

0

[
∇2f(x+ τ(y − x))−∇2f(x)

]
dτ , then

[κν(dν(x, y))− 1]∇2f(x) � G(x, y) � [κν(dν(x, y))− 1]∇2f(x). (56)

Since H(x, y) = ∇2f(x)−1/2G(x, y)∇2f(x)−1/2, the last inequality implies

‖H(x, y)‖ ≤ max
{

1− κν(dν(x, y)), κν(dν(x, y))− 1
}
.

Let Cmax(t) := max
{

1− κν(t), κν(t)− 1
}

be for t ∈ [0, 1). We consider three cases.

(a) For ν = 2, since e−t+et ≥ 2, we have 1−e−t
t + et−1

t ≥ 2, which implies Cmax(t) = κν(t)−1 =
et−1−t

t . Hence, by Lemma 1, we have Cmax(t) ≤
(

3
2 + t

3

)
tet, which leads to Rν(t) :=

(
3
2 + t

3

)
et.

(b) For ν ∈ (2, 3], we have

Cmax(t) = max

{
1− (ν−2)

νt

[
1−(1−t)

ν
ν−2
]
, (ν−2)

(4−ν)t

[
1

(1−t)
4−ν
ν−2

−1
]
− 1

}
= (ν−2)

(4−ν)t

[
1

(1−t)
4−ν
ν−2

− 1
]
− 1.

Indeed, we show that (ν−2)
(4−ν)t

[
1

(1−t)
4−ν
ν−2

− 1
]

+ (ν−2)
νt

[
1− (1− t)

ν
ν−2
]
≥ 2. Let u := 4−ν

ν−2 > 0 and

v := ν
ν−2 > 0. The last inequality is equivalent to 1

u

[
1

(1−t)u − 1
]

+ 1
v [1− (1− t)v] ≥ 2t, which can

be reformulated as 1
v −

1
u + 1

u(1−t)u −
(1−t)v
v −2t ≥ 0. Consider s(t) := 1

v −
1
u + 1

u(1−t)u −
(1−t)v
v −2t.

It is clear that s′(t) = 1
(1−t)u+1 + (1− t)v−1− 2 = (1− t)−

2
ν−2 + (1− t)

2
ν−2 − 2 ≥ 0 for all t ∈ [0, 1).

We obtain s(t) ≥ s(0) = 0. Hence, Cmax(t) = (ν−2)
(4−ν)t

[
1

(1−t)
4−ν
ν−2

− 1
]
− 1.

Let us define r := 4−ν
ν−2 = 2

ν−2−1. Then, it is clear that ν = 2+ 2
1+r , and ν ∈ (2, 3] is equivalent to

r ≥ 1. Now, using Lemma 1 with r = 2
ν−2 − 1 ≥ 1, we obtain Rν(t) :=

1−(1−t)
4−ν
ν−2−( 4−ν

ν−2 )t(1−t)
4−ν
ν−2

( 4−ν
ν−2 )t2(1−t)

4−ν
ν−2

.

Put (a) and (b) together, we obtain (54) with Rν defined by (55). The boundedness of Rν follows
from Lemma 1. �

A.4 The proof of Theorem 4: Solution existence and uniqueness

Consider a sublevel set LF (x) := {y ∈ dom(F ) | F (y) ≤ F (x)} of F in (32). For any y ∈ LF (x)
and v ∈ ∂g(x), by (22) and the convexity of g, we have

F (x) ≥ F (y) ≥ F (x) + 〈∇f(x) + v, y − x〉+ ων (−dν(x, y)) ‖y − x‖2x .

By the Cauchy-Schwarz inequality, we have

ων (−dν(x, y)) ‖y − x‖x ≤ ‖∇f(x) + v‖∗x . (57)

Now, using the assumption ∇2f(x) � 0 for some x ∈ dom(F ), we have σmin(x) := λmin(∇2f(x)) >
0, the smallest eigenvalue of ∇2f(x).

(a) If ν = 2, then d2(x, y) = Mf ‖y − x‖2 ≤
Mf√
σmin(x)

‖y − x‖x. This estimate together with (57)

imply

ω2 (−d2(x, y)) d2(x, y) ≤ Mf√
σmin(x)

‖∇f(x) + v‖∗x =
Mf√
σmin(x)

λ(x). (58)

We consider the function s2(t) := ω2(−t)t = 1 − 1−e−t
t . Clearly, s′2(t) = et−t−1

t2et > 0 for all
t ∈ R+. Hence, s2(t) is increasing on R+. However, s2(t) < 1 and lim

t→+∞
s2(t) = 1. Therefore,

if
Mf√
σmin(x)

λ(x) < 1, then the equation s2(t) − Mf√
σmin(x)

λ(x) = 0 has a unique solution t∗ ∈



34 T. Sun and Q. Tran-Dinh

(0,+∞). In this case, for 0 ≤ d2(x, y) ≤ t∗, (58) holds. This condition leads to Mf ‖y − x‖2 ≤
t∗ < +∞, which implies that the sublevel set LF (x) is bounded. Consequently, solution x? of
(32) exists.

(b) If 2 < ν < 3, then

dν(x, y) ≤
(ν

2
− 1
) Mf

σmin(x)
3−ν

2

‖y − x‖x .

This inequality together with (57) imply

ων (−dν(x, y)) dν(x, y) ≤
(ν

2
− 1
) Mf

σmin(x)
3−ν

2

‖∇f(x) + v‖∗x =
(ν

2
− 1
) Mf

σmin(x)
3−ν

2

λ(x).

We consider sν(t) := ων(−t)t. After a few elementary calculations, we can easily check that
sν is increasing on R+ and sν(t) < ν−2

4−ν for all t > 0, and lim
t→+∞

sν(t) = ν−2
4−ν . Hence, if(

ν
2 − 1

) Mf

σmin(x)
3−ν

2

λ(x) < ν−2
4−ν , then, similar to Case (a), we can show that solution x? of (32)

exists. This condition implies that λ(x) < 2σmin(x)
3−ν

2

(4−ν)Mf
.

(c) If ν = 3, then d3(x, y) =
Mf

2 ‖y − x‖x. Combining this estimate and (57) we get

ω3 (−d3(x, y)) d3(x, y) ≤ Mf

2
‖∇f(x) + v‖∗x .

With the same proof as in [39, Theorem 4.1.11], if
Mf

2 ‖∇f(x) + v‖∗x < 1, which is equivalent
to λ(x) < 2

Mf
, then solution x? of (32) exists.

Note that the condition on λ(x) in three cases (a), (b), and (c) can be unified. The uniqueness of
the solution x? in these three cases follows from the strict convexity of F . �

A.5 The proof of Theorem 2: Convergence of the damped-step Newton method

The proof of this theorem is divided into two parts: computing the step-size, and proving the local
quadratic convergence.

Computing the step-size τk: From Proposition 10, for any xk, xk+1 ∈ dom(f), if dν(xk, xk+1) <
1, then we have

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ ων
(
dν(xk, xk+1)

) ∥∥xk+1 − xk
∥∥2

xk
.

Now, using (25), we have 〈∇f(xk), xk+1−xk〉 = −τk
(
‖∇f(xk)‖∗xk

)2
= −τkλ2

k. On the other hand,
we have

‖xk+1 − xk‖2xk
(25)
= τ2

k 〈∇2f(xk)−1∇f(xk),∇f(xk)〉 (27)
= τ2

kλ
2
k,

‖xk+1 − xk‖22
(25)
= τ2

k 〈∇2f(xk)−1∇f(xk),∇2f(xk)−1∇f(xk)〉 (27)
=

τ2
kβ

2
k

M2
f
.

Using the definition of dν(·) in (12), the two last equalities, and (28), we can easily show that
dν(xk, xk+1) = τkdk. Substituting these relations into the first estimate, we obtain

f(xk+1) ≤ f(xk)−
(
τkλ

2
k − ων (τkdk) τ2

kλ
2
k

)
.

We consider the following cases:

(a) If ν = 2, then, by (23), we have ηk(τ) := λ2
kτ −

(
λk
dk

)2 (
eτdk − τdk − 1

)
with dk = βk. This

function attains the maximum at τk := ln(1+dk)
dk

= ln(1+βk)
βk

∈ (0, 1) with

ηk(τk) =

(
λk
dk

)2 [
(1+dk) ln(1+dk)−dk

]
=

(
λk
βk

)2 [
(1+βk) ln(1+βk)−βk

]
.



Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods 35

It is easy to check from the rightmost term of the last expression that ∆k := ηk(τk) > 0 for τk > 0.

(b) If ν = 3, by (23), we have ηk(τ) := λ2
kτ +

(
λk
dk

)2

[τdk + ln(1− τdk)] with dk = 0.5Mfλk.

We can show that ηk(τ) achieves the maximum at τk = 1
1+dk

= 1
1+0.5Mfλk

∈ (0, 1) with

ηk(τk) =
λ2
k

1 + 0.5Mfλk
+

(
2

Mf

)2 [
0.5Mfλk

1 + 0.5Mfλk
+ ln

(
1− 0.5Mfλk

1 + 0.5Mfλk

)]
.

We can also easily check that the last term ∆k := ηk(τk) of this expression is positive for λk > 0.
(c) If 2 < ν < 3, then we have dk = Mν−2

f

(
ν
2 − 1

)
λν−2
k β3−ν

k . By (23), we have

ηk(τ) =

(
λ2
k +

λ2
k

dk

ν − 2

4− ν

)
τ −

(
λk
dk

)2
(ν − 2)2

2(4− ν)(3− ν)

(
(1− τdk)

2(3−ν)
2−ν − 1

)
.

Our aim is to find τ∗ ∈ (0, 1] by solving maxτ∈[0,1] ηk(τ). This problem always has a global solution.
First, we compute the first- and the second-order derivatives of ηk as follows:

η′k(τ) = λ2
k

[
1− 1

dk

ν − 2

ν − 4

(
1− (1− τdk)

ν−4
ν−2

)]
and η′′k (τ) = −λ2

k(1− τdk)
−2
ν−2 .

Let us set η′k(τk) = 0. Then, we get

τk =
1

dk

[
1−

(
1 +

4− ν
ν − 2

dk

)− ν−2
4−ν
]
∈ (0, 1) (by the Bernoulli inequality),

with

ηk(τk) =
λ2
k

dk

[
1− 4− ν

2(3− ν)

(
1 +

4− ν
ν − 2

dk

)2−ν
]

+

(
λk
dk

)2
ν − 2

2(3− ν)

[
1−

(
1 +

4− ν
ν − 2

dk

)2−ν
]
.

In addition, we can check that η′′k (τk) < 0. Hence, the value of τk above achieves the maximum of
ηk(·). Then, we have ∆k := ηk(τk) > ηk(0) = 0.

The proof of local quadratic convergence: Let x?f be the optimal solution of (24). We have

‖xk+1 − x?f‖xk = ‖xk − τk∇2f(xk)−1∇f(xk)− x?f‖xk
= (1− τk)‖xk − x?f‖xk + τk‖xk − x?f −∇2f(xk)−1∇f(xk)‖xk .

Hence, we can write

‖xk+1−x?f‖xk =(1−τk)‖xk−x?f‖xk+τk‖∇2f(xk)−1
[
∇f(x?f )−∇f(xk)−∇2f(xk)(x?f−xk)

]
‖xk . (59)

Let us define Tk :=
∥∥∥∇2f(xk)−1

[
∇f(x?f )−∇f(xk)−∇2f(xk)(x?f−xk)

] ∥∥∥
xk

and consider three

cases as follows:
(a) For ν = 2, using Corollary 2, we have

(
1−e−β̄k
β̄k

)
∇2f(xk) �

∫ 1

0
∇2f(xk + t(x?f − xk))dt �(

eβ̄k−1
β̄k

)
∇2f(xk), where β̄k := Mf‖xk − x?f‖2. Using the above inequality, we can show that

Tk ≤ max

{
1− 1− e−β̄k

β̄k
,
eβ̄k − 1

β̄k
− 1

}
‖xk − x?f‖xk =

(
eβ̄k − 1− β̄k

β̄2
k

)
β̄k‖xk − x?f‖xk .
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Let σk := λmin(∇2f(xk)). We first derive

‖∇2f(xk)−1∇f(xk)‖2 = ‖∇2f(xk)−1(∇f(xk)−∇f(x?f ))‖2

= ‖
∫ 1

0
∇2f(xk)−1∇2f(xk + t(x?f − xk))(xk − x?f )dt‖2

= ‖∇2f(xk)−1/2K(xk, x?f )∇2f(xk)1/2(xk − x?f )‖2
≤ 1√

σk
‖K(xk, x?f )‖‖xk − x?f‖xk .

where K(xk, x?f ) :=
∫ 1

0
∇2f(xk)−1/2∇2f(xk + t(x?f − xk)∇2f(xk)−1/2dt. Using Corollary 2 and

noting that β̄k := Mf‖xk − x?f‖2, we can estimate ‖K(xk, x?f )‖ ≤ eβ̄k−1
β̄k

. Using the two last

estimates, and the definition of βk, we can derive

βk = Mf‖∇2f(xk)−1∇f(xk)‖2 ≤ Mfe
β̄k−1

β̄k
√
σk
‖xk − x?f‖xk ≤Mfe

‖xk−x?f‖xk√
σk

,

provided that β̄k ≤ 1. Since, the step-size τk = 1
βk

ln(1+βk), we have 1−τk ≤ βk
2 ≤

Mfe‖xk−x?f‖xk
2
√
σk

.

On the other hand, eβ̄k−1−β̄k
β̄2
k

≤ e
2 for all 0 ≤ β̄k ≤ 1. Substituting Tk into (59) and using these

relations, we have

‖xk+1 − x?f‖xk ≤ e
2 β̄k‖x

k − x?f‖xk +
Mfe

2

‖xk−x?f‖
2

xk√
σk

,

provided that β̄k ≤ 1. On the other hand, by Proposition 8, we have ‖xk+1−x?f‖xk+1 ≤ e
β̄k+1+β̄k

2 ‖xk+1−
x?f‖xk and σ−1

k+1 ≤ eβ̄k+β̄k+1σ−1
k . In addition, β̄k ≤ Mf√

σk
‖xk − x?f‖xk Combining the above inequal-

ities, we finally get

‖xk+1 − x?f‖xk+1

√
σk+1

≤Mfe
1+β̄k+1+β̄k

(
‖xk − x?f‖xk√

σk

)2

.

Under the fact that βk ≤ 1, and βk+1 ≤ 1, this estimate shows that

{
‖xk−x?f‖xk√

σk

}
quadrati-

cally converges to zero. Since ‖xk − x?f‖2 ≤
‖xk−x?f‖xk√

σk
, we can also conclude that

{
‖xk − x?f‖2

}
quadratically converges to zero.

(b) For ν = 3, we can follow [39]. However, for completeness, we give a short proof here. Using

Corollary 2, we have
(

1− rk +
r2
k

3

)
∇2f(xk) �

∫ 1

0
∇2f(xk + t(x?f − xk))dt � 1

1−rk∇
2f(xk), where

rk := 0.5Mf‖xk − x?f‖xk < 1. Using the above inequality, we can show that

Tk ≤ max

{
rk −

r2
k

3
,

rk
1− rk

}
‖xk − x?f‖xk =

0.5Mf‖xk − x?f‖2xk
1− 0.5Mf‖xk − x?f‖xk

.

Substituting Tk into (59) and using τk = 1
1+0.5Mfλk

, we have

‖xk+1 − x?f‖xk ≤
0.5Mfλk

1 + 0.5Mfλk
‖xk − x?f‖xk +

1

1 + 0.5Mfλk

(
0.5Mf‖xk − x?f‖2xk

1− 0.5Mf‖xk − x?f‖xk

)
.

Next, we need to upper bound λk. Since ∇f(x?f ) = 0. Using Corollary 2, we can bound λk as

λk = ‖∇f(xk)‖∗xk = ‖∇2f(xk)−1/2(∇f(xk)−∇f(x?f ))‖2

= ‖
∫ 1

0
∇2f(xk)−1/2∇2f(xk + t(x?f − xk))(x?f − xk)dt‖2

≤ ‖xk − x?f‖xk‖
∫ 1

0
∇2f(xk)−1/2∇2f(xk + t(x?f − xk))∇2f(xk)−1/2dt‖2

Corollary 2

≤ ‖xk−x?f‖xk
1−0.5Mf‖xk−x?f‖xk

≤ 2‖xk − x?f‖xk ,
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provided that Mf‖xk − x?f‖xk < 1. Overestimating the above inequality using this bound, we get

‖xk+1 − x?f‖xk ≤ 0.5Mfλk‖xk − x?f‖xk +
0.5Mf‖xk−x?f‖

2

xk

1−0.5Mf‖xk−x?f‖xk

≤Mf‖xk − x?f‖2xk +Mf‖xk − x?f‖2xk = 2Mf‖xk − x?f‖2xk ,

provided that Mf‖xk − x?f‖xk < 1. On the other hand, we can also estimate ‖xk+1 − x?f‖xk+1 ≤
‖xk+1−x?f‖xk

1−0.5Mf(‖xk+1−x?f‖xk+‖xk−x?f‖xk)
. Combining the last two inequalities, we get

‖xk+1 − x?f‖xk+1 ≤
2Mf‖xk − x?f‖2xk

1− 2Mf‖xk − x?f‖2xk − 0.5Mf‖xk − x?f‖xk

The right-hand side function ψ(t) =
2Mf

1−2Mf t2−0.5Mf t
≤ 4Mf on t ∈

[
0, 1

2Mf

]
. Hence, if ‖xk −

x?f‖xk ≤ 1
2Mf

, then ‖xk+1 − x?f‖xk+1 ≤ 4Mf‖xk − x?f‖2xk . This shows that if x0 ∈ dom(f) is chosen

such that ‖x0 − x?f‖x0 ≤ 1
4Mf

, then
{
‖xk − x?f‖xk

}
quadratically converges to zero.

(c) For ν ∈ (2, 3), with the same argument as in the proof of Theorem 3, we can show that

‖xk+1 − x?f‖xk ≤ Rν(dkν)dkν‖xk − x?f‖xk ,

where Rν is defined by (55) and dkν := Mν−2
f

(
ν
2 − 1

)
‖xk − x?f‖

3−ν
2 ‖xk − x?f‖

ν−2
xk

. Using again the
argument as in the proof of Theorem 3, we have

‖xk+1 − x?f‖xk+1

σ
3−ν

2

k+1

≤ Cν(dkν , ‖xk − x?f‖xk)

‖xk − x?f‖xk
σ

3−ν
2

k

2

.

Here, Cν(·, ·) is a given function deriving from Rν . Under the condition that dkν and ‖xk − x?f‖xk
are sufficiently small, we can show that Cν(dkν , ‖xk − x?f‖xk) ≤ C̄ν . Hence, the last inequality

shows that
{
‖xk−x?f‖xk

σ
3−ν

2
k

}
quadratically converges to zero. Since σ

3−ν
2

k ‖xk − x?f‖Hk ≤ ‖xk − x?f‖xk ,

where Hk := ∇2f(xk)
ν−2

2 , we have ‖xk − x?f‖Hk ≤
‖xk−x?f‖xk

σ
3−ν

2
k

. Hence, we can conclude that{
‖xk − x?f‖Hk

}
also locally converges to zero at a quadratic rate. �

A.6 The proof of Theorem 3: The convergence of the full-step Newton method

We divide this proof into two parts: the quadratic convergence of
{

λk

σ
3−ν

2
k

}
, and the quadratic

convergence of
{
‖xk − x?f‖Hk

}
.

The quadratic convergence of
{

λk

σ
3−ν

2
k

}
: Since the full-step Newton scheme updates xk+1 :=

xk − ∇2f(xk)−1∇f(xk), if we denote by nknt = xk+1 − xk = −∇2f(xk)−1∇f(xk), then the last
expression leads to ∇f(xk)+∇2f(xk)nknt = 0. In addition, ‖nknt‖xk = ‖∇f(xk)‖∗xk = λk. Using the
definition of dν(·, ·) in (12), we denote dkν := dν(xk, xk+1).

First, by ∇f(xk) +∇2f(xk)nknt = 0 and the mean-value theorem, we can show that

∇f(xk+1) = ∇f(xk+1)−∇f(xk)−∇2f(xk)nknt =

∫ 1

0

[
∇2f(xk + tnknt)−∇2f(xk)

]
nkntdt.
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Let us define Gk :=
∫ 1

0

[
∇2f(xk + tnknt)−∇2f(xk)

]
dt and Hk := ∇2f(xk)−1/2Gk∇2f(xk)−1/2.

Then, the above estimate implies ∇f(xk+1) = Gkn
k
nt. Hence, we can show that[

‖∇f(xk+1)‖∗xk
]2

= 〈∇2f(xk)−1Gkn
k
nt, Gkn

k
nt〉 = 〈Hk∇2f(xk)1/2nknt, Hk∇2f(xk)1/2nknt〉

≤ ‖Hk‖2‖nknt‖2xk = ‖Hk‖2λ2
k.

By Lemma 2, we can estimate

‖Hk‖ ≤ Rν(dkν)dkν ,

where Rν is defined by (55). Combining the two last inequalities and using Proposition 8, we
consider the following cases:

(a) If ν = 2, then we have λ2
k+1 ≤ ed

k
2

[∥∥∇f(xk+1)
∥∥∗
xk

]2
, which implies λk+1 ≤ e

dk2
2 R2(dk2)dk2λk.

Note that λk ≥
√
σkd

k
2

Mf
and 1

σk+1
≤ ed

k
2

σk
. Based on the above inequality, we have

λk+1√
σk+1

≤MfR2(dk2)ed
k
2

(
λk√
σk

)2

.

By a numerical calculation, we can easily check that if dk2 < d?2 ≈ 0.12964, then

λk+1√
σk+1

≤ 2Mf

(
λk√
σk

)2

.

Consequently, if λ0√
σ0
< 1

Mf
min {d?2, 0.5} =

d?2
Mf

, then we can prove

dk+1
2 ≤ dk2 and

λk+1√
σk+1

≤ λk√
σk
,

by induction. Under the condition λ0√
σ0

<
d?2
Mf

, the above inequality shows that the ratio
{

λk√
σk

}
converges to zero at a quadratic rate.

Now, if ν > 2, then we consider different cases. Note that

λ2
k+1 ≤ (1− dkν)

−2
ν−2

[∥∥∇f(xk+1)
∥∥∗
xk

]2
,

which follows that

λk+1 ≤ (1− dkν)
−1
ν−2Rν(dkν)dkνλk. (60)

Note that dkν =
(
ν
2 − 1

)
Mf

∥∥dk∥∥3−ν
2

λν−2
k and σ−1

k+1 ≤ (1 − dkν)
−2
ν−2σ−1

k . Based on these relations
and (60) we can argue as follows:

(b) If 2 < ν < 3, then λk ≥
∥∥dk∥∥

2

√
σk, which follows that dkν ≤

(
ν
2 − 1

)
Mfσ

− 3−ν
2

k λk. Hence,

λk+1

σ
3−ν

2

k+1

≤ (1− dkν)−
4−ν
ν−2Rν(dkν)

(ν
2
− 1
)
Mf

 λk

σ
3−ν

2

k

2

.

If dkν < d?ν , where d?ν is the unique solution to the equation(ν
2
− 1
) Rν(dkν)

(1− dkν)
4−ν
ν−2

= 2,
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then σ
− 3−ν

2

k+1 λk+1 ≤ 2Mf

(
σ
− 3−ν

2

k λk

)2

. Note that it is straightforward to check that this equa-

tion always admits a positive solution. Hence, if we choose x0 ∈ dom(f) such that σ
− 3−ν

2
0 λ0 <

1
Mf

min
{

2d?ν
ν−2 ,

1
2

}
, then we can prove the following two inequalities together by induction:

dkν ≤ dk+1
ν and σ

− 3−ν
2

k+1 λk+1 ≤ σ
− 3−ν

2

k λk.

In addition, the above inequality also shows that
{
σ
− 3−ν

2

k λk

}
quadratically converges to zero.

(c) If ν = 3, then dk3 =
Mf

2 λk, and

λk+1 ≤ (1− dk3)−1R3(dk3)dk3λk = Mf
R3(dk3)

2(1− dk3)
λ2
k.

Directly checking the right-hand side of the above estimate, one can show that if dk3 < d?3 = 0.5,
then λk+1 ≤ 2Mfλ

2
k. Hence, if λ0 <

1
Mf

min {2d?3, 0.5} = 1
2Mf

, then we can prove the following two

inequalities together by induction:

dk+1
3 ≤ dk3 and λk+1 ≤ λk.

Moreover, the first inequality above also shows that {λk} converges to zero at a quadratic rate.

The quadratic convergence of
{
‖xk − x?f‖Hk

}
: First, using Proposition 9 with x := xk and

y = x?f , and noting that ∇f(x?f ) = 0, we have

ω̄ν(−dν(xk, x?f ))‖xk − x?f‖2xk ≤ 〈∇f(xk), xk − x?f 〉 ≤ ‖∇f(xk)‖∗xk‖x
k − x?f‖xk ,

where the last inequality follows from the Cauchy-Schwarz inequality. Hence, we obtain

ω̄ν(−dν(xk, x?f ))‖xk − x?f‖xk ≤ ‖∇f(xk)‖∗xk = λk. (61)

We consider three cases:

(1) When ν = 2, we have ω̄ν(τ) = eτ−1
τ . Hence, ω̄ν(−dν(xk, x?f )) = 1−e−dν (xk,x?f )

dν(xk,x?f )
≥ 1 −

dν(xk,x?f )

2 ≥ 1
2 whenever dν(xk, x?f ) ≤ 1. Using this inequality in (61), we have ‖xk − x?f‖xk ≤

2‖∇f(xk)‖∗xk = 2λk provided that dν(xk, x?f ) ≤ 1. One the other hand, by the definition of σk, we

have
√
σk‖xk − x?f‖2 ≤ ‖xk − x?f‖xk . Combining the two last inequalities, we obtain ‖xk − x?f‖2 ≤

2λk√
σk

provided that dν(xk, x?f ) ≤ 1. Since
{

λk√
σk

}
locally converges to zero at a quadratic rate, the

last relation also shows that
{
‖xk − x?f‖2

}
also locally converges to zero at a quadratic rate.

(2) For ν = 3, we have ω̄ν(−dν(xk, x?f )) = 1
1+dν(xk,x?f )

and dν(xk, x?f ) =
Mf

2 ‖x
k−x?f‖xk . Hence,

from (61), we obtain
‖xk−x?f‖xk

1+0.5Mf‖xk−x?f‖xk
≤ λk. This implies ‖xk − x?f‖xk ≤

λk
1−0.5Mfλk

as long as

0.5Mfλk < 1. Clearly, since λk locally converges to zero at a quadratic rate, ‖xk − x?f‖xk also
locally converges to zero at a quadratic rate.

(3) For 2 < ν < 3, we have ω̄ν(−dν(xk, x?f )) =
(
ν−2
ν−4

)
(1+dν(xk,x?f ))

ν−4
ν−2−1

dν(xk,x?f )
≥ 1− 1

ν−2dν(xk, x?f ) ≥
1
2 provided that dν(xk, x?f ) < ν

2 − 1. Similar to the case ν = 2, we have σ
3−ν

2

k ‖xk − x?f‖Hk ≤
‖xk − x?f‖xk ≤ 2λk, where Hk := ∇2f(xk)

ν−2
2 . Hence, ‖xk − x?f‖Hk ≤

2λk

σ
3−ν

2
k

. Since
{

λk

σ
3−ν

2
k

}
locally

converges to zero at a quadratic rate,
{
‖xk − x?f‖Hk

}
also locally converges to zero at a quadratic

rate. �
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A.7 The proof of Theorem 5: Convergence of the damped-step PN method

Given H ∈ Sp++ and a proper, closed, and convex function g : Rp → R ∪ {+∞}, we define

PgH(u) := (H + ∂g)−1(u) = argmin
x

{
g(x) + 1

2 〈Hx, x〉 − 〈u, x〉
}
.

If H = ∇2f(x) is the Hessian mapping of a strictly convex function f , then we can also write
P∇2f(x)(u) shortly as Px(u) for our notational convenience. The following lemma will be used in
the sequel, whose proof can be found in [60].

Lemma 3 Let g : Rp → R∪{+∞} be a proper, closed, and convex function, and H ∈ Sp++. Then,
the mapping PgH defined above is non-expansive with respect to the weighted norm defined by H,
i.e., for any u, v ∈ Rp, we have

‖PgH(u)− PgH(v)‖H ≤ ‖u− v‖
∗
H . (62)

Let us define

Sx(u) := ∇2f(x)u−∇f(u) and ex(u, v) := [∇2f(x)−∇2f(u)](v − u), (63)

for any vectors x, u ∈ dom(f) and v ∈ Rp. We now prove Theorem 5 in the main text.

Proof (The proof of Theorem 5)

Computing the step-size τk: Since zk satisfies the optimality condition (36), we have

−∇f(xk)−∇2f(xk)nkpnt ∈ ∂g(zk).

Using Proposition 10 we obtain

f(xk+1) ≤ f(xk) + τk
〈
∇f(xk), nkpnt

〉
+ ων(τkdk)τ2

kλ
2
k.

Since xk+1 = (1− τk)xk + τkz
k, using this relation and the convexity of g, we have

g(xk+1) ≤ g(xk)− τk
〈
∇f(xk) +∇2f(xk)nkpnt, n

k
pnt

〉
.

Summing up the last two inequalities, we obtain the following estimate

F (xk+1) ≤ F (xk)− ηk(τk).

With the same argument as in the proof of Theorem 2, we obtain the conclusion of Theorem 5.

The proof of local quadratic convergence: We consider the distance between xk+1 and x?

measured by ‖xk+1 − x?‖x? . By the definition of xk+1, we have

‖xk+1 − x?‖x? ≤ (1− τk)‖xk − x?‖x? + τk‖zk − x?‖x? . (64)

Using the new notations in (63), it follows from the optimality condition (33) and (36) that zk =
Pgx?(Sx?(xk) + ex?(xk, zk)) and x? = Pgx?(Sx?(x?)). By Lemma 3 and the triangle inequality, we
can show that

‖zk − x?‖x? ≤ ‖Sx?(xk)− Sx?(x?)‖∗x? + ‖ex?(xk, zk)‖∗x? . (65)

By following the same argument as in [60], if we apply Lemma 2, then we can derive

‖Sx?(xk)− Sx?(x?)‖∗x? ≤ Rν(dν(x?, xk))dν(x?, xk)‖xk − x?‖x? , (66)

where Rν(·) is defined by (55).
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Next, using the same argument as the proof of (71) in Theorem 6 below, we can bound the
second term ‖ex?(xk, zk)‖∗x? of (65) as

‖ex?(xk, zk)‖∗x? ≤


[
(1− dν(x?, xk))

−2
ν−2 − 1

]
‖zk − xk‖x? , if ν > 2(

edν(x?,xk) − 1
)
‖zk − xk‖x? if ν = 2.

Combining this inequality, (65), and (66), we obtain

‖zk − xk‖x? ≤ R̂ν(dν(x?, xk))dν(x?, xk)‖xk − x?‖x? , (67)

where R̂ν is defined as

R̂ν(t) :=


Rν(t)

2−(1−t)
−2
ν−2

, if ν > 2

Rν(t)
2−et if ν = 2.

After a few simple calculations, one can show that there exists a constant cν ∈ (0,+∞) such that

if 0 ≤ dν(x?, xk) ≤ d̄ν := min
{

3
5 , 1−

(
2
3

) ν−2
2

}
, then R̂ν(dν(x?, xk)) ≤ cν . Using this bound, (64),

(67), and the fact that τk ≤ 1, we can bound

‖xk+1 − x?‖x? ≤
[
(1− τk) + cνdν(x?, xk)

]
‖xk − x?‖x? . (68)

Let σ? := σmin(∇2f(x?)) be the smallest eigenvalue of ∇2f(x?). We consider the following cases:
(a) If ν = 2, then, for 0 ≤ dν(x?, xk) ≤ d̄ν , we can bound 1− τk as

1− τk = 1− ln(1+βk)
βk

≤ βk
2 = Mf‖zk − xk‖2 ≤Mf

‖zk−xk‖x?√
σ?

(67)

≤ cνMf√
σ?
dν(x?, xk)‖xk − x?‖x? .

On the other hand, we have dν(x?, xk) = Mf‖xk − x?‖2 ≤ Mf√
σ?
‖xk − x?‖x? . Using these estimates

into (68), we get

‖xk+1 − x?‖x? ≤
(
cνMf√
σ?

+ cν

)
dν(x?, xk)‖xk − x?‖x? ≤

Mfcν√
σ?

(
1 +

Mf√
σ?

)
‖xk − x?‖2x? .

Let c?ν :=
Mf cν√
σ?

(
1 +

Mf√
σ?

)
. The last estimate shows that if ‖x0 − x?‖x? ≤ min

{
d̄ν
√
σ?

Mf
, 1
c?ν

}
, then{

‖xk − x?‖x?
}

quadratically converges to zero.
(b) If ν = 3, we can bound 1− τk as

1− τk =
0.5Mfλk

1 + 0.5Mfλk
≤ 0.5Mf‖zk − xk‖xk ≤

0.5Mf‖zk − xk‖x?
1− dν(x?, xk)

(67)

≤ 0.5Mfcν d̄ν‖xk − x?‖x?
1− dν(x?, xk)

.

Since dν(x?, xk) = 0.5Mf‖xk − x?‖x? , this estimate leads to 1 − τk ≤ 0.5Mfcν d̄ν‖xk − x?‖x? ,

provided that ‖xk − x?‖x? ≤ min
{

1
Mf

, 2d̄ν
Mf

}
. Substituting this estimate into (68) we get

‖xk+1 − x?‖x? ≤Mfcν
(
0.5 + d̄ν

)
‖xk − x?‖2x?

Similarly, if we define c?ν := Mfcν
(
0.5 + d̄ν

)
, then if ‖x0 − x?‖x? ≤ min

{
1
Mf

, 2d̄ν
Mf

, 1
c?ν

}
, the last

estimate shows that
{
‖xk − x?‖x?

}
quadratically converges to zero.

(c) If 2 < ν ≤ 3, then we first show that

dν(x?, xk) =
(
ν
2 − 1

)
Mf‖xk − x?‖3−ν2 ‖xk − x?‖ν−2

x? ≤
(
ν
2 − 1

) Mf

(σ?)
3−ν

2

‖xk − x?‖x? .
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Hence, if ‖xk − x?‖x? ≤ mν d̄ν , where mν := 2
ν−2

(σ?)
3−ν

2

Mf
, then dν(x?, xk) ≤ d̄ν . Next, using the

definition of dk in (28), we can bound it as

dk = Mf

(
ν
2 − 1

)
‖zk − xk‖ν−2

xk
‖zk − xk‖3−ν2

(15)

≤ Mf

(
ν
2 − 1

) [ ‖zk−xk‖x?

(1−dν(x?,xk))
1

ν−2

]ν−2
‖zk−xk‖3−ν

x?

(σ?)
3−ν

2

≤ Mf

(1−d̄ν)(σ?)
3−ν

2

(
ν
2 − 1

)
‖zk − xk‖x?

(67)

≤ Mf (ν−2)

2(1−d̄ν)(σ?)
3−ν

2

cν d̄ν‖xk − x?‖x? .

Using this estimate, we can bound 1− τk as follows:

1− τk = 1− 1
dk

+ 1
dk

(
1−

4−ν
ν−2dk

1+ 4−ν
ν−2dk

) ν−2
4−ν Bernoulli’s inequality

≤ 1− 1
dk

+ 1
dk

(
1− ν−2

4−ν

4−ν
ν−2dk

1+ 4−ν
ν−2dk

)
=

4−ν
ν−2dk

1+ 4−ν
ν−2dk

≤ 4−ν
ν−2dk ≤

Mf (4−ν)

2(1−d̄ν)(σ?)
3−ν

2

cν d̄ν‖xk − x?‖x? = nν‖xk − x?‖x? ,

where nν :=
Mf (4−ν)

2(1−d̄ν)(σ?)
3−ν

2

cν d̄ν > 0. Substituting this estimate into (68) and noting that dν(x?, xk) ≤
1
mν
‖xk − x?‖x? , we get

‖xk+1 − x?‖x? ≤
(
nν +

cν
mν

)
‖xk − x?‖2x? := c∗ν‖xk − x?‖2x? .

Hence, if ‖x0−x?‖x? ≤ min
{
mν d̄ν ,

1
c?ν

}
, then the last estimate shows that the sequence

{
‖xk − x?‖x?

}
quadratically converges to zero.

In summary, there exists a neighborhood N (x?) of x?, such that if x0 ∈ N (x?)∩dom(F ), then
the whole sequence

{
‖xk − x?‖x?

}
quadratically converges to zero. �

A.8 The proof of Theorem 6: Locally quadratic convergence of the PN method

Since zk is the optimal solution to (35), which satisfies (36), we have ∇2f(xk)xk − ∇f(xk) ∈
(∇2f(xk) + ∂g)(zk). Using this optimality condition, we get

xk+1 = zk = Pg
xk

(Sxk(xk) + exk(xk, zk)) and

xk+2 = zk+1 = Pg
xk

(Sxk(xk+1) + exk(xk+1, zk+1)).

Let us define λ̃k+1 := ‖nk+1
pnt ‖xk . Then, by Lemma (3) and the triangular inequality, we have

λ̃k+1 ≤
∥∥Sxk(xk+1)− Sxk(xk)

∥∥∗
xk

+
∥∥exk(xk+1, zk+1)− exk(xk, zk)

∥∥∗
xk

=
∥∥Sxk(xk+1)− Sxk(xk)

∥∥∗
xk

+
∥∥exk(xk+1, zk+1)

∥∥∗
xk
.

(69)

Let us first bound the term
∥∥Sxk(xk+1)− Sxk(xk)

∥∥∗
xk

as follows:∥∥Sxk(xk+1)− Sxk(xk)
∥∥∗
xk
≤ Rν(dkν)dkνλk, (70)

where Rν(t) is defined as (55). Indeed, from the mean-value theorem, we have

∥∥Sxk(xk+1)− Sxk(xk)
∥∥∗
xk

=

∥∥∥∥∫ 1

0

[∇2f(xk + tnkpnt)−∇2f(xk)]nkpntdt

∥∥∥∥
xk
≤
∥∥H(xk, xk+1)

∥∥λk,
where H is defined as (53). Combining the above inequality and (55) in Lemma 2, we get (70).
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Next we bound the term
∥∥exk(xk+1, zk+1)

∥∥∗
xk

as follows:

∥∥exk(xk+1, zk+1)
∥∥
xk
≤


[
(1− dkν)

−2
ν−2 − 1

]
λ̃k+1, if ν > 2

(ed
k
ν − 1)λ̃k+1 if ν = 2.

(71)

Note that∥∥exk(xk+1, zk+1)
∥∥∗
xk

=
∥∥[∇2f(xk)−∇2f(xk+1)](zk+1 − xk+1)

∥∥∗
xk
≤ ‖H̃(xk, xk+1)‖λ̃k+1,

where

H̃(x, y) := ∇2f(x)−1/2
(
∇2f(x)−∇2f(y)

)
∇2f(x)−1/2

= I−∇2f(x)−1/2∇2f(y)∇2f(x)−1/2.

By Proposition 8, we have

‖H̃(x, y)‖ ≤

 max
{

1− (1− dν(x, y))
2

ν−2 , (1− dν(x, y))
−2
ν−2 − 1

}
, if ν > 2

max
{

1− e−dν(x,y), edν(x,y) − 1
}

if ν = 2.

This inequality can be simplified as

‖H̃(x, y)‖ ≤

 (1− dν(x, y))
−2
ν−2 − 1, if ν > 2

edν(x,y) − 1 if ν = 2.
(72)

Hence, the inequality (71) holds.
Now, we combine (69), (70), and (71), if ν = 2, and assuming that dk2 < ln 2, then we get

λ̃k+1 ≤
R2(dk2)dk2
2− edk2

λk.

By Proposition 8, we have λ2
k+1 ≤ ed

k
ν λ̃2

k+1. Combining this estimate and the last inequality, we
get

λk+1 ≤
R2(dk2)dk2e

dk2
2

2− edk2
λk. (73)

Note that λk ≥
√
σkd

k
2

Mf
and σ−1

k+1 ≤ ed
k
2σ−1

k . It follows from (73) that

λk+1√
σk+1

≤Mf
R2(dk2)ed

k
2

2− edk2

(
λk√
σk

)2

.

By a numerical calculation, we can check that if dk2 ≤ d?2 ≈ 0.35482, then

λk+1√
σk+1

≤ 2Mf

(
λk√
σk

)2

.

Hence, if we choose x0 ∈ dom(F ) such that λ0√
σ0
≤ 1

Mf
min {d?2, 0.5} =

d?2
Mf

, then we can prove the

following two inequalities together by induction:

dk+1
2 ≤ dk2 and

λk+1√
σk+1

≤ λk√
σk
.
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These inequalities show the nonincreasing monotonicity of
{
dk2
}

and {λk}. The above inequality

also shows the local quadratic convergence of the sequence
{

λk√
σk

}
.

Now, if ν > 2 and assume that dkν < 1−
(

1
2

) ν−2
2 , then

λ̃k+1 ≤
Rν(dkν)dkν

2− (1− dkν)
−2
ν−2

λk.

By Proposition 8, we have λ2
k+1 ≤ (1− dkν)

−2
ν−2 λ̃2

k+1. Hence, combining these inequalities, we get

λk+1 ≤
Rν(dkν)dkν(1− dkν)

−1
ν−2

2− (1− dkν)
−2
ν−2

λk. (74)

Note that dkν =
(
ν
2 − 1

)
Mf

∥∥pk∥∥3−ν
2

λν−2
k , σ−1

k+1 ≤ (1 − dkν)
−2
ν−2σ−1

k and σ−1
k+1 ≤ (1 − dkν)

−2
ν−2σ−1

k .
Using these relations and (74), we consider two cases:

(a) If ν = 3, then dk3 =
Mf

2 λk, and

λk+1 ≤
R3(dk3)(1− dk3)−1

2− (1− dk3)−2
dk3λk = Mf

R3(dk3)(1− dk3)−1

2
(
2− (1− dk3)−2

)λ2
k.

By a simple numerical calculation, we can show that if dk3 ≤ d?3 ≈ 0.20943, then λk+1 ≤ 2Mfλ
2
k.

Hence, if λ0 <
1
Mf

min {2d?3, 0.5} = 2
Mf

d?3, then we can prove the following two inequalities together

by induction

dk+1
3 ≤ dk3 and λk+1 ≤ λk.

These inequalities show the non-increasing monotonicity of
{
dk2
}

and {λk}. The above inequality
also shows the quadratic convergence of the sequence {λk}.

(b) If 2 < ν < 3, then λk ≥ ‖pk‖2
√
σk, which implies that dkν ≤

(
ν
2 − 1

)
Mfσ

− 3−ν
2

k λk. Hence,
we have

λk+1

σ
3−ν

2

k+1

≤ Rν(dkν)(1− dkν)−
4−ν
ν−2

2− (1− dkν)
−2
ν−2

(ν
2
− 1
)
Mf

 λk

σ
3−ν

2

k

2

.

If dkν < d?ν , then σ
− 3−ν

2

k+1 λk+1 ≤ 2Mf

(
σ
− 3−ν

2

k λk

)2

, where d?ν is the unique solution to the equation

Rν(dkν)(1− dkν)−
4−ν
ν−2

2− (1− dkν)
−2
ν−2

(ν
2
− 1
)

= 2.

Note that it is straightforward to check that this equation always admits a positive solution. There-

fore, if σ
− 3−ν

2
0 λ0 ≤ 1

Mf
min

{
2d?ν
ν−2 ,

1
2

}
, then we can prove the following two inequalities together by

induction:

dkν ≤ dk+1
ν and σ

− 3−ν
2

k+1 λk+1 ≤ σ
− 3−ν

2

k λk.

These inequalities show the non-increasing monotonicity of
{
dk2
}

and {λk}. The above inequality

also shows the quadratic convergence of the sequence
{

λk

σ
3−ν

2
k

}
.

Finally, to prove the local quadratic convergence of
{
xk
}

to x?, we use the same argument as
in the proof of Theorem 3 and Theorem 5, where we omit the details here. �
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A.9 The proof of Theorem 7: Convergence of the quasi-Newton method

The full-step quasi-Newton method for solving (24) can be written as xk+1 = xk−Bk∇f(xk). This
is equivalent to Hk(xk+1 − xk) +∇f(xk) = 0. Using this relation and ∇f(x?f ) = 0, we can write

xk+1−x?f =∇2f(x?f )−1
[
∇2f(x?f )(xk−x?f )+

(
∇2f(x?f )−Hk

)
(xk+1−xk)−∇f(xk)+∇f(x?f )

]
. (75)

We first consider Tk := ‖∇2f(x?f )−1
[
∇f(xk)−∇f(x?f )−∇2f(x?f )(xk − x?f )

]
‖x?f . Similar to the

proof of Theorem 3, we can show that

Tk =
∥∥∥∫ 1

0

∇2f(x?f )−1
[
∇2f(x?f+t(xk−x?f ))−∇2f(x?f )

]
(xk−x?f )

∥∥∥
x?f

≤Rν(dkν)dkν‖xk−x?f‖x?f (76)

where Rν is defined by (55) and dkν := Mν−2
f

(
ν
2 − 1

)
‖xk − x?f‖

3−ν
2 ‖xk − x?f‖

ν−2
x?f

. Moreover, we

note that

Sk := ‖∇2f(x?f )−1
(
Hk −∇2f(x?f )

)
(xk+1−xk)‖x?f = ‖

(
Hk −∇2f(x?)

)
(xk+1−xk)‖∗x?f

Combining this estimate, (75), and (76), we can derive

‖xk+1 − x?f‖x?f ≤ Rν(dkν)dkν‖xk − x?f‖x?f + ‖
(
Hk −∇2f(x?f )

)
(xk+1−xk)‖∗x?f . (77)

First, we prove statement (a). Indeed, from the Dennis-Moré condition (41), we have

‖
(
Hk −∇2f(x?f )

)
(xk+1−xk)‖∗x?f ≤ γk‖x

k+1 − xk‖x?f ≤ γk
(
‖xk+1 − x?f‖x?f + ‖xk − x?f‖x?f

)
,

where limk→∞ γk = 0. Substituting this estimate into (77), and noting that ‖xk−x?f‖2 ≤ 1
σ? ‖x

k−
x?f‖x?f , where σ? := λmin(∇2f(x?f )) > 0, we can show that

‖xk+1 − x?f‖x?f ≤
1

1− γk

(
R?ν‖xk − x?f‖2x?f + γk‖xk − x?f‖x?f

)
, (78)

provided that ‖xk − x?f‖x?f ≤ r̄ and R?ν := max
{
Rν(dkν) | ‖xk − x?f‖x?f ≤ r̄

}
< +∞. Here, r̄ > 0

is a given value such that R?ν is finite. The estimate (78) shows that if r̄ is sufficiently small,{
‖xk − x?f‖x?f

}
superlinearly converges to zero. Finally, the statement (b) is proved similarly by

combining statement (a) and [60, Theorem 11]. �
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