
Solving Mixed-Integer Nonlinear Programs using
Adaptively Refined Mixed-Integer Linear Programs

Robert Burlacu1, Björn Geißler1, and Lars Schewe1

Abstract. We propose a method for solving mixed-integer nonlinear
programs (MINLPs) to global optimality by discretization of occuring
nonlinearities. The main idea is based on using piecewise linear functions
to construct mixed-integer linear program (MIP) relaxations of the
underlying MINLP. In order to find a global optimum of the given
MINLP we develope an iterative algorithm which solves MIP relaxations
that are adaptively refined. We are able to give convergence results for
a wide range of MINLPs requiring only continuous nonlinearities with
bounded domains and an oracle computing maxima of the nonlinearities
on their domain. Moreover, the practicalness of our approach is shown
numerically by an application from the field of gas network optimization.

1. Introduction

A wide variety of algorithms to solve MINLPs exists. The main idea
behind these is to augment standard branch-and-bound algorithms. We
investigate one of the older ideas: Replacing nonlinearities with piecewise
linear functions and solve the resulting problem as an MIP. The drawback
of these methods is that a small approximation error leads to large MIPs,
which become difficult to solve. Building on work by [11], we reduce the
problem of solving an MINLP to solving a sequence of MIPs with gradually
increasing accuracy.

We show convergence results and give tight bounds on the complexity of
the MIPs required to achieve an a-priorily given accuracy. In order to obtain
these results, our technique relies on combining a longest-edge bisection rule
with MIP models for piecewise linear functions and analyze their interaction.
The advantages of our approach are demonstrated on examples taken from
gas transport optimization. We are able to provide near-optimal solutions
to hard compressor cost optimization problems, which are difficult to solve
for state-of-the-art MINLP solvers. More generally, our method can be used
for arbitrary MINLP problems with bounded variables and requires only
continuous functions for which global optima can be computed.

We highlight two differences from standard approaches for solving MINLPs:
In contrast to spatial branch-and-bound, where a single branch-and-bound
tree is used, we solve multiple MIPs and thus use multiple branch-and-
bound trees. Moreover, unlike many methods that use only piecewise linear
approximations to construct approximate solutions to MINLPs, we extend

1Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Discrete Op-
timization, Cauerstr. 11, 91058 Erlangen, Germany

Key words and phrases. Mixed-Integer Nonlinear Programming, Piecewise Linear Ap-
proximation, Gas Transport Optimization, Global Optimization, Adaptivity.

1

2 R. BURLACU, B. GEIßLER, L. SCHEWE

such approximations to piecewise linear relaxations in our subproblems. As a
consequence, we have both the opportunity to obtain global optimal solutions
and prove infeasibility.

There are many possible ways to utilize piecewise linear approximations
and relaxations for MINLPs. The main problem in all cases, however, is
to construct good approximations of the nonlinear functions, the secondary
problem is how to incorporate them into an MIP.

One way to construct such an approximation is to fix the error in advance
and compute optimal linearizations for each function, see [29, 30] in case
of approximations and [25] in case of one-dimensional relaxations. For
up to three-dimensional functions, explicit approximation techniques for
general nonlinear functions have been developed in [24]. Nevertheless, the
main drawback of all these methods is that the number of simplices in the
approximation grows exponentially with the dimension of the function. We
mention the approach of Rovatti et al. [31] that circumvents this problem
by dropping the requirement that the piecewise linear function needs to
interpolate the original nonlinear function at the vertices of the triangulation.
In our case, we base our relaxations on approximations that interpolate the
function at the vertices. The relaxations, however, do not.

To integrate these methods into an MIP solver, we use the classical
incremental method by Markowitz and Manne [22] as extended to relaxations
in [11]. Originally developed for one-dimensional functions, a generalization to
higher dimensions is described in [21, 38] and [9]. It yields a so-called locally
ideal formulation of the resulting MIP; see [27, 28]. The main disadvantage
of this (and related methods) is that the number of binary variables is linear
in the number of simplices of the corresponding triangulation, and therefore,
as mentioned above, grows exponentially in the dimension of the nonlinear
function. This leads to a worst-case running time bound that is doubly
exponential in the dimension of the nonlinear function. A way to, at least, get
worst-case exponential and not doubly exponential bounds is the modeling
technique proposed by Vielma and Nemhauser [37], which only needs a
logarithmic number of binary variables.

To show that our technique is well-suited to solve structured MINLPs, we
solve compressor energy minimization problems for gas transport networks.
These have been studied in the literature, e.g., in [23] problems of this type
have been solved using piecewise linear approximations. In [12] an algorithm
that is similar to the one discussed here was applied to the problem, but no
theoretical justification was given.

This article is organized as follows. In Section 2, we formally describe
both the MINLP problems we consider and the algorithm to solve those.
Additionally, some details on the construction of arising MIP relaxations
are given. In Section 3, a convergence theory is developed, together with a
complexity analysis for MIP relaxations occuring in our approach. More-
over, we show that the intuitive procedure of adding points with maximal
linearization error while approximating a nonlinear function will not yield
a convergent algorithm. Section 4 contains an exemplary application of our
method, wherein in the context of gas transport optimization an MINLP
model for the problem of compressor energy minimization is established.

SOLVING MINLPs USING ADAPTIVELY REFINED MIPs 3

After pointing out implementation issues in Section 5, we show numerical
results in Section 6 demonstrating the advantages of our algorithm over
state-of-the-art MINLP solvers.

2. Problem Statement and Algorithm

This section provides a formal description of the problems we deal with in
the following, together with our solution algorithm.

We consider MINLP problems of type

min c>x

gi(x) = 0 for i = 1, . . . , k1,

hj(x) ≤ 0 for j = 1, . . . , k2,

l ≤ x ≤ u,

x ∈ Rd−p × Zp,

(P)

where k1, k2, d, p ∈ N, gi : Rd → R for i = 1, . . . , k1, and hj : Rd → R for
j = 1, . . . , k2 are continuous real-valued functions and l, u ∈ Rd are the
vectors of lower and upper bounds on the variables. Furthermore, with
F := {gi : i = 1, . . . , k1} ∪ {hj : j = 1, . . . , k2}, F ′ ⊂ F is the set of all
nonlinear functions of F and Df ⊂ Rd is the compact domain of the nonlinear
function f ∈ F ′. Additionally, we assume that there is an oracle computing
global optima, i.e., maxx∈Df f(x), for any f ∈ F ′. Note that in this matter,
for a considerable number of nonlinear functions, analytic formuals are given;
see [9] for a more detailed discussion.

Our goal is to find an optimal solution for (P) such that no constraint
of (P) is violated by more than an a-priorily (but arbitrarily) given error
bound by applying techniques from mixed-integer linear programming. We
therefore adaptively construct MIP relaxations of (P) and solve these to
global optimality until no given error bound is violated. We indicate that in
practice, the smallest attainable error bound is determined by the tolerance
of the MIP solver.

Although not all constraints of (P) may be fulfilled exactly by our approach,
we refer to it as global optimization for MINLP problems, since all a-priorily
given error bounds are controllable and in fact all so-called global optimization
algorithms, even for MIP or LP problems, deal with tolerances, e.g., for
integrality, optimality, or constraint violations.

2.1. MIP Relaxations. In order to construct MIP relaxations for (P), we
extend the so-called Generalized Incremental Model representing piecewise
linear approximations of the nonlinear functions contained in F ′; see [9]
for more details and numerical experiments showing an advantage of the
Generalized Incremental Model over other models.

Definition 2.1. The set T = {S1, . . . , Sn} with full-dimensional simplices
Si ⊂ Rd for i = 1, . . . , n is called a triangulation of Df , if Df =

⋃n
i=1 Si and

int(Sj) ∩ int(Sk) = ∅ for every j 6= k.

In Definition 2.1, the notation int(S) is used to denote the relative interior
of a set S ⊂ Rd. From now on, we consider a simplex S ⊂ Rd to be full-
dimensional and described by its extreme points V(S) = {x̄0, . . . , x̄d}. Since

4 R. BURLACU, B. GEIßLER, L. SCHEWE

we are only interested in an optimal solution for (P) such that no constraint
of (P) is violated by more than an a-priorily given error bound, for our
purposes it suffices if a piecewise linear approximation φf of f ∈ F ′ is a set of
continuous piecewise linear functions, which completely cover the domain Df .
Therefore, φf is not necessarily a function itself, but more generally described
as a set of continuous affine functions φf ;Si(x) : Si → R, together with a
triangulation T (φf) = {S1, . . . , Sn} of Df and auxiliary binary variables
zf ∈ {0, 1}n indicating which of the n functions φf ;Si is chosen. Herewith,
the aim is to formulate a mixed-integer linear model in which y = φf (x, zf)
holds for x ∈ Df .

There are two main ideas of the Generalized Incremental Model. At
first, any point xS inside a simplex S can be expressed either as a convex
combination of its vertices or equivalently as xS = x̄S0 +

∑d
j=1

(
x̄Sj − x̄S0

)
δSj

with
∑d

j=1 δ
S
j ≤ 1 and δSj ≥ 0 for j = 1, . . . , d.

The other main idea is that all simplices of a triangulation are ordered in
such a way that the last vertex of any simplex is equal to the first vertex of
the next one. In this way, we can construct a hamiltonian path and model the
piecewise linear approximation along this path. It is now sufficient to show
that an ordering of the simplices with the following properties is available:
(O1) The simplices in T = {S1, . . . , Sn} are ordered such that Si∩Si+1 6= ∅

for i = 1, . . . , n− 1, and
(O2) for each simplex Si its vertices x̄Si0 , . . . , x̄

Si
d can be labeled such that

x̄Sid = x̄
Si+1

0 for i = 1, . . . , n− 1.
More formally, the Generalized Incremental Model is described by:

x = x̄S1
0 +

n∑
i=1

d∑
j=1

(
x̄Sij − x̄

Si
0

)
δSij , (1a)

y = ȳS1
0 +

n∑
i=1

d∑
j=1

(
ȳSij − ȳ

Si
0

)
δSij , (1b)

1 ≥
d∑
j=1

δSij for i = 1, . . . , n, (1c)

0 ≤ δSij for i = 1, . . . , n; j = 1, . . . , d, (1d)

zi ≥
d∑
j=1

δ
Si+1

j for i = 1, . . . , n− 1, (1e)

zi ≤ δSid for i = 1, . . . , n− 1, (1f)
zi ∈ {0, 1} for i = 1, . . . , n− 1. (1g)

Constraints (1e)–(1g) ensure that the δ-variables satisfy the filling condition,
which states that if for any simplex Si a variable δSij is positive, then δSi−1

j = 1

must hold. This means that δSij can only be positive if for all previous simplices
k = 1, . . . , i− 1 the variables δSkd are equal to one.

With εu(f, S) := maxx∈S f(x)−φf ;S as the maximum underestimation and
εo(f, S) := maxx∈S φf ;S − f(x) as the maximum overestimation of f by φf ;S ,

SOLVING MINLPs USING ADAPTIVELY REFINED MIPs 5

an MIP relaxation for (P) can easily be obtained by replacing (1b) with

y = ȳS1
0 +

n∑
i=1

d∑
j=1

(
ȳSij − ȳ

Si
0

)
δSij + e,

and adding the inequalities

εu(f, S1) +
n−1∑
i=1

zi(εu(f, Si+1)− εu(f, Si)) ≥ e,

−εo(f, S1)−
n−1∑
i=1

zi(εo(f, Si+1)− εo(f, Si)) ≤ e.

For results concerning the computation of the approximation errors εu(f, S)
and εo(f, S), which is based on computing global optima for f , we again refer
to [9].

2.2. The Algorithm. We start by solving a coarse MIP relaxation and check
whether all error bounds are satisfied in its optimal solution. Then, we locally
refine those piecewise linear approximations, where the error bounds are
violated. Afterward, from the refined approximation, a new MIP relaxation
is constructed and the procedure is started over with the new relaxation until
all error bounds are satisfied. A more formal description of this approach is
given in Algorithm 1.

In the following we denote the projection of the optimal solution x of an
MIP relaxation on Df by xf for all f ∈ F ′. Moreover, the Euclidean norm
is denoted by ‖·‖. The refinement procedure in Algorithm 1 is in our case a
longest-edge bisection procedure as given in Algorithm 2.

Algorithm 2 Longest-edge bisection on a simplex S
Require: A simplex S and a scalar δ.
Ensure: If the longest edge of S is greater than δ, a set of two simplices

S′ and S′′ with S = S′ ∪ S′′ is returned. Otherwise no refinement is
performed.

1: Set e← longest edge of S with V(e) = {x̄a, x̄b} and x̄a, x̄b ∈ V(S).
2: if ‖e‖ ≤ δ then
3: return V(S).
4: else
5: Set x̂← midpoint of the longest edge e.
6: Set V(S′)← (V(S) \ x̄b) ∪ x̂ ; S′ ← conv(V(S′)).
7: Set V(S′′)← (V(S) \ x̄a) ∪ x̂ ; S′′ ← conv(V(S′′)).
8: return S′, S′′.
9: end if

Remark 2.2. We easily obtain a triangulation T
(
φi+1
f

)
of Df by replacing Sf

in T
(
φif
)
with S′f and S′′f , since Sf = S′f ∪S′′f . Therefore, there is a piecewise

linear approximation φi+1
f (x̃f) for every x̃f ∈ Df .

6 R. BURLACU, B. GEIßLER, L. SCHEWE

Algorithm 1 Global optimization by adaptively refined MIP relaxations

Require: An MINLP problem P of type (P), upper bounds ε0f > 0 for the
absolute linearization errors in the piecewise linear approximations used
to construct the initial relaxation and the maximal absolute linearization
errors εf > 0 for all f ∈ F ′.

Ensure: If P is feasible, the algorithm returns an optimal solution x of
an MIP relaxation Π of P with |f(xf) − yf | ≤ εf for all f ∈ F and
cTx ≤ cTx′ for any feasible point x′ of P . If no such MIP relaxation Π
of P exists, this is reported by returning infeasible.

1: Compute an initial piecewise linear approximation φ0f of f ∈ F ′ satisfying
the upper bound ε0f for all f ∈ F ′.

2: Set i← 0.
3: repeat
4: Construct an MIP relaxation Πi of P from φif for all f ∈ F ′.
5: Solve Πi.
6: if Πi is feasible then
7: Set xi ← optimal solution of Πi.
8: else
9: return infeasible.

10: end if
11: Set stop ← true.
12: for all f ∈ F ′ do
13: Set xif ← projection of xi on Df .
14: Set yif ← value of the variable for the approximated function value

of f .
15: if

∣∣f(xif)− yif
∣∣ > εf then

16: Set zf ← values of the binary variables in xi used to model φif .
17: Set Sf ← simplex in T

(
φif
)
, which has been selected according

to zf .
18: Set T

(
φi+1
f

)
← refinement of the triangulation T

(
φif
)
(see Algo-

rithm 2).
19: Set φi+1

f ← piecewise linear approximation according to T
(
φi+1
f

)
.

20: Set stop ← false.
21: else
22: Set φi+1

f ← φif .
23: end if
24: end for
25: Set i← i+ 1.
26: until stop.
27: return xi−1.

3. Theoretical Results

We begin this section by proving the correctness and convergence of
Algorithm 1. Subsequently, we show a result justifying the utilization of
the longest-edge bisection. Finally, an analysis regarding the number of

SOLVING MINLPs USING ADAPTIVELY REFINED MIPs 7

refinement steps performed in Algorithm 1 and consequently the size of
correspondig MIP relaxations is given.

3.1. Convergence Results. We first of all show that a piecewise linear
approximations obtained by Algorithm 2 can be modeled by the Generalized
Incremental Model.

Theorem 3.1. Let T be a triangulation with properties (O1) and (O2). Then
any triangulation T ′ obtained by applying Algorithm 2 to T has properties (O1)
and (O2).

Proof. With T = {S1, . . . , Sn}, let Sk be the simplex which has to be refined
and x̄Sk0 , . . . , x̄Skd its labeled vertices. One of the two simplices S′k and S′′k (as
in Algorithm 2) contains x̄Sk0 , whereas the other one contains x̄Skd , since V(S′k)

and V(S′′k) only differ in one vertex. Let x̄Sk0 be contained in S′k and x̄Skd
in S′′k . We order the simplices of T ′ as

(S1, . . . , Sk−1, S
′
k, S

′′
k , Sk+1, . . . , Sn) (2)

and apply the following labeling:

x̄
S′k
0 = x̄Sk0 , x̄

S′k
d = x̂; x̄

S′′k
0 = x̂, x̄

S′′k
d = x̄Skd . (3)

Furthermore, Sk−1 and S′k are linked by x̄
Sk−1

d = x̄
S′k
0 , and S′′k and Sk+1

by x̄
S′′k
d = x̄

Sk+1

0 . Therefore, the ordering (2) of the simplices of T ′ has
properties (O1) and (O2), because S′k ∩ S′′k 6= ∅ trivially holds, x̄S

′
k
d = x̄

S′′k
0 as

in (3) and the rest is inherited from T . �

Note that in case no initial triangulation is given, we can simply choose a
standard triangulation with vertices equal to the set of extreme points of Df ;
see [26] on this topic. As shown in [9], such a triangulation has always an
ordering satisfying (O1) and (O2). With higher dimension d of Df , however,
even the triangulation of Df itself becomes intractable, because at least⌈
6
d
2 d!/

(
2(d+ 1)

d+1
2

)⌉
simplices are needed; see [32].

Definition 3.2. The refinement procedure in Algorithm 1 is called δ-precise,
if for an arbitrary sequence Si ∈ Ti of refined simplices with initial trian-
gulation T0 of Df and given δ > 0, there exists an index N ∈ N, such
that

diam(SN) < δ (4)
holds, whereby diam(SN) := supx′,x′′∈SN {‖x′ − x′′‖}.

We now show that Algorithm 2 is δ-precise for every δ > 0. Let T̃k be
the refined triangulation of an initial triangulation T0 obtained by applying
Algorithm 2 in such a way that in every iteration i ≤ k all simplices of T̃i−1
are refined.

Lemma 3.3. Let S ∈ Rd be a simplex of T0 and e the longest edge of S.
Then the longest edge of any simplex of T̃

l(d+1
2) contained in S is bounded

by
(√

3
2

)l‖e‖ with l ∈ N.

8 R. BURLACU, B. GEIßLER, L. SCHEWE

Proof. Let ẽ be one of the d− 1 edges that are added in the first refinement
step. Since ẽ can also be considered as the median of the triangle T described
by x̄a, x̄b, where conv({x̄a, x̄b}) = e (as in Algorithm 2), and a vertex x̄c of
the remaining d− 1 vertices of S, with Apollonius’ theorem it follows that

‖ẽ‖ ≤
√

3

2
‖e‖. (5)

Since a longest edge is halved in a refinement step and there are at most(
d+1
2

)
longest edges in S, the longest edge of any simplex of T̃(d+1

2) contained
in S is bounded by (5). Applying this argument recursively, we see that after
l
(
d+1
2

)
refinement steps any edge of a simplex of T̃

l(d+1
2) contained in S is

bounded by
(√

3
2

)l‖e‖. �

Theorem 3.4. Let δ > 0, then there is an Ñ ∈ N, such that T̃Ñ is a
refinement of every triangulation obtained by Algorithm 2 with δ as input
parameter.

Proof. We focus only on d ≥ 2, because in the case d = 1 the proposition
obviously holds. With l = max

{
0,
⌈

ln
(‖e0‖

δ

)
/ ln

(
2√
3

)⌉}
, applying Lemma 3.3

we conclude that after at most

Ñ :=

(
d+ 1

2

)
max

{
0,

⌈
ln
(‖e0‖

δ

)
ln
(

2√
3

) ⌉}
refinement steps the longest edge of any simplex of T̃Ñ is bounded by δ, where
δ > 0 and e0 is the longest edge of all simplices of T0. Since Algorithm 2
only refines simplices with a longest edge larger than δ and no simplex in T̃Ñ
has an edge longer than δ, it follows by the pigeonhole principle that no
refinement of T0 obtained by Algorithm 2 can be finer than T̃Ñ . �

Theorem 3.5. Algorithm 2 is δ-precise for every δ > 0. With Ñ as in
Theorem 3.4, the number of refinement steps N (as in Definition 3.2) is
bounded by

N := m(2Ñ − 1) + 1, (6)
where m is the number of simplices contained in T0.

Proof. Counting every single simplex that has to be refined in order to obtain
the triangulation T̃Ñ from T0, we get

m(1 + 2 + 4 + . . .+ 2Ñ−1) = m(2Ñ − 1)

refinements in total. Again, by the pigeonhole principle, it follows that every
sequence Si ∈ Ti of simplices has an element Sk with index k ≤ m(2Ñ−1)+1,
such that Sk ∈ T̃Ñ , since T̃Ñ is a refinement of every triangulation obtained
by Algorithm 2 with parameter δ. Therefore, simplex Sk has property (4),
as no simplex in T̃Ñ has an edge longer than δ. �

Theorem 3.6. If the refinement procedure in Algorithm 1 is δ-precise for
every δ > 0, then Algorithm 1 is correct and terminates after a finite number
of steps.

SOLVING MINLPs USING ADAPTIVELY REFINED MIPs 9

Proof. We first show that Algorithm 1 terminates after a finite number of
steps and prove correctness afterward.

Let xif be the sequence of (projected) optimal solutions of Πi for
f ∈ F . Since the refinement procedure is δ-precise for every δ > 0,
there is an index N ∈ N with ‖x̄ − x̄i‖ < δ for every δ > 0, x̄ ∈ SNf
and x̄i ∈ V

(
SNf
)
. Furthermore, because Df is compact, f is uni-

formly continuous on Df and therefore, there is a δf > 0 such that∣∣f(x̄)− φNf (x̄)
∣∣ < εf/2. From the construction of the MIP relaxation it

follows that yNf ∈
[
φNf (xNf)− (εf/2), φNf

(
xNf
)

+ (εf/2)
]
. Thus, we have∣∣f(xNf)− yNf ∣∣ ≤ ∣∣f(xNf)− φNf (xNf)∣∣+

εf
2
≤ εf

and Algorithm 1 terminates after a finite number of steps.
If P is feasible, we can assure that Algorithm 1 does not return infeasible

in any iteration. Since the algorithm terminates after a finite number of steps,
there must be an MIP relaxation ΠN which has an optimal solution xN with∣∣f(xNf)− yNf

∣∣ ≤ εf for all f ∈ F . Moreover, ΠN is a relaxation of P so that
cTxN ≤ cTx′ for all feasible points x′ of P .

If, on the other hand, there exists no MIP relaxation Π of P which has
a feasible point x̃ satisfying |f(x̃f) − yf | ≤ εf for all f ∈ F , we can easily
conclude that Algorithm 1 must return infeasible, since it terminates after a
finite number of steps. �

Corollary 3.7. Algorithm 1 together with Algorithm 2 as refinement proce-
dure is correct and terminates after a finite number of steps.

Proof. The corollary follows directly from Theorem 3.5 and Theorem 3.6. �

We point out, that for a continuous function f ∈ F ′, in general, its
corresponding δf as in the proof of Theorem 3.6 might not be computable.
Since such a δf > 0 exists for every continuous f ∈ F ′, it suffices to set
δf := 0 as input parameter for Algorithm 2. In practice, however, the lower
bound of an attainable δ is determined by the MIP solver.

3.2. Limited Accuracy by Adding Points with Maximal Error. Con-
sidering the refinement procedure in Algorithm 1, we are not restricted to
using a longest-edge bisection as in Algorithm 2. Another, more intuitive
approach is the following: If a simplex Sf of triangulation T (Vf) is chosen for
refinement, we add a point with maximal approximation error on Sf to the
set Vf of linearization points obtaining a new triangulation T (Vf ∪ {v}). Un-
fortunately, an approximation with arbitrary accuracy is not always attainable
by such a procedure.

Indeed, let φf be a piecewise linear approximation of a nonlinear function
f ∈ F ′ on a domain Df with some triangulation T (Vf) corresponding to a
set Vf of linearization points obtained by successively adding solely points
with maximal approximation error on a simplex. We show that there are
nonlinear functions f , which cannot be approximated by φf with arbitrary
accuracy.

Theorem 3.8. Let g : R → R be a continuous nonlinear function with at
least three roots x0, x1, and x2. Additionally, let g(x) > 0 for x ∈ (x0, x1)

10 R. BURLACU, B. GEIßLER, L. SCHEWE

0 1
2π

π 3
2π

2π01

−2

0

2

Figure 1. Extension of g(x) = sin(x) and 0 ≤ x ≤ 2π by
multiplying with h(y) = ey.

and g(x) < 0 for x ∈ (x1, x2) or vice versa. Then g can be extended to a
two-dimensional function f with domain Df , such that there exists a fixed
ε > 0 with |φf (x, y)−f(x, y)| > ε for any φf and some (x, y) ∈ Df depending
on φf .

Proof. Let h : R→ R be a continuous and strictly increasing function with
h(0) > 0 and f : Df → R, (x, y) 7→ g(x)h(y) with

Df = {(x, y) ∈ R2 : x0 ≤ x ≤ x2, 0 ≤ y ≤ ȳ}
and arbitrary ȳ > 0. See Figure 1 for an illustration of such a function. We
now prove that

ε̃ := min

{
max

x∈(x0,x1)
|g(x)|, max

x∈(x1,x2)
|g(x)|

}
h(0)

is a lower bound for the approximation error of any piecewise linear approxi-
mation φf defined as above.

Let φf be such a piecewise linear approximation. Due to the con-
struction of f , if Se ∈ T (Vf) is the simplex containing the edge
e = conv{(x0, 0), (x2, 0)}, then for all (x, y) ∈ Se either φf (x, y) ≥ 0 or
φf (x, y) ≤ 0 holds. We now choose X to be one of the two intervals (x0, x1)
and (x1, x2), such that with x ∈ X either g(x) > 0 and φf (x, y) ≤ 0 or
g(x) < 0 and φf (x, y) ≥ 0 holds. Then for any x ∈ X it follows that

|0− g(x)h(0)| = |φf (x, 0)− f(x, 0)| < |φf (x, y)− f(x, y)| (7)

for all y > 0, as h(y) is strictly increasing and that a point with maxi-
mal approximation error can never be contained on edge e. Thus, there
is a simplex Se with edge e in any approximation φf , because only points
with maximal approximation error are added to the triangulation. Further-
more, considering that φf (x, 0) = 0 in any φf , with (7) it follows, that the
maximal approximation error on Se, and therefore on any piecewise linear
approximation φf , is larger than ε̃. �

Note that although a refinement strategy adding solely points with maximal
approximation error on a simplex often works well in practice according
to [9], [12], it is due to Theorem 3.8 not necessarily δ-precise for every
δ > 0. Moreover, there are many functions g(x) as in Theorem 3.8, e.g.,
polynomials of kind (x−a1)(x−a2)(x−a3), and therefore many corresponding

SOLVING MINLPs USING ADAPTIVELY REFINED MIPs 11

functions f(x, y). Hence, in terms of global optimization and controlling the
approximation error, the refinement strategy adding linearization points on
the longest edge of a simplex, such as the longest-edge bisection, is naturally
motivated by Theorem 3.8.

3.3. Complexity Analysis. Finally, we analyze the complexity of the re-
sulting MIP relaxations in Algorithm 1 in terms of their sizes. In our context,
complexity is narrowed down to the maximal number of continuous and
binary variables.

As we have seen in the previous section and due to Theorem 3.5, using
the Generalized Incremental Method the number of both continuous and
binary variables is of size O

(
2Ñ
)
or, with Ñ = O(d2|ln(diam(Df)/δf)|), of

size O
(
(diam(Df)/δf)d

2). In order to give more exact bounds we assume for
the rest of this section that f ∈ F ′ is Lipschitz-continuous with Lipschitz-
constant Lf . This is a common assumption in terms of practically interesting
MINLP problems. Concerning convergence of Algorithm 1, we get the
following result.

Theorem 3.9. Let f ∈ F ′ be Lipschitz-continuous with Lipschitz-constant Lf .
Then it suffices to set δf := εf/(2Lf) as input parameter in Algorithm 2, so
that Algorithm 1 together with Algorithm 2 as refinement procedure is correct
and terminates after a finite number of steps.

Proof. The proof works almost analogous to the proof of Theorem 3.6. With
δf = εf/(2Lf), now

∣∣f(x̄)− φNf (x̄)
∣∣ < εf/2 holds by applying Lipschitz-

continuity of f . �

Regarding the number of refinements performed in Algorithm 1, we now
have

Ñ = O
(
d2
∣∣∣∣ln(Lf diam(Df)

εf

)∣∣∣∣) (8)

and a maximal number of variables of size O
(
(Lf diam(Df)/εf)d

2). Com-
pared to the classical result of Θ

(
(1/εf)d

)
on the complexity of computing

approximations of f to within εf , see [34] for more details, we see that a
longest-edge bisection might not yield an approximation of f with minimal
cost, since every binary variable corresponds to a refinement step and there-
fore an evaluation of f . However, due to the adaptivity of Algorithm 1 and
because we only need locally fine approximations, a longest-edge bisection is
very convenient in our case.

As shown by Vielma and Nemhauser in [36] and [37], a modeling of the
MIP relaxations obtained by Algorithm 1 with a logarithmic number of
binary variables is possible. Since their so-called Logarithmic Disaggregated
Convex Combination Model is only based on a triangulation of Df as in
Definition 2.1 and does not impose any other special requirements, with
Remark 2.2 we can easily use the model for our MIP relaxations. Therefore,
concerning the number of binary variables we get O(Ñ) with Ñ as in (8),
whereas the number of continuous variables equals the one of the Generalized
Incremental Method and is therefore of size O(2Ñ). However, we point out
that in practice the Generalized Incremental Method might be superior in
terms of runtime; see [9] and [4] for more detailed discussions.

12 R. BURLACU, B. GEIßLER, L. SCHEWE

•

� •

�

�

•

• •

•

•

•
•

�

� •

�

•

Figure 2. Triangulations of a two-dimensional box for which
only a 3-way IB scheme (left and right), and a 2-way IB
scheme (middle) exist. In case of 3-way IB schemes a minimal
infeasible set of size three is marked by squares.

The Logarithmic Branching Convex Combination Model described by
Vielma and Nemhauser requires a smaller amount of continuous variables than
the Logarithmic Disaggregated Convex Combination Model using branching
dichotomies deciding if a variable corresponding to a vertex of the trian-
gulation is set to zero or not. In this way, only one continuous variable is
needed for each vertex of a triangulation, instead of d+ 1 variables for each
d-dimensional simplex of a triangulation as in the Logarithmic Disaggregated
Convex Combination Model. Very recently, the approach of Vielma and
Nemhauser has been generalized in the preprint [16] introducing the notion
of k-way independent branching (IB) schemes, whereby a 2-way IB scheme
for a triangulation is needed in order to utilize the Logarithmic Branching
Convex Combination Model. Furthermore, the existence of k-way IB schemes
has been characterized as follows. With V as the set of all vertices of the
triangulation, a subset V ∈ V is called infeasible, if V is not contained in the
set of all vertices describing some simplex S ∈ S of the triangulation, i.e.,
V 6⊆ V(S) for all S ∈ S.

Proposition 3.10 (Theorem 1, [16]). A k-way IB scheme exists if and only
if each minimal infeasible set V ∈ V has |V | ≤ k.

Unfortunately, this model is unsuitable for our purpose since 2-way IB
schemes for triangulations occuring in Algorithm 1 not always exist, as we
can see in Figure 2. Note that there is no direct impact of hanging nodes of
a triangulation to the existence of 2-way IB schemes.

4. Our Application: Compressor Energy Minimization

In this section we cover an essential problem in gas transport networks
optimization: Consider a gas transport network and a nomination, i.e., a
pre-announced amount of gas for each so-called entry, where gas can be fed
into the network, and each so-called exit, where gas can be withdrawn from
the network. Find an admissible configuration of the controllable elements
satisfying all physical and technical constraints. Furthermore, due to friction
induced pressure drop on long pipes, compressor machines increasing certain
gas pressures have to be taken into account. This leads to an objective
minimizing the compressor energy. As gas physics is described via nonlinear
functions, considering the discrete characteristic of the controllable elements,
the problem can be modeled as an MINLP.

We base our model on the model used in [10]; for details and a thorough
review of the literature we refer to this chapter and the book [19] in general.

SOLVING MINLPs USING ADAPTIVELY REFINED MIPs 13

The compressor model used here is more detailed than the one used in [10];
we refer to the discussion in [7] and [13].

4.1. The MINLP Model. We use a directed finite graph G = (V,A) to
model the gas network. The set V of nodes consists of the set V+ of entry
nodes (supplying gas), the set V− of exit nodes (discharging gas) and the
set V0 of inner nodes (neither supplying nor discharging gas). The set A of
arcs is composed of the set AP of pipes, the set AV of valves, the set ACV
of control valves, the set AS of shortcuts, the set AR of resistors and the
set ACM of compressor machines. Furthermore, the gas mass flow on an
arc a = (u, v) ∈ A is indicated by qa and the pressure at a node v ∈ V is
indicated by pv. A gas mass flow from node u to v will result in a positive
gas mass flow qa ≥ 0, whereas a gas mass flow from node v to u corresponds
to a negative gas mass flow qa < 0. In the following, whenever we speak
about gas flow, we refer to gas mass flow.

Considering a specific nomination, for each node v ∈ V , certain parameters
are given: lower and upper bounds p−v and p+v of the pressure variable pv
and the demand dv in terms of gas flow. Thereby, we model a node by
implementing lower and upper bounds on the pressure variable:

p−v ≤ pv ≤ p+v . (9)

Moreover, in terms of mass flow conservation, the constraint∑
a∈δ−(v)

qa −
∑

a∈δ+(v)

qa = dv (10)

is added. The demand dv is non-negative for exit nodes, non-positive for
entry nodes and zero for inner nodes.

4.1.1. Pipes. The most frequent components in our gas network are pipes.
Every pipe a = (u, v) ∈ AP is determined by its length La, diameter Da, and
roughness ka. Gas flow within a pipe can be mainly described by mass flow q,
pressure p, temperature T , density ρ, and the system of Euler equations
together with a specific equation of state. For our purpose, the equation of
state is given by the thermodynamical standard equation for real gases

ρRszT = p,

where Rs is the specific gas constant and z is the compressibility factor. The
latter can be described by the formula

z(p, T) = 1 + αp, α = 0.257
1

pc
− 0.533

Tc
pcT

(11)

of the American Gas Association. Furthermore, the pseudocritical pressure pc
and the pseudocritical temperature Tc, as well as the temperature T are
assumed to be constant. Through certain simplifications, the pressure drop
on a pipe can be given in analytic form using the well-known Weymouth
equation

p2v − p2u =
LaλaRszaT

A2
aDa

|qa|qa. (12)

The friction factor λa is computed by Nikuradse’s formula involving the
diameter and roughness of the pipe. Moreover, with the diameter of the
pipe, the cross-sectional area Aa = D2

aπ/2 can be computed. Regarding the

14 R. BURLACU, B. GEIßLER, L. SCHEWE

compressibility factor za, we use an averaged pressure on the pipe derived by
the pressure bounds resulting in

za = z
(max{p−u , p−v }+ min{p+u , p+v }

2
, T
)
. (13)

4.1.2. (Control) Valves. A valve a = (u, v) ∈ AV is a controllable element in
a gas network, which can either be closed or open. A closed valve impedes gas
from passing, which leads to decoupled pressures at nodes u and v. On the
contrary, for open valves, we have pu = pv and no pressure drop. Valves are
modeled with the help of binary switching variables sa ∈ {0, 1}, whereby sa
is equal to one, if and only if the valve is open and vice versa:

q−a sa ≤ qa ≤ q+a sa, (14a)

(p+v − p−u)sa + pv − pu ≤ p+v − p−u , (14b)

(p+u − p−v)sa + pu − pv ≤ p+u − p−v . (14c)

Like a valve, a control valve a = (u, v) ∈ ACV can either be closed or
open. Again, a closed control valve impedes gas from passing, resulting in
decoupled pressures at nodes u and v. An open control valve, however, can
reduce pressure within a given range [∆−a ,∆

+
a]. To model a control valve, we

use (14a) from above and replace equations (14b) and (14c) by

(p+v − p−u + ∆−a)sa + pv − pu ≤ p+v − p−u , (15a)

(p+u − p−v −∆+
a)sa + pu − pv ≤ p+u − p−v . (15b)

We point out that a control valve is a unidirectional element, i.e., q−a ≥ 0 and
that pressure can only be reduced in flow direction. Furthermore, a control
valve is always located in a so-called control valve station, which additionally
provides the possibility of a bypass, leading to identical pressures at nodes u
and v.

4.1.3. Shortcuts. Shortcuts are elements, which are solely used for modeling
purposes and do not exist in reality. They are often used in practice, e.g., to
model hybrid points, such as gas storages. Modeling shortcuts can simply be
done by adding the constraint

pu = pv for all a = (u, v) ∈ AS. (16)

4.1.4. Resistors. To model gas network elements causing pressure drop, e.g.,
measuring stations and filtration plants, we use resistors. Unlike control
valves, resistors operate in both directions, which can be modeled with a
binary variable da ∈ {0, 1}, where da equals to zero, if and only if gas flows
in direction of the arc a ∈ AR, i.e., qa ≥ 0 and vice versa:

q−a da ≤ qa ≤ q+a (1− da). (17)

We split the set of resistors AR = ARv ∪ ARc differentiating between two
types of resistors: resistors a ∈ ARv with variable pressure drop and resis-
tors a ∈ ARc with constant pressure drop.

A resistor a ∈ ARv with variable pressure drop is determined by its drag
factor ξa and diameter Da. Together with the equation for variable pressure
drop by a resistor and using, like in the case of pipes, a constant temperature T

SOLVING MINLPs USING ADAPTIVELY REFINED MIPs 15

and an approximated compressibility factor za as in (13), we can model a
resistor a = (u, v) ∈ ARv by

p2u − p2v + |∆a|∆a = wa|qa|qa, ∆a = pu − pv, (18a)

(p+v − p−u)da ≤ pu − pv ≤ (p+u − p−v)(1− da), (18b)

The pressure drop is now given by the variable ∆a and wa is a resistor-specific
constant.

In case of a resistor a = (u, v) ∈ ARc with constant pressure drop ∆a, we
simply model the resistor by adding

pu − pv + 2∆ada = ∆a. (19)

4.1.5. Compressor Machines. In order to compensate for pressure drop on
large gas networks, compressor machines increasing the inlet pressure to a
higher outlet pressure, are installed. Each compressor machine a ∈ ACM is
specified by its adiabatic efficiency ηad,a and its energy cost coefficient ca.
Again, we introduce a binary switching variable sa, where sa = 1 means that
the machine is active and vice versa.

Furthermore, the operating range of a compressor machine is de-
scribed by its non-convex characteristic diagram. We subdivide the set
ACM = ATC ∪ APC distinguishing between turbo compressors a ∈ ATC
(usually driven by gas turbines) and piston compressors a ∈ APC (typically
shipped with electric or gas driven motors); see Figure 3 for their correspond-
ing characteristic diagrams. The gray area describes the feasible operating
range of the machine; see [7] for more details.

2 4 6 8

10

20

30

40

volumetric flow Qa (m3 s−1)

en
th
al
py

ch
an
ge

H
ad
,a

(k
J
kg
−
1
)

1 2 3

100

200

300

volumetric flow Qa (m3 s−1)

sh
af
t
to
rq
ue

M
a
(k
N
m
)

Figure 3. Characteristic diagrams for turbo compressor ma-
chines (left) and piston compressor machines (right). The
feasible operating ranges are marked gray.

Since the description of the operating range requires a volumetric flow Qa
and we restricted ourselves on mass flow qa, we first have to add

Qa =
qa
ρ0

for all a ∈ ACM, (20)

where ρ0 is the gas density under normal conditions, to the model. Further-
more, the adiabatic process of compression leads to a change in the specific

16 R. BURLACU, B. GEIßLER, L. SCHEWE

enthalpy Had,a. This can be modeled by the constraint

Had,a =
κ

κ− 1
RszaT

((
pv
pu

)κ−1
κ

− 1

)
for all a = (u, v) ∈ ACM,

where κ is the adiabatic exponent which is assumed to be constant. Now,
using (11) and a constant temperature T , the compressibility factor is ap-
proximated by

za = z
(p−u + p+u

2
, T
)

for all a = (u, v) ∈ ACM.

In this way, the power Pa the compressor a = (u, v) ∈ ACM consumes to
increase the inlet pressure pu to a higher outlet pressure pv considering a
certain mass flow qa is modeled via

Pa =
Had,a

ηad,a
qa. (21)

Additionally, to complete the modeling of the different states of a compressor
machine, we add the constraints

saq
−
a ≤ qa ≤ saq+a , (22a)

saP
−
a ≤ Pa ≤ saP+

a , (22b)

∆−a sa + (p−v − p+u)(1− sa) ≤ pv − pu ≤ ∆+
a sa + (p+v − p−u)(1− sa), (22c)

r−a pu − (1− sa)(r−a p+u + p−v) ≤ pv ≤ r+a pu − (1− sa)(r+a p−u + p+v), (22d)

where P−a and P+
a are the bounds for the power consumption, ∆−a and ∆+

a

are the bounds for the pressure increase and the compression ratio is bounded
by r−a ≤ pv/pu ≤ r+a . We remark, that whenever a compressor is open,
power consumption occurs while increasing the pressure of gas flowing in
arc direction, i.e., pv ≥ pu and qa ≥ 0, and therefore, flow against the arc
direction is impossible. Moreover, a closed compressor a = (u, v) ∈ ACM
results in decoupled pressures at nodes u and v.

For the characteristic diagrams, we use the convex outer-approximation
approach described in [19] in case of a turbo compressor. In case of a piston
compressors a = (u, v) ∈ APC, a relaxation of the operating range is obtained
by the constraints (22c)–(22d), together with

Q−a
RszaT

pu ≤ qa ≤
Q+
a

RszaT
pu, (23)

where Q−a and Q+
a are given lower and upper bounds of the volumetric flow

rate. Furthermore, the shaft torque Ma and Had,a are connected via

Ma =
Voρ0

2πηad,a
Had,a,

where Vo is the operating volume of the piston compressor.
Similar to control valves, (usually multiple) compressor machines are

located in a so-called compressor station allowing for backward flow through
a bypass valve.

SOLVING MINLPs USING ADAPTIVELY REFINED MIPs 17

4.2. Summary of the MINLP Problem. Considering the different ele-
ments of a gas network described in the previous subsections and recalling
the minimization of the compressor’s power consumption with energy cost
coefficients ca, we get the following MINLP problem:

min
∑

a∈ACM

caPa (24a)

s.t. pressure bounds (9), (24b)
mass flow conservation (10), (24c)
pipes constraints (12) and (13), (24d)
(control) valves constraints (14) and (15), (24e)
shortcuts constraints (16), (24f)
resistors constraints (17)–(19), (24g)
compressor machines constraints (20)–(23). (24h)

5. Implementation Issues

The implementation details discussed in this section can be thought of
as either preprocessing techniques or parameter tuning, based on empirical
values, for Algorithm 1, concerning MINLP problems in the fashion of (24).

Since Algorithm 1 iteratively solves MIP relaxations of the MINLP (24),
the runtime of the algorithm mainly depends on the sizes of the MIP relax-
ations. Based on (8) from Section 3.3, the complexity of a relaxation of a
nonlinear function drastically increases with the function’s dimension. Hence,
we reformulate the MINLP (24) by constructing so-called expression graphs
in order to reduce the dimension of the nonlinear functions; see [9] and [1] for
details. Moreover, the prepocessing methods described in [10] both tightening
the bounds of the flow and pressure variables and reducing the amount of
nonlinear functions taken into account for relaxation, are performed.

Unlike the formal description of Algorithm 1, in which in every refinement
step, every nonlinear function f ∈ F ′ with an approximation error larger
than εf is refined, we only refine a certain amount of all nonlinear functions,
which are worst regarding to a specific score. We build this score upon the
set

M i :=

{
dim(f)2

∣∣f(xif)− yif ∣∣
εf

: f ∈ F ′ and
∣∣f(xif)− yif ∣∣ > εf

}
, (25)

in every iteration of Algorithm 1. In order to obtain the elements of M i

with corresponding nonlinear functions that have to be refined, we pursue
marking startegies applied in adaptive finite elements methods; see [35]
and [6]. With ηi as the maximum score contained inM i, we refine any f ∈ F ′,
which has a score larger than θηi. Typically, θ = 0.5 is chosen. Because,
however, the runtime of an MIP grows exponentially with its size, we set
θ = 0.75 in our case. In this way, we can speed up the algorithm by solving
many smaller-sized MIP relaxations instead of few bigger-sized ones. Since∣∣f(xif)− yif ∣∣ ≤ εf holds (according to Section 3) for any f ∈ F ′ after a finite
number of refinement steps, it follows, that this approach still is convergent.
Note that the square of the dimension of f in (25) corresponds to (8).

18 R. BURLACU, B. GEIßLER, L. SCHEWE

Beyond that, whenever a feasible solution of an MIP relaxation is found,
we fix all discrete variables of the underlying MINLP problem according
to the MIP solution obtaining an NLP problem, which we solve to local
optimality. With this relatively cheap primal heurisitic we are often able to
find feasible solutions for the MINLP problem quite rapidly.

Finally, since we are only interested in a single globally optimal MIP
solution satisfying some given error bounds εf for all f ∈ F ′, it is not
necessary to solve every MIP relaxation to global optimality. Instead, it
sufficies to solve only every kth MIP relaxation (and the first and last
one, respectively) to global optimality and to use bigger relative MIP gaps
otherwise. We chose k = 50 in our case. The relative MIP gaps depend
on whether feasible solutions for the MINLP problems are found or not.
With u as upper bound corresponding to the incumbent solution found by
the local NLP solver and l as lower bound obtained by MIP relaxations as in
Algorithm 1, the relative MIP gap is set to (u− l)/(2u), if an upper bound
is available. Otherwise, a relative MIP gap of 0.10 is chosen.

6. Computational results

In this section we present computational results for the GasLib-582 gas
network consisting of 582 nodes, 278 pipes, 5 compressor stations, 23 control
valves, 8 resistors, 26 valves and 269 shortcuts; see [17]. The following
computations are solely based on a subset of all scaled (95 % of flow amount)
nominations provided by GasLib-582 consisting of more than 4000 instances.
We show both a detailed exemplary computation and a comparison with
the state-of-the-art MINLP solvers Baron (version 17.1.2), see [33], and
SCIP (version 3.2) [8].

All instances are solved using the C++ software framework LaMaTTO++,
see [20], on a cluster using 12 cores of a machine with two Xeon 5650 "West-
mere" chips (12 cores + SMT) running at 2.66 GHz with 12 MB Shared Cache
per chip and 24 GB of RAM. Furthermore, we utilize Gurobi (version 6.0.4)
as MIP solver; see [14]. As stated above, Baron and SCIP are used as state-
of-the-art MINLP solvers, and CONOPT3, which in our case performs better
than CONOPT4, as local NLP solver, all within GAMS (version 24.8.3);
see [3].

Concerning the error bounds in Algorithm 1, we choose 20 bar for the
pressure loss equations and 20 MW for the equations describing the power
consumption as initial approximation errors. Due to the complexity of the
underlying MINLP problems, final approximation errors for the exemplary
computation are set to 2.0 bar and 0.2 MW, respectively. For the rest, we
choose 1.0 bar and 0.1 MW as final approximation errors for practical reasons,
because even in this case all computations run into time limit.

6.1. Exemplary Computation. We start with an exemplary instance show-
ing the practical performance of Algorithm 1 and that even with coarse final
approximation errors, good solutions can be computed.

The result presented in Table 1 is obtained by solving a randomly chosen
nomination of GasLib-582 (with ID “nomination_warm_95_2051”), which
could be solved within a time limit of 10 hours. The first column indicates
the iteration number of Algorithm 1. The next three columns contain the

SOLVING MINLPs USING ADAPTIVELY REFINED MIPs 19

size of the corresponding MIP relaxation, split into the number of continuous
and binary variables and the number of constraints. Subsequently, the best
lower bound l and upper bound u are given, followed by the runtime of the
actual MIP relaxation and the NLPs that are solved to local optimality.
The next column contains the relative gap computed by (u − l)/u. In the
last two columns, the number of violated constraints and the number of
constraints which are chosen for refinement are indicated. Finally, the last
row gives an overview of the total runtime and number of constraints chosen
for refinement.

Table 1. Exemplary computation of the GasLib-582 instance
with ID “nomination_warm_95_2051” by Algorithm 1 com-
bined with CONOPT3 as local NLP solver.

iter cont bin cons lower upper tMIP tNLP gap viol ref

0 2927 593 5714 114.40 416.02 1.85 3.77 0.725 77 1
1 2928 594 5716 114.40 316.80 1.12 2.62 0.639 74 4
2 2932 598 5724 114.40 316.80 1.49 2.04 0.639 74 1
3 2933 599 5726 114.40 316.80 1.37 1.53 0.639 74 1
4 2934 600 5728 114.40 316.80 1.37 1.59 0.639 78 2
5 2937 602 5733 114.40 316.80 1.43 3.06 0.639 75 1
25 3002 653 5849 135.59 316.80 5.88 8.57 0.572 79 5
49 3097 722 6013 218.59 316.80 1.91 5.60 0.310 77 2
50 3101 725 6020 243.67 316.80 15.64 7.84 0.231 72 1
51 3103 726 6023 243.67 316.80 6.44 3.17 0.231 73 1
75 3224 826 6244 265.82 316.80 10.93 24.34 0.161 65 2
99 3313 896 6403 294.40 316.80 3.08 10.68 0.071 61 2

100 3315 898 6407 301.61 316.80 284.05 20.19 0.048 54 1
101 3317 899 6410 301.61 316.80 14.28 16.92 0.048 50 2
125 3390 966 6550 301.61 316.80 3.97 12.00 0.048 40 4
149 3477 1051 6722 301.61 316.80 13.34 5.44 0.048 14 2
150 3479 1053 6726 305.89 316.80 233.16 1.55 0.034 14 1
151 3480 1054 6728 305.89 316.80 23.72 11.07 0.034 19 7
175 3549 1115 6858 305.89 316.80 5.77 1.96 0.034 6 1
190 3587 1149 6930 305.89 316.80 4.48 1.26 0.034 4 1
191 3588 1150 6932 305.89 316.80 21.30 1.52 0.034 5 1
192 3589 1151 6934 305.89 316.80 24.28 2.53 0.034 1 1
193 3591 1153 6938 305.89 316.80 16.79 2.10 0.034 4 1
194 3592 1154 6940 305.89 316.80 771.75 3.89 0.034 4 1
195 3592 1154 6940 306.88 316.80 126.78 4.93 0.031 4 1

total 4274.53 1156.66 537

After about 1.5 hours, Algorithm 1 is able to find an optimal solution for
the MINLP problem such that no constraint is violated by more than 2.0 bar
and 0.2 MW, respectively. Combined with CONOPT3, even a feasible solution
for the MINLP problem could be found, which is optimal up to a relative
gap of almost 0.03. Note that the final MIP relaxation consists of 3592
continuous and 1154 binary variables, and 6940 constraints only, whereas an
MIP relaxation constructed by piecewise linear approximations satisfying
the final approximation errors everywhere, consists of 39 193 continuous,
21 735 binary variables, and 61 709 constraints. The first feasible solution

20 R. BURLACU, B. GEIßLER, L. SCHEWE

for this MIP is found after a runtime of almost 8 hours, whereas after a
total runtime of 10 hours lower and upper bounds are 131.35 and 594.50,
respectively, resulting in a relative MIP gap of more than 0.77. We can see
that although final approximation errors are relatively high, adaptivity in
Algorithm 1 is crucial for a reasonable overall runtime. Since the runtime
to solve an MIP problem exponentially increases with the size of the MIP,
adaptivity becomes even more important if final approximation errors are
tighter; see [9] for a more detailed discussion.

Since the upper bound in Table 1 remains unchanged after the first iteration,
we conclude that with our approach even very coarse initial approximations
can lead to solutions that are feasible for the MINLP and optimal within a
relative gap of almost 0.03, in a couple of seconds only.

We finish the exemplary presentation of our approach with Figure 4,
showing an iteration log of a nonlinear function f : R2 → R, (x, y) 7→ xy
with domain Df = [1.028, 1.206] × [30.350, 1139.280] and Lipschitz-
constant Lf = diam(Df). This function corresponds to the power con-
sumption of a compressor; see (21). The final approximation error for f is
set to 1.265. The maximal approximation error on the simplex containing
the incumbent solution of the corresponding MIP relaxation is plotted by
red lines, whereas the approximation error of the solution itself is given by
blue lines. Moreover, whenever the function is marked for refinement a black
dash is drawn.

0

25

50

75

100

50 100 150 200

Figure 4. Iteration log for a nonlinear function f = xy
showing the maximal approximation error on the simplex
containing the incumbent solution of the corresponding MIP
relaxation (red lines), the approximation error of the solution
(blue lines) and the iterations in which the approximation is
refined (black dash).

As expected, the error of the MIP solution tends to a value smaller
than 1.265 as more refinement steps are performed on f . The staircase-shaped
descending of the error is characteristic for Algorithm 1. Often, solutions of
consecutive MIP relaxations have a local affinity, i.e., the projections of the
solutions on the domain Df are close to each other. Hence, depending on the
specific triangulation of the piecewise linear approximation, in some cases we
need more than one refinement per nonlinear function in order to scale the
error down to the next level. We point out, that exploiting this phenomenon,

SOLVING MINLPs USING ADAPTIVELY REFINED MIPs 21

e.g., by refining not only the simplex containing the MIP solution, but also
adjacent simplices, may lead to further improvements.

With 20 refinements from iteration 0 to 90 and 2 refinements performed
on f for the initial approximation, in total, 22 refinements and 195 iterations
are enough to obtain an optimal MIP solution satisfying the final error bounds
both for f and any other nonlinear function occuring in the MINLP. Regard-
ing the required number of refinement steps, compared to the worst case esti-
mation of 2Ñ as in (6) where Ñ = 3

⌈
ln
(2 diam(Df) diam(Df)

1.265

)
/ ln

(
2√
3

)⌉
= 303,

a far less amount is needed in this case.
Finally, we remark that although the total runtime of 1.5 hours of Algo-

rithm 1 and CONOPT3 appears to be long in order to obtain an MINLP
solution, which is optimal within a relative gap of 0.03, it is quite short
compared to other MINLP solvers.

6.2. Comparison with State-of-the-Art MINLP Solvers. The advan-
tage of Algorithm 1 combined with the local NLP solver CONOPT3 over
the state-of-the-art global MINLP solvers Baron and SCIP is demonstrated
in Figure 5 by comparing relative gaps computed by (u − l)/u, with the
aid of so-called performance profiles; see [5]. With gp,s as the best gap
obtained by solver s after a certain time limit and the performance ra-
tio rp,s = gp,s/min

s
gp,s, the performance profile ρs(τ) is the probability for

solver s that the ratio rp,s is within a factor τ ∈ R of the best possible ratio.

0.00

0.25

0.50

0.75

1.00

1 10 100
τ

ρ

Baron

LaMaTTO++

SCIP

Figure 5. Performance profiles for Algorithm 1 combined
with CONOPT3 (LaMaTTO++), Baron, and SCIP comparing
relative gaps obtained after a time limit of 4 hours.

In order to calculate those profiles, 200 out of roughly 4000 nominations
provided by GasLib-582 are randomly chosen; see Table 3 in Appendix A
for their IDs. Considering only those nominations for which at least one
solver was able to compute a feasible solution within the total time limit
of 4 hours, 163 nominations remain for the performance profiles. Moreover,
due to the complexity of the problems, each of the 163 nominations ran into
timeout.

As we can see in Figure 5, our approach is clearly preferable to Baron and
SCIP applied to gas network optimization problems described in GasLib-582.
In all cases Algorithm 1 combined with CONOPT3 computes the smallest

22 R. BURLACU, B. GEIßLER, L. SCHEWE

gap, while Baron and SCIP in no case were capable of computing the smallest
gap. Additionally, in most cases the relative gaps obtained by our approach
are smaller than 0.10 and differ from the relative gaps computed by Baron
and SCIP by a magnitude of almost 10, which can be deduced from Figure 5.

In order to gain an in-depth look at Figure 5 both lower bounds l and
upper bounds u are compared in Figure 6. The upper bounds computed
by CONOPT3 after fixing all discrete variables corresponding to an MIP
solution obtained by Algorithm 1 are slightly tighter than the ones attained
by Baron and clearly tighter than the ones computed by SCIP. The main
benefit of our approach, however, derives from the fact that MIP relaxations
obtained by Algorithm 1 yield notably tighter lower bounds than the lower
bounds computed by Baron and SCIP and that the MIP relaxations can be
solved both reliably and fast utilizing mature MIP technology. Note that
Baron mainly struggles to deliver reasonable lower bounds, whereas in this
regard, SCIP seems to be more balanced.

0.00

0.25

0.50

0.75

1.00

1 10
τ

ρ

Baron

LaMaTTO++

SCIP

0.00

0.25

0.50

0.75

1.00

1e+00 1e+04 1e+08 1e+12 1e+16
τ

ρ

Baron

LaMaTTO++

SCIP

Figure 6. Performance profiles for Algorithm 1 combined
with CONOPT3 (LaMaTTO++), Baron, and SCIP comparing
upper bounds u (left) and lower bounds l (right) obtained
after a time limit of 4 hours.

We summarize the comparison presenting the different solution statuses
given by every solver and their frequency in Table 2. The first column
indicates nominations with both an upper bound u and a lower bound l greater
than zero, whereas in the second and third column only those nominations
are taken into account, for which only an upper bound u, and a lower
bound l, respectively, is available. The next column contains the number of
nominations that are detected as infeasible, followed by a column in which
nominations without any solution status are considered. The last column
gives the number of nominations that are declared as infeasible, and for which
at least one of the other solvers is able to compute a feasible solution for the
corresponding nomination. Algorithm 1 combined with CONOPT3 is able
to find feasible solutions for all 163 nominations with additional non-trivial
lower bounds. As already pointed out, Baron struggles with computing lower
bounds, since Baron is able to find feasible solutions for 153 nominations, but
only in 49 cases a non-trivial lower bound as well. In this respect, SCIP is
clearly inferior. Moreover, in 5 cases SCIP detects infeasiblity of the MINLP,
which presumably is false, whereas in this matter, our approach and Baron are
almost coherent. For further results concerning the detection of infeasibility
we refer to [18] and [15].

SOLVING MINLPs USING ADAPTIVELY REFINED MIPs 23

Table 2. Frequency of different solution statuses given by
Baron, Algorithm 1 combined with CONOPT3 (LaMaTTO++),
and SCIP for a set of 200 randomly chosen nominations pro-
vided by GasLib-582.

l / u u l infeasible none error

Baron 49 104 0 35 12 0
LaMaTTO++ 163 0 0 34 3 0

SCIP 13 55 0 19 108 5

We believe that the advantage of Algorithm 1 combined with CONOPT3
relies on the major discrete nature of the problems, since Algorithm 1 is
both able to compute discrete decisions which are feasible for the MINLP
very fast and tight lower bounds. In fact, for 161 out of 163 nominations,
Algorithm 1 is able to compute discrete decisions proven to be feasible for the
corresponding MINLP by the local NLP solver CONOPT3 after a total time
limit of just 10 minutes. Furthermore, as we can see in Table 1, Algorithm 1
delivers reasonable lower bounds after only a few iterations, even with coarse
initial approximations.

Finally, we point out that although a primal algorithm, which in our case
is constituted by CONOPT3, is necessary to compute valid upper bounds,
it is not necessary for Algorithm 1 to terminate. In fact, with tight final
error bounds we can skip the primal algorithm entirely, because in this
case Algorithm 1 eventually yields an optimal MIP solution, which can be
considered as an optimal solution for the corresponding MINLP.

7. Conclusion

In this paper we presented a mixed-integer linear programming-based
method for solving mixed-integer nonlinear programs to global optimality and
developed a convergence theory. From a theoretical point of view, we are able
to solve arbitrary MINLPs with continuous objective, continuous nonlinear
constraints, and bounded variables, whereas in practice the dimension of
the nonlinearities is a crucial factor. The capability of our approach is
demonstrated in the context of gas network optimization containing a notably
discrete part. Regarding other MINLP problems with considerable discrete
aspects, we are confident that similar results would be achieved. In this
matter, more empirical studies will give a deeper insight into MINLP classes
our method is suitable for. The next natural step is to build an MINLP solver
based on our approach and solve various MINLP problems, e.g., instances
provided by the MINLPLib [2].

Moreover, there is a lot of potential for improvement. The most promis-
ing idea, however, is to refine the nonlinearities such that warm starting
procedures implemented in modern MIP solvers can be exploited.

24 R. BURLACU, B. GEIßLER, L. SCHEWE

Appendix A. IDs of GasLib-582 nominations

Table 3. IDs of all 200 GasLib-582 nominations that are
chosen randomly in order to calculate the corresponding per-
formance profiles in Section 6.

nomination_cold_95_

101 1048 1089 1184 123 1321 1326 1642 1660 1729
1768 1911 2008 21 2120 2121 2158 2164 2187 229
2381 2393 2503 268 2720 3007 3111 33 3375 3539
3769 3970 4054 4127 4194 4209 468 676 82 954
957 971

nomination_cool_95_

1012 1032 1119 1130 1143 1153 1181 1291 1423 145
1576 1592 1665 1957 201 2040 2050 2168 2178 2196
2275 2284 2321 2364 2398 2453 25 2674 2682 2721
2770 2774 2794 2854 295 3103 312 3148 316 3201
3283 344 3509 3518 3567 3578 3642 3656 3658 3683
3756 378 379 3791 3858 3885 4072 4223 604 663
81 830 979

nomination_freezing_95_

1001 1035 1193 1243 1268 1328 1371 1434 1525 1558
1591 160 1889 1962 2308 2385 2408 2596 2685 2877
2964 3045 3068 3205 3260 3263 3291 3362 3417 3483
3550 3597 3635 3886 3911 3994 400 4008 4091 4211
426 448 454 466 52 56 639 645 741 818
836 881

nomination_mild_95_

1433 1455 1479 1661 1750 1922 1942 2052 2081 2450
2502 2568 2581 2612 2668 2817 3239 3309 3524 3541
3781 3795 4078 4178 4184 679 746 865

nomination_warm_95_

1095 1316 1385 1691 2051 2247 2314 2718 2824 3020
3579 360 450 637 786

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft for their support
within Project B07 of the Sonderforschungsbereich/Transregio 154 “Mathe-
matical Modelling, Simulation and Optimization using the Example of Gas
Networks”. We would also like to show our gratitude to Martin Schmidt for
many constructive comments on various issues. Furthermore, we are very
thankful for his help on preparing the GasLib-582 data. Finally, we thank
Alexander Martin and Mathias Sirvent for many fruitful discussion on the
topics of this paper.

REFERENCES 25

References

[1] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A.
Mahajan. “Mixed-integer nonlinear optimization”. In: Acta Numerica
22 (2013), pp. 1–131. doi: 10.1017/S0962492913000032.

[2] M. R. Bussieck, A. S. Drud, and A. Meeraus. “MINLPLib – A Col-
lection of Test Models for Mixed-Integer Nonlinear Programming”. In:
INFORMS Journal on Computing 15.1 (2003), pp. 114–119.

[3] G. D. Corporation. General Algebraic Modeling System (GAMS) Re-
lease 24.8.3. Washington, DC, USA. 2017. url: http://www.gams.
com/.

[4] C. M. Correa-Posada and P. Sánchez-Martín. “Gas Network Optimiza-
tion: A comparison of Piecewise Linear Models”. Oct. 2014. url: http:
//www.optimization-online.org/DB_HTML/2014/10/4580.html.

[5] E. D. Dolan and J. J. Moré. “Benchmarking optimization software
with performance profiles”. In: Mathematical Programming 91.2 (2002),
pp. 201–213. doi: 10.1007/s101070100263.

[6] W. Dörfler. “A Convergent Adaptive Algorithm for Poisson’s Equation”.
In: SIAM Journal on Numerical Analysis 33.3 (1996), pp. 1106–1124.
doi: 10.1137/0733054.

[7] A. Fügenschuh, B. Geißler, R. Gollmer, A. Morsi, M. E. Pfetsch, J.
Rövekamp, M. Schmidt, K. Spreckelsen, and M. C. Steinbach. “Physical
and technical fundamentals of gas networks”. In: Evaluating Gas Network
Capacities. Ed. by T. Koch, B. Hiller, M. E. Pfetsch, and L. Schewe.
SIAM-MOS series on Optimization. SIAM, 2015. Chap. 2, pp. 17–43.
doi: 10.1137/1.9781611973693.ch2.

[8] G. Gamrath, T. Fischer, T. Gally, A. M. Gleixner, G. Hendel, T.
Koch, S. J. Maher, M. Miltenberger, B. Müller, M. E. Pfetsch, C.
Puchert, D. Rehfeldt, S. Schenker, R. Schwarz, F. Serrano, Y. Shinano,
S. Vigerske, D. Weninger, M. Winkler, J. T. Witt, and J. Witzig. The
SCIP Optimization Suite 3.2. eng. Tech. rep. 15-60. Takustr.7, 14195
Berlin: ZIB, 2016.

[9] B. Geißler. “Towards Globally Optimal Solutions of MINLPs by Dis-
cretization Techniques with Applications in Gas Network Optimization”.
PhD thesis. FAU Erlangen-Nürnberg, 2011.

[10] B. Geißler, A. Martin, A. Morsi, and L. Schewe. “The MILP-relaxation
approach”. In: Evaluating Gas Network Capacities. Ed. by T. Koch, B.
Hiller, M. E. Pfetsch, and L. Schewe. SIAM-MOS series on Optimization.
SIAM, 2015. Chap. 6, pp. 103–122. doi: 10.1137/1.9781611973693.
ch6.

[11] B. Geißler, A. Martin, A. Morsi, and L. Schewe. “Using Piecewise
Linear Functions for Solving MINLPs”. In: Mixed Integer Nonlinear
Programming. Ed. by J. Lee and S. Leyffer. Vol. 154. The IMA Volumes
in Mathematics and its Applications. Springer New York, 2012, pp. 287–
314. doi: 10.1007/978-1-4614-1927-3_10.

[12] B. Geißler, A. Morsi, and L. Schewe. “A New Algorithm for MINLP
Applied to Gas Transport Energy Cost Minimization”. In: Facets of
Combinatorial Optimization. Ed. by M. Jünger and G. Reinelt. Berlin,

http://dx.doi.org/10.1017/S0962492913000032
http://www.gams.com/
http://www.gams.com/
http://www.optimization-online.org/DB_HTML/2014/10/4580.html
http://www.optimization-online.org/DB_HTML/2014/10/4580.html
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1137/0733054
http://dx.doi.org/10.1137/1.9781611973693.ch2
http://dx.doi.org/10.1137/1.9781611973693.ch6
http://dx.doi.org/10.1137/1.9781611973693.ch6
http://dx.doi.org/10.1007/978-1-4614-1927-3_10

26 REFERENCES

Heidelberg: Springer, 2013, pp. 321–353. doi: 10.1007/978-3-642-
38189-8_14.

[13] B. Geißler, A. Morsi, L. Schewe, and M. Schmidt. Solving Highly Detailed
Gas Transport MINLPs: Block Separability and Penalty Alternating
Direction Methods. 2016. url: http://www.optimization-online.
org/DB_HTML/2016/06/5523.html. Submitted.

[14] Z. Gu, E. Rothberg, and R. Bixby. Gurobi Optimizer Reference Manual,
Version 6.0.4. Houston, Texas, USA: Gurobi Optimization Inc., 2015.

[15] B. Hiller, J. Humpola, T. Lehmann, R. Lenz, A. Morsi, M. E. Pfetsch,
L. Schewe, M. Schmidt, R. Schwarz, J. Schweiger, C. Stangl, and
B. M. Willert. “Computational results for validation of nominations”.
In: Evaluating Gas Network Capacities. Ed. by T. Koch, B. Hiller, M. E.
Pfetsch, and L. Schewe. SIAM-MOS series on Optimization. SIAM,
2015. Chap. 12, pp. 233–270. doi: 10.1137/1.9781611973693.ch12.

[16] J. Huchette and J. P. Vielma. “Small independent branching formu-
lations for unions of V-polyhedra”. July 2016. url: http : / / www .
optimization-online.org/DB_HTML/2016/05/5454.html.

[17] J. Humpola, I. Joormann, D. Oucherif, M. E. Pfetsch, L. Schewe, M.
Schmidt, and R. Schwarz. GasLib – A Library of Gas Network Instances.
Nov. 2015. url: http://www.optimization-online.org/DB_HTML/
2015/11/5216.html.

[18] I. Joormann, M. Schmidt, M. C. Steinbach, and B. M. Willert. “What
does “feasible” mean?” In: Evaluating Gas Network Capacities. Ed. by
T. Koch, B. Hiller, M. E. Pfetsch, and L. Schewe. SIAM-MOS series
on Optimization. SIAM, 2015. Chap. 11, pp. 211–232. doi: 10.1137/1.
9781611973693.ch11.

[19] T. Koch, B. Hiller, M. E. Pfetsch, and L. Schewe, eds. Evaluating Gas
Network Capacities. SIAM-MOS series on Optimization. SIAM, 2015.
xvii + 364. doi: 10.1137/1.9781611973693.

[20] LaMaTTO++. A Framework for Modeling and Solving Mixed-Integer
Nonlinear Programming Problems on Networks. 2015. url: www.mso.
math.fau.de/edom/projects/lamatto.html.

[21] J. Lee and D. Wilson. “Polyhedral methods for piecewise-linear functions.
I. The lambda method”. In: Discrete Appl. Math. 108.3 (2001), pp. 269–
285. doi: 10.1016/S0166-218X(00)00216-X.

[22] H. M. Markowitz and A. S. Manne. “On the Solution of Discrete
Programming Problems”. In: Econometrica 25.1 (1957), pp. 84–110.

[23] A. Martin, M. Möller, and S. Moritz. “Mixed Integer Models for the
Stationary Case of Gas Network Optimization”. In: Mathematical Pro-
gramming, Series B 105 (2006), pp. 563–582. doi: 10.1007/s10107-
005-0665-5.

[24] R. Misener and C. A. Floudas. “Piecewise-linear approximations of
multidimensional functions”. In: J. Optim. Theory Appl. 145.1 (2010),
pp. 120–147. doi: 10.1007/s10957-009-9626-0.

[25] A. Morsi. “Solving MINLPs on Loosely-Coupled Networks with Applica-
tions in Water and Gas Network Optimization”. PhD thesis. Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU), 2013.

http://dx.doi.org/10.1007/978-3-642-38189-8_14
http://dx.doi.org/10.1007/978-3-642-38189-8_14
http://www.optimization-online.org/DB_HTML/2016/06/5523.html
http://www.optimization-online.org/DB_HTML/2016/06/5523.html
http://dx.doi.org/10.1137/1.9781611973693.ch12
http://www.optimization-online.org/DB_HTML/2016/05/5454.html
http://www.optimization-online.org/DB_HTML/2016/05/5454.html
http://www.optimization-online.org/DB_HTML/2015/11/5216.html
http://www.optimization-online.org/DB_HTML/2015/11/5216.html
http://dx.doi.org/10.1137/1.9781611973693.ch11
http://dx.doi.org/10.1137/1.9781611973693.ch11
http://dx.doi.org/10.1137/1.9781611973693
www.mso.math.fau.de/edom/projects/lamatto.html
www.mso.math.fau.de/edom/projects/lamatto.html
http://dx.doi.org/10.1016/S0166-218X(00)00216-X
http://dx.doi.org/10.1007/s10107-005-0665-5
http://dx.doi.org/10.1007/s10107-005-0665-5
http://dx.doi.org/10.1007/s10957-009-9626-0

REFERENCES 27

[26] J. O’Rourke. Computational Geometry in C. Cambridge University
Press, 1998. doi: 10.1017/CBO9780511804120.

[27] M. Padberg and M. P. Rijal. Location, Scheduling, Design and Integer
Programming. Kluwer Academic Publishers, Boston, 1996. doi: 10.
1007/978-1-4613-1379-3.

[28] M. Padberg. “Approximating separable nonlinear functions via mixed
zero-one programs”. In: Operations Research Letters 27.1 (2000), pp. 1–5.
doi: 10.1016/S0167-6377(00)00028-6.

[29] S. Rebennack and J. Kallrath. “Continuous piecewise linear delta-
approximations for bivariate and multivariate functions”. In: J. Optim.
Theory Appl. 167.1 (2015), pp. 102–117. doi: 10.1007/s10957-014-
0688-2.

[30] S. Rebennack and J. Kallrath. “Continuous piecewise linear delta-
approximations for univariate functions: computing minimal breakpoint
systems”. In: J. Optim. Theory Appl. 167.2 (2015), pp. 617–643. doi:
10.1007/s10957-014-0687-3.

[31] R. Rovatti, C. D’Ambrosio, A. Lodi, and S. Martello. “Optimistic MILP
modeling of non-linear optimization problems”. In: European J. Oper.
Res. 239.1 (2014), pp. 32–45. doi: 10.1016/j.ejor.2014.03.020.

[32] W. D. Smith. “A Lower Bound for the Simplexity of the n-cube via Hy-
perbolic Volumes”. In: European Journal of Combinatorics 21.1 (2000),
pp. 131–137. doi: 10.1006/eujc.1999.0327.

[33] M. Tawarmalani and N. V. Sahinidis. “A polyhedral branch-and-cut
approach to global optimization”. In: Mathematical Programming 103
(2 2005), pp. 225–249. doi: 10.1007/s10107-005-0581-8.

[34] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski, eds. Information-
Based Complexity. Boston, San Diego, and New York: Academic Press,
1988.

[35] R. Verfürth. A Review of a Posteriori Error Estimation and Adaptive
Mesh-Refinement Techniques. John Wiley & Sons Inc and B. G. Teubner
Publishers, 1996.

[36] J. P. Vielma, S. Ahmed, and G. L. Nemhauser. “Mixed-Integer Models
for Nonseparable Piecewise-Linear Optimization: Unifying Framework
and Extensions”. In: Operations Research 58.2 (2010), pp. 303–315. url:
http://www.jstor.org/stable/40605918.

[37] J. P. Vielma and G. L. Nemhauser. “Modeling disjunctive constraints
with a logarithmic number of binary variables and constraints”. In:Math-
ematical Programming 128.1-2 (2011), 49–72. doi: 10.1007/s10107-
009-0295-4.

[38] D. Wilson. “Polyhedral methods for piecewise-linear functions”. Ph.D.
thesis in Discrete Mathematics. University of Kentucky, 1998.

http://dx.doi.org/10.1017/CBO9780511804120
http://dx.doi.org/10.1007/978-1-4613-1379-3
http://dx.doi.org/10.1007/978-1-4613-1379-3
http://dx.doi.org/10.1016/S0167-6377(00)00028-6
http://dx.doi.org/10.1007/s10957-014-0688-2
http://dx.doi.org/10.1007/s10957-014-0688-2
http://dx.doi.org/10.1007/s10957-014-0687-3
http://dx.doi.org/10.1016/j.ejor.2014.03.020
http://dx.doi.org/10.1006/eujc.1999.0327
http://dx.doi.org/10.1007/s10107-005-0581-8
http://www.jstor.org/stable/40605918
http://dx.doi.org/10.1007/s10107-009-0295-4
http://dx.doi.org/10.1007/s10107-009-0295-4

	1. Introduction
	2. Problem Statement and Algorithm
	2.1. MIP Relaxations
	2.2. The Algorithm

	3. Theoretical Results
	3.1. Convergence Results
	3.2. Limited Accuracy by Adding Points with Maximal Error
	3.3. Complexity Analysis

	4. Our Application: Compressor Energy Minimization
	4.1. The MINLP Model
	4.2. Summary of the MINLP Problem

	5. Implementation Issues
	6. Computational results
	6.1. Exemplary Computation
	6.2. Comparison with State-of-the-Art MINLP Solvers

	7. Conclusion
	Appendix A. IDs of GasLib-582 nominations
	Acknowledgements
	References

