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Abstract. The alternating direction method of multipliers (ADMM) was proposed by Glowinski and

Marrocco in 1975; and it has been widely used in a broad spectrum of areas, especially in some sparsity-

driven application domains. In 1982, Fortin and Glowinski suggested to enlarge the range of the step size

for updating the dual variable in ADMM from 1 to (0, 1+
√
5

2 ); and this strategy immediately accelerates

the convergence of ADMM for most of its applications. Meanwhile, Glowinski raised the question of

whether or not the range can be further enlarged to (0, 2); this question remains open with nearly no

progress in the past decades. In this paper, we answer this question affirmatively for the case where

both the functions in the objective are quadratic. Glowinski’s open question is thus partially answered.

We further establish the global linear convergence of the ADMM with the step size range (0, 2) for the

quadratic programming case under a condition that turns out to be tight.
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1 Introduction

We consider the canonical convex minimization model with linear constraints and a separable objective function

without coupled variables:

min
x,y

{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y}, (1.1)

where A ∈ Rm×n1 , B ∈ Rm×n2 , b ∈ Rm, X ⊂ Rn1 and Y ⊂ Rn2 are closed convex sets, θ1 : Rn1 → R and

θ2 : Rn2 → R are convex (not necessarily smooth) functions. Let the augmented Lagrangian function of (1.1)

be

Lβ(x, y, λ) = θ1(x) + θ2(y)− z⊤(Ax+By − b) +
β

2
∥Ax+By − b∥2, (1.2)

with z ∈ Rm the Lagrange multiplier and β > 0 the penalty parameter.

The alternating direction method of multipliers (ADMM) was proposed by Glowinski and Marrocco in

[21]; its iterative scheme for (1.1) reads as
xk+1 = argminx∈XLβ(x, y

k, zk), (1.3a)

yk+1 = argminy∈YLβ(x
k+1, y, zk), (1.3b)

zk+1 = zk − β(Axk+1 +Byk+1 − b). (1.3c)

Recently, the ADMM has found many applications in a variety of areas because of its simplicity in implemen-

tation and usually good numerical performance; and it has received increasing attention in the literature. We

refer to, [5, 13, 20, 22], for some review papers of the ADMM.
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In [16]3, Fortin and Glowinski proposed a variant ADMM scheme as follows:
xk+1 = argminx∈XLβ(x, y

k, zk), (1.4a)

yk+1 = argminy∈YLβ(x
k+1, y, zk), (1.4b)

zk+1 = zk − γβ(Axk+1 +Byk+1 − b), (1.4c)

with γ ∈ (0, 1+
√
5

2 ). The parameter γ is mainly for enlarging the step size for updating the dual variable z

in (1.4c) and thus leading to possible faster convergence. It is worthwhile to mention that the parameter γ

in (1.4c) is different from the involved parameter in the so-called generalized ADMM that was discussed in

[11, 12] based on the idea in [23] (see also [37]). The convergence of (1.4) with γ ∈ (0, 1+
√
5

2 ) has been well

studied in various contexts, see, e.g., [17, 18, 19, 26, 28, 39, 36]. Numerically, it has been widely verified that

a large value of γ close to 1+
√
5

2 can accelerate the convergence ADMM immediately, see, e.g., [19, 27, 35, 40].

Though the convergence of the ADMM scheme (1.4) with γ ∈ (0, 1+
√
5

2 ) is known, numerically it has been

observed as well that some values exceed the upper bound 1+
√
5

2 may still perform convergence. Indeed, the

condition γ ∈ (0, 1+
√
5

2 ) is not necessary but just sufficient to ensure the convergence of the ADMM scheme

(1.4); and it is natural to ask if there is any theory to ensure the convergence of (1.4) if γ is larger than 1+
√
5

2

in (1.4c). Glowinski raised the question in [19] (see pp. 182 therein) as: “ If G is linear, it has been proved by

Gabay and Mercier [1] that ALG2 converges if 0 < ρn = ρ < 2r. The proof of this result is rather technical,

and an open question is to decide if it can be extended to the more general cases considered here.”. The

function “G” in [19] corresponds to the function θ2 in model (1.1); “ALG2” refers to the ADMM scheme (1.4);

“[1]” refers to [18] and ρ := γβ in our setting. With the well studied results for γ ∈ (0, 1+
√
5

2 ) in (1.4), the

gap from γ ∈ (0, 1+
√
5

2 ) to γ ∈ (0, 2) remains unsolved and thus Glowinski’s question is still open since it was

proposed in [19].

The rationale of raising this question can also be explained as follows. Note that if the model (1.1) is

regarded as a whole and the augmented Lagrangian method (ALM) in [29, 33] is directly applied to (1.1), the

iterative scheme becomes: (xk+1, yk+1) = argminx∈X , y∈YLβ(x, y, z
k), (1.5a)

zk+1 = zk − β(Axk+1 +Byk+1 − b). (1.5b)

Based on the work [34], the ALM scheme (1.5) is an application of the proximal point algorithm (PPA) in [31]

to the dual of the model (1.1) and thus the result in [23] can be applied to modify the scheme (1.5) as (xk+1, yk+1) = argminx∈X , y∈YLβ(x, y, z
k), (1.6a)

zk+1 = zk − γβ(Axk+1 +Byk+1 − b), (1.6b)

where γ ∈ (0, 2). Its convergence can be found in, e.g., [37]. Therefore, the ADMM scheme (1.3) can

be regarded as a splitting version of the ALM (1.5) which splits the (xk+1, yk+1)-subproblem (1.5a) as the

surrogates (1.3a) and (1.3b) by the Gauss-Seidel manner. Then, with γ ∈ (0, 2) in (1.6b) for the ALM scheme,

it is natural to ask if this property can be maintained for the ADMM scheme (1.4). Since the ADMM (1.3) is

just an inexact version of the ALM (1.5), it is not straightforward to claim the validity of this extension and this

may explain why Glowinski’s question is still open. We also comment that solving the subproblems (1.4a) and

(1.4b) dominates the implementation of the ADMM scheme (1.4); and once they are solved, it is meaningful

to discuss the theory of enlarging the step size for updating the dual variable as (1.4c), because it may offer

an immediate possibility of further accelerating the convergence of (1.4) without additional computation.

In this paper, our main purpose is to show the convergence of the ADMM scheme (1.4) with γ ∈ (0, 2)

when both the functions θ1 and θ2 in (1.1) are quadratic; hence partially answer Glowinski’s open question.

3This is a translation from its original French version in 1982.
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The model for further discussion is

min{1
2
x⊤Px+ f⊤x+

1

2
y⊤Qy + g⊤y | Ax+By = b, x ∈ Rn1 , y ∈ Rn2}, (1.7)

where P ∈ Rn1×n1 and Q ∈ Rn2×n2 are symmetric positive semidefinite matrices, A ∈ Rm×n1 , B ∈ Rm×n2 ,

b ∈ Rm, f ∈ Rn1 and g ∈ Rn2 . The solution set of (1.7) is assumed to be nonempty throughout our discussion.

We refer to, e.g., [1, 2, 3, 6, 8, 14, 30, 38], for various applications that can be modeled as the quadratic

programming model (1.7) in economics, finance, electromagnetism, electrical circuits and networks, image

processing, contact problems, control problems, and intensity modulated radiotherapy problems.

The remaining part of this paper is organized as follows. In Section 2, we summarize some notations and

definitions to be used; present the assumptions for further discussion, and prove a number of lemmas. Then,

we conduct some preparatory analysis in Section 3, including the specification of the matrix recursion of the

ADMM scheme (1.4) for the quadratic programming model (1.7), the KKT condition of (1.7), and an example

showing the divergence of (1.4) with γ = 2 for (1.7). In Section 4, the convergence of the ADMM scheme (1.4)

with γ ∈ (0, 2) is proved for (1.7). This is the main result of the paper. The global linear convergence of (1.4)

with γ ∈ (0, 2) is also proved for (1.7) in Section 5, under a new condition different from some existing work.

Both the convergence and global linear convergence are verified numerically by some examples in Sections 4

and 5 for the case of γ ∈ (0, 2). Finally, some conclusions are drawn in Section 6.

2 Preliminaries

In this section, we summarize some notations and recall some definitions to be used, present some assumptions,

and prove some elementary lemmas for further discussion.

2.1 Notation and definitions

Given a real number a, |a| represents the absolute value of a. The superscript “⊤” denotes the transpose, and

the superscript “H” denotes the conjugate transpose. A unite vector means its 2-norm is 1, i.e., x⊤x = 1. We

use a + bi to denote a complex number, in which “i” represents the imaginary unit. For a complex number

a, |a| denotes its modulus. Given a vector space V, its dimension is denoted by dim(V ). For a vector x ∈ Rn,

∥x∥2 represents
√∑n

i=1 |xi|2. Given a square matrix M ∈ Rn×n, det(M) denotes its determinant. Given a

matrix M ∈ Rm×n that is not necessarily square, Rank(M) represents its rank. For a matrix M ∈ Rn×n,

eig(M) represents all the eigenvalues of M (considering the multiplicity), and we use the notation σ(M) to

represent its spectrum, i.e., the set of distinct eigenvalues. For an symmetric matrix M , let ∥M∥2 denote

its 2-norm. For a nonsymmetric matrix M , ∥M∥ :=
√

∥M⊤M∥ and ρ(M) refers to its spectral radius, i.e.,

the maximal modulus of its eigenvalues. For a matrix M ∈ Rn×n that is not necessarily symmetric, λM

denotes any one of its eigenvalues, λmin(M) and λmax(M) represent the maximal and minimal eigenvalues

of M , respectively. The matrix In represents the identity matrix in Rn×n, and it is abbreviated as I when

n = m. For a matrix M ∈ Rn×n that is not necessarily symmetric, the notation M ≽ 0 means M is positive

semidefinite and M ≻ 0 means M is positive definite. The notation N(·) represents the null space of N . The

function δij is defined as

δij =

{
1 if i = j;

0 if i ̸= j.

2.2 Assumptions

Throughout this paper, we make the following assumptions.
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Assumption 1. In (1.7), the symmetric positive semidefinite matrices P and Q and the matrices A and B

satisfy the conditions:

P +A⊤A ≻ 0 and Q+B⊤B ≻ 0.

Assumption 2. The KKT point set of (1.1) is non-empty.

Remark 2.1. Under Assumptions 1-2, the x- and y-subproblems of the ADMM scheme (1.4) for solving (1.7)

are well-defined and each has a unique solution. Also, as shown by Corollary 1 in [7], Assumptions 1-2 are

necessary for the well-definedness of the ADMM scheme (1.4) for solving (1.7).

2.3 Some lemmas

In the following, we prove a number of lemmas that will be used in the later analysis. Some of them are

elementary.

Lemma 2.2. Let F and G be two symmetric matrices in Rm×m and they satisfy the conditions 0 ≼ F ≼ I

and 0 ≼ G ≼ I. Then, we have

−I ≼ FG ≼ I.

Proof. Using Cauchy-Schwartz inequality, we have

FG+GF ≼ F 2 +G2 ≼ 2I.

The second follows from the conditions 0 ≼ F ≼ I and 0 ≼ G ≼ I. Analogously, we get

FG+GF ≽ −F 2 −G2 ≽ −2I.

Thus, the assertion follows directly.

Lemma 2.3. Let F and G be two symmetric matrices in Rm×m and they satisfy the conditions 0 ≼ F ≼ I

and 0 ≼ G ≼ I. Then, we have

1.) For any x ∈ Rm with xTx = 1, we have |x⊤FGx| ≤ 1.

2.) For any η ∈ Cm with ηHη = 1, if ηHFGη is a real number, then we also have |ηHFGη| ≤ 1.

Proof. For the first assertion, it follows from Cauchy-Schwarz inequality that

|x⊤FGx| = |(Fx)⊤(Gx)| ≤ x⊤F 2x+ x⊤G2x

2
≤ x⊤Fx+ x⊤Gx

2
≤ 1.

For the second assertion, we assume that η := α1 + α2i with α1 ∈ Rm, α2 ∈ Rm and α⊤
1 α1 + α⊤

2 α2 = 1. If

ηHFGη is a real number, then we have

|ηHFGη| = |(α1 + α2i)
HFG(α1 + α2i)| = |(α⊤

1 − α⊤
2 i)FG(α1 + α2i)|

= |α⊤
1 FGα1 + α⊤

2 FGα2| ≤
α⊤
1 F

2α1 + α⊤
1 G

2α1

2
+

α⊤
2 F

2α2 + α⊤
2 G

2α2

2

≤ α⊤
1 α1 + α⊤

2 α2 = 1.

The proof is complete.

Lemma 2.4. Let U and V be two symmetric matrices in Rm×m and they satisfy the conditions − I
2 ≼ U ≼ I

2

and − I
2 ≼ V ≼ I

2 . Then, for any x ∈ Rm such that x⊤x = 1, we have∣∣∣∣x⊤ (UV + V U)

2
x

∣∣∣∣ ≤ 1

4

and

−I

4
≼ (UV + V U)

2
≼ I

4
.
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Proof. First, using Cauchy-Schwarz inequality, we get

|x⊤(UV )x| ≤ 1

2

(
x⊤U2x+ x⊤V 2x

)
, (2.1)

and

|x⊤(V U)x| ≤ 1

2

(
x⊤U2x+ x⊤V 2x

)
. (2.2)

Then, recalling − I
2 ≼ V ≼ I

2 and − I
2 ≼ U ≼ I

2 , we obtain that 0 ≼ U2 ≼ I
4 and 0 ≼ V 2 ≼ I

4 . Substituting

these two inequalities into (2.1) and (2.2), the first assertion follows immediately. The second assertion follows

directly from the first assertion.

The following lemma is essential in the convergence analysis for the ADMM (1.4) for the model (1.7).

Lemma 2.5. Let F and G be two symmetric matrices in Rm×m and they satisfy 0 ≼ F ≼ I and 0 ≼ G ≼ I.

Then, we have

0 ≼ I − F −G+ 2FG ≼ I.

Proof. It is equivalent to show that

0 ≼ I − F −G+ FG+GF ≼ I.

Since 0 ≼ F ≼ I and 0 ≼ G ≼ I, we obtain 0 ≼ I − F ≼ I and 0 ≼ I −G ≼ I. With simple calculations, we

have

I − F −G+ FG+GF = (
I

2
− F )(

I

2
−G) + (

I

2
−G)(

I

2
− F ) +

I

2
. (2.3)

Because of 0 ≼ F ≼ I and 0 ≼ G ≼ I, we obtain

− I

2
≼ I

2
− F ≼ I

2
, −I

2
≼ I

2
−G ≼ I

2
. (2.4)

Thus, using Lemma 2.4, we get

− I

2
≼ (

I

2
− F )(

I

2
−G) + (

I

2
−G)(

I

2
− F ) ≼ I

2
. (2.5)

Combining (2.3) and (2.5), we have

0 ≼ I − F −G+ FG+GF ≼ I.

Thus, the proof is complete.

The following lemma plays a key role in the convergence analysis of (1.7).

Lemma 2.6. [15] Let A and B be m × m Hermitian matrices with eigenvalues α1 ≥ α2 ≥ · · · ≥ αm and

β1 ≥ β2 ≥ · · · ≥ βm, respectively. Then, we have

min
π

{
m

Π
i=1

(αi + βπ(i))} ≤ det(A+B) ≤ max
π

{
m

Π
i
(αi + βπ(i))}.

(The minimization and maximization above are taken over all permutations of the indices 1, 2, . . . ,m). In

particular, if αm + βm ≥ 0 (which is true if both A and B are positive semidefinite), then we have

m

Π
i=1

(αi + βi) ≤ det(A+B) ≤
m

Π
i
(αi + βm+1−i).

Lemma 2.7. Let F and G be two symmetric matrices in Rm×m. Then, we have

Rank(F +G− 2FG) = Rank(F +G− 2GF ).
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Proof. The assertion follows immediately from the following two equations:

F +G− 2FG = I − 2

(
(
I

2
− F )(

I

2
−G) +

I

4

)
and F +G− 2GF = I − 2

(
(
I

2
−G)(

I

2
− F ) +

I

4

)
.

The proof is complete.

Lemma 2.8. Let F and G be two symmetric matrices in Rm×m and they satisfy 0 ≼ F ≼ I and 0 ≼ G ≼ I.

If 1 is an eigenvalue of the matrix (I − F − G + 2FG) and x is an eigenvector associated with 1, then we

have that 1 is also an eigenvalue of the matrix (I − F −G+ 2GF ) and x is its eigenvector associated with 1.

Conversely, if 1 is an eigenvalue of the matrix (I − F −G+ 2GF ) and x is an associated eigenvector with 1,

then 1 is also an eigenvalue of the matrix (I − F −G+ 2FG) and x is an eigenvector associated with 1.

Proof. Assume that the vector x̂ is a unite eigenvector of the matrix I − F −G + 2FG associated with 1, it

means that (I − F −G+ 2FG)x̂ = x̂. Thus, we get

x̂⊤(I − F −G+ 2FG)x̂ = 1 with x̂⊤x̂ = 1. (2.6)

On the other hand, for any x ∈ Rm with x⊤x = 1, we have

x⊤(I − F −G+ 2FG)x = x⊤
{
2

[
(
I

2
− F )(

I

2
−G) +

I

4

]}
x

≤
(
x⊤(

I

2
− F )2x+ x⊤(

I

2
−G)2x

)
+

1

2
≤ 1,

(2.7)

where the first and the second inequalities respectively follow from Cauchy-Schwarz inequality and the facts

that 0 ≼ ( I2 − F )2 ≼ I
4 and 0 ≼ ( I2 − G)2 ≼ I

4 (due to (2.4)). Moreover, (2.6) implies that (2.7) holds

with equality. Thus, checking the conditions ensuring the (2.7) with equality, we have the following three

arguments:

a.) x⊤( I2 − F )2x = 1/4;

b.) x⊤( I2 −G)2x = 1/4;

c.) ( I2 − F )x = ( I2 −G)x.

Consequently, it means that one of the following arguments holds:

a.) The matrices ( 12I − F ) and (12I −G) have the common eigenvalue 1/2, and x is a common eigenvector

associated with 1/2;

b.) The matrices ( 12I −F ) and ( 12I −G) have the common eigenvalue −1/2, and x is a common eigenvector

associated with −1/2.

Or, equivalently, one of the following assertions is true:

a). ( 12I − F )x = 1
2x and (12I −G)x = 1

2x;

b). ( 12I − F )x = − 1
2x and (12I −G)x = −1

2x.

That is to say that one of the following assertions holds:

a). Fx = Gx = 0;

b). Fx = Gx = x.

Consequently, we have (I − F − G + 2GF )x = x. It implies that the value 1 is an eigenvalue of the matrix

(I − F − G + 2GF ) and x is its eigenvector. The converse direction can be proved in a similar way, thus

omitted. The proof is complete.
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Lemma 2.9. Let F and G be two symmetric matrices in Rm×m and they satisfy 0 ≼ F ≼ I and 0 ≼ G ≼ I.

If 1 is an eigenvalue of the matrix (I − F −G+ 2FG) and x is an eigenvector associated with 1, then one of

the following assertions hold:

1.) Fx=Gx=x;

2.) Fx=Gx=0.

Conversely, if a vector x satisfies 1.) or 2.), then it is an eigenvector of the matrix (I − F − G + 2FG)

associated with the eigenvalue 1.

Proof. The proof can be found in the proof of Lemma 2.8.

The following lemma provides a new way to show that an eigenvalue of a nonsymmetric matrix has the

same geometric and algebraic multiplicities, see Theorem 1 in [9].

Lemma 2.10. [9] Let A ∈ Cn×n and let λ be an eigenvalue of A. Then the following two statements are

equivalent.

1.) There exist bi-orthonormal bases {x1, . . . , xJ} of N(A−λI) and {y1, . . . , yJ} of N(AH− λ̄I) in the sense

that yHj xk = δjk, ∀j, k = 1, . . . , J , where J is the geometric multiplicity of λ.

2.) The geometric multiplicity and algebraic multiplicity of λ are equivalent.

In the following lemma, we show that if 1 is an eigenvalue of the matrix (I − F −G+ 2FG), then it has a

complete set of eigenvectors.

Lemma 2.11. Let F and G be two symmetric matrices in Rm×m and they satisfy 0 ≼ F ≼ I and 0 ≼ G ≼ I.

If 1 is an eigenvalue of the matrix (I −F −G+2FG), then this eigenvalue has a complete set of eigenvectors.

That is, the algebraic and geometric multiplicities are the same, and we denote them by

ℓ := m− Rank(F +G− 2FG). (2.8)

Proof. Since 1 is an eigenvalue of the matrix (I−F −G+2FG), its geometric multiplicity of 1 is the ℓ defined

in (2.8). Invoking Lemma 2.8, we know that 1 is also an eigenvalue of the matrix (I−F−G+2GF ). Moreover,

any eigenvector x for the matrix (I − F − G + 2FG) associated with 1 is also an eigenvector of the matrix

(I − F − G + 2GF ) associated with 1. Then, it follows from Lemma 2.7 that the geometric multiplicity of

1 for the matrix (I − F − G + 2GF ) is also ℓ defined in (2.8). Suppose {x1, . . . , xl} is a set of orthonormal

eigenvectors associated with 1 for the matrix (I−F−G+2FG) in sense of x⊤
j xk = δjk, ∀ j, k = 1, . . . , l. Then,

it is also a set of orthonormal eigenvectors associated with 1 for the matrix (I −F −G+2GF ). According to

Lemma 2.10, the algebraic multiplicity of the matrix (I − F −G+ 2FG) is ℓ. Indeed, the set of orthonormal

vectors {x1, . . . , xl} is exactly a complete set of eigenvectors associated with the eigenvalue 1 for the matrix

(I − F −G+ 2FG). The proof is complete.

The following lemma can be obtained immediately from Lemma 2.9.

Lemma 2.12. Let F and G be two symmetric matrices in Rm×m and they satisfy 0 ≼ F ≼ I and 0 ≼ G ≼ I.

If 1 is an eigenvalue of the matrix (I − F −G+ 2FG), then we have

dim ({x | x ∈ N(F − I) ∩N(G− I)}) + dim ({x | x ∈ N(F ) ∩N(G)}) = ℓ, (2.9)

where ℓ is the algebraic and geometric multiplicities of I − F −G+ 2FG defined in (2.8).
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Proof. First, invoking Lemma 2.9, we have

{x | x ∈ N ([I − F −G+ 2FG]− I)} = {x | x ∈ N(F − I) ∩N(G− I)}
∪

{x | x ∈ N(F ) ∩N(G)}.
(2.10)

Note that

{x | x ∈ N(F − I) ∩N(G− I)}
∩

{x | x ∈ N(F ) ∩N(G)} = {0}.

From Lemma 2.11, we know that dim{x | x ∈ N ([I − F −G+ 2FG]− I)} = ℓ with ℓ defined in (2.8). Thus,

the assertion (2.9) follows directly.

Lemma 2.13. Let F and G be two symmetric matrices in Rm×m and they satisfy 0 ≼ F ≼ I and 0 ≼ G ≼ I.

If 1 is an eigenvalue of the matrix (I−F −G+2FG), then there exists an orthogonal matrix Q ∈ Rm×m such

that

Q⊤FQ =

(
D Rℓ×(m−ℓ)

0 F̂

)
and Q⊤GQ =

(
D Sℓ×(m−ℓ)

0 Ĝ

)
, (2.11)

where D ∈ Rℓ×ℓ is a diagonal matrix with the diagonal entries either 0 or 1, and the matrices F̂ , Ĝ ∈
R(m−ℓ)×(m−ℓ) satisfy

0 ≼ F̂ ≼ Im−ℓ, 0 ≼ Ĝ ≼ Im−ℓ and F̂ + Ĝ− 2ĜF̂ ≻ 0. (2.12)

Proof. Since 1 is an eigenvalue of the matrix (I −F −G+2FG), it follows from Lemma 2.11 that there exists

a set of orthonormal eigenvectors associated with 1 for the matrix (I−F −G+2FG), denoted by {x1, . . . , xl}.
Recall (2.10). We thus have

{x1, . . . , xl} = {x | x ∈ N(F − I) ∩N(G− I)}
∪

{x | x ∈ N(F ) ∩N(G)}.

Let us construct an orthogonal matrix Q with the first ℓ columns as (x1; . . . ;xl). Then, we partition Q as

(Q1;Q2) with

Q1 = (x1;x2; . . . ;xℓ) and Q2 ∈ Rm×(m−ℓ).

Invoking Lemma 2.9, we have

FQ1 = Q1D and GQ1 = Q1D,

with

D =


λ1

. . .

λℓ

 and λi = 0 or 1, i = 1, . . . , ℓ.

Therefore, we get

Q⊤FQ =

(
Q⊤

1

Q⊤
2

)
F
(

Q1; Q2

)
=

(
Q⊤

1

Q⊤
2

)(
Q1D; FQ2

)
=

(
D Q⊤

1 FQ2

0 Q⊤
2 FQ2

)
.

Analogously, we have

Q⊤GQ =

(
Q⊤

1

Q⊤
2

)
G
(

Q1; Q2

)
=

(
Q⊤

1

Q⊤
2

)(
Q1D; GQ2

)
=

(
D Q⊤

1 GQ2

0 Q⊤
2 GQ2

)
.

Thus, the assertion (2.11) is proved by setting R := Q⊤
1 FQ2 and S := Q⊤

1 GQ2.

For the second assertion (2.12), let us define F̂ = Q⊤
2 FQ2 and Ĝ = Q⊤

2 GQ2. Then, the first two inequalities

in (2.12) hold. On the other hand, similar to the second inequality in Lemma 2.5, we have

F̂ + Ĝ− 2ĜF̂ ≽ 0.
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Now, we prove the third inequality in (2.12) by contradiction. Suppose that 0 is an eigenvalue of the matrix

(F̂ +Ĝ−2ĜF̂ ). Then, 1 is an eigenvalue of the matrix (Im−ℓ+ F̂ +Ĝ−2ĜF̂ ). Assume that x̂ is an eigenvector

of the matrix (Im−ℓ + F̂ + Ĝ− 2ĜF̂ ) associated with the eigenvalue 1. Then, similar to the proof of Lemma

2.8, we know that either F̂ x̂ = Ĝx̂ = x̂ or F̂ x̂ = Ĝx̂ = 0 holds. This implies that F̂ and Ĝ have the common

eigenvector x̂ associated with the eigenvalue 1 or 0, which contradicts with the assertion (2.9). Therefore, we

have F̂ + Ĝ− 2ĜF̂ ≻ 0. The proof is complete.

Remark 2.14. Lemma 2.13 implies that the matrices F̂ and Ĝ have no common eigenvectors for either the

eigenvalue 0 or 1.

3 Specification of the ADMM scheme (1.4) for (1.7)

In this section, we first specify the application of the ADMM scheme (1.4) to the quadratic programming

model (1.7) as a matrix recursion form; and then discuss some related issues. This matrix recursion form is

the basis of our further analysis.

Obviously, applying the ADMM scheme (1.4) to the quadratic programming model (1.7) results in the

iterative scheme:
(P + βA⊤A)xk+1 = A⊤zk − βA⊤Byk + βA⊤b− f,

(Q+ βB⊤B)yk+1 = B⊤zk − βB⊤Axk+1 + βB⊤b− g,

zk+1 = zk − γβ(Axk+1 +Byk+1 − b).

(3.1)

3.1 Matrix recursion form of (3.1)

Notice that the variable x in the ADMM (1.4) plays an intermediate role in the sense that xk is not involved

in the iteration to generate the next iterate. That is, a new iterate (xk+1, yk+1, zk+1) can be generated by

(yk, zk). Therefore, we first eliminate the variable x from the matrix recursion form (3.1) and obtain a more

compact matrix recursion in a lower-dimension space. For this purpose, introducing an auxiliary variable

µk := zk/β, we can recast the scheme (3.1) as
(P/β +A⊤A)xk+1 = A⊤µk −A⊤Byk +A⊤b− f/β, (3.2a)

(Q/β +B⊤B)yk+1 = B⊤µk −B⊤Axk+1 +B⊤b− g/β, (3.2b)

µk+1 = µk − γ(Axk+1 +Byk+1 − b). (3.2c)

Note that (3.2a) can be written as

xk+1 = (P/β +A⊤A)
−1 [

A⊤µk −A⊤Byk +A⊤b− f/β
]
. (3.3)

Then, substituting (3.3) into (3.2b) and (3.2c), we eliminate xk+1 from (3.2) and obtain{
Q̂yk+1 = B⊤AP̂−1A⊤Byk + (B⊤ −B⊤AP̂−1A⊤)µk + α1,

γByk+1 + µk+1 = (I − γAP̂−1A⊤)µk + γAP̂−1A⊤Byk + α2,
(3.4)

with

P̂ = P/β +A⊤A, Q̂ = Q/β +B⊤B, (3.5)

α1 = −B⊤AP̂−1A⊤b+B⊤AP̂−1f/β +B⊤b− g/β, (3.6)

α2 = γb− γAP̂−1A⊤b+ γAP̂−1f/β. (3.7)

It follows from (3.4) that(
Q̂ 0

γB I

)(
yk+1

µk+1

)
=

(
B⊤AP̂−1A⊤B B⊤ −B⊤AP̂−1A⊤

γAP̂−1A⊤B I − γAP̂−1A⊤

)(
yk

µk

)
+

(
α1

α2

)
.
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Moreover, with simple calculations, the iterative scheme (3.4) can be written compactly as follows:

vk+1 = T (γ)vk + q, (3.8)

with

T (γ) =

(
Q̂−1B⊤AP̂−1A⊤B Q̂−1B⊤(I −AP̂−1A⊤)

γ(I −BQ̂−1B⊤)AP̂−1A⊤B I − γAP̂−1A⊤ − γBQ̂−1B⊤(I −AP̂−1A⊤)

)
(3.9)

and

vk =

(
yk

µk

)
, q =

(
q1 := Q̂−1α1

q2 := α2 − γBQ̂−1α1

)
. (3.10)

Thus, the application of the ADMM scheme (1.4) to the quadratic programming model (1.7) can be written

as the matrix recursion form (3.8)-(3.10).

To establish the convergence of the ADMM (3.1) with γ ∈ (0, 2), we only need to conduct a spectral

analysis for the iterative matrix T (γ) defined in (3.9). First, note that the matrix T (γ) can be factorized as

T (γ) =

(
Q̂−1B⊤AP̂−1A⊤ Q̂−1B⊤(I −AP̂−1A⊤)

γ(I −BQ̂−1B⊤)AP̂−1A⊤ I − γAP̂−1A⊤ − γBQ̂−1B⊤(I −AP̂−1A⊤)

)
·

(
B 0

0 I

)
.

(3.11)

Thus, switching the order of the products by moving the first component to the last, we have a new matrix

defined as

T̃ (γ)

=

(
B 0

0 I

)
·

(
Q̂−1B⊤AP̂−1A⊤ Q̂−1B⊤(I −AP̂−1A⊤)

γ(I −BQ̂−1B⊤)AP̂−1A⊤ I − γAP̂−1A⊤ − γBQ̂−1B⊤(I −AP̂−1A⊤)

)

=

(
BQ̂−1B⊤AP̂−1A⊤ BQ̂−1B⊤(I −AP̂−1A⊤)

γ(I −BQ̂−1B⊤)AP̂−1A⊤ I − γAP̂−1A⊤ − γBQ̂−1B⊤(I −AP̂−1A⊤)

)
. (3.12)

For any two square matrices X and Y with an appropriate dimension, we have eig(XY ) = eig(Y X). Hence,

we obtain

eig(T (γ)) = eig(T̃ (γ)). (3.13)

Therefore, we only need to conduct the spectral analysis in terms of the matrix T̃ (γ).

3.2 KKT Condition of (1.7)

In this subsection, we show several equivalent forms to characterize the KKT condition of the quadratic

programming model (1.7) which will be useful for later analysis. These are necessary preparations for the

convergence analysis in the next section. Recall that Assumptions 1-2 hold in our analysis.

Let (x∗, y∗, z∗) be a KKT point of the model (1.7). That is, (x∗, y∗, z∗) satisfies the following equations:
Px∗ = A⊤z∗ − f,

Qy∗ = B⊤z∗ − g,

Ax∗ +By∗ − b = 0.

Furthermore, we denote

µ∗ := z∗/β. (3.14)

10



Then, the pair (x∗, y∗, µ∗) satisfies the following equations:
Px∗ = βA⊤µ∗ − f, (3.15a)

Qy∗ = βB⊤µ∗ − g, (3.15b)

Ax∗ +By∗ − b = 0. (3.15c)

In the following, we present another equivalent form of the KKT condition of the model (1.7) represented

by x∗ and (y∗, µ∗) separately. This form helps us better reveal the relationship between a fix point of the

iterative matrix given in (3.8) and the KKT point of (1.7). We first prove a lemma that turns out to be

essential for the convergence analysis to be presented.

Lemma 3.1. Suppose that Assumptions 1-2 hold. Let γ ̸= 0. Then, the pair (x∗, y∗, z∗) is a KKT point of

(1.7) if and only if it satisfies the following equations:

x∗ = P̂−1
[
A⊤µ∗ −A⊤By∗ +A⊤b− f/β

]
and [I − T (γ)]

(
y∗

µ∗

)
= q, (3.16)

where the vectors µ∗, q and the matrix T (γ) are defined in (3.14), (3.10) and (3.9), respectively.

Proof. Recall that the pair (x∗, y∗, z∗) is a KKT point of (1.7) if and only if it satisfies (3.15). First, we show

that the equation (3.16) holds when (x∗, y∗, µ∗) satisfies (3.15). For this purpose, we multiply both sides of

(3.15c) by βA⊤ from the left and add the resulting equation to (3.15a). This manipulation yields the equation:

(P + βA⊤A)x∗ = β(A⊤µ∗ −A⊤By∗ +A⊤b− f/β). (3.17)

Dividing both sides of the above equation by β and using the definition of P̂ in (3.5), and then multiplying it

by P̂−1 from the left, we obtain

x∗ = P̂−1
[
A⊤µ∗ −A⊤By∗ +A⊤b− f/β

]
. (3.18)

Next, we multiply (3.15c) by βB⊤ from the left and adding the resulting equation to (3.15b), which is further

divided in both sides by β. These operations enable us to have

(Q/β +B⊤B)y∗ = B⊤µ∗ −B⊤Ax∗ +B⊤b− g/β. (3.19)

Then, substituting (3.18) into the above equality and recalling the definitions of Q̂ in (3.5) and α1 in (3.6),

we get

Q̂y∗ = B⊤AP̂−1A⊤By∗ + (B⊤ −B⊤AP̂−1A⊤)µ∗ + α1. (3.20)

On the other hand, it follows from (3.18) and the definition of α2 in (3.7) that (3.15c) can be reformulated as

µ∗ = µ∗ − γ(Ax∗ +By∗ − b) = γAP̂−1A⊤By∗ − γBy∗ + (I − γAP̂−1A⊤)µ∗ + α2. (3.21)

Combining (3.20) with the equation above, we have(
Q̂ 0

γB I

)(
y∗

µ∗

)
=

(
B⊤AP̂−1A⊤B B⊤ −B⊤AP̂−1A⊤

γAP̂−1A⊤B I − γAP̂−1A⊤

)(
y∗

µ∗

)
+

(
α1

α2

)
. (3.22)

Then, multiplying the matrix(
Q̂ 0

γB I

)−1

=

(
Q̂−1 0

−γBQ̂−1 I

)
,

to both sides of the equation (3.22) from the left, and recalling the definitions of T (γ) in (3.9) and q in (3.10),

we get(
y∗

µ∗

)
= T (γ)

(
y∗

µ∗

)
+

(
q1
q2

)
. (3.23)
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Thus, combining (3.18) and (3.23), the assertion (3.16) is proved.

Next, we verify the assertion of the other direction. That is, if (3.16) holds with one γ ̸= 0, then (3.15) is

true. Since (3.23) holds, we know that (3.22) is true. Furthermore, we get (3.20) and the second equality in

(3.21) because of (3.22). Substituting (3.18) into the second equality of (3.21), we prove the first equality in

(3.21). Also, substituting (3.18) into (3.20), we get (3.19). Recall the definition P̂ in (3.5). Then, we have
(P/β +A⊤A)x∗ = A⊤µ∗ −A⊤By∗ +A⊤b− f/β,

(Q/β +B⊤B)y∗ = B⊤µ∗ −B⊤Ax∗ +B⊤b− g/β,

µ∗ = µ∗ − γ(Ax∗ +By∗ − b).

Because of γ ̸= 0, it is equivalent to
(P/β +A⊤A)x∗ = A⊤µ∗ −A⊤By∗ +A⊤b− f/β,

(Q/β +B⊤B)y∗ = B⊤µ∗ −B⊤Ax∗ +B⊤b− g/β,

Ax∗ +By∗ − b = 0.

Then, substituting the last equality into the first and second equations of the above system, we obtain (3.15).

Thus, the conclusion of this lemma follows directly and the proof is complete.

Remark 3.2. For the “only if” direction, the equations in (3.16) hold for any γ ̸= 0. For the “if” direction,

if there exists one γ ̸= 0 such that (3.16) holds, then the pair (x∗, y∗, µ∗) satisfies (3.15). That is, the pair

(x∗, y∗, z∗) is a KKT point of (1.7).

3.3 Divergence of γ = 2

In [37], we have shown that the ALM (1.6) is not necessarily convergent if γ = 2. Hence, it is intuitive to assert

that the convergence of the ADMM scheme (1.4), as an inexact version of the ALM (1.6), is not ensured with

γ = 2 for the generic case (1.1), either. Before we prove the convergence for the scheme (3.1) with γ ∈ (0, 2),

we construct an example to show that the convergence of (3.1) with γ = 2 is not guaranteed. Hence, we just

need to focus on γ ∈ (0, 2) for the discussion. That is, the range γ ∈ (0, 2) is optimal and further enlargement

of this range is not practical when the convergence of the ADMM scheme (1.4) is discussed.

More specifically, let us take

F =

(
1 0

0 0

)
, G =

(
0 0

0 1

)
, (3.24)

and

A =

(
0.4 0.3

0.5 2.2

)
, B =

(
1.2 −0.2

1.6 0.1

)
, f = g = b = 02×1. (3.25)

This is a special case of the quadratic programming (1.7) and it has a unique solution x = y = 02×1.

With γ = 2 and β = 1, the iterative matrix in (3.9) is specified as

T (2) =


0.7897 0.0267 0.2142 −0.0292

0.1610 0.0111 −0.1639 0.0224

−1.1706 −0.0810 0.1923 −0.1626

0.8780 0.0608 −0.8942 −0.8781

 .

By elementary calculations, we have ρ(T (2)) = 1 and one of its eigenvalues is −1. Suppose η is the eigenvector

corresponding to the eigenvalue −1. Let the sequence {vk} be generated by (3.8) with the starting point

v0 := η. Then, it is easy to verify that the sequence {vk} is 2-periodic satisfying

vk =

{
η if k is even;

−η if k is odd.

Hence, the convergence of the scheme (3.1) with γ = 2 is not guaranteed.
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4 Convergence analysis of (3.1)

In this section, we establish the convergence of the scheme (3.1) with γ ∈ (0, 2). The analysis still replies on

the spectral analysis for the corresponding iterative matrix T (γ) defined in (3.9). But we would emphasize

that our analysis is different from current approaches in the literature which are based on the strict contraction

property of certain distance function to the solution set measured by matrix norms with positive-definite or

positive-semidefinite matrices (e.g., [18, 25, 28, 39]) or the non-expansiveness property of certain maximal

monotone operator (e.g., [10, 11, 17]). Indeed, it is easy to show that the so-called strict contraction property

in these mentioned work does not hold for the case where γ ≥ 1+
√
5

2 and hence it is difficult to directly apply

these existing techniques to establish the convergence of the ADMM scheme (1.4) with γ ≥ 1+
√
5

2 . This may

be explained as a difficulty of answering Glowinski’s open question under consideration.

4.1 Theoretical analysis

Even for the specific quadratic programming model (1.7), the resulting iterative matrix T (γ) defined in (3.9)

is complicated at least in the following sense. (1) It is non-symmetric; hence very few analytical tools are

available for the spectral radius analysis. (2) It may have complex eigenvalues and eigenvectors. (3) The

penalty parameter β is coupled in the iterative matrix. All these problems prohibit us to apply typical

spectral analysis techniques to this challenging case. Hence, the spectral analysis is more complicated than

the typical case of γ = 1. This is also why in Section 3 we suggest first eliminating the variable x from the

matrix recursion form and obtaining a non-homogeneous matrix recurrence in a lower-dimension space. Then,

some operations such as a matrix transform with the same eigenvalue (accounting for multiplicity) should be

conducted to achieve a block-structure matrix so that a spectral analysis can be applied.

In what follows, we shall verify that the eigenvalue λT (γ) of the iterative matrix T (γ) defined in (3.9) is

satisfied with |λT (γ)| < 1 or λT (γ) = 1; and if 1 is an eigenvalue of the iterative matrix, then it has a complete

set of eigenvectors. We first define a matrix and study its eigenstructure before investigating the spectral

radius analysis for the iterative matrix T (γ) in (3.9).

Theorem 4.1. Let F and G be two symmetric matrices in Rm×m and they satisfy 0 ≼ F ≼ I and 0 ≼ G ≼ I.

For γ ∈ (0, 2), let us define

M(γ) =

(
GF G−GF

γF − γGF I − γF − γG+ γGF

)
. (4.1)

Then, for any eigenvalue of M(γ), denoted by λ, we have |λ| < 1 or λ = 1.

Proof. Note that the matrix M(γ) can be factorized as:

M(γ) =

(
G 0

0 I

)(
F I − F

γ(I −G)F I − γF − γG+ γGF

)
.

Switching the order of the products by moving the first component to the last in M(γ), we obtain the matrix,

denoted by M ′(γ), as follows:

M ′(γ) =

(
F I − F

γ(I −G)F I − γF − γG+ γGF

)(
G 0

0 I

)
=

(
FG I − F

γ(I −G)FG I − γF − γG+ γGF

)
.

It is clear that

eig(M(γ)) = eig(M ′(γ)).

Let λ be any eigenvalue of the matrix M(γ). Then, it is also an eigenvalue of the matrix M ′(γ). Let (u⊤, w⊤)⊤

be an eigenvector of M ′(γ) associated with λ. Then, we have(
FG I − F

γ(I −G)FG I − γF − γG+ γGF

)(
u

w

)
= λ

(
u

w

)
.
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This is equivalent to{
FGu+ (I − F )w = λu, (4.2a)

γ(I −G)FGu+ γ(I −G)(I − F )w + (1− γ)w = λw. (4.2b)

Multiplying both sides in (4.2a) by γ(I −G) from the left and then subtracting it by (4.2b), we get

[λ− 1 + γ]w = γλ(I −G)u. (4.3)

If λ− 1 + γ = 0, then |λ| = |γ − 1| < 1 because of γ ∈ (0, 2). The assertion is proved.

In the following, we assume that λ− 1 + γ ̸= 0. Dividing both sides of the above equation by (λ− 1 + γ)

and then substituting it into (4.2a), we obtain

FGu+ (I − F )
λγ

λ+ γ − 1
(I −G)u = λu. (4.4)

Without loss of generality, we assume that ∥u∥2 = 1. Note that λ might be complex number. Thus, the

associated eigenvector (u⊤, w⊤)⊤ might be a complex vector. Let us define two constants as follows:

ξ1 := uHFGu and ξ2 = uH(I − F )(I −G)u. (4.5)

Then, multiplying both sides of (4.4) by (λ+ γ − 1)uH from the left yields

λ2 + (γ − 1− ξ1 − γξ2)λ+ (1− γ)ξ1 = 0. (4.6)

For convenience, we define

f(λ) = λ2 + (γ − 1− ξ1 − γξ2)λ+ (1− γ)ξ1. (4.7)

Note that f(λ) = 0 is a quadratic equation with one variable λ. Thus, we define

∆ := (γ − 1− ξ1 − γξ2)
2 − 4(1− γ)ξ1.

The remaining part of the proof should be divided into two cases.

Case 1. λ is a complex eigenvalue of the matrix M(γ). For this case, the matrix M(γ) contains only real

numbers and thus its complex eigenvalues must occur in conjugate pairs (see, e.g., [32]). Thus, λ̄ is

also an eigenvalue of the matrix M(γ). Moreover, it can be easily shown that

(
λ̄,

(
u

w

))
is also an

eigenpair of M(γ). Consequently, both λ and λ̄ are roots of the equation f(λ) = 0. Thus, ∆ < 0. For

this case, although the vectors u and w are complex vectors, we can show that (1−γ)ξ1 is a real number

due to (1− γ)ξ1 = λ · λ̄. It further implies that ξ1 is a real number, i.e.,

ξ̄1 = (uHFGu)H = uHFGu = ξ1.

Recall that F and G are two real symmetric matrices. Then, using the above equality, we get

ξ̄2 = [uH(I − F −G− FG)u]H = uH(I − F −G− FG)u = ξ2,

which implies that ξ2 is also a real number. For this case, the equation f(λ) = 0 still has real coefficients.

Finally, since (1 − γ)ξ1 ≤ 1, i.e., λ · λ̄ = (1 − γ)ξ1 < 1 which is due to Lemma 2.3, and λ is a complex

eigenvalue, we have |λ| < 1.

Case 2. λ is a real eigenvalue. The corresponding eigenvector (u⊤, w⊤)⊤ is also real. Thus, both ξ1 and ξ2 are

real numbers. This means that the equation f(λ) = 0 has real coefficients. First, invoking Lemma 2.5,

we have

0 ≤ ξ1 + ξ2 ≤ 1.

Thus, f(1) = γ − γ(ξ1 + ξ2) ≥ 0. The following discussion is divided into three cases.
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I) γ ∈ (0, 1).

Note that f(−1) = (2 − γ)(1 + ξ1) + γξ2 > 0. If ξ1 < 0, then f(0) < 0. It implies that one of the

roots of f(λ) = 0 belongs to (0, 1], and the other belongs to (−1, 0). If ξ1 ≥ 0, then f(0) ≥ 0. It

implies that the two roots of f(λ) = 0 have the same sign. Moreover, we have |(1− γ)ξ1| < 1 and

|γ − 1 − ξ1 − γξ2| ≤ 2. We conclude that the equation (4.6) has two real roots, and both of them

belong to either [0, 1] or (−1, 0].

II) γ = 1.

The equation f(λ) = 0 has two roots: λ1 = 0 and λ2 = ξ1 + ξ2. Invoking Lemma 2.5, we have

0 ≤ λ2 ≤ 1.

III) γ ∈ (1, 2).

If ξ1 ≤ 0, then we have ξ2 ≥ 0 because of ξ1 + ξ2 ≥ 0. Thus, we have f(−1) > 0, f(0) ≥ 0 and

f(1) ≥ 0. Also, we have |(1− γ)ξ1| < 1 and |γ − 1− ξ1 − γξ2| < 2. We conclude that the equation

(4.6) has two real roots, and both of them belong to either [0, 1] or (−1, 0].

If ξ1 > 0, then f(1) ≥ 0 and f(0) < 0. Note f(−1) = 2− γ + 2ξ1 − γξ1 + γξ2. If f(−1) > 0, then

we know that one of the roots of f(λ) = 0 belongs to (0, 1], and the other belongs to (−1, 0). If

f(−1) ≤ 0, it implies that the equation (4.6) has a root λ2 ≤ −1. In the following, we show that

λ2 is an extraneous root by contradiction. Without loss of generality, we assume that F ≻ 0 and

G ≻ 0. If λ2 is not an extraneous root, then it is an eigenvalue of (4.1). It follows from (4.4) that

λ2 is a root of the following equation:

det

(
FG+ (I − F )

λγ

λ+ γ − 1
(I −G)− λI

)
= 0. (4.8)

We denote

κ :=
λγ

λ+ γ − 1
. (4.9)

Since λ ≤ −1 and γ ∈ (1, 2), κ > 0 and the matrix ((κ− λ)I − κG) is nonsingular. Thus, it follows

from (4.8) that

det(F ) · det
(
[(1 + κ)G− κI] [(κ− λ)I − κG]

−1
+ F−1

)
· det ((κ− λ)I − κG) = 0.

Note that
(
[(1 + κ)G− κI] [(κ− λ)I − κG]

−1
)
is a real symmetric matrix. Denote the eigenvalues

of F and G by 1 ≥ f1 ≥ f2 ≥ · · · ≥ fm > 0 and 1 ≥ g1 ≥ g2 ≥ · · · ≥ gm > 0, respectively. Then,

using Lemma 2.6, we get

q(λ) := det(F ) · det
(
[(1 + κ)G− κI] [(κ− λ)I − κG]

−1
+ F−1

)
· det ((κ− λ)I − κG)

≥
(

m

Π
i=1

fi

){
min
π

m

Π
i=1

(
(1 + κ)gi − κ

(κ− λ)− κgi
+

1

fπ(i)

)}(
m

Π
i=1

[(κ− λ)− κgi]

)
≥
(

m

Π
i=1

fi

){
m

Π
i=1

(
(1 + κ)gi − κ

(κ− λ)− κgi
+

1

fm+1−i

)}(
m

Π
i=1

[(κ− λ)− κgi]

)
≥

m

Π
i=1

{
− 1

λ+ γ − 1

[
λ2 + λ (−1 + γgi − (1 + γ)gifm+1−i + γfm+1−i) + (1− γ)fm+1−igi

]}
.

(4.10)

The second inequality is due to the fact that the function h(x) = (1+κ)x−κ
(κ−λ)−κx is an increasing function

with respect to x and Lemma 2.6, and the last follows from (4.9). If we denote

qi(λ) := λ2 + λ (−1 + γgi − (1 + γ)gifm+1−i + γfm+1−i) + (1− γ)fm+1−igi,

then we have

q(λ) ≥
m

Π
i=1

[
− 1

λ+ γ − 1
qi(λ)

]
. (4.11)
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Indeed, for any i = 1, . . . ,m, we have

qi(1) = γ(gi + fm+1−i − 2fm+1−igi) ≥ 0, qi(0) = (1− γ)gifm+1−i < 0, (4.12)

and

qi(−1) = 2 + 2fm+1−igi − γfm+1−i − γgi > 2 + 2fm+1−igi − 2fm+1−i − 2gi ≥ 0. (4.13)

Combining (4.12) and (4.13), we have

qi(λ) > 0 when λ ≤ −1, ∀i = 1, . . . ,m. (4.14)

Also note that

− 1

λ+ γ − 1
> 0 when λ ≤ −1 and γ ∈ (1, 2). (4.15)

Combining (4.11), (4.14) and (4.15), we get

q(λ) > 0, when λ ≤ −1, γ ∈ (1, 2).

Recalling the definition of q(λ) in (4.10), the above result is contradicted with (4.8). Therefore, we

verify that λ2 is an extraneous root when F ≻ 0 and G ≻ 0. Finally, if F ≽ 0 and G ≽ 0, we can

take two positive definite matrix sequences {Fn} and {Gn} which converge to F and G in the Frobenius

norm, respectively. Then, using the fact that the eigenvalue of a matrix is continuous with respect to

the matrix’s entries (see, e.g., [32]), we can also show that the eigenvalues of the matrix M(γ) are not

less than or equal to −1.

The proof is complete.

Remark 4.2. From the proof of Theorem 4.1, we know that if 1 is an eigenvalue of M(γ), then f(1) = 0 where

f(λ) is defined in (4.7). It implies that ξ1+ξ2 = 1. That is, 1 is an eigenvalue of the matrix (I−F −G+2FG).

Theorem 4.1 enables us to study the spectral property of the matrix M(γ). Moreover, it will be shown in

the following theorem that if 1 is an eigenvalue of M(γ), then it has a complete set of eigenvectors. The proof

is partially inspired by Lemma 6 in [7].

Theorem 4.3. Let F and G be two symmetric matrices in Rm×m and they satisfy 0 ≼ F ≼ I and 0 ≼ G ≼ I.

If 1 is an eigenvalue of the matrix M(γ) defined in (4.1), then the algebraic multiplicity of 1 for M(γ) equals

its geometric multiplicity.

Proof. It follows from the definition of M(γ) in (4.1) that

det(λI −M(γ))

= det

(
λI −GF −G+GF

−γF + γGF (λ− 1)I + γF + γG− γGF

)

= det

(
λI −GF −G+GF

λγI − γF (λ− 1)I + γF

)

= det

(
λI −G −G+GF

(λγ + λ− 1)I (λ− 1)I + γF

)

= (−1)mdet

(
−G+GF λI −G

(λ− 1)I + γF (λγ + λ− 1)I

)

= (−1)mdet

(
GF −G− 1

λγ+λ−1 (λI −G) [(λ− 1)I + γF ] λI −G

0 (λγ + λ− 1)I

)
= det

[
λ2I − λI + (γF + γG− (1 + γ)GF )λ+ (1− γ)GF

]
= det

[
λ2I − λI + γ (F +G− 2GF )λ+ (γ − 1)GF (λ− 1)

]
. (4.16)
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Since 1 is an eigenvalue of the matrix M(γ), it is also an eigenvalue of the matrix (I − F −G+ 2FG). Then,

invoking Lemma 2.13, we know that there exists an orthogonal matrix Q ∈ Rm×m such that (2.11) holds.

Consequently, we have

Q⊤(F +G− 2GF )Q =

(
0 R+ S − 2(DR+ SF̂ )

0 F̂ + Ĝ− 2ĜF̂

)
and Q⊤(GF )Q =

(
D2 DR+ SF̂

0 ĜF̂

)
,

in which the first equality is due to 2D − 2D2 = 0. Then, it yields

Q⊤ (λ2I − λI + γ (F +G− 2GF )λ+ (γ − 1)GF (λ− 1)
)
Q

=

(
λ(λ− 1)Iℓ + (γ − 1)D2(λ− 1) Υ

0 (λ2 − λ)Im−ℓ + γ(F̂ + Ĝ− 2ĜF̂ )λ+ (γ − 1)ĜF̂ (λ− 1)

)
,

where the matrix Υ := γλ(R+S− 2(DR+SF̂ ))+ (γ− 1)(λ− 1)(DR+SF̂ ). Taking the determinant on both

sides in the above equation, we get

det [λ(λ− 1)I + γ (F +G− 2GF )λ+ (γ − 1)GF (λ− 1)]

= (λ− 1)ℓ
[
Πℓ

i=1

(
λ+ (γ − 1)D2

ii

)]
q(λ)

with

q(λ) := det
[
(λ2 − λ)Im−ℓ + γ

(
F̂ + Ĝ− 2ĜF̂

)
λ+ (γ − 1)ĜF̂ (λ− 1)

]
.

Invoking Lemma 2.13, we have

0 ≺ F̂ + Ĝ− 2ĜF̂ ≼ Im−ℓ. (4.17)

We can actually conclude that (λ− 1) - q(λ). Let us prove it by contradiction. If (λ− 1)|q(λ), then it implies

that q(1) = 0, i.e.,

det
[
γ
(
F̂ + Ĝ− 2ĜF̂

)]
= 0.

This contradicts with (4.17). Moreover, note that

λ+ (γ − 1)D2
ii =

{
λ, if Dii = 0;

λ+ γ − 1, if Dii = 1.

Therefore, (λ− 1) -
{
[Πℓ

i=1(λ+ (γ − 1)D2
ii)]q(λ)

}
. It implies that the algebraic multiplicity of 1 for M(γ) is ℓ

defined in (2.8). On the other hand, the geometric multiplicity of 1 for M(γ) is identical with the following

quality:

2m− Rank

(
I −GF −G+GF

−γF + γGF γ(F +G−GF )

)

= 2m− Rank

(
I −GF −G+GF

−F +GF F +G−GF

)

= 2m− Rank

(
I −GF −G+GF

I − F F

)

= 2m− Rank

(
I −G −G+GF

I F

)

= 2m− Rank

(
−G+GF I −G

F I

)

= 2m− Rank

(
−G− F + 2GF I −G

0 I

)
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= m− Rank(−G− F + 2GF ).

Invoking Lemma 2.7, we conclude that the geometric multiplicity of eigenvalue 1 for M(γ) is also ℓ. The proof

is complete.

Remark 4.4. Note that if 1 is an eigenvalue of the matrix (I − F −G+ 2FG), then 0 is an eigenvalue of the

matrix (F +G− 2GF ) because of Lemma 2.8. From the proof of Theorem 4.3 (see (4.16)), we know that 1 is

an eigenvalue of M(γ) if 1 is an eigenvalue of the matrix (I − F −G+ 2FG). Therefore, because of Remark

4.2, we know that 1 is an eigenvalue of M(γ) if and only if 1 is an eigenvalue of the matrix (I−F −G+2FG).

Now, we proceed to the spectral analysis for the iterative matrix T (γ) defined in (3.11). This is the essential

pillar for proving the convergence of the scheme (3.1) with γ ∈ (0, 2). A lemma is proved first.

Lemma 4.5. Assumptions 1-2 hold; the matrices Q̂ and P̂ are defined in (3.5); γ ∈ (0, 2); the matrix T (γ)

is defined in (3.9). Then, we have |λT (γ)| < 1 or λT (γ) = 1. Furthermore, if 1 is an eigenvalue of T (γ), then

the algebraic and geometric multiplicities of 1 for T (γ) are the same.

Proof. Setting G = BQ̂−1B⊤ and F = AP̂−1A⊤ in M(γ) (see (4.1)), and invoking the definition of T̃ (γ) in

(3.12), we have

M(γ) = T̃ (γ). (4.18)

Thus, it holds eig(M(γ)) = eig(T̃ (γ)). Indeed, according to (3.13) , we have eig(T (γ)) = eig(M(γ)). It follows

from Theorem 4.1 that |λT (γ)| < 1 or λT (γ) = 1.

If 1 is an eigenvalue of the matrix T (γ), using Theorem 4.3 and (4.18), we know that it is also an eigenvalue

of M(γ) and its algebraic and geometric multiplicities are the same for T (γ). The proof is complete.

Now, we are at the stage to prove the convergence of the scheme (3.1) with γ ∈ (0, 2). The proof of the

following theorem is inspired by Theorem 3 in [7].

Theorem 4.6. Assumptions 1-2 hold. Let {(xk, yk, zk)} be the sequence generated by the scheme (3.1), i..e,

the application of the ADMM scheme (1.4) with γ ∈ (0, 2) to the quadratic programming model (1.7). Then,

the sequence {(xk, yk, zk)} converges to a KKT point of (1.7).

Proof. Let (x∗, y∗, z∗) be a KKT point of (1.7). As shown in Lemma 3.1, we have(
y∗

µ∗

)
= T (γ)

(
y∗

µ∗

)
+

(
q1
q2

)
, (4.19)

where T (γ), q1 and q2 are defined in (3.9), (3.10), respectively. It follows from (3.8) and (4.19) that

(vk+1 − v∗) = T (γ)(vk − v∗).

Recall the definition of µk and the matrix recursion form (3.8)-(3.10). It follows from Lemma 4.5 that

|λT (γ)| < 1 or λT (γ) = 1. Next, we consider two cases to complete the proof.

The first case is where |λT (γ)| < 1. For this case, it holds that vk → v∗ as k → ∞ and the assertion of

the theorem is obvious. The second case is where λT (γ) = 1. For this case, by lemma 4.5, we know that the

eigenvalue 1 for T (γ) has a complete set of eigenvectors. As a result, there exists a nonsingular matrix J such

that T (γ) admits the following Jordan decomposition:

T (γ) = J−1



1
. . .

1

ρ1 ∗
. . . ∗

ρt


J,
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where |ρi| < 1 for all i = 1, . . . , t. Moreover, it can be shown that

(T (γ))k = J−1



1
. . .

1

0
. . .

0


J,

when k → ∞. Therefore, the sequence {vk − v∗} converges to an eigenvector of the matrix T (γ) associated

with the eigenvalue 1, denoted by v̄ = (ȳ; µ̄). Then, we have

(I − T (γ))

(
ȳ

µ̄

)
=

(
0

0

)
.

Adding the above equation to (4.19), we obtain

(I − T (γ))

(
ȳ + y∗

µ̄+ µ∗

)
=

(
q1
q2

)
.

Let us denote (v̄+v∗) by v̂. Then, we have that {vk} converges to v̂ because (vk−v∗) → v̄ and v̂ also satisfies

(I − T (γ))v̂ = q. (4.20)

Let k → ∞ in (3.3). Since vk → v̂, there exists a vector x̂ ∈ Rn1 such that xk → x̂ and x̂ is satisfied with

P̂ x̂ = A⊤µ̂−A⊤Bŷ +A⊤b− f/β. (4.21)

Finally, combining (4.20) and (4.21), and invoking Lemma 3.1, we conclude that (x̂, ŷ, ẑ) is a KKT point of

the model (1.7). The proof is complete.

4.2 Numerical verification of the convergence

In this section, we construct a simple example of (1.7) and numerically verify the convergence of (3.1) with

γ ∈ (0, 2). In particular, as well observed in the literature, e.g., [17, 18, 19, 26, 28, 39, 36], it is advantageous

to employ larger value of γ closer to 2 to accelerate the convergence in the scheme (3.2). The codes were

written by MATLAB 7.8 (R2009a) and were run on a X1 Carbon notebook with the Intel Core i7-4600U CPU

at 2.1 GHz and 8 GB of memory.

Let us set f = g = b = 0 in (1.7), and the resulting model has a unique solution x∗ = y∗ = 0. The matrix

P and Q in (1.7) are generated by

P1 = randn(n1, n1); P = P1′ ∗ P1; a = eigs(P, 1,′ sm′); P = P − (a− (1e− 4)) ∗ eye(n1)

and

Q1 = randn(n2, n2); Q = Q1′ ∗Q1; b = eigs(Q, 1,′ sm′); Q = Q− (b− (1e− 4)) ∗ eye(n1)

respectively. Furthermore, the matrices A ∈ Rm×n1 and B ∈ Rm×n2 in (1.7) are generated independently, and

their elements are i.i.d. uniformly distributed in the interval [0, 1]. Note that both P and Q are symmetric

positive semidefinite matrices; and both P and Q are seriously ill-conditioned. To implement the scheme (3.1),

let us fix β = 1, y0 = randn(n2, 1), z
0 = randn(m, 1), and the stopping criterion is (see [5])

err := max{∥B(yk − yk+1)∥2, ∥zk − zk+1∥2} ≤ 10−6. (4.22)
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We test different scenarios of this example where m = n1 = n2 = 50, 100, 200, 500, respectively. The

values of γ from 0.2 to 1.8 with an equal distance of 0.2 are tested. Moreover, the step size proposed by

Glowinski γ = 1.618 ≈
√
5+1
2 is compared as a benchmark and several values larger than 1.618 are tested, i.e.,

γ = 1.65, 1.7, 1.75. In Table 1, we report the error of xk (measured by ∥x̄− x∗∥2), the error of yk (measured

by ∥ȳ − y∗∥2), the number of iteration (“Itr.”) and the CPU time in seconds (“Time(s)”). Here, x̄ and ȳ

represent the last iterate satisfying the criterion (4.22). The condition numbers of P and Q (“Cond(P)” and

“Cond(Q)”, respectively) are also included in Table 1. Data in this table verify the convergence of (3.1) with

γ ∈ (0, 2) and the acceleration with γ close to 2. In particular, it is shown that the cases of γ > 1 can easily

accelerate the case of γ = 1, i.e., the original ADMM; and that some values larger than 1.618 also result in

faster convergence considerately. Hence, it is verified to consider larger values for γ in Glowinski’s ADMM

scheme (1.4).

5 Global linear convergence of (3.1)

In addition to the main purpose of establishing the convergence of the scheme (3.1) with γ ∈ (0, 2) and

answering Glowinski’s open question partially, in this section we show the global linear convergence of the

scheme (3.1) with γ ∈ (0, 2) under a condition. This is a supplementary result to the main convergence result

in Section 4.

5.1 Review of existing results

The linear convergence of the ADMM (1.4) with the special case of γ = 1 has been discussed in the quadratic

programming context in [4, 24] under different conditions. Let us briefly review them. In [24], the local linear

convergence of a generalized version of the ADMM proposed in [11], which reduces to the original ADMM

(1.4) when the parameter is taken as 1, is established for the quadratic programming model (1.7) under some

local error bound conditions. In [4], the following convex quadratic programming model is considered:
minx

1
2x

⊤Qx+ c⊤x+ g(y)

s.t. Ax = b,

x = y,

with g(y) =

{
0 if y ≥ 0;

+∞ if y � 0.
(5.1)

Then, the following ADMM scheme is suggested in [4]:
xk+1 = argminAx=bL

′

β(x, y
k, zk),

yk+1 = argminL′

β(x
k+1, y, zk),

zk+1 = zk − β(xk+1 − yk+1),

(5.2)

where

L
′

β(x, y, z) =
1

2
x⊤Qx+ c⊤x+ g(y)− z⊤(x− y) +

β

2
∥x− y∥2.

Note that the equation Ax = b is considered as a constraint in the x-subproblem of (5.1). Then, based on the

typical spectral analysis for a homogeneous linear equation characterizing the corresponding matrix recursion

form, the local linear convergence is established for the scheme (5.2). It is worthwhile to mention that the

iterative matrix considered in the homogeneous linear equation varies iteratively and as analyzed in [4], four

regimes occur. Assuming the convergence (e.g., by results in [5]), the uniqueness of solution, and the strict

complementarity condition (See Theorem 6.4 in [4]), it is proved in [4] that the iterative matrices finally

become fixed with a spectral radius less than 1 and hence the local linear convergence is derived therein for

(5.1).
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Table 1: Convergence of (3.1)

m n1 n2 γ ∥x̄ − x∗∥2 ∥ȳ − y∗∥2 Itr. Time(s) Condition Numbers

50 50 50 0.2 5.005e-6 3.835e-6 1361 0.03 Cond(P):1.6358e+6

0.4 2.274e-6 1.648e-6 728 0.06 Cond(Q):2.0175e+6

0.6 1.644e-6 1.398e-6 623 0.03

0.8 1.216e-6 1.067e-6 473 0.03

1 9.557e-7 8.504e-7 396 0.04

1.2 7.870e-7 6.766e-7 343 0.02

1.4 6.710e-7 5.875e-7 324 0.00

1.6 5.921e-7 5.222e-7 277 0.03

1.618 5.757e-7 5.006e-7 263 0.03

1.65 5.681e-7 4.863e-7 218 0.00

1.7 5.659e-7 4.757e-7 221 0.03

1.75 5.205e-7 4.114e-7 198 0.02

1.8 4.828e-7 4.689e-7 192 0.00

100 100 100 0.2 3.258e-6 3.457e-6 1946 0.12 Cond(P):3.540e+6

0.4 1.530e-6 1.755e-6 921 0.06 Cond(Q):3.7540e+6

0.6 1.084e-6 1.138e-6 688 0.09

0.8 7.921e-7 8.697e-7 529 0.08

1 6.383e-7 6.742e-7 440 0.06

1.2 4.640e-7 5.495e-7 317 0.06

1.4 4.421e-7 4.845e-7 366 0.06

1.6 3.861e-7 4.268e-7 327 0.03

1.618 3.817e-7 4.225e-7 270 0.06

1.65 3.795e-7 3.887e-7 227 0.03

1.7 3.444e-7 3.834e-7 223 0.03

1.75 2.937e-7 3.323e-7 210 0.03

1.8 3.427e-7 3.724e-7 234 0.06

200 200 200 0.2 2.278e-6 2.299e-6 1838 0.28 Cond(P):7.5130e+6

0.4 1.316e-6 1.241e-6 1027 0.19 Cond(Q):7.9452e+6

0.6 8.600e-7 7.272e-7 877 0.16

0.8 6.435e-7 5.618e-7 644 0.16

1 5.094e-7 4.431e-7 604 0.12

1.2 4.248e-7 3.887e-7 492 0.12

1.4 3.821e-7 3.608e-7 453 0.12

1.6 3.674e-7 2.993e-7 380 0.18

1.618 3.894e-7 3.221e-7 378 0.12

1.65 5.606e-7 4.825e-7 356 0.12

1.7 2.360e-7 2.208e-7 288 0.18

1.75 3.091e-7 2.706e-7 298 0.12

1.8 3.858e-7 3.767e-7 276 0.12

500 500 500 0.2 1.529e-6 1.597e-6 2396 2.54 Cond(P):2.0165e+7

0.4 7.664e-7 8.019e-7 1300 1.74 Cond(Q):1.9426e+7

0.6 5.136e-7 5.423e-7 890 1.59

0.8 3.880e-7 4.253e-7 653 1.65

1 2.943e-7 2.976e-7 699 1.72

1.2 3.960e-7 4.025e-7 691 1.43

1.4 2.476e-7 2.606e-7 619 1.47

1.6 4.857e-7 5.089e-7 668 1.48

1.618 4.977e-7 5.215e-7 662 1.57

1.65 5.111e-7 5.356e-7 640 1.90

1.7 5.317e-7 5.573e-7 674 1.66

1.75 5.565e-7 5.883e-7 657 1.32

1.8 5.711e-7 5.987e-7 575 1.40
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5.2 Global linear convergence under a tight condition

In this section, we establish the global linear convergence of the scheme (3.2) with γ ∈ (0, 2) under a new

assumption different from those in [4, 24]. Recall the iterative matrix T (γ) defined in (3.9). If ρ(T (γ)) < 1,

then the linear convergence of the sequence {vk} generated by (3.8)-(3.9) follows immediately. Hence, the new

condition to be presented is to ensure the property ρ(T (γ)) < 1; and we shall show that this condition is tight.

Theorem 5.1. Assumptions 1-2 hold. Assume that

N(BQ̂−1B⊤ − I)
∩

N(AP̂−1A⊤ − I) = {0} and N(BQ̂−1B⊤)
∩

N(AP̂−1A⊤) = {0}, (5.3)

with Q̂ and P̂ defined in (3.5). Then, the sequence {(xk, yk, zk)} generated by the scheme (3.1) with γ ∈ (0, 2)

converges linearly to a KKT point of (1.7).

Proof. Setting G = BQ̂−1B⊤ and F = AP̂−1A⊤ in M(γ) (see (4.1)), and combining the proof in Lemma 4.5,

we know that

σ(T (γ)) = σ(M(γ)).

Invoking Lemma 2.9 and Remark 4.4, we have

1 ̸∈ σ(M(γ)) ⇔ 1 ̸∈ σ(I + 2GF − F −G) ⇔ (5.3).

Consequently, ρ(M(γ)) < 1 when (5.3) is satisfied. Then, there is a matrix norm ∥ · ∥G such that ρ(M(γ)) ≤
∥M(γ)∥G < ρ(M(γ))+ ϵ ≤ 1. Thus, the sequence {(yk, µk)} converges linearly to a point {(y∗, µ∗)}. It implies

that the sequence {(yk, zk)} converges linearly to the point {(y∗, z∗)} with z∗ = βµ∗ as well. Define x∗ like

(3.18), and recall (3.3) and (3.18). We obtain that

∥xk+1 − x∗∥ = ∥P̂−1
[
A⊤(µk − µ∗)−A⊤B(yk − y∗)

]
∥ ≤ ∥P̂−1∥

(
∥A∥∥µk − µ∗∥+ ∥A⊤B∥∥yk − y∗∥

)
.

Thus, the sequence {xk} converges linearly and the linear convergence of the sequence {(xk, yk, zk)} follows

as well. The proof is complete.

Remark 5.2. The condition (5.3) for ensuring the linear convergence of (3.1) is indeed tight. To see it, notice

that (5.3) implies that for either the eigenvalue 1 or 0, the matrices F and G do not have any common

eigenvector. If the condition (5.3) does not hold, this means that there exists at least one common eigenvector

associated with either 1 or 0 for the matrices F and G. Hence, 1 is an eigenvalue of the iterative matrix T (γ)

and this invalidates the linear convergence of the sequence of {vk} defined in (3.8).

Remark 5.3. Note that 0 ≤ λBQ̂−1B⊤ ≤ 1 and 0 ≤ λAP̂−1A⊤ ≤ 1. Thus, it is easy to verify that the conditions{
0 < λBQ̂−1B⊤ < 1

0 < λAP̂−1A⊤ < 1

suffice to ensure the condition (5.3) and hence the linear convergence of the sequence {(xk, yk, zk)} generated

by the scheme (3.1).

Remark 5.4. The linear convergence rate result in Theorem 5.1 differs from those in [4, 24] in the following

aspects. (1) The linear convergence rate in Theorem 5.1 is global, while those in [4, 24] are local. (2) The

condition (5.3) is different from those in [4, 24]; and it is tight. (3) Here we consider the scheme (3.1) with

γ ∈ (0, 2) and the targeted model is (1.7); while in [4] only the special case γ = 1 is considered and its targeted

model is (5.1); and in [24] the generalized ADMM in [11] is considered. Moreover, the conditions in (5.3)

depend only on the matrices P , Q, A and B in the model (1.7) per se and the penalty β; it does not require

any local information near the solution point such as the local error bound in [24] or the identification of the

regimes of the corresponding iterative matrix in [4]. Indeed, with Assumption 1, we know that the condition

“N(BQ̂−1B⊤)
∩
N(AP̂−1A⊤) = {0}” in (5.3) is equivalent to N(B⊤)

∩
N(A⊤) = {0} and thus it does not

involve the parameter β. For the condition “N(BQ̂−1B⊤ − I)
∩
N(AP̂−1A⊤ − I) = {0}” in (5.3), it is easy

to see that the parameter β is not involved if “P ≻ 0 and Q ≻ 0” or “A⊤A ≻ 0 and B⊤B ≻ 0” is further

assumed in Assumption 1.
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Table 2: Linear convergence of (3.1)

m n1 n2 γ ∥x̄ − x∗∥2 ∥ȳ − y∗∥2 Itr. Time(s) Condition Numbers

50 50 50 λmin(AP̂−1A⊤) =4.9815e-5, λmax(AP̂−1A⊤) = 0.9995, λmin(BQ̂−1B⊤) =4.7014e-5, λmax(BQ̂−1B⊤) =0.9996

0.2 3.376e-6 2.819e-6 1496 0.06 Cond(P):2.2940e+4

0.4 1.447e-6 1.563e-6 869 0.06 Cond(Q):1.4170e+5

0.6 1.023e-6 1.066e-6 627 0.03

0.8 9.064e-7 6.940e-7 486 0.03

1 7.419e-7 6.946e-7 404 0.04

1.2 6.272e-7 5.130e-7 351 0.04

1.4 5.129e-7 4.357e-7 291 0.04

1.6 4.467e-7 3.844e-7 274 0.04

1.618 3.949e-7 4.265e-7 256 0.04

1.65 4.417e-7 3.683e-7 256 0.04

1.7 4.301e-7 3.649e-7 251 0.04

1.75 4.230e-7 3.775e-7, 232 0.03

1.8 4.866e-7 3.979e-7, 227 0.03

100 100 100 λmin(AP̂−1A⊤) =1.4930e-7, λmax(AP̂−1A⊤) =0.9998, λmin(BQ̂−1B⊤) =3.0493e-5, λmax(BQ̂−1B⊤) =0.9993

0.2 3.765e-6 3.044e-6 1650 0.06 Cond(P):1.7514e+5

0.4 1.951e-6 1.557e-6 981 0.07 Cond(Q):4.6216e+4

0.6 1.272e-6 9.991e-7, 666 0.09

0.8 9.583e-7 7.604e-7 527 0.03

1.0 6.413e-7 7.229e-7 386 0.03

1.2 5.757e-7 5.326e-7, 348 0.03

1.4 4.195e-7 4.772e-7 295 0.03

1.6 4.064e-7 4.079e-7 264 0.03

1.618 4.131e-7 3.273e-7 253 0.03

1.65 4.426e-7 4.502e-7 251 0.03

1.7 4.202e-7 3.516e-7 274 0.00

1.75 4.459e-7 4.978e-7 234 0.03

1.8 4.441e-7 4.864e-7 227 0.03

5.3 Numerical verification of the global linear convergence

In this subsection we numerically verify the global linear convergence of the scheme (3.1) with γ ∈ (0, 2) under

the condition (5.3) by an example.

The details of constructing the example is nearly the same as those in Section 4.2 except for

P1 = randn(n1, n1); P = P1′ ∗ P1; and Q1 = randn(n2, n2); Q = Q1′ ∗ Q1;.

We set β = 1 and thus we just need to check the following conditions to ensure (5.3):

0 < λmin(AP̂
−1A⊤) and λmax(AP̂

−1A⊤) < 1; 0 < λmin(BQ̂−1B⊤) and λmax(BQ̂−1B⊤) < 1,

with P̂ and Q̂ defined in (3.5). If the generated matrices P , Q, A and B are satisfied with above conditions.

It implies that neither 0 nor 1 is the common eigenvalues of AP̂−1A⊤ and BQ̂−1B⊤. Therefore, the condition

(5.3) in Theorem 5.1 is ensured. The implementation details of the scheme (3.1) are the same as those in

Section 4.2,

We first test the performance with the initial point y0 = randn(n2, 1) and z0 = randn(m, 1) for the

scenarios where m = n1 = n2 = 50, 100. A number of γ’s values varying from 0.2 to 1.8 with an equal distance

of 0.2 are tested. Again, the value of 1.618 suggested by Glowinski is tested as a benchmark and several values

larger than 1.618, i.e, γ = 1.65, 1.7, 1.75, are compared to show the possible acceleration with larger values of

γ. In Figure 1, we plot the evolution of the errors to the exact solution point, i.e., ∥vk − v∗∥2 with vk defined

in (3.8)), with respect to iteration numbers. The linear convergence of the scheme (3.1) is displayed in this

figure for different choices of γ ∈ (0, 2).

To see the global feature of the linear convergence in Theorem 5.1, we focus on the case where m = n1 =

n2 = 100, and the values of γ are 0.6 and 1.8, respectively. We report the numerical performance with several

different initial points. We generate the initial points (y0, z0) by different ways as listed in Table 3. The errors

of xk (measured by ∥x̄ − x∗∥2), yk (measured by ∥ȳ − y∗∥2), the number of iteration (“Itr.”) and the CPU
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Table 3: Global convergence of (3.1) with different initial points

γ Initial. ∥x̄ − x∗∥2 ∥ȳ − y∗∥2 Itr. Time(s)

0.6 randn 1.142e-6 9.213e-7 657 0.05

randn*10 1.272e-6 1.041e-6 812 0.06

randn*100 1.270e-6 1.021e-6 942 0.06

rand 1.226e-6 1.077e-6 716 0.03

1.8 randn 4.272e-7 3.766e-7 244 0.03

randn*10 3.803e-7 3.040e-7 287 0.03

randn*100 2.983e-7 3.445e-7 310 0.03

rand 3.920e-7 3.277e-7 277 0.03

time in seconds (“Time(s)”) are reported in Table 3. Data in Table 3 demonstrates the global convergence

of the scheme (3.1) under the condition (5.3). The evolution of the errors to the exact solution point, i.e.,

∥vk − v∗∥2 with vk defined in (3.8), with respect to iteration numbers are plotted for these different initial

points in Figure 2. The curves in Figure 2 clearly show the linear convergence of the scheme (3.1) under the

condition (5.3).
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Figure 1: Linear convergence of the ADMM (3.1) for different γ

6 Conclusions

In this paper, we prove the convergence of the alternating direction method of multipliers (ADMM) with a

factor γ ∈ (0, 2) for updating its dual variable when the objective function is the sum of two quadratic functions.

Glowinski’s open question in 1984 is thus partially answered. Because of the quadratic programming context

under discussion, the spectral analysis plays a crucial role in the analysis. But our analysis is featured by a

non-symmetric matrix involving the factor γ ∈ (0, 2) and hence more complicated analysis than the typical

case of γ = 1 in the original ADMM is needed. The setting under our discussion seems to be by now the

most general one regarding the answer to Glowinski’s open question. Answering this question completely for

the generic case where the objective function is the sum of two general convex functions seems to need more

advanced analytic tools, rather than just the spectral analysis in numerical linear algebra. We hope the new

analysis presented in the paper will favor this ultimate goal. A by-product of our analysis is the global linear

convergence rate of the ADMM with γ ∈ (0, 2) for the quadratic programming case under a tight condition.

This result differs from existing results in the literature.
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Figure 2: Linear convergence of the ADMM (3.1) for different initial points
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