
A Derivative-Free and Ready-to-Use NLP Solver

for Matlab or Octave

Florian Jarre and Felix Lieder,
Mathematisches Institut,
Heinrich-Heine Universität Düsseldorf, Germany.

Abstract

This paper introduces a derivative-free and ready-to-use solver
for nonlinear programs with nonlinear equality and inequality con-
straints (NLPs). Using finite differences and a sequential quadratic
programming (SQP) approach, the algorithm aims at finding a local
minimizer and no extra attempt is made to generate a globally opti-
mal solution. Due to the use of finite differences, approximations of
the derivatives are expensive compared to the numerical computa-
tions that usually dominate the computational effort of NLP solvers.
This fact motivates the use of a somewhat effortful trust-region SQP-
subproblem that is solved by second orde cone programs.

The implementation in Matlab or Octave is easy to use and public
domain; numerical experiments indicate that the algorithm is well
suitable for problems with m inequality constraints depending on n
variables when n+m ≤ 500.

Key words: Minimization without derivatives, nonlinear programs, sequential
quadratic programming solver, Matlab.

May 4, 2017

1 Introduction

An iterative algorithm is presented for minimizing a smooth function subject to
smooth equality- and inequality-constraints, but without using any user supplied
derivative information. Instead, the derivatives are approximated via central
finite differences. The finite difference approximations are expensive compared
to computations of numerical linear algebra which tend to dominate the overall
computational cost in standard NLP solvers. The consideration of this fact
motivates a conforming strategy for the numerical computation of the iterates.

The concepts used in this paper are fairly standard and there are many alter-
native standard approaches that could be used instead. The new contribution
of the present paper is to apply and implement these concepts to an algorithm

1

without using derivatives and to combine them in a way which merits the fact
that approximations to derivatives are moderately expensive.

For problems with very expensive function evaluations other approaches are
preferable, for example the recent DEFT-FUNNEL approach by Sampaio and
Toint [13].

In spite of the fact that no derivative information is provided by the user, the
numerical experiments in [9] indicate that using curvature approximations may
significantly accelerate the convergence of a descent method. For this reason,
in the implementation [7] associated with the present paper, a rather high nu-
merical effort is spent on generating a suitable projection of an approximation
to the Hessian of the Lagrangian. This projection is used in a Euclidean norm
trust region SQP subproblem proposed by Celis, Dennis, and Tapia, [3].

Note that – due to the finite difference approach – this algorithm is not
suitable for large scale problems, in particular, sparsity is not exploited.

1.1 Notation

The components of a vector x ∈ Rn are denoted by xi for 1 ≤ i ≤ n. When x ∈
Rn is some vector, ‖x‖ denotes its Euclidean norm. For lb, ub ∈ (R ∪ {±∞})n,
inequalities such as lb ≤ x ≤ ub are understood componentwise.

The gradient of a differentiable function f : Rn → R at some point x will
be denoted by a column vector g(x) = ∇f(x) = Df(x)T , and the Hessian (if it
exists) by H(x) = ∇2f(x).

For a vector y ∈ Rm the vector y+ denotes the vector with entries

(y+)i := max{0, yi} for 1 ≤ i ≤ m.

The k-th iterate of a sequence of vectors is denoted by a superscript, such
as xk; for sequences of scalars or matrices, the k-th element is denoted by a
subscript such as δk or Hk.

The machine precision is denoted by ε.

2 The problem

The problem under consideration is of the general format

minimize f(x) | fE1(x) = 0, AE2x = bE2 ,
fI1(x) ≤ 0, AI2x ≤ bI2 , lb ≤ x ≤ ub, (1)

where f : Rn → R, fE1 : Rn → Rp, fI1 : Rn → Rq are differentiable func-
tions, and AE2

, AI2 are real matrices with n columns. The dimensions of the
right hand side “0” and of bE2

, bI2 above are to conform with the definitions
of fE1

, fI1 , AE2
, AI2 . In particular, “0” may be the empty zero-vector if there

are no nonlinear equality constraints (E1 is empty) or no nonlinear inequality
constraints (I1 is empty), and likewise bE2 or bI2 may have zero rows if AE2 or
AI2 do so. The lower and upper bound constraints on x can also be omitted,
or some components of lb may be “−Inf” or some components of ub may be
“Inf”. It is assumed that a finite initial point x0 is given where x0 does not
necessarily satisfy the constraints.

The constraint function may or may not depend on additional parameters
that are not subject to minimization. The input format is detailed next.

2

2.1 The use in Matlab/Octave, input and output format

To facilitate the use of the minimization routine, only a single m-file “min fc.m”
needs to be copied into the folder from which Matlab or Octave are called (or
into some other folder on the matlab-path).

Using Matlab-notation, the problem to be solved by “min fc.m”
(minimization of a function f subject to general constraints) is

minimize f obj(x) for f e(x) = 0, f i(x) <= 0,

Ae*x = be, Ai*x <= bi,

lb <= x <= ub

The general calling routine of “min fc” is of the form

[x,y,fx,out] = min fc(@f obj,@f con,options)

where the output for the constraint function f con consists of two vectors f e
(equality constraints) and f i (inequality constraints). The objective and con-
straints may depend on additional parameters (not subject to minimization) as
detailed below.

The input data is structured as follows:
Mandatory input:

f obj, a function handle for the objective function Rn --> R

f con, a function handle for the constraints Rn --> [Rp, Rq]

!!! Even when p=0 or q = 0, the output of f con must consist of two !!!

!!! vectors [fe ,fi] = f con(x), with fe = zeros(0,1) if p = 0, !!!

!!! or fi = zeros(0,1) if q = 0. Here, p and q do not have to be !!!

!!! specified; they will be determined from fe and fi. !!!

!!! (fe and fi must be column vectors.) !!!

--

Further MANDATORY input:

options, a structure with the MANDATORY field

x0, starting point, not necessarily feasible but of correct dimension

--

and the further OPTIONAL fields:

Ae, a constraint matrix for linear equality constraints

be, right hand side (default for Ae, be: empty)

Ai, a constraint matrix for linear inequality constraints

bi, right hand side (default for Ai, bi: empty)

lb, lower bounds on the variable x, of dim (n,1) (Default -Inf)

ub, upper bounds on the variable x, of dim (n,1) (Default Inf)

(Sparsity of the bounds is not exploited. Setting lb i=-Inf or

ub i=Inf is more efficient than e.g., lb i=-1e20 or ub i=1e20.)

par fobj, If f obj depends on additional parameters (not subject

to optimization), then the field options.par fobj is a

struct containing the input parameters.

Calling routine: f obj(x,par fobj)

Default: options.par fobj is not provided

par fcon, If f con depends on additional parameters (not subject

to optimization), then the field options.par fcon is a

struct containing the input parameters.

Default: options.par fcon is not provided

maxit, a bound on the number of iterations; each iteration

takes about 2*n+15 evaluations of f obj, f con (Default 100*n)

err, if the absolute error for a typical evaluation of f obj or

f con is known, this parameter can be set here, else it

is estimated (and used for the finite differences).

3

p l, print level, values 1 or 2 for more printout, default 0

The output is given as follows:
x: an approximate local minimizer / stationary point

y: the associated Lagrange multipliers in the order: fe, Ae,

fi, Ai, (Ai including the bounds lb,ub)

y is empty if there is only one degree of freedom (after

the elimination of linear constraints) i.e. if the problem

can be reduced to a line search

fx the final objective value

out.relKKTres: Norm of the gradient of the Lagrangian divided by

max(1,norm of the gradient of the objective function)

out.constr viol = [norm(constraint violation, nonlinear equalities),

norm(constraint violation, linear equalities),

norm(constraint violation, nonlinear inequalities),

norm(constraint violation, linear inequalities)];

out.iter: number of iterations needed

out.fval: number of function evaluations needed

out.Ae transformed matrix of linear equalities used for ye

out.Ain transformed matrix of linear inequalities used for yin

out.termmsg termination message

1) KKT point found with 6 digits accuracy

2) infeasible stationary point discovered with 6 digits acc

3) KKT point found with 3 digits accuracy

4) Early termination as iteration limit has been reached

5) Termination without reaching convergence

6) Termination without improving over the initial point

Termination message 5) may occur if the current SQP step does not result in a
sufficient decrease of the merit function; termination message 6) indicates that
this situation is given at the initial point. The termination messages are based
on estimates and are not reliable.

Below we list a sample file for calling min fc. The objective and the con-
straints are given by the following functions:

function [y] = f sample obj(x,A)

% f sample obj, a simple quadratic objective function

% depending on a parameter matrix A not subject to minimization

y = x’*A*x;

end

function [feq, fin] = f sample con(x)

feq = x(1)ˆ2; % degenerate representation of the constraint x(1) = 0

fin = [x(2)+x(3)-0.8;

exp(x(3))-1-x(4)];

% a linear inequality constraint but treated like a nonlinear inequality

% followed by the convex constraint x(4) >= exp(x(3))-1

end

To prepare the call set, for example:

options.Ae = ones(1,4); % linear equality constraint sum(x i) = 1

options.be = 1;

options.lb = zeros(4,1); % lower bounds all zero, no upper bounds

A = [6, -2, -3, -4; -2, 9, 1, 2; -3, 1, -3, -3; -4, 2, -3, -1];

options.par fobj = A; % parameter matrix for the objective function

options.x0 = ones(n,1); % some (infeasible) starting point

options.p l = 1; % moderate printing level

4

The actual function call:

[x,y,fx,out] = min fc(@f sample obj,@f sample con,options);

The output for this particular example is:

x =

0.000000019116584

0.000000004849712

0.442854389555730

0.557145586477974

y =

1.0e+09 *

8.344948992241799

-0.000000009285859

0

0.000000000871512

0.000000316582474

0.000000007757220

0

0

out =

struct with fields:

termmsg: 1

relKKTres: 4.4061e-08

constr viol: [3.6544e-16 1.1102e-16 0 0]

iter: 17

fval: 437

Ain: [44 double]

Ae: [-0.5000 -0.5000 -0.5000 -0.5000]

bin: [41 double]

be: -0.5000

The vector y of Lagrange multipliers first lists the multipliers for the non-
linear and the linear equality constraints – here, the degeneracy of the problem
results in a huge multiplier for the nonlinear equality constraint – and then for
the nonlinear and the linear inequality constraints (in this order).

The struct out lists the following results: The termination message 1 in-
dicates that the constraint violation and the estimated relative residual of the
KKT violation are less than 10−6. Here, the relative residual is the residual
divided by “the norm of the objective gradient +1”. The constraint violation
constr viol is listed in the order “nonlinear equality constraints, linear equal-
ity constraints, nonlinear inequality constraints, linear inequality constraints”.
The number of iterations and the number of function evaluations follow. The
matrix Ain represents the linear inequalities – here four inequalities coming
from the lower bounds. The matrix Ae is from the linear equality constraint;
this matrix is always rescaled to be a matrix with orthonormal rows. The vector
bin is the right hand side for the linear inequality constraints1 and be is the
right hand side for the linear equality constraint(s).

1The algorithm proceeds by first eliminating the linear equations, which results in modi-
fying also the inequalities. When converting the output back to the original form, the rows

5

3 A nonlinear minimization principle

The algorithm used in “min fc.m” aims at finding a local minimizer near x0 but
in general, it will not maintain exact feasibility with respect to the nonlinear
constraints, even if the initial iterate does satisfy all constraints.

The SQP-penalty-approach detailed in sections 3.1 – 3.3.1 and implemented
in [7] follows well known principles: The great success of SQP methods is owed
to the fact that it is possible to collect all relevant second order information in
a single matrix, the Hessian of the Lagrangian, rather than generating second
order information for each individual constraint function. This comes at the
expense that the accuracy of an SQP step cannot be measured easily, resulting
in a possible Maratos-effect [10]. Here, it is attempted to suppress this effect
by considering convex sub-problems with a descent property and by including
second order correction steps.

3.1 Preprocessing

The algorithm starts by projecting x0 onto the nearest point satisfying the linear
equations and inequalities. Then, the equations AE2

x = bE2
are eliminated2

using a QR-factorization of AE2
, and the finite bounds lbj , ubj (1 ≤ j ≤ n) are

included in AI2 , bI2 .
The result of this elimination3 is a problem of the format

minimize f(x) | fE(x) = 0, fI(x) ≤ 0, Ax ≤ b. (2)

Here, the definitions of f, fE , fI and A, b have changed compared to (1); in
particular, if E2 is nonempty, then, after eliminating AE2

, bE2
, the dimension of

the input to f, fE , fI is smaller than in problem (1). This implies that also the
starting point x0 is projected to a point in a lower dimensional space satisfying
the linear equalities and inequalities. A linear inequality constraint that is
satisfied as an equality for all points satisfying all linear constraints is called
a hidden equality. It is assumed that the problem contains no hidden linear
equality constraints. The set of rows of A in (2) is denoted by J and the
Lagrange multipliers for the three types of constraints in (2) are denoted by yE ,
yI , and yJ : The Lagrangian is given by

L(x, yE , yI , yJ) := f(x) + yTEfE(x) + yTI fI(x) + yTJ (Ax− b).

The input in the implementation [7] is of the format (1). Then, the above pre-
processing is applied followed by a call to the actual minimization algorithm.
For the theoretical description of the algorithm we may therefore assume with-
out loss of generality (and without deviating from the notation used within the
implementation [7]) that the problem is given in the format (2) with a start-
ing point that satisfies all linear constraints. The feasibility with respect to

of Ain and the entries of bin may be modified by multiples of the equality constraints. In the
above example Ain is no longer a multiple of the identity matrix – but for any x with Ae * x

= be it still represents the inequalities x >= 0.
2When AE2

is not the empty matrix (with zero rows), such elimination typically destroys
the sparsity that may be present in AI2 . As pointed out above, sparsity is not exploited in
[7].

3The elimination is carried out internally and is not visible to the user.

6

the linear constraints will be maintained at all steps of the minimization pro-
cess; therefore, in the following, only the constraint violation of the nonlinear
constraints fE , fI will be considered.

3.1.1 Initialization

As initialization set the iteration index k = 0 and compute the function values
fk = f(xk), fkE = fE(xk), fkI = fI(x

k), and finite difference approximations
Dfk ≈ Df(xk), DfkE ≈ DfE(xk), and DfkI ≈ DfI(x

k) based on central finite
differences. As in [9], the size “dt” of the discretization for the finite difference
is adapted to an estimate of the accuracy of the function values. Apart from
the high computational effort involved with the finite difference evaluations,
also a loss of accuracy is associated with Dfk, DfkE and DfkI compared to
an evaluation of an analytic expression for the derivatives. Nevertheless, for
notational convenience, the approximation of the derivatives by finite differences
will be denoted shortly as “evaluation of the derivatives” below.

The algorithm will also use an approximation Hk of the Hessian of the La-
grangian at the k-th iteration. Initially, the Hessian is set to H0 = 0.

3.2 SQP concept

The algorithm of Section 3.3 generates a sequence of iterates xk where xk+1

is obtained from the solution of a convex trust region SQP subproblem at the
point xk. As detailed in [8], the SQP subproblem proposed by Celis, Dennis,
and Tapia [3] for equality constrained problems is generalized to equality- and
inequality-constrained problems and used in the implementation of Section 3.3.
This subproblem is termed CDT subproblem below. The CDT subproblems
allow a strong convergence analysis in [3] but in relying on second-order cone
programs they are computationally more expensive than other formulations of
SQP subproblems. Due to the high computational effort for generating deriva-
tive approximations, the relative increase of the overall computational cost due
to solving the CDT subproblem, however, is moderate, in general.

3.2.1 Projection of the Hessian

Given an iterate xk, the function values fk, fkE , fkI , the finite difference approx-
imations Dfk, DfkE , DfkI , and some approximation Hk ≈ ∇2L(xk, ykE , y

k
I , y

k
J),

a trust region SQP subproblem will be set up. To this end Hk is projected
onto the space orthogonal to the gradients of the active constraints. Initially,
at iteration k = 0, only the equality constraints that are considered active. For
the iterations k ≥ 1, all linear and nonlinear inequalites that are violated or
whose slacks are less than twice the norm of the second order correction of the
previous iteration are considered “active” as well.

The (possibly negative) curvature perpendicular to the active constraints
will be eliminated by projecting the Hessian Hk onto the subspace orthogonal to
DfkE and orthogonal to the derivatives of all active constraints. More precisely,
let Ã be the matrix consisting of DfkE and of the active rows of DfkI and the
active rows of A, i.e.

Ã :=

 DfkE
(DfI)

k
act

Aact

 .
7

Let ÃT = QR be a QR-decomposition, where Q = [Q1, Q2] and Q2 is associated
with the zero-rows of R. Then set H̃k := Q2Q

T
2HkQ2Q

T
2 . (If Q2 is empty then

H̃k is set to zero.) The matrix H̃k is called projected Hessian and is closely
related to the reduced Hessian4, see for example [1, 2, 6, 11]. If the smallest
eigenvalue of H̃k satisfies λmin(H̃k) ≤ 0, then a further correction is applied to
H̃k by adding a regularization term and changing H̃k to H̃k := H̃k + ρI where
ρ ≥ −λmin(H̃k). Below, it is assumed that H̃k � 0.

3.3 The CDT SQP step

Given xk, H̃ = H̃k and a trust region radius δ > 0, let g = gk := (Dfk)T , let
DfE = DfkE be the (approximate) Jacobian of the equality constraints evaluated
at xk, and let fE = fkE be the function value of the equality constraints evaluated
at xk. Likewise, let DfI and fI be approximations for the Jacobian and function
value of the inequality constraints.

Following the outline in [8] a correction step ∆x is determined by the solution
of the following two problems: First, let ρ ∈ (0, 1) be some fixed number, e.g.
ρ = 0.9, and let tk = δC be the optimal value of

min t

s.t.

DfE∆x̃ − sE = −fE ,
DfI∆x̃ − sI ≤ −fI ,∥∥∥∥(sEsI

)∥∥∥∥ ≤ t,

‖∆x̃‖ ≤ ρ δ.

(3)

Then, the CDT correction ∆x is given by the solution of

min gT∆x+ 1
2∆xT H̃∆x

s.t.

DfE∆x − sE = −fE ,
DfI∆x − sI ≤ −fI ,∥∥∥∥(sEsI

)∥∥∥∥ ≤ δC ,

‖∆x‖ ≤ δ.

(4)

Problem (3) can trivially be rewritten as a mixed second order cone program,
and by the preprocessing of H̃ it follows that H̃ � 0 so that also problem (4)
can be rewritten as a mixed second order cone program, the solution of which
is discussed, e.g. in [8].

4Several other approaches for modifying the Hessian have been proposed. For example,
instead of the above projection, in order to eliminate negative curvature orthogonal to the
active constraints, it is also possible to define H̃k := Hk + ρÃT Ã for sufficiently large ρ ≥ 0.
As the appropriate choice of ρ is not known, the above projection is applied instead.

Projecting the Hessian Hk to H̃k as above or leaving it unchanged will generate exactly
the same steps when the linearizations of active constraints are fixed as equations. This is
the case in active set methods, where, rather than a projected Hessian, a reduced Hessian
is typically used instead. However, as long as the active constraints at optimality are not
correctly identified, the active set may limit the step length to a rather short step even in
cases, where the current iterate is far from a local minimizer and where the quadratic model
at the current iterate might be sufficiently accurate in a much larger trust region. For this
reason an SQP type approach is chosen below, avoiding the restriction to the “currently active
set”.

8

As output for problem (4), the algorithm in [8] returns an approximate value
∆xk.

Due to the trust region constraint, the Lagrange multipliers of (4) may not
be good approximations to the Lagrange multipliers of (2). Approximate values
for the Lagrange multipliers for (2) can be determined by the solution of a
further second order cone program.

To avoid or to reduce a possible Maratos-effect [10] and to speed up overall
convergence associated with a single evaluation of all constraint gradients, a
second order correction step sk is computed for the point xk+∆xk: To this end
let Î+ denote the inequalities violated at xk+∆xk, let b̂+ denote the right hand
side associated with the remaining inequalites, and let Â+ be defined conforming
with b̂+. Further, let f+E := fE(xk + ∆xk) and f+

Î+
:= fÎ+(xk + ∆xk). Finally,

let µ be some small number, e.g. µ := 10−8/max{1, δ}. If

‖f+E ‖1 + ‖f+
Î+
‖1 > 0.2

(
‖fE‖1 + ‖fÎ‖1

)
+ 0.8tk (5)

the “second order correction problem”

minimize µ
2 s
T s+ t

s.t.

DfEs − tf+E = −f+E ,
DfÎ+s − tfÎ+ ≤ −fÎ+ ,
Â+s ≤ b̂+,

−t ≤ 0,
‖s‖ ≤ δ

(6)

is solved. The solution to this problem is denoted by sk. If (5) does not hold
(i.e. if the reduction of the constraint violation amounts to at least 80% of the
predicted reduction of the step xk 7→ xk + ∆xk) then set sk := 0.

3.3.1 Choice of δ

Initially, δ0 is set to some moderate value such as δ0 = 1. At each iteration,
steps ∆xk, sk are generated by (4), (6) with some trust region radius δk. The
solutions to (4), (6) define a curve

x(α) := xk + α∆xk + α2sk

for α ∈ (0, 1]. The next iterate xk+1 := x(αk) is determined by a line search
with respect to α. The choice of δk+1 for the next iteration is intended as large
as possible while anticipating steps of length α = 1.

More precisely, an exact penalty function Θ : Rn → R with

Θ(x) := f(x) + M̄
∑
j∈E
|fj(x)|+ M̄

∑
i∈I

(fi(x))+

is used where M̄ is some number larger than the estimates of the absolute
values of the Lagrange multipliers. Observe that Ax ≤ b, A(x + ∆x) ≤ b, and
A(x + ∆x + s) ≤ b also imply Ax(α) ≤ b for α ∈ [0, 1] so that the feasibility
with respect to linear inequalities remains satisfied.

The trust region radius δk+1 for the next iteration is updated as follows:

9

• If α ∈ (0, 0.9) let δk+1 = α‖∆x‖2.

• If α ≥ 0.9 let δk+1 = max{δk, 2α‖∆x‖2}.

• (For numerical stability of the SOCP solver we also set

δk+1 = min{δk, 10‖∆x‖2}.)

3.4 Update of Hk

After each iteration the Hessian approximation of the Lagrangian is updated.
This update is applied to the current approximation of the Hessian and not to
its projection onto a subspace defined by the active constraints. In particular,
if the multipliers are fixed and the set of active constraints is changing, this
change will not influence the Hessian approximation.

Let x := xk and let x+ be the short hand notation for the vector xk+1. Set
∆x := x+ − x. (This notation coincides with the one of Section 3.3.1 if αk = 1
and sk = 0; here it is used also for all other cases.) Likewise denote the finite
difference approximations to Df(x), DfE(x), and DfI(x) at xk by Df , DfE ,
and DfI , and at x+ by Df+, Df+E , and Df+I . Denote the optimal multipliers
of Problem (4) by yE , yI , and yJ . Then, set

g := DfT +DfTE yE +DfTI yI and g+ := (Df+)T + (Df+E)T yE + (Df+I)T yI .

These are the gradients of the Lagrangian at xk and at x+ except from the linear
parts associated with yJ . The linear parts are omitted since they are constant
and therefore cancel during the computation of ∆g below. The estimate H = Hk

is updated to an estimate H+ as follows:
For ‖∆x‖ ≤ dt set H+ = H, but if ‖∆x‖ > dt where dt is as in Section 3.1.1,

then, the difference of the gradients g and g+ at both points is used for a Quasi-
Newton update based on the PSB formula. Let ∆g := g+ − g, ∆x = x+ − x,
and

∆H :=
(∆g −H∆x)∆xT + ∆x(∆g −H∆x)T

∆xT∆x
− (∆g −H∆x)T∆x

(∆xT∆x)2
∆x∆xT .

The PSB update [12] is then given by setting

H := H + ∆H.

3.5 Overall algorithm

The algorithm of the preceding subsections is summarized below:

Input: The data to Problem (1) and an initial point not necessarily satisfying
any of the constraints.

Preprocessing: Convert (1) to a problem of the form (2) with a starting point
x0 satisfying the linear inequality constraints.

Initialization: Set δ0 := 1, H0 := 0, and k = 0. Evaluate f(x0), fE(x0),
DfE(x0), fI(x

0), and DfI(x
0).

Repeat

10

1. Project the Hessian Hk of the Lagrangian onto the null space of the gra-
dients of the active constraints and generate a positive definite approxi-
mation H̃k to the projected Hessian.

2. Solve Problem (4).

3. Evaluate fE(xk+∆xk), DfE(xk+∆xk), fI(x
k+∆xk), and DfI(x

k+∆xk).

4. If (5) is satisfied solve (6), else set sk = 0.

5. Determine αk and update xk+1 := x(αk) and δk+1 as in Section 3.3.1.

6. Evaluate DfE(xk+1) and DfI(x
k+1), update Hk as in Section 3.4, and set

k := k + 1.

until some convergence criterion holds or until some iteration limit is reached.

In the numerical implementation several minor modifications of the above
general concepts were made: Whenever the objective function was undefined,
its value was reset to +∞ to avoid early termination.

Constraints such as xi ≤ 1020 imply very large entries in the right hand
side of the SOCP subproblem and a low accuracy in the remaining components
of the solution generated by the SOCP solver used in this paper. To prevent
this effect, all constraints that are necessarily inactive were eliminated before
the solution of each SQP subproblem by using bounds derived from the current
trust region radius.

4 Numerical results

To provide some intuition about the convergence of the algorithm, some prelim-
inary numerical examples on the CUTEst test set are reported in this section.
All problems were selected for which n + mi + mA ≤ 500 is satisfied where n
is the number of variables, mi the number of nonlinear inequality constraints,
and mA the number of linear inequality constraints. (The number of equality
constraints was not considered for this selection.) The total running time in-
cluding loading and processing times for all 651 test problems selected in this
way was 4 hours 43 minutes on a recent desktop computer (Intel(R) Core(TM)
i7-4770 CPU at 3.40GHz with four CPUs).

The dimensions “n” of these 651 problems have a mean value of 34 and a
quadratic mean value of 86; among the 651 test problems, there are 3 problems
of dimension 1, and 113 problems of dimension 2, and 13 problems of dimension
≥ 400.

We are not aware of any other public domain package for nonlinearly con-
strained optimization that does not require derivative informations and we do
not attempt a comparison with highly sophisticated commercial solvers such as
DNOPT (in finite difference mode) [5] or the Optimization toolbox of Matlab.
The code of Sampaio and Toint [13] targets problems with expensive function
evaluations and is not yet publicly distributed. We do not include it either in
any comparison.

Table 1 reports the termination messages to the 651 selected problems. The
maximum number of iterations was set 50n for these problems where n is the

11

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 4.1: Dimensions vs. number of iterations (log10-log10 -scale).

number of variables. For 117 problems the termination messages 4,5, or 6 in-
dicate that no approximate first order optimality condition could be satisfied;
for some of these 117 problems, however, progress over the initial point or near
optimality was achieved without obtaining an approximate certificate. On the
other hand, some problems in the CUTEst test set are deliberately given in
an ill-posed form, e.g. more nonlinear equality constraints than variables. For
such problems the starting point either satisfies the Fritz-John conditions or
some infeasible stationarity conditions. Such situation will generally generate a
termination message 1 or 2.

term. message 1 2 3 4 5 6
number of cases 287 167 80 58 58 1

Table 1, results for 651 CUTEst problems of dimension ≤ 500.

Termination message 6 occured for problem HS72 where the algorithm car-
ried out 57 iterations initially increasing the constraint violation and not being
able to reduce the constraint violation again.

There were 79 problems where the algorithm stopped after reaching the
preset limit of 50n iterations, 3 of which with termination message 1, and 18 of
which with termination message 3, and 58 of which with termination message
4.

There were 460 problems for which the algorithm took more than 2 itera-
tions. Figure 4.1 displays the dimension n vs. number of iterations for these 460
problems on a log10-log10 scale. Apart from the upper bound of 50n iterations,
a clear trend cannot be identified from this plot.

Note: For problem “RECIPE” the initial point does not satisfy the linear equal-
ity constraint. When projecting the initial point to eliminate the linear equality
constraint, it turns out that one of the nonlinear constraint functions is not
finite at the projected point, and the algorithm stops.

12

0 0.5 1 1.5 2 2.5 3

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

Fig. 4.2: Dimensions vs. 1
n×(time per iteration) – (log10-log10 -scale).

If such projection onto a point with undefined function values must be
avoided, the linear equality constraints can be included within the nonlinear
equality constraints. These will only be changed gradually during the algo-
rithm – controlled by a line search for a merit function that does not generate
iterates with undefined function values.

Figure 4.2 displays the dimension n vs. 1
n×(time per iteration) for these

460 problems, again on a log-log scale. The scaling 1
n reflects the fact that 2n

function evaluations are performed at each iteration. Averaging these numbers,
the time per iteration is roughly given by 0.025 n, slightly less for the larger
problems and slightly more for the smaller ones (possibly due to the overhead
of each function call and only when considering this particular test set!).

Acknowledgment

The first author would like to thank Helene Hibon for corrections of an earlier
version of the code [7].

References

[1] R. H. Byrd: An example of irregular convergence in some constrained opti-
mization methods that use the projected Hessian, Math. Programming 32,
232–237 (1985).

[2] R.H. Byrd, J. Nocedal: An analysis of reduced Hessian methods for con-
strained optimization, Math. Programming 49, 285–323 (1991).

[3] Celis, M., Dennis, J., Tapia, R.: “A trust region strategy for nonlinear
equality constrained optimization”, Numerical Optimization (P. Boggs, R.
Byrd, and R. Schnabel, eds), SIAM, 71–82 (1985).

13

[4] The CUTEr/st Test Problem Set,
http://www.cuter.rl.ac.uk/Problems/mastsif.html

[5] Gill, P.E., Saunders, M.A., and Elizabeth Wong, E.: User’s Guide for
DNOPT: Software for Medium-Scale Nonlinear Programming, Center for
Computational Mathematics, University of California, San Diego, La Jolla,
CA, Center for Computational Mathematics Report (2016).

[6] C.B. Gurwitz, M.L. Overton: SQP methods based on approximating a
projected Hessian matrix, SIAM J. Sci. Stat. Comp. 10, 631–653 (1989).

[7] F. Jarre, F. Lieder: Local Minimization Without Evaluating Derivatives,
a Matlab collection. http://www.opt.uni-duesseldorf.de/en/forschung-
fs.html (2017).

[8] F. Jarre and F. Lieder: The solution of Euclidean norm trust region SQP
subproblems via second order cone programs: an overview and elementary
introduction, Optimization Methods and Software (2017).

[9] M. Lazar, F. Jarre: Calibration by Optimization Without Using Deriva-
tives, Optimization and Engineering, 17(4), 833–860 (2016).

[10] N. Maratos: Exact Penalty Function Algorithms for Finite Dimensional and
Control Optimization Problems, Ph.D. Thesis, Imperial College of Science
and Technology, London, UK (1978).

[11] J. Nocedal, M.L. Overton: Projected Hessian updating algorithms for
nonlinearly constrained optimization, SIAM J. Numer. Anal. 22, 821–850
(1985).

[12] M.D.J. Powell: A new algorithm for unconstrained optimization, in Non-
linear Programming, J.B. Rosen, O.L. Mangasarian, and K. Ritter, eds.,
Academic Press, New York, 31-65 (1970).

[13] Ph. R. Sampaio and Ph. L. Toint: Numerical experience with a derivative-
free trust-funnel method for nonlinear optimization problems with general
nonlinear constraints, Optimization Methods and Software 31 (3) 511–534
(2016).

14

