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Abstract 
A regular timetable is a collection of events that repeat themselves every specific time span. This 

even structure, whenever applied at a whole network, leads to several benefits both for users and 

the company, although some issues are introduced, especially about dimensioning the service. It is 

therefore fundamental to properly consider the interaction between the transport demand and 

supply, to create an effective network timetable. 

In this paper, a specific cycle base to solve the Cycle Periodicity Formulation (CPF) of a symmetric 

timetable is proposed. This is combined with a modal choice model, adding the possibility to disable 

stops along lines for further increasing the transportation demand acquired by the railway system. 

The problem is modeled as a Mixed-Integer Linear Program (MILP) and solved through a state of the 

art MILP solver (CPLEX). Computational results regard a case study about a railway network in a 

northern Italy region. 
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1. Introduction 
The main feature of a regular timetable, in the users’ perspective, is the repetitiveness along the 

day, enabling the passenger to memorize the characteristics of just trip (time, duration etc) as the 

service will be the same every time. In the case of a regular service over the whole network, the same 

mechanic applies also to the interchange nodes, simplifying the journey planning. Regarding the 

operating company, adopting a regular structure for the service results in simplifying both planning 

and operating the system: every solution found in a time module is replicable during the entire 

service. Specific needs could anyway be faced with local singularities. 

The importance of seeking the optimum while looking for a feasible regular timetable is supported 

by the fact that the transportation supply is basically flat over the day, both during peak and low-

demand hours: a well-balanced timetable can help to produce an effective service with a fair amount 

of resources. 

mailto:roberto.maja@polimi.it


1.1 Related literature 
The Cyclic Railway Timeable Problem (CRTP), regarding the planning of regular railway timetables, 

has been developed by Voorhoeve in (Voorhoeve, M. 1993), using the Periodic Event Scheduling 

Problem (PESP) introduced by Serafini e Ukovich (Serafini, P. 1989). Successively (Nachtigall, K. 

1994) introduced the Cycle Periodicity Formulation (CPF), based over an auxiliary graph whose 

nodes represent circulation events and whose arcs model time constraints on linked events. This 

formulation is the basis for the following studies.  

In (Kroon, L. 2003) PESP formulation is improved introducing variables associated with the travel 

arcs, formerly considered fixed a priori. Liebchen (Liebchen, C. 2004) studied the characteristics of 

symmetry in regular timetable focusing on the optimality issue. 

Regarding studies with different kind of trains on the same track, a Dutch study (Goossens, J. 

2006) can be cited. In that work, a model for a network featuring different ranks of trains is 

developed, each with specific stop pattern, aiming to minimize operational cost. 

None of these studies considered the interdependency between mobility demand and transportation 

supply. As the goal of a public transportation service should be coping whit the mobility demand 

with a fair amount of resources, considering sustainability of the whole transportation system, the 

importance of timetable planning to improve the railway modal split is relevant. 

Chierici (Chierici, A. 2004) took into consideration this matter. He proposed an optimization model 

integrating a discrete choice sub-model for the available transportation options, with a function to 

maximize the railway users. The CPF formulation is enriched with a Logit model: the resulting 

formulation is therefore NP-hard for the mixed-integer linear part and nonlinear for the Logit part. 

Cordone and Redaelli (Cordone, R. 2011) resumed Chierici’s work analyzing the Logit function’s 

form, developing a piecewise linearization to be used in ad-hoc bounding procedures. They tested 

two kind of branch-and bounding algorithms that proved effective for instances up to about ten 

lines. Liebchen and Peeters in (Cordone, R. 2011) further examined the formal structure of the 

problem to find better cycle choices in order to reduce the required computing time. 

1.2 Original contributions 
This work deals with a specific condition of periodic timetables, as it is symmetry. A minimal set of 

decision variables is used, taking advantage of symmetry by choosing a particular cycle basis to 

solve the CPF: an efficient formulation of the problem can decrease the computational time, that is 

a critical point in the problem solvability.  

A new feature is introduced: the possibility to automatically deactivate stops along the lines in order 

to reduce travel time between origin-destination pairs (OD) that use that path. This might lead to 

an increase in the number of passenger, due to the reduced travel time, that has to be compared 

with the loss of the skipped station’s passengers. The model can establish the optimal stopping 

pattern for each line considering the physical constraints (as for example in single track lines). 

Including this feature in the maximization function can help planners to better understand the 

potentiality and critical constraints of the system, to properly evaluate different scenarios. 

In the last section, results of a case study are analyzed. A symmetric schedule is produced for some 

instances regarding a portion of a railway network, located in a northern Italy region, consisting of 

9 lines with 72 stations, mainly single tracks. 



2 Solution method 

2.1 Railway model 
We consider a railway network as a set of stations linked by one or more tracks (in this work no 

difference is intended between the terms “station” and “stop”). Trains circulate on rails, with a 

defined origin and destination, stopping at a set of stations, using a specific sequence of tracks for 

a given time. The network configuration is settled by the choice of the terminal stations for each 

line along with the intermediate stops; where two or more lines meet there is an interchange. Every 

station has a group of users, that is the sum of all the passengers entering or leaving the system 

there, plus those who possibly change line. 

The railway service can be described effectively with an auxiliary graph G = (N, A). Each node N 

represents the arrival or departure of a train; in the case of regular timetables, events happen every 

P minutes. A station is a set of nodes concerning the same physical place. A temporal constraint is 

assigned to each arc A, representing the minimum amount of time separating two linked events. In 

the graph we can distinguish two kind of arcs intended to model the service: travelling arcs (from a 

departure node to an arrival one) and dwell arcs (vice versa). To complete the passenger’s paths, 

interchange arcs are added (from an arrival node of a line to the departure node of another line in 

the same station). 

2.2 Modal choice model 
Transport demand is defined as the quantity of actual or potential users who would use a 

transportation service in a given time span. It is usually represented as a flow and, once assigned, 

become the effective traffic on the infrastructural elements. 

A transport demand model set a relation between demand flows on one side and specific 

characteristics of the transportation system on the other. User’s trips are the result of a sequence 

of choices, with various complexity, spanning from very short-term ones (like the specific path for 

the current trip) to log-term ones (like where to live and work). Every choice is interrelated with the 

available transportation systems. 

A widely-used modal choice analysis method (Cascetta, E. 2009) is the four-stage transportation 

model. We consider the modal split sub-model, assuming invariable the origin-destination matrix 

(OD Matrix) that supply the number of displacements between each OD pair. 

𝑝𝑖[𝑚/𝑜𝑠ℎ𝑑](𝑺𝑬, 𝑻), modal split model: estimates the share of users belonging to category i who travel 

between o and d for the s reason in the time span h, using the transport option m; SE, T are the 

socioeconomic characteristic of the territory and transportation system. 

The discrete-choice model used is the Multinomial Logit, that express the probability of a specific 

alternative j among the k available as 

𝑝[𝑗] =
exp⁡(𝑉𝑗/𝜃)

∑ exp⁡(𝑉𝑘/𝜃)
𝑚
𝑘=1

 

where V is a vector of attributes for each alternative and 𝜃 a parameter, both to be estimated. 

The amount of passenger 𝜆𝑜𝑑 travelling over an OD pair, using a couple of stations belonging to the 

set S, is therefore given by the product of the global quantity of trips 𝛬𝑜𝑑⁡for that OD and the railway 

modal split. Considering variable only the travel time of trips by railway, for the sake of simplicity, 

we can write 



𝛬𝑜𝑑 ∗
𝑒𝑉𝑜𝑑

(𝑡)(𝑡𝑜𝑑)

𝑒𝑉𝑜𝑑
(𝑏)

+ 𝑒𝑉𝑜𝑑
(𝑏)

+ 𝑒𝑉𝑜𝑑
(𝑡)(𝑡𝑜𝑑)

=⁡𝜆𝑜𝑑 𝑜, 𝑑 ∈ 𝑆 

and the railway users maximization function is: 

max ⁡(z = ∑ ∑ λod
d⁡∈⁡S

)

o⁡∈⁡S

 

The other competing transport options covered in this work are private car (overlooking the issues 

related to driving license and car possess) and public bus transport. 

Regarding the route choice model, we consider a rigid assignment of demand flows to pre-

determined path, as is typical in uncongested networks; furthermore, any path change within the 

railway system typically results in a consistent raising in trip time, thus becoming largely ineffective 

compared with the competing system. The assignment procedure for the train service starts 

calculating a standard travel time for each arc, then seeks for the lower trip time possible for each 

OD pair, assuming that trains stop at every station, finally assign the entire demand flow to the 

minimum time route. 

2.3 Cycle periodicity formulation 
The classical CPF (Nachtigall, K. 1994) has been formalized as: 

∑ 𝑥𝑎
𝑎⁡∈⁡𝐶+

−⁡ ∑ 𝑥𝑎
𝑎⁡∈⁡𝐶−

= 𝑃 ∗ 𝑞𝐶 𝐶 ∈ 𝒞 

𝑙𝑎 ≤ 𝑥𝑎 ≤ 𝑢𝑎 𝑎 ∈ 𝐴 

ℎ𝑐 ≤ 𝑞𝑐 ≤ 𝑘𝑐 𝐶 ∈ 𝒞 

𝑥𝑎 ∈ 𝑅 𝑎 ∈ 𝐴 

𝑞𝑐 ∈ 𝑍 𝐶 ∈ 𝒞 

where is 𝑥𝑎 is the main variable regarding arcs 𝐴, with lower and upper bounds on each arc (by 

physical characteristics and planning requirements); 𝒞 is the set of possible cycles; 𝑞𝑐 ⁡is an integer 

with lower and upper bounds (related to the arc ones); P is the period of the railnet. 

2.4 New contributions 

2.4.1 Symmetry 
A useful condition in a regular timetable net is the symmetry of train paths for the opposite 

directions of each line. This is particularly effective at interchanges: in the symmetric configuration 

the waiting time is the same for both directions, while in any other case would differ, increasing the 

passenger’s perception of “losing time” along the inefficient direction (Liebchen, C. 2004). 

Exploiting the hypothesis of perfect symmetry, is possible to use an undirected graph whose arcs 

model time span constraints between two linked events 𝜋𝑖 and 𝜋𝑗, independently from the events’ 

order (i.e. under the condition 𝑥𝑖𝑗 =⁡𝑥𝑗𝑖⁡ =⁡𝑥𝑎). For each event 𝜋 we introduce two variables that 

represent the distance of that event from the extremity of the period: 𝑑0𝜋 = (𝑡𝜋 − 0)𝑚𝑜𝑑P, 

corresponding to the time of the event, and 𝑑𝜋0 = P − 𝑑0𝜋, corresponding to the dual one (that is the 

opposite event occurring along the opposite direction). 



The direction of a line is related to the order of the events: whenever two distinct events 𝜋𝑖 , 𝜋𝑗  

present 𝑑0𝜋𝑗 ⁡> ⁡ 𝑑0𝜋𝑖 it is the outward direction, vice versa is the return direction when 𝑑𝜋0𝑗 ⁡> ⁡ 𝑑𝜋0𝑖 

(except if the time exceed the period P). 

Considering the events of departure from the first station and the dual of the arrive at the last 

station, it is possible to write the CPF condition with this alternative formulation: 

∑ 𝑥𝑎
𝑎⁡∈⁡𝐿

+⁡𝑑0𝜋⁡𝐿 + 𝑑𝜋0⁡𝐿 = 𝑘 ∗ P 

where 𝑥𝑎 are the variables for travelling and dwelling arcs, 𝑑0𝜋⁡𝐿 and 𝑑𝜋0⁡𝐿 are the variables of the 

fictitious arcs representing the distance of departure and arrival events at line ends from the 

extremities of the period P, k is an integer multiplier in order to take into account the possibility 

that a line is operated in a bigger time span than the period P. 

2.4.2 Suppression of stops 
An innovation in this model is the possibility to evaluate the suppression of intermediate stops. A 

binary variable Φ is introduced, to put to zero the dwelling time xs where it is favorable in order to 

reach a better modal split (junctions excluded). 

2.4.3 Line periodicity formulation 
The comprehensive optimization model proposed is: 

∑ 𝑥𝑣
𝑣⁡∈⁡𝐿

+ ∑(𝑥𝑠 ∗ ϕ

𝑠⁡∈⁡𝐿

) + ⁡𝑑0𝜋⁡𝐿 + 𝑑𝜋0⁡𝐿 = 𝑘 ∗ P 𝐿 ⊆ 𝐴 

𝑙𝑣 ≤ 𝑥𝑣 ≤ 𝑢𝑣 𝑣 ∈ 𝐴 

𝑙𝑠 ≤ 𝑥𝑠 ≤ 𝑢𝑠 𝑠 ∈ 𝐴 

Φ𝑠 ∈ {0, 1} 𝑠 ∈ 𝐴 

𝑥𝑣 ∈ 𝑅 𝑣 ∈ 𝐴 

𝑥𝑠 ∈ 𝑅 𝑠 ∈ 𝐴 

𝛬𝑜𝑑 ∗
𝑒𝑉𝑜𝑑

(𝑡)(𝑡𝑜𝑑)

𝑒𝑉𝑜𝑑
(𝑏)

+ 𝑒𝑉𝑜𝑑
(𝑏)

+ 𝑒𝑉𝑜𝑑
(𝑡)(𝑡𝑜𝑑)

=⁡𝜆𝑜𝑑 o, d ∈ 𝑆 

𝑡𝑜𝑑 =⁡ ∑ 𝑥𝑎
𝑎⁡∈⁡𝐼𝑜𝑑

 𝐼𝑜𝑑⁡ ⊆ 𝐴 

𝑥𝑎 ∈ 𝑅 𝑎 ∈ 𝐴 

where A is the general set of arcs (travel 𝑥𝑣, dwell 𝑥𝑠  and interchange), L the set of lines, Φ𝑠 a binary 

variable accounting the station suppression; o, d the stations origin and destination of a path I 

whose trip time is the incoming variable in the modal choice model, where 𝜆𝑜𝑑 is the railway modal 

split of the general demand 𝛬𝑜𝑑 over an OD pair. 

2.4.4 Interchange duration 
To determine the waiting time at junctions, 𝑑0𝜋⁡and 𝑑𝜋0⁡variables are used. In the most general case, 

were the interchange happens in station that are not terminus, we are in the situation represented 

in figure (for the sake of simplicity only a couple of line is shown). 



 

Figure 1 – Graph detail of an interchange 

Considering Line1 and Line2 as in the example, there are four possible directions of interchange. 

The equations used to determine the waiting time have the same structure of the periodicity 

equation: 

𝐼1 = ⁡𝑃 − (𝑑1⁡𝐿1 +
𝑥𝑠⁡𝐿1
2

+⁡𝑑2⁡𝐿2 +
𝑥𝑠⁡𝐿2
2

)𝑚𝑜𝑑P 

where 𝑥𝑠⁡𝐿 are the dwelling times of each line L in the junction station, added to consider the 

slowdowns of deceleration and reacceleration from the travelling speed and the boarding operations 

(except for the terminal station, where these are not defined). 

Noticing that the graph is undirected, but lines 

are, is necessary to change the variables to be 

considered for each interchange, according to 

the table reported. 

 

 

Table 1: Variables for the interchange time 

2.4.5 Brief overview on constraints 

2.4.5.1 Maximum speed and distancing 

Variables of travelling arcs 𝑥𝑣 have a lower limit due to the maximum speed allowed by tracks or 

rolling stock. A ceiling too is added to reasonably limit travel time. As the inverse relationship 

between speed and time is nonlinear, the Mc Cormick method is used (McCormick, G. 1972) to 

rewrite it. 

Trains distancing is obtained imposing that in every station the variables 𝑑0𝜋⁡of each concurrent 

line should differ at least of a certain quantity (time distancing). At the scale of the model, any other 

circulation regime can be reduced to time distancing. Real timetable will be created on the model 

results adjusting these locally to the real constraints. 

2.4.5.2 Dwell time 

In this model, the dwell time of trains in stations 𝑥𝑠 includes also the slowdowns of the decelerating 

and reaccelerating phases, that do not occur if the train doesn’t stop. Dwell time has a variable 

lower bound, given by the proper stopping time and the slowdowns (that depend on the adjacent 

Line 1 Line 2 Variables 

outward outward 𝑑0𝜋⁡𝐿1, 𝑑𝜋0⁡𝐿2 

outward return 𝑑0𝜋⁡𝐿1, 𝑑0𝜋⁡𝐿2 

return outward 𝑑𝜋0⁡𝐿1, 𝑑𝜋0⁡𝐿2 

return return 𝑑𝜋0⁡𝐿1, 𝑑0𝜋⁡𝐿2 



arcs) and a ceiling as a reasonable value. If the station is deactivated, Φ𝑠 multiplier variable become 

0, thus annihilating the dwelling time variable. 

2.4.5.3 Meeting requirements for single track lines 

One of the stronger constraints in railway operation is that two trains travelling in opposite 

directions on the same single track have to meet only in specific stations. Under perfect symmetry, 

it is possible to demonstrate that the minimum number of meeting points is 

NI = 2𝑘 − 1 − 𝑑0𝜋⁡𝐿𝐷𝐼𝑉⁡
𝑃

2
⁡⁡− ⁡𝑑𝜋0⁡𝐿𝐷𝐼𝑉⁡

𝑃

2
 

where k is the integer multiplier in the periodicity equation of the considered line. If at least NI 

meeting point aren’t assured along the line, the problem is infeasible. Each additional meeting point 

gives more elasticity to the line, allowing the model to choose among them to provide the best 

timetable. 

To avoid meeting of trains where aren’t allowed, it is necessary to force for k events 𝜋𝑖1,..,𝑘 the 

following condition, with 𝑥𝑠 bigger than a given safety parameter: 

𝑑0𝜋⁡𝑖 +⁡
𝑥𝑠⁡

2
= 𝑘

𝑃

2
 

Whenever the line is only partially single track, it is necessary to evaluate a posteriori the reduction 

of k by one or more units verifying in which part of the line the meeting happens, in order not to 

over-constrain the problem. 

In the unlikely case two or more lines circulate on the same single track, some additional constraints 

are required. To avoid trains of different lines to meet coming from opposite directions, it is 

necessary to guarantee that, for any single track arc, every couple of occupation window time of 

each couple of trains are not overlapping. Considering the events 𝜋𝑖 e 𝜋𝑗 that are extremities of a 

single track arc, this can be reached exploiting 𝑑0𝜋𝑗 and 𝑑0𝜋𝑖 variables for every line (analytical part 

is omitted for conciseness). 

2.4.6 Linearization 
Various elements of the proposed model are non-linear. Regarding all the modular constraints, it is 

always possible to define some dummy integer variable to convert them into a Mixed Integer Linear 

Program. The modal choice model conversely, as it is, could not be included in the MILP formulation, 

plus it is a not steady concave nor convex function in the feasible region. 

Despite Cordone and Redaelli (Cordone, R. 2011) already proposed an operating method to seek for 

the global optimum implementing an ad-hoc branch and bound algorithm, in this work we overlook 

this part, being enough to test model’s behavior with a simplified function. Studies on refined 

solving techniques for this model are put off to future works.  

The original Logit function is replaced by a rough 

linearization between the extreme points of the feasible 

region. The upper bound for every time variable 𝑥𝑎 leads to 

a feasible region for variable 𝑡𝑜𝑑, so we have λod in the 

extremity two point 𝑡𝑜𝑑𝑀𝐼𝑁
 and 𝑡𝑜𝑑𝑀𝐴𝑋

. As the Logit function 

is decreasing, λod are respectively λ𝑜𝑑𝑀𝐴𝑋
 and λ𝑜𝑑𝑀𝐼𝑁

.  

Figure 2 – Logit linearization 



Dealing this way with the Logit there isn’t any guarantee that the configuration found is the best 

solution for the original problem, however feasible and reasonably good. Unfortunately, no valid 

indicator of the optimum gap is available; a poor one could be the gap between the results found 

with the linearization and the recalculation with the original formula, weighted over the global 

demand: 

∑ ((𝜆𝑜𝑑𝑙𝑖𝑛 − 𝜆𝑜𝑑𝑒𝑠𝑝) ∗ 𝛬𝑜𝑑)𝑜𝑑

∑ 𝛬𝑜𝑑𝑜𝑑

 

3 Computational experiments 

3.1 Model configuration 

3.1.1 Rail net 
The railway network of the case study located in northern Italy region. It consists of nine lines, four 

of them are entirely single track and two only partially. Furthermore, two single track lines converge 

in one, so all the cases are included. 

There are 72 stations, of which 8 are junction between two or more routes. The catchment area for 

the competing transport system is sourced from the OD Matrix, resulting in more than 140000 

individuals. 

3.1.2 Transport options 
The competing transport systems accounted in this study are the private car and public bus service. 

The private car mode has a set of parameters concerning travel time and fuel cost, whose value for 

each OD pair has been determined exploiting Google®’s API. Regarding the bus transport system, 

real world data are extremely difficult to collect. Parameters of travel time, fare amount and 

frequency has been sought for the most used routes (about 80), for the other routes a randomized 

set is used based on the previous likeliness. 

3.1.3 Main parameters 
The period P is equal to 60 minutes. In general, typical periods are 30, 60 or 120 minutes. Critical 

parameter are the upper bounds of 𝑥𝑎 variables, because these affect directly the quality of the Logit 

linearization. 

Considering travel arcs, we observed the results of variating the coefficient c used to determine the 

upper bound in travel time, having  𝑥𝑣 ∈ [𝑥𝑀𝐼𝑁 , 𝑐 ∗ 𝑥𝑀𝐼𝑁]⁡ and 𝑐 ∈ 𝑅. Increasing this parameter, the 

space of the feasible solutions widens, but the linearization worsens, as reported in table 2. The 

choice for this instance is 𝑐 = 2. 

Scale parameter for the upper bound on travel time 1.8 1.9 2 2.1 2.2 

Railway users (choice model linearized) 35562 35726 35858 35979 36098 

Railway users (original formula with linear optimum variable set) 33717 33779 33803 33789 33797 

Linearization gap 1.31% 1.38% 1.46% 1.55% 1.63% 

Table 2: Results varying the upper bound on travel time 

Regarding β and 𝜃 parameters of the Logit formulation, values given by Maja in (Maja, R. 1999) have 

been used. Although this solution for real applications should be avoided, needing a new calibration 

of the modal choice model related to the specific area, considering the demonstrative purpose of 

this work any plausible value would have do. 



3.2 Numerical results 
Several instances of the same case study have been analyzed. Aside from the base scenario (I), 

results are presented for the following: (I-bis), having some railnet parameters variation along a 

critical line; (II), featuring the insertion of two new no-stop lines between two couples of cities along 

existent routes; (II-bis), with the assignment of some stops to these fast lines. 

Besides the mentioned above, results for some other benchmark scenarios based on the (II-bis) are 

shown: one with station deactivation inhibited, another with only double tracks, and a last one 

featuring both simplifications.  

Despite there are minor differences between the scenarios, they can be considered really different 

instances, because the modal choice model is quite sensitive to the infrastructural changes, as can 

be seen both in numeric results and computational time.  

In the following table and chart are collected the results for the mentioned scenarios. 

Scenario I I-bis II II-bis All On Double Track All On & D.T. 

Lines 9 9 10 10 10 10 10 

Deactivated stops 6 5 4 4 0 2 0 

Users (linear solution) 35858 35935 39267 39444 39388 40139 40066 

Users (original formula) 33803 33880 37585 37777 37697 38812 38723 

Individuals in catchment area 140909 140909 142228 142228 142228 142228 142228 

Railway modal split 23,99% 24,04% 26,43% 26,56% 26,50% 27,29% 27,23% 

CPU time [s] 171 2306 332 1477 197 23 8 

Linearization gap 1,46% 1,46% 1,18% 1,17% 1,19% 0,93% 0,94% 

Table 3 – Computational results 

 

 

Figure 3 – Computational results 
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Every MILP problem has been resolved reaching the optimum in a reasonable CPU time. The 

benchmark scenarios point out that penalizing constraints, such the single track ones, prove to 

have quite an impact over the solution time, (in this case greater than station deactivation 

possibility). Whenever these complications are overlooked, the problem is solved in less than 10 

seconds, showing how the model is capable to find a feasible and good solution very quickly. The 

possibility to deactivate intermediate stops, as it is provided, proves anyway to be effective, since 

the total number of users decrease in the scenario that doesn’t feature it. 

Though the optimal set of variables determined with the linearized model is probably sub-optimal 

for the original problem, the users number trend for the different scenarios is similar both in the 

linearization version and the original one, leading to the hypothesis that the optimality gap wouldn’t 

be huge. 

4. Conclusions 
This paper deals with the optimization problem of regular symmetric timetables, considering the 

relationship between the characteristic of the competing transport systems and the transport 

demand. 

The classical CPF problem is revised with a formulation based on an undirected graph, while a 

discrete choice model is introduced to estimate the modal split dependency on the variation of 

railway trip time. The maximization function aim is to find the best feasible timetable to gain the 

better modal split given the infrastructure characteristics. 

The proposed model features the possibility to deactivate intermediate stops along lines: this 

automatically happens whenever the traveler’s utility increase is sufficient to lead to a rise in the 

number of total passengers (considering the lost ones). 

With the purpose of testing the model, a linearized version of the modal choice model is 

implemented, thus reconducting the problem to a MILP, being able to deal with it using a 

commercial solver like CPLEX®
. 

Computational results regarding a real-life case study are presented. The solving time is very 

reasonable for instances regarding a ten of lines, with various single track ones. The solutions found 

for the linear problem are feasible also for the original one, though it is not possible to guarantee 

the quality of them respect to the global optimum of the nonlinear problem. Results are anyway 

encouraging, as the trend of the solution for the different scenarios is similar both for the linear 

version and the original one. 

Further studies will be focused on a more accurate linearization of the Logit function, studying the 

behavior over a wider class of scenarios, and the development of a method to solve the nonlinear 

problem to optimality within reasonable time, possibly using the variable set of the linearized 

solution to establish a lower bound on the optimum. 
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