
Satisfiability Modulo Theories for
Process Systems Engineering

Miten Mistry, Andrea Callia D’Iddio, Michael Huth, Ruth Misener∗

Department of Computing; Imperial College London; South Kensington SW7 2AZ; UK

Abstract

Process systems engineers have long recognized the importance of both logic
and optimization for automated decision-making. But modern challenges in
process systems engineering could strongly benefit from methodological con-
tributions in computer science. In particular, we propose satisfiability modulo
theories (SMT) for process systems engineering applications. We motivate
SMT using a series of test beds and show the applicability of SMT algo-
rithms and implementations on (i) two-dimensional bin packing, (ii) model
explainers, and (iii) MINLP solvers.

Keywords: satisfiability modulo theories, mixed-integer optimization,
generalized disjunctive programming, mixed logical-linear programming

1. Introduction

Process systems engineers have long recognized the importance of both
logic and optimization for automated decision-making (Jain and Grossmann
2001, Hooker and Ottoson 2003, Maravelias and Sung 2009, Trespalacios
and Grossmann 2014). Early work on disjunctive programming is moti-
vated by (i) the practical need to naturally model logical conditions such
as dichotomies and implications and (ii) the theoretical insights gained from
novel structural characterizations (Balas 1979). Contributions highlighting
the importance of both logic and optimization have diverse applications, e.g.
spatial layout (Sawaya and Grossmann 2005), modeling contracts in supply
chain optimization (Park et al. 2006, Rodriguez and Vecchietti 2009), and
manufacturing systems (Fattahi et al. 2014).

While process systems engineers have been developing methods at the in-
terface of logic and optimization, the computer science community has also
been developing hybrid logic/optimization approaches. Typical computer sci-
ence applications requiring both logic and optimization are operating system
scheduling and motion planning in robotics (Aminof et al. 2011, Raman et al.

∗r.misener@imperial.ac.uk; Tel: +44 (0) 20759 48315

Preprint submitted to Elsevier March 14, 2018

MINLP MILP

convex
nonlinear
relaxation

relaxed
solution

SMT SAT

logical
relaxation

relaxed
solution

Figure 1: Mixed-integer nonlinear optimization problems (MINLP) may be solved as a
series of mixed integer linear optimization problems (MILP). Satisfiability modulo theories
problems (SMT) may be solved as a series of propositional satisfiability problems (SAT).

2013, Beaumont et al. 2015). The differences in application domains between
process systems engineering and computer science have unfortunately led to
a divergence in mathematical developments.

But modern challenges in process systems engineering could strongly ben-
efit from methodological contributions in computer science. In particular, we
propose satisfiability modulo theories (SMT) for process systems engineering
applications. We motivate SMT using a series of test beds and show the
applicability of SMT algorithms and implementations.

Section 2 reviews background in both optimization and logic. Section 3
discusses existing optimization/logic hybrids. Section 4 describes three do-
mains where SMT is highly applicable to PSE: (§4.1) two-dimensional bin
packing, (§4.2) model explainers, and (§4.3) SMT-based MINLP solvers. Ta-
ble 1 summarizes our position that SMT has complementary strengths and
weaknesses with respect to mixed-integer nonlinear optimization (MINLP).
We propose SMT as a methodology to address several challenges in process
systems engineering. We also provide a needs analysis identifying the SMT
development required by the process systems engineering community.

Parts of this paper have been previously published, e.g. Callia D’Iddio and
Huth (2017) describe the Section 4.3 ManyOpt tool in detail. The purpose
and novelty of this paper is to show the broad applicability of SMT to PSE.

2. Definitions & Background

Section 2.1 fixes variable notation. Sections 2.2 – 2.4 review mixed-integer
nonlinear optimization (MINLP), propositional satisfiability (SAT), and sat-
isfiability modulo theories (SMT), respectively. Figure 1 diagrams how solv-
ing MINLP problems as a series of mixed integer linear optimization problems
is analogous to solving SMT problems as a series of SAT problems.

2

Table 1: Complementary strengths in SMT/MINLP inspire applying SMT to PSE

SMT MINLP

Traditional
Community

Computer
science

Engineer-
ing

Division in developments stemming
from divergent applications

Deductive
Reasoning

Strong Limited GDP less flexible than SMT

Nonlinear
Functions

Limited Strong Transcendental functions in
MINLP

Optimizing
Objective

Weak Strong Tightly integrated in MINLP

Propositional
Satisfiability

Strong Weak Logical propositions not typical in
MINLP

Warm Starting Strong Weak Would strongly benefit MINLP

Scalability Limited Limited SMT : limited for nonlinear
functions

MINLP: limited for large problems†

Typical
Applications

SMT : Software verification; Scheduling
MINLP: Energy systems design; Biomedical engineering

† For some problems, MINLP can reliably address 103 variables/constraints;
but 102 variables/constraints are more typical for general problem classes

2.1. Notation for Logic & Optimization

Logic and optimization requires three variable types: (i) continuous vari-
ables x ∈ RnC , (ii) integer variables y ∈ ZnI , and (iii) Boolean (propositional)
variables Y ∈ {True, False}nB . Propositional connectives are: ∧ (and), ∨
(or), ¬ (not), → (if. . . then) and ↔ (if and only if). The shorthand Y

i∈I
Yi

represents that exactly one of the propositional variables Yi is true.

2.2. Mixed-Integer Nonlinear Optimization

Traditional mathematical optimization formulations only incorporate con-
tinuous and integer variables. MINLP is defined as (Boukouvala et al. 2016):

min
x

f0(x)

s.t. bLO
i ≤ fi(x) ≤ bUP

i ∀ i ∈M := {1, . . . , M}

xLO
j ≤ xj ≤ xUP

j ∀ j ∈ N := {1, . . . , N}

xj ∈ Z ∀ j ∈ I ⊆ N

(MINLP)

where M, N , and I represent sets of constraints, variables, and discrete

3

variables, respectively. The objective and constraints are functions fi : RN 7→
R ∀ i ∈ {0, . . . , M}. Parameters bLO

i ∈ R ∪ {−∞} and bUP
i ∈ R ∪ {+∞}

bound the set of constraints M; parameters xLO
j ∈ R ∪ {−∞} and xUP

j ∈
R ∪ {+∞} bound the set of variables N . We assume that it is possible to
infer finite bounds on the variables x and that the image of fi is finite on x.

2.3. Propositional Satisfiability
Traditional propositional satisfiability only incorporates Boolean vari-

ables. SAT is defined:

Given a propositional formula ϕ built from the variables Yi, is
there a truth assignment that satisfies ϕ?

There exist efficient, satisfiability-preserving transformations from any propo-
sitional formula ϕ to conjunctive normal form (CNF), so SAT solvers typ-
ically assume that ϕ is written in CNF. In CNF: literals, i.e. propositional
variables Yi or their negation ¬Yi, form clauses Pj, i.e. disjunctions (∨) of
literals. The final propositional formula ϕ =

m∧
j=1

Pj is a conjunction of clauses.

SAT applications include: planning (Kautz and Selman 1992), model
checking (Biere et al. 1999) and scheduling (Zhang 2002). Although SAT
is NP-complete (Cook 1971) and the worst-case complexity is exponential,
modern SAT solvers can handle problems with hundreds of thousands of
variables (Malik and Zhang 2009).

Most SAT solvers use the Davis-Putnam-Logemann-Loveland (DPLL)
search algorithm (Davis and Putnam 1960, Davis et al. 1962). DPLL fixes
variable Yi assignments, i.e. truth assignments, using a tree-based branching
approach. DPLL propagates truth assignments to all clauses Pj. Propagating
truth values may allow DPLL to assign further variables a truth value. If
DPLL finds that a partial assignment is unsatisfiable, i.e. cannot satisfy ϕ,
then the algorithm backtracks and assigns a different value to one of the
variables. DPLL continues until it either: (i) finds a combination of truth
values for Yi satisfying ϕ or (ii) proves the formula ϕ is unsatisfiable. DPLL
also has functionality supporting warm starts.

SAT solving techniques include (Biere et al. 2009): (i) Boolean constraint
propagation, where the current fixed variable set implies variable assign-
ments, (ii) resolution, where sets of clauses derive additional clauses, (iii)
and conflict driven clause learning, where an unsatisfiable result derives ex-
tra clauses pruning the search tree (Davis and Putnam 1960, Davis et al.
1962, Silva and Sakallah 1996). SAT solving methods are highly applicable
to optimization (Hooker and Osorio 1999, Achterberg 2007a).

4

2.4. Satisfiability Modulo Theories

SMT incorporates continuous, integer, and Boolean variables to assess
constraint set satisfiability by separating truth value assignment from the
correctness reasoning with respect to a theory. SMT consists of: (i) a SAT
solver and (ii) a theory solver for a theory of our choice (de Moura and
Bjørner 2008a). The SMT approach to constraint satisfaction uses powerful
SAT solving to derive a, potentially smaller, set of constraints to assess theory
satisfiability. A background theory is a set of axioms and symbols, e.g. the
theory of arithmetic. An SMT solver consists of a SAT solver and a theory
solver. The idea is to leverage the strength and robustness of modern SAT
solvers to search for a feasible solution. The modeling framework exposed
by SMT allows for Boolean variables to be used with background theory
variables, e.g Y → (x ≥ 0) where x is continuous and Y is Boolean, so SMT
is a natural choice when logical decisions form a part of the modeled system.

SMT research dates back to the 1970s with early work on decision proce-
dures (Nelson and Oppen 1979, 1980, Shostak 1979, 1982). Available SMT
theories include: Equality with Uninterpreted functions (EUF), linear arith-
metic LA, and arrays AR (Biere et al. 1999). Most SMT solvers, e.g. Z3,
can also handle nonlinear arithmetic, i.e. polynomial functions. DPLL(T)
generalizes DPLL (Ganzinger et al. 2004). SMT is primarily applied in pro-
gram verification and formal methods, but it also has scheduling and plan-
ning applications (Bjørner and De Moura 2011). SMT provides a (provable)
guarantee of feasibility/infeasibility. This is the different from the idea of a
feasibility pump that uses heuristics to (hopefully) generate a feasible solu-
tion, e.g. in D’Ambrosio et al. (2012).

SMT assesses the satisfiability of a model and, if the model is satisfiable,
the SMT solver returns a witness. If the model is unsatisfiable the SMT
solver can return an unsatisfiable core, a mutually unsatisfiable subset of
model constraints. An unsatisfiable core is a useful tool when addressing
why a model does not behave how we expect or to understand why a model
fails. Commonly used SMT solvers include Z3 (de Moura and Bjørner 2008a)
and MathSAT (Cimatti et al. 2013).

Example 1. Suppose that we wish to satisfy Eq. (1). Equation (1)
combines SAT and the theory of real arithmetic.

(x1 ≤ 1) ∧ (x2 ≤ 2) ∧ ((x1 ≥ 5) ∨ (x3 ≤ 3)) ∧ (x1 + x2 + x3 ≥ 10) (1)

For Eq. (1), SMT leverages a SAT solver by replacing each inequality with

5

auxiliary propositional variables, e.g. Y1 = (x1 ≤ 1), and assessing proposi-
tional satisfiability of the resulting formula:

Y1 ∧ Y2 ∧ (Y3 ∨ Y4) ∧ Y5. (2)

The SAT solver returns an assignment satisfying Eq. (2), e.g. Yi = True, ∀ i.
Then, the real arithmetic theory solver checks the propositional variable
meaning. Here, the theory solver deduces that the assignment is incorrect be-
cause we cannot have both Y1 = (x1 ≤ 1) = True and Y3 = (x1 ≥ 5) = True.
The theory solver encodes additional propositional clauses, e.g. (¬Y1 ∨¬Y3),
augments Eq. (2), and passes Eq. (3) to the SAT solver:

Y1 ∧ Y2 ∧ (Y3 ∨ Y4) ∧ Y5 ∧ (¬Y1 ∨ ¬Y3). (3)

SMT iterates between the SAT and theory solvers until the algorithm termi-
nates, in this case with the point x1 = 5, x2 = 2, x3 = 3.

Example 1 suggests that the SAT and theory solvers are disjoint, but the
most efficient and stable SMT tools integrate the two components (Sebastiani
2007). Interaction between the theory solver and partial SAT solutions allow
the theory solver to identify unsatisfiability in a partial assignment.

The efficacy of an SMT solver depends on the quality of the theory solver
since a propositional encoding has to be created for the SAT solver. If the
encoding is weak and the theory solver cannot strengthen it effectively, the
SMT solver will, in worst case, enumerate all propositional solutions.

3. Logic/Optimization Hybrids

This section reviews mathematical modeling approaches combining optimiza-
tion and logic: disjunctive programming (§3.1), generalized disjunctive pro-
gramming (§3.2), and mixed logical-linear programming (§3.3). We also dis-
cuss prior work on optimization methods using SMT (§3.4) and logic-based
Benders decomposition, a commonly-used solution protocol (§3.5).

3.1. Disjunctive Programming

Balas developed disjunctive programming in the 1970s (Balas 1974, 1975,
1977, 1979). A disjunctive program is given by a linear objective and the

6

disjunction of systems of linear constraints:

min
x

c>x

s.t.
k∨

i=1
Aix ≤ bi

x ∈ Rn,

(4)

with parameters c ∈ Rn, Ai ∈ Rm×n and bi ∈ Rm ∀i = 1, . . . , k. The disjunc-
tive program in Eq. (4) may be written equivalently as a mixed-integer linear
program (MILP) by introducing binary variables y and auxiliary continuous
variables xi (Hooker 2002):

min
x,xi,y

c>x

s.t. Aixi ≤ biyi, ∀i = 1, . . . , k
x = x1 + . . .+ xk

x ∈ Rn

xi ∈ Rn ∀i = 1, . . . , k
y ∈ { 0, 1 }k .

(5)

Disjunctive programming allows model developers to write certain prob-
lems more concisely and/or more meaningfully. For example, selecting one
element i out of a set i ∈ { 1, . . . , n }, i.e. set partitioning, is a common
constraint in process systems engineering:

n∑
i=1

yi = 1 where yi ∈ { 0, 1 } . (6)

As a disjunctive constraint, Eq. (6) is easily identified as a selection con-
straint:

n∨
i=1

yi = 1 ∧
∧
i 6=j

yj = 0
 .

Most approaches for solving disjunctive programs replace propositional vari-
ables with binary variables. In the resulting model, yi = 1 implies a set of
active constraints and yi = 0 implies associated inactive constraints.

3.2. Generalized Disjunctive Programming

Raman and Grossmann (1994) developed generalized disjunctive pro-
gramming (GDP), an extension of disjunctive programming incorporating
nonlinear functions. GDP offers a natural, intuitive framework to model
applications with logical dependencies, e.g. (i) job shop scheduling and (ii)

7

process network superstructure design (Türkay and Grossmann 1996, Lee
and Grossmann 2000). A GDP is formulated (Grossmann and Ruiz 2012):

min
x,Y ,c

Z = f(x) +
∑
k∈K

ck

s.t. g(x) ≤ 0

∨
i∈Dk


Yik

rik(x) ≤ 0
ck = Yik

 k ∈ K

Ω(Y) = True

xl ≤ x ≤ xu
x ∈ Rn, ck ∈ R, Yik ∈ {True, False},

(7)

where f : Rn → R, g : Rn → Rm, and rik : Rn → Rp may be nonlinear
nonconvex functions. Each disjunction k ∈ K is composed of conjunctions
i ∈ Dk, i.e. the Eq. (7) square brackets. Each conjunction has a Boolean
variable Yik, inequality rik(x) ≤ 0, and cost variable ck. If Yik = True then
the formulation enforces both rik(x) ≤ 0 and ck = Yik. Otherwise they are
ignored. Propositional formula Ω(Y) = True typically contains an exclusive
disjunction assumption Y

i∈Dk

Yik for each k ∈ K. The exclusive disjunction

assumption ensures correctness by restricting ck to a single Yik.
To leverage existing MINLP solvers and relaxation techniques, GDP mod-

els are often reformulated as MINLPs (Ruiz et al. 2012). A GDP model may
be reformulated as using either the big-M (Nemhauser and Wolsey 1988)
or hull relaxation (Lee and Grossmann 2000) reformulation. Both reformu-
lations replace propositional variables Yik with binary variables yik where
Yik = True↔ yik = 1. The reformulations also substitute:

∑
i∈Dk

yik = 1, ∀k ∈ K (8)

Ay ≤ a, (9)

for Ω(Y) = True, where Eq. (8) corresponds to Y
i∈Dk

Yik for each k ∈ K. The

big-M reformulation replaces the Eq. (7) disjunction with:

rik(x) ≤Mik(1− yik), ∀k ∈ K, i ∈ Dk,

8

whereas the hull reformulation uses the constraints:

yikrik(νik/yik) ≤ 0, ∀k ∈ K, i ∈ Dk

0 ≤ νik ≤ yikxu, ∀k ∈ K, i ∈ Dk

νik ∈ Rn.

The hull relaxation is at least as tight as big-M but incorporates additional
continuous variables (νik). There has been significant research into appropri-
ate algorithms for interesting classes of GDP’s (Türkay and Grossmann 1996,
Lee and Grossmann 2000, Vecchietti et al. 2003, Ruiz et al. 2012, Trespalacios
and Grossmann 2016).

3.3. Mixed Logical-Linear Programming

Mixed logical-linear programming (MLLP) is formulated (Hooker and
Osorio 1999):

min c>x

s.t. pj(Y ,y)→ (Ajx ≥ aj), j ∈ J | qi(Y ,y), i ∈ I .
(10)

Eq. (10) splits the constraints into continuous and logical parts, on the left
and right of the bar, respectively. The logical part consists of formulas
qi(Y ,y) where Y ∈ {True, False}nB and y ∈ ZnI . The continuous part
is formulated as logical implications such that if pj(Y ,y) is true then the
constraint Ajx ≤ aj is imposed.

MLLP models are solved by branching on the propositional variables Y
and discrete variables y. As branching takes place, MLLP progressively
strengthens the relaxation by enforcing constraints Ajx ≥ aj if the cor-
responding antecedent pj is true. Since the logical part is separated from
the continuous part, MLLP enables propositional satisfiability algorithms to
derive further logical constraints and prune the search space.

An MLLP model may look different from the equivalent MILP. For many
cases, e.g. where MILP binary variables model existence or assignment,
MLLP may result in an easier-to-comprehend model with fewer variables.
MLLP may be extended to models with nonlinear constraints, i.e. to mixed
logical-nonlinear programming (MLNLP) (Türkay and Grossmann 1996, Bol-
lapragada et al. 2001, Bemporad and Giorgetti 2004, 2006, Carbonneau et al.
2011, 2012).

9

3.4. Optimization Methods based on Satisfiability Modulo Theories

Even advances such as GDP (Grossmann and Ruiz 2012) cannot com-
pete with the expressiveness of constraints written in SMT solvers. SMT
solvers support logical theories and dependencies, do precise arithmetic, and
enable incremental solving. But SMT solvers may have performance issues
with division, reasoning over integers, and only limited support for transcen-
dental functions (de Moura and Passmore 2013). MINLP tools support the
transcendental functions and scale well for mixed integer reasoning (Carvajal
et al. 2014), but MINLP solvers cannot solve incrementally and have limited
support for logical constraints and are sensitive to rounding errors. Table 1
summarizes distinctions between SMT and MINLP.

Two of the most prominent SMT-based optimization methods are opti-
mization modulo theories and integer linear programming modulo theories.

Optimization modulo theories integrates optimization and SMT with
respect to the theory of linear arithmetic over the rationals (LA(Q)) (Sebas-
tiani and Tomasi 2015). The models are equivalent to MILP problems. Se-
bastiani and Tomasi (2015) consider different approaches to solve the MILP
problems, e.g. offline and inline schemas with linear, binary or adaptive
search. Sebastiani and Tomasi (2015) compare optimization modulo the-
ories versus linear GDP using both a convex hull and a big-M relaxation.
The comparisons, based on strip packing and job shop scheduling case stud-
ies (Sawaya and Grossmann 2005), show that an SMT solver may be used
for optimization.

Integer linear programming modulo theories is an optimization
framework where MILP, rather than SAT, is leveraged as the efficient solver
(Manolios and Papavasileiou 2013). Integer linear programming modulo the-
ories is an optimization framework in which difference logic is used to commu-
nicate with the solver. Manolios and Papavasileiou (2013) implement their
framework as a constraint handler for the MILP solver SCIP (Achterberg
2007b, 2009). A weakness of an MILP-based approach is that floating point
calculations may lead to wrong answers. Errors based on floating point do
not happen in SMT because all formulae evaluate to true or false only.

3.5. Logic-Based Benders Decomposition

Hybrid optimization/logic approaches have been developed combining
mixed-integer linear programming (MILP) and constraint programming (CP),
e.g. Jain and Grossmann (2001), Maravelias and Grossmann (2004), Li and
Womer (2008), Sitek (2014), or multiple levels of MILP, e.g. Maravelias

10

(2006). The hybrid formulations usually use logic-based Benders decom-
position (LBBD) (Hooker and Ottoson 2003), a generalization of Benders
decomposition (Benders 1962). The principles of Benders decomposition re-
main: we have a master problem and a subproblem which generates cuts if
the solution from the master problem is infeasible. The difference is that
LBBD requires a logic proof deriving an objective bound. Other hybrid al-
gorithms use branch-and-check (Thorsteinsson 2001) or Lagrangian decom-
position (Papageorgiou and Trespalacios 2016).

Hybrid MILP/CP methods are typically applied to scheduling and its
variants (Sitek 2014). This is reasonable: CP is very good at assessing
scheduling feasibility. The problem with hybrid MILP/CP is that, if the
application does not have a suitable CP constraint, a hybrid method may be
poor since bespoke CP constraints take full advantage of very specific math-
ematical structures. This manuscript evaluates satisfiability modulo theories
as an alternative to CP in the hybrid scheme.

4. Satisfiability Modulo Theories for Process Systems Engineering

This section shows the applicability of SMT algorithms and implementa-
tions with respect to: (i) two-dimensional bin packing, (ii) model explainers,
and (iii) MINLP solvers.

4.1. Two-Dimensional Bin Packing
Two-dimensional bin packing (2BP) is the problem:

Given a set of rectangular items I. What is the minimum number
of rectangular bins with width W and height H needed to pack
all items I without overlapping or rotating the items?

This problem has typology class 2BP|O|F (Lodi et al. 1999), i.e. oriented
and free cutting. See Table 2 for descriptions of the sets, parameters and
variables mentioned in the formulations.

4.1.1. Logical Model
In 2BP a core constraint is: two different items in the same bin should

not overlap. A logical formulation naturally captures this if-then relationship
as the following model shows.

min
N∑

b=1
zb (11a)

11

Table 2: Model symbols for the two-dimensional bin packing (2BP) problem.

Name Description
Sets
i, j ∈ I = {1, . . . , N} Items

Parameters
W , H Width and height of the bins respectively
Wi, Hi Width and height of item i respectively

Variables
ζb Activity of bin b, Boolean
ζib Item i assigned to bin b, Boolean
zb Activity of bin b, Binary
zib Item i assigned to bin b, Binary
z

(k)
ij Activity of disjunct i, j, k, Binary
xi, yi Lower left coordinate of item i
v Largest active bin index
mi Bin containing item i
lij Item i left of item j
bij Item i below item j
pij Item i in lower index bin than item j

s.t.
N∨

b=1

ζib ∧
∧

b′ 6=b

¬ζib′

 ∀i ∈ I (11b)

(ζib ∧ ζjb)→

(xi +Wi ≤ xj) ∨ (xj +Wj ≤ xi)

∨(yi +Hi ≤ yj) ∨ (yj +Hj ≤ yi)
∀b ∈ B, i, j ∈ I, i < j

(11c)

ζib → ζb ∀b ∈ B, i ∈ I (11d)
ζb → (zb = 1) ∀b ∈ B (11e)
¬ζb → (zb = 0) ∀b ∈ B (11f)
0 ≤ xi ≤ W −Wi, 0 ≤ yi ≤ H −Hi ∀i ∈ I (11g)
ζb, ζib ∈ {True,False}, zb ∈ {0, 1} ∀b ∈ B, i ∈ I (11h)

Equation (11a) minimizes the number of active bins. Equation (11b) fixes
each item into a single bin. Equation (11c) ensures that any two items in the
same bin do not overlap. Equation (11d) states that a bin must be active if
it contains items. Equations (11e) and (11f) transform Boolean variables to
binary variables to form the Eq. (11a) objective.

12

4.1.2. MILP Models
The MILP formulation (Pisinger and Sigurd 2007) is:

min v (12a)
s.t. lij + lji + bij + bji + pij + pji ≥ 1 ∀i, j ∈ I, i < j (12b)

xi − xj +Wlij ≤ W −Wi ∀i, j ∈ I (12c)
yi − yj +Hbij ≤ H −Hi ∀i, j ∈ I (12d)
mi −mj +Npij ≤ n− 1 ∀i, j ∈ I (12e)
1 ≤ mi ≤ v ∀i ∈ I (12f)
mi ≤ i ∀i ∈ I (12g)
0 ≤ xi ≤ W −Wi, 0 ≤ yi ≤ H −Hi ∀i ∈ I (12h)
lij, bij, pij ∈ {0, 1} ∀i, j ∈ I (12i)
mi, v ∈ Z ∀i ∈ I (12j)

Equation (12a) minimizes the number of active bins. Equation (12b) states
that items are in different bins or that they do not overlap. Equations (12c)
and (12d) characterize non-overlapping items. Equation (12e) characterizes
items being placed in different bins. Equation (12f) assigns the maximal
active bin to v. Equation (12g) is a symmetry breaking constraint.

4.1.3. Optimizing with SMT
SMT assesses feasibility of a constraint set C. When C is feasible, an

SMT solver provides a feasible solution, otherwise SMT derives an unsatis-
fiable core. A simple iterative approach addresses the Eq. (11) optimization
problem: Begin by removing the Eq. (11a) optimization objective which re-
sults in the Eqs. (11b) to (11h) feasibility problem, let this feasibility problem
be F0. After solving F0 with SMT, calculate U1, the objective function eval-
uated at the F0 feasible solution. Define feasibility problem F1 by extending
F0 with additional constraint:

N∑
b=1

zb < U1,

i.e. bound the objective function. Repeat this process until the SMT solver
proves some Fi, i > 0, is infeasible, and thereby conclude that the Fi−1 solu-
tion is optimal. This iterative approach solves successive feasibility problems
to derive a sequence of decreasing objective values {Ui}. The difference be-

13

tween feasibility problems F0 and Fi is that Fi has additional constraints:

N∑
b=1

zb < Ui′ , ∀i′ ∈ {1, . . . , i}. (13)

The Eq. (11) optimization problem may alternatively be addressed via
SMT with (i) one of the Section 3.4 optimization frameworks or (ii) a black-
box SMT-based optimization solver (Bjørner et al. 2015, Sebastiani and
Trentin 2015, Callia D’Iddio and Huth 2017). The following discussion uses
SMT as a feasibility solver to leverage unsatisfiable cores for cut derivation
and branching. Our methods are similar to using a logic-based Benders de-
composition where the master problem is embedded into the algorithm.

4.1.4. Symmetry in Two-Dimensional Bin Packing
This section develops methods where an SMT solver assesses two deci-

sion problems. The first is the two-dimensional orthogonal packing problem
(Baker et al. 1980):

OPP(I ′,W,H) (14)

that questions whether a single bin of width W and height H packs all items
in I ′. The constraints of feasibility problem OPP are the consequent of
Eq. (11c) and Eq. (11g). As shorthand, we use OPP(I) since all bins are
equivalent. The second decision problem is the 2BP decision problem:

D2BP(I, k,W,H) (15)

that questions whether k or fewer bins each of width W and height H can
pack all items in I. To form the D2BP feasibility model, we remove the
Eq. (11a) objective from the Eq. (11) optimization model and set:

ζb = False, ∀b ∈ {k + 1, . . . , N}. (16)

Propagating the Eq. (16) assignments reduces D2BP to variables and con-
straints that only involve bins b ∈ {1, . . . , k}. As shorthand, we use D2BP(k)

since our algorithms are only concerned with the number of available bins.
Two-dimensional bin packing exhibits symmetry, e.g. permuting bin in-

dices immediately results in an identical packing. For an optimal 2BP solu-
tion with objective k, the same solution occurs

(
N
k

)
k! times. One approach to

break this symmetry is by adding additional constraints, e.g. Eq. (12g). But
additional constraints only handle symmetries at a global level and further

14

symmetries arise at a local level when considering OPP.

Descending Strategy. Consider an algorithm that iteratively bounds the ob-
jective with Eq. (13) constraints. Assume that, in the current iteration, the
algorithm checks for (k − 1) bins or fewer. Constraint (13) is problematic
because it symmetrically allows any subset of (k − 1) active bins, i.e. the
SMT solver checks D2BP(k-1) once for each subset of (k − 1) bins. We break
the Eq. (13) symmetry by adding a constraint to deactivate bins, i.e. Eq. (16)
sets ¬ζb. Iteratively introducing Eq. (16) is the descending algorithm. Since
bin deactivation becomes part of the algorithm, we remove variables zb (and
associated constraints) from the Eq. (11) formulation. This algorithm aids
satisfiability searches because the SMT conflict graph from any previous it-
eration is always valid in later iterations.

An alternative method is equivalent to binary search. Initialize the algo-
rithm by setting an lower and upper bound on the problem (1 and N). At
each iteration, activate a number of bins that is halfway between the bounds.
Update the lower/upper bound depending on whether the halfway problem
is unsatisfiable/satisfiable. Terminate when the bounds are equal. We do not
use the binary search algorithm because it assesses unsatisfiability, a costly
operation for D2BP and therefore heuristically poor for this particular ap-
plication. Section 4.3.8 describes how MINLP solver ManyOpt enables binary
search in a more generic context.

Ascending Strategy. While the descending algorithm progressively builds a
conflict graph, it can struggle to efficiently prove optimality as symmetry oc-
curs when addressing infeasibilities. For example, if OPP(I’) is unsatisfiable
for some subset of items I ′, then having items I ′ in any bin for a D2BP(k) in-
stance is a symmetry in unsatisfiability checks. The lower bounding ascending
algorithm reduces symmetry in optimality proofs. This algorithm naturally
extends to a branch-and-bound algorithm described in Section 4.1.5.

At a high level, the ascending and descending algorithms are opposites.
The descending algorithm initially activates all bins and iteratively deacti-
vates bins until the first unsatisfiable result (optimality proof). The ascend-
ing algorithm initially deactivates all but one bin and iteratively activates
one additional bin until the first satisfiable (optimal) result, i.e. it assesses
D2BP(k) for k = 1, . . . , N (in order) and terminates at the first satisfiable k.

Each unsatisfiable ascending algorithm iteration proves that we need at
least one more bin. Also, each unsatisfiable iteration generates an unsatisfi-
able core. In the 2BP case, any Eq. (11c) constraints in the unsatisfiable core

15

are a conflicting subset of items. Assuming that the kth iteration has k active
bins and the items corresponding to Eq. (11c) constraints are {i1, . . . , it}, the
unsatisfiable core has the interpretation:

items {i1, . . . , it} cannot be packed into k bins.

In iteration (k + 1), the ascending algorithm derives cuts relating to this set
of t items and thereby prevents symmetric unsatisfiability assessments. The
symmetric property is: any set of items that cannot be packed in the same
bin cannot be packed in any bin. Between ascending algorithm iterations,
we run intermediate OPP checks on unsatisfiable core subsets and add:

∨
i∈I′
¬ζib, ∀b ∈ B, (17)

for any unsatisfiable result of OPP(I’). The MILP equivalent of Eq. (17) is:

∑
i,j∈I′

i 6=j

pij + pji ≥ 1. (18)

Eq. (17) and (18) have the same feasible space, but the Eq. (18) cut can lose
its logical meaning in an MILP solving strategy with relaxed fractional values.
Eq. (17) will not combine the I ′ items because Eq. (17) is a propositional
clause that is not relaxed in the SAT subsolve of an SMT solver.

When deriving the Eq. (17) cuts, deciding OPP is expensive for each
unsatisfiable core subset since there are exponentially many such subsets.
But the many OPP checks may be unnecessary since any unsatisfiable set of
items dominates any superset for OPP. We leverage this dominance property
by checking all subsets in ascending size order and filtering any dominated
supersets. Filtering all subsets of a given size terminates the OPP checks and
the ascending algorithm continues by assessing the next iteration (additional
bin). Effectively, we’re building a dictionary of previously checked subsets to
prevent repeat checks.

The Eq. (17) cuts aid SMT unsatisfiability proofs by reducing the number
of symmetric OPP checks required to assess D2BP. But, if k active bins are
sub-optimal, the SMT solver will still have to derive an unsatisfiable core.
Building this new core may contain redundant checks that the ascending
algorithm has not yet investigated. We aim to (partially) break this sym-
metry by fixing items and thereby construct a partial optimal solution as
the algorithm progresses, as Fig. 2 shows. The unsatisfiable core associated
with D2BP(k) implies that we require at least (k+ 1) bins to pack the items.

16

(a) Iteration 1: unsatisfiable core. (b) Iteration 1: fixed items.

(c) Iteration 2: unsatisfiable core. (d) Iteration 2: fixed items.

Figure 2: How the algorithms fix initial items on iterations 1 and 2. Running the algorithm
with one bin may return an unsatisfiable core with two items only (a), this means that
these two items must be in their own bins as shown by (b). If later unsatisfiable cores
only contain one unfixed item, e.g., (c), then the unfixed item is also placed in a separate
bin as shown by (d).

Figure 3: A scenario where we cannot definitively choose an item to fix in the next bin.
The blue items are assigned to their respective bins (the position is not fixed within the
bin) and the red (translucent) items are unfixed. Here one of the two red items must
be placed in its own bin but we do not know which choice definitely leads to an optimal
solution.

If the unsatisfiable core in first iteration (one bin) contains only two items,
Fig. 2a, then we pack these items separately, Fig. 2b. On any later iteration,
if the corresponding unsatisfiable core reduces to one item after filtering fixed
items, then we know that this single unfixed item can be placed in the next
bin, Figs. 2c and 2d show this for iteration 2. We stop fixing items if, after
filtering, the corresponding unsatisfiable core has more than one item.

The description above concludes the ascending algorithm definition. this
paragraph motivates the branch-and-bound extension described in the next
section. The Fig. 2 process simply derives a set of items that must be placed
separately in any feasible solution. When we stop fixing items, the cor-
responding unsatisfiable core, after filtering, contains more than one item.
Here the interpretation is: one of the unfixed items must be placed in its
own bin, see e.g. Fig. 3. As Fig. 3 shows, to continue fixing items requires
assessing alternatives, motivating a branch-and-bound strategy.

17

3: UNSAT

5: UNSAT

1: SAT 2 4 6

Figure 4: An example branching tree for an instance with optimal objective 3. Each node
contains an item i and a node’s depth, d, corresponds to fixing item i in bin d+1. Crossed
nodes are pruned. In this instance the first iteration fixed items 3 and 5 in bins 1 and 2.
The second iteration derives unsatisfiable core of unfixed items {1, 2, 4, 6} (the alternative
choices for bin 3) and fixes item 1 in bin 3. The third iteration finds fixing items 3, 5 and
1 separately is feasible. The remaining nodes are pruned since a feasible solution equal to
their depth has already been found. There are no further branches after pruning, therefore
the bottom left branch gives an optimal solution.

4.1.5. SMT Based Branch-and-Bound for 2BP
The branch-and-bound algorithm extends the ascending algorithm of Sec-

tion 4.1.4 by branching on alternative choices from an unsatisfiable core of
unfixed items. Figure 4 provides an overview of the structure of the branch-
and-bound tree. Taking the root node as a special case where we pop an item
from the first unsatisfiable core and fix it in the first bin, each node branches
on the elements of the unfixed items in its corresponding unsatisfiable core.
The branch-and-bound algorithm matches the ascending algorithm up to a
chain of unary branches from the root node of the tree. If the branch-and-
bound algorithm requires a non-trivial decision, e.g. Fig. 3, it forms a set of
branches, each of which corresponds to an unfixed item in the current unsat-
isfiable core. These branches form nodes at some depth d and fix their item
into bin (d + 1). An SMT assessment at a given node addresses a slightly
stricter version of D2BP since there is an item fixed in each bin, i.e. assessing
whether we satisfy 2BP in exactly (d+ 1) bins with the corresponding items
fixes. Since the depth of a node corresponds to how many bins are active,
the branch-and-bound algorithm does not search beyond the depth of any
feasible node that it has found. The branch-and-bound algorithm terminates
by exhausting each alternative path.

Since the branch-and-bound algorithm extends the ascending algorithm,
it still derives Eq. (17) cuts in a local setting. Assuming that OPP(I’) is
unsatisfiable with j ∈ I ′ and j fixed in bin b, the associated local cut is:

∨
i∈I′
i 6=j

¬ζib. (19)

18

Furthermore, any local cuts, i.e. cuts depending on a fixed item, are promoted
to global cuts by including their corresponding fixed item when the branch-
and-bound algorithm investigates sibling or ancestor branches. So all Eq. (17)
cuts can become global regardless of where in the tree they are derived.

Fixing items in the branch-and-bound tree reduces the number of sym-
metric checks on a given root to leaf path. Adding/promoting Eq. (17) cuts
aids unsatisfiability proofs across the entire unexplored tree. But assessing
alternative branches of a given unsatisfiable core retains the symmetry of bin
permutations, hence sibling branches contain identical solutions. The main
problem is that, if we have explored a particular branch having fixed item i1,
then in a sibling branch, having the freedom to select any bin for i1 includes
paths explored by the first branch due to bin permutations. Lemma 1 derives
push back cuts that remove this symmetry by forcing explored branch items
to be pushed back into earlier bins.

Lemma 1. Assume that the branch-and-bound algorithm is assessing alter-
natives at some node of depth b−1, i.e. each of the first b bins have one fixed
item, and that this node is unsatisfiable. Let this node have unsatisfiable core
of unfixed items I ′ = {i1, . . . , im}, m > 1, i.e. we have to assess each of these
items being placed in bin (b + 1). When branching on element ik, k > 1, if
we add the cuts

b∨
b′=1

ζib′ , ∀i ∈ I(k) = {ik′|k′ < k}, (20)

then among all branches the best objective will match that of assessing these
alternative branches without adding the Eq. (20) cuts.

Proof. Define OPTk, k ∈ K = {1, . . . ,m} as the optimal objective of branch
ik with its corresponding Eq. (20) cuts. Assume, for a contradiction, that
there exists item ik′ , 1 < k′ ≤ m such that without adding its Eq. (20) cuts,
gives optimal objective OPT′ that satisfies:

OPT′ < min
k∈K
{OPTk}. (21)

Let f1 map items to bins for the OPT′ solution. We define the set S
(items that violate Eq. (20)) as:

S = {k | f1(ik) ≥ b+ 1, ik ∈ I(k′)}.

Clearly S is non-empty, otherwise OPT′ = OPTk′ ≥ mink∈K{OPTk}. Let
kl = minS. We permute the bins such that item kl is in bin b + 1 with

19

corresponding item to bin map:

f2(i) =


b+ 1, if f1(i) = f1(ikl

)

f1(ikl
), if f1(i) = b+ 1

f1(i), otherwise.

But f2 is a feasible solution for branch ikl
with its associated Eq. (20) cuts

as kl = minS (note that branch i1 does not add any cuts). Since f2 has
objective OPT′:

min
k∈K
{OPTk} ≤ OPTkl

≤ OPT′,

contradicting the Eq. (21) assumption.

Repeatedly applying Lemma 1 in the branch-and-bound algorithm adds a
level of independence between alternative search paths. Eq. (20) constraints
aid unsatisfiability proofs when branching on later elements of I ′, since there
are a larger number of pushed back items. Furthermore, we automatically
remove pushed back items from new branch sets even though they are un-
fixed, thus reducing the number of branching decisions. Lemma 2 proves
that, when pushing back item i, we also can push back all items i′ that are
identical to i.

Lemma 2. Assume that the branch-and-bound algorithm is assessing alter-
natives at some node of depth (b − 1), i.e. each of the first b bins have one
fixed item, and that this node is unsatisfiable. Let this node have unsatisfiable
core of unfixed items I ′ = {i1, . . . , im}, m > 1, i.e. we have to assess each
of these items being placed in bin (b + 1). Then when we push back item
i ∈ I ′ (according to Eq. (20)) we can also push back all items i′ ∈ I that are
identical to i.

Proof. Let item i′ be identical to i such that i′ is not fixed or pushed back (the
lemma holds trivially for these cases). With item i pushed back according
to its Eq. (20) constraints, pick any feasible solution with i′ placed in bin
b′ ≥ b + 1 and let f1 be the associated item to bin map. Then the following
map:

f2(j) =


b+ 1, if f1(j) = b′

b′, if f1(j) = b+ 1

f1(j), otherwise

permutes bins (b + 1) and b′. But f2 is a feasible solution for the item i

branch if we swap identical items i and i′. Since branch i contains any

20

feasible solution with item i′ in bin b′ ≥ b + 1, we can also push back i′ as
well as i.

Finally, since we only fix a single item per bin, we eliminate mirror and
rotational symmetries of fixed items by limiting their center to the lower left
quadrant of their bins with the constraints:

xi ≤
W −Wi

2 , yi ≤
H −Hi

2 . (22)

Equation (22) cuts involve the continuous variables, so they correspond to the
arithmetic theory solver aspect of an SMT solver. Since SAT solver checks
relax the arithmetic theories, these cuts may be less effective in SMT.

4.1.6. Numerical Results
We solve the MILP and SMT models using CPLEX 12.7 and Gurobi

6.0.3, and Z3 4.5.1 (de Moura and Bjørner 2008a), respectively. The MILP
models are in Pyomo (Hart et al. 2011, 2012), and the Z3 implementation is in
Python. All test cases were run on a HP EliteDesk 800 G1 TWR with 16GB
RAM and an Intel R© CoreTM i7-4770 @ 3.40Ghz running Ubuntu 16.04.1
LTS. The test set contains 500 instances grouped into 10 classes. Each class
has 10 instances with 20, 40, 60, 80 and 100 items. These instances were
originally generated by Berkey and Wang (1987). Martello and Vigo (1998)
and Lodi et al. (1999) describe the differences between classes.

Figure 5 is a performance profile comparing time-to-convergence (Dolan
and Moré 2002). We compare the descending, ascending and branch-and-
bound algorithm to CPLEX and Gurobi. We also add a can solve line for
the Pisinger and Sigurd (2007) column generation and constaint program-
ming results. We use SMT to assess OPP, Pisinger and Sigurd (2007) use
a specialized algorithm for the underlying OPP decision problem, the ‘P&S
(2007) solved’ can solve line in Fig. 5 gives an indication of the kind of
performance improvement achieved by using more bespoke methods. We
compare against the mixed-integer solvers in the subsequent analysis. The
branch-and-bound algorithm performs well and solves most tractable prob-
lems within two orders of magnitude of the fastest solve time. The descending
algorithm and the mixed-integer solvers perform similarly. The performance
difference between the ascending and branch-and-bound algorithms, where
the branch-and-bound algorithm solves twice as many instances in the hour,
quantifies the effect of 2BP symmetry. Overall, the methods can solve about
half of the instances within the hour. For the branch-and-bound algorithm,

21

100 101 102 1030

0.2

0.4

0.6

0.8

1

τ

ρ
CPLEX
Gurobi

SMT-Descending
SMT-Ascending

SMT-BB
Can solve

P&S (2007) solved

Figure 5: Performance profile for 500 bin packing instances. Each solver has a timelimit
of one hour. All solvers are limited to one thread. P&S (2007) is the number of problems
that Pisinger and Sigurd (2007) solve to optimality.

this limitation is due to larger instances requiring deeper searches within the
tree. Deeper searches require larger unsatisfiable cores when proving unsat-
isfiability and, for the initial part of the search, there are fewer Eq. (17)
cuts present to aid such proofs. However, assuming that there has been suffi-
cient exploration, i.e. we have generated push back constraints and symmetry
breaking Eq. (17) cuts, SMT BB appears to speed up in its later assessments.

Table 3 displays the number of instances optimally solved in each class.
The branch-and-bound algorithm generally outperforms the other solvers,
but there is a fair amount of differences among classes. Generally, the classes
where the branch-and-bound algorithm solves more instances contain larger
items, i.e. problems with easy-to-generate unsatisfiability proofs. For classes
2, 4 and 6, where instances contain many small items, all methods exhibit in-
ferior performance. While the optimal objective is smaller for these instances,
for SMT the unsatisfiable cores are relatively large and therefore take longer
to generate. Our algorithms use SMT as a black box for unsatisfiable core
generation, so the branch-and-bound algorithm may not have sufficient time
to explore the tree. The relative quality of the branch-and-bound algorithm
shows the usefulness of an unsatisfiable core in algorithm design.

Figure 6 shows a performance profile comparing heuristic performance.
The descending algorithm is a relatively good heuristic. The descending al-

22

Table 3: The number of instances (Berkey and Wang 1987, Martello and Vigo 1998) solved
to optimality by each solver. Each class has 50 instances.

Class CPLEX Gurobi SMT-Descending SMT-Ascending SMT-BB
1 10 7 11 22 36
2 10 10 11 11 11
3 11 12 17 33 45
4 11 11 12 11 11
5 13 13 13 32 43
6 11 13 14 14 14
7 7 4 10 11 15
8 5 3 10 10 16
9 47 49 1 36 49
10 12 8 21 26 33

100 101 102 1030

0.2

0.4

0.6

0.8

1

τ

ρ

CPLEX
Gurobi

SMT-Descending
SMT-Ascending

SMT-BB

Figure 6: Performance profile for 500 bin packing instances comparing heuristic times to
optimality. Each solver has a timelimit of one hour. All solvers are limited to one thread.

23

gorithm progressively reduces the number of available bins, to reduce symme-
try, while building a globally applicable conflict graph, that helps in finding
heuristic solutions. The ascending algorithm performs less well as its first
‘heuristic’ solution is an optimal solution, i.e. it has to prove optimality. The
branch-and-bound algorithm’s heuristic performance is also quite good, this
suggests that the tree depth should not be too far from the optimal depth,
i.e. the branch-and-bound algorithm does not have to search too far.

4.2. Unsatisfiable Core for Cut Generation and Model Explainers

SMT solvers can derive an unsatisfiable core of a constraint set, i.e. a
constraint subset that is unsatisfiable. This section discusses cut generation
and model explainers as two applications of unsatisfiable cores.

4.2.1. Cut Generation
Logic-based Benders decomposition (LBBD) is a framework for solving

problems with master-subproblem structure, e.g. a high level assignment and
subproblem assessments resulting from the assignments. In LBBD, the sub-
problem generates cutting planes to add to the master problem. These cut-
ting planes can be infeasibility cuts which exclude infeasible solutions or lower
bounding cuts which enforce an objective bound.

In each major iteration, a subproblem can generate a cut incorporating all
of its corresponding assignments, but the resulting cut is often weak because
fewer assignments may give an equivalent cut, i.e. a smaller unsatisfiable core.
Hooker (2007) develops an approach generating stronger cuts by repeating
local subproblem assessments and removing subsets that do not change the
underlying result. Hooker (2007) thereby derives a minimal unsatisfiable
core, an unsatisfiable core where removing any constraint makes it satisfi-
able. SMT does not necessarily calculate minimal unsatisfiable cores, but
the reported cores may be smaller than the entire assignment set. Smaller
cores imply fewer of the expensive local iterations needed to reduce to a
minimal unsatisfiable core.

4.2.2. Model Explainers
Practical applications of optimization models and algorithms involve us-

ing abstract modeling software. Consider a scenario where a mathematical
model is known to be correct and an instance is known to be feasible. If a
solver or algorithm states infeasibility, then an implementation needs to be
corrected. Here SMT is a useful tool to aid development.

24

7

1

8

14

15

13 3(?) (†)

Figure 7: An example of a Section 4.1.5 branch-and-bound tree where an incorrect im-
plementation requires correction. Red nodes are unsatisfiable, green nodes are satisfiable
and blue nodes are reported unsatisfiable nodes that we know a feasible solution for, i.e.
an incorrect conclusion. The error assumed here is that we generate a local cut that item
15 is not in bin 4 at (?), however the incorrect implementation fails to remove/promote
the local cut before switching to branch (†) giving the wrong conclusion.

A feasible but incorrect model may be over- or under-constrained. Over-
constrained models may report an sub-optimal objective or infeasible con-
straints. Reasoning the incorrectness of a model implementation may be
difficult because of various properties, e.g. the instance size or incorrect ap-
plication of transformation techniques. Analyzing a concrete instance can
be a time consuming task since it may have a large number of constraints.
But an incorrect model still contains a constraint subset explaining what is
wrong, i.e. an unsatisfiable core.

When an incorrect model is over-constrained, it is sufficient to limit our
discussion to the infeasible case since, if the model reports a sub-optimal ob-
jective, we are questioning why a better objective is infeasible. The unsatis-
fiable core corresponding to the infeasible model may have many constraints,
but we can filter, i.e. eliminate, correct constraints such as variable bounds.
After filtering, the constraint subset may be much smaller than the entire
instance and analysis becomes easier. If we assume further that we know
a feasible solution, we can add constraints fixing variables to this solution.
Fixing variables may produce an unsatisfiable core in terms of the feasible
solution that we fed to the model. Fixing a solution is more useful when the
incorrect model reports the wrong optimal objective (here we would need to
know a feasible solution that is better than the reported optimal objective).

Another, more likely case for elusive bugs is when we have an algorithm
that adds and removes constraints, i.e. an issue may only occur for larger

25

instances. Compulsory computational considerations may be a reason for
having such a case, e.g. a given node of a branch-and-bound algorithm can
add and remove constraints to an existing instance, or build a fresh instance.
However, we may prefer the former when considering the computational cost
of building a fresh instance. Figure 7 provides a concrete example in the
context of the branch-and-bound algorithm of Section 4.1.5. The incorrect
implementation assumed here is that local cuts are not removed when switch-
ing to branches where they are no longer valid. As Fig. 7 shows, we get a
reported optimal objective of 5 when we should get 4. After filtering con-
straints at (†) in Fig. 7, e.g. variable bounds and inactive bins, an unsatisifa-
ble core consists of only 7 constraints among which are constraints generated
by the algorithm. In particular, we have the constraint item 15 is not in
bin 4, the significance of this constraint is that it corresponds to a local cut
generated at (?) therefore it is no longer valid telling us that there is an issue
with handling of local cuts. The fact that we can limit our view to just a few
constraints makes this error easier to find. Given just the result ‘infeasible’,
finding such an error may require multiple re-solves with minor source code
changes or log file parses, both of these tasks are time consuming (more so
if the only failing instances are large).

4.3. Optimization Solvers based on Satisfiability Modulo Theories

SMT-based optimization solvers typically extend SMT solvers, e.g. Barce-
logic (Bofill et al. 2008), Yices (Dutertre and de Moura 2006) and Z3 (de
Moura and Bjørner 2008a). This section discusses solvers: νZ (§4.3.1), Op-
tiMathSAT (§4.3.2) Symba (§4.3.3), and ManyOpt (§4.3.4). We focus
on ManyOpt, the first SMT-based MINLP solver.

4.3.1. νZ
The νZ extension to the SMT solver Z3 adds optimization functionality

(Bjørner and Phan 2014, Bjørner et al. 2015). νZ addresses weighted Max-
SAT/SMT and linear arithmetic problems. νZ also supports multi-objective
optimization via: lexicographic, Pareto fronts and box objectives. The νZ
algorithms resemble the Nieuwenhuis and Oliveras (2006) approach, but,
instead of implementing additional rules, νZ updates a variable value as
the search progresses. The solver also has a resolution-based approach that
reasons based on the unsatisfiable core (Narodytska and Bacchus 2014).

Bjørner and Phan (2014) solve the MILP subproblems by using SMT to
find a feasible solution and invoking the simplex algorithm to minimize under

26

the given integral assignment, the integral assignment is then rejected and a
bounding constraint is placed on the objective.

4.3.2. OptiMathSAT
OptiMathSAT (Sebastiani and Trentin 2015) extends the SMT solver

MATSAT5 (Cimatti et al. 2013). The optimization capabilities are similar
to νZ, but the optimization constraints are formulated differently. Sebastiani
and Tomasi (2015) compare OptiMathSAT to a GDP framework and show
that the solver is competitive with the state-of-the-art.

4.3.3. Symba
Symba (Li et al. 2014) is built on top of Z3, but its implementation

differs from νZ. Symba optimizes for linear real arithmetic (not limited to
rational) however it does not support strict inequalities. The optimization
process maintains a triple 〈M,U,O〉 where M is a set of models, U is an
underapproximation and O is an overapproximation. The inference rules
correspond to initialization, checking for unboundedness and tightening the
under and over approximations. Symba only uses Z3 as a black box.

4.3.4. ManyOpt
ManyOpt (Callia D’Iddio and Huth 2017) is a deterministic ε-global op-

timization MINLP solver that extends SMT solving. ManySAT (Hamadi
et al. 2009) inspires the ManyOpt design. The hypothesis is that no single
method wins on a varied class of optimization problems. Therefore, ManyOpt
parallelizes different approaches on a problem input and speeds up solving
time by returning the first to “win” on that input. The ManyOpt solver is
presented elsewhere, e.g. Callia D’Iddio and Huth (2017). The discussion
here describes the relationship to the PSE community.

4.3.5. ManyOpt Tool Architecture
Figure 8 diagrams the ManyOpt structure. As input, ManyOpt takes (i)

a relative optimality tolerance for the computed global optimum and (ii)
an OSiL model (Fourer et al. 2010) of an MINLP problem. Since ManyOpt
relies on exisiting SMT solvers, all nonlinearities must be polynomial. Then,
ManyOpt executes in parallel a set of dataflows on the OSiL input. As shown
in Fig. 8, one orange block is effectively a single feature and a feature vector is
a selection of at least one feature from each layer, i.e. a feature vector realizes
configurable tool layers. A feature is a particular method and a feature vector
represents combining features to create an SMT-based optimizer. The tool

27

layers are: pre-processing, integrality management, continuous relaxation
optimization, and feasibility checking. Each layer contains an extensible
feature list. For each feature vector, the data flow illustrated in Fig. 8 is:

• SMTLIB 2.0 representation This layer transforms the OSiL input
into several SMTLIB 2.0 representations. These representations reflect
the different feature vectors that will subsequently compete in parallel.

• Pre-processing SMT solving is rooted in SAT solving, so Boolean
variables Y ∈ {True, False}nB are most natural to SMT. Recogniz-
ing that binary variables approximate Boolean variables better than
general integer variables, this phase may transform the SMTLIB 2.0
representation from an MINLP formulation allowing general integer
variables to a formulation where all discrete variables are binary. Sec-
tion 4.3.6 discusses the binarization and binarized flattening techniques.

• Integrality management This layer, the first of three in the main op-
timization process, develops logical equivalents of branch-and-bound.
Section 4.3.7 discusses the one-by-one and all-in-one approaches. This
layer produces a continuous relaxation on integer and binary variables
only. The propositional formulas are not relaxed. The layer subse-
quently relies on the continuous relaxation optimization layer to solve
them. SMT solvers typically accept nonlinear arithmetic coupled with
Boolean constraints, so this layer transforms the MINLP into prob-
lem(s) the SMT solvers can handle.

• Continuous relaxation optimization This layer takes a nonlinear
optimization problem with propositional formulas and reduces it to a
series of feasibility checks, i.e. SMT solves. Section 4.3.8 describes the
naive, unbounded binary search, and hybrid features.

• Feasibility checking An SMT solver, using an SMTLIB 2.0 represen-
tation, verifies the feasibility of an NLP problem. ManyOpt supports
the solver Z3 (de Moura and Bjørner 2008b) directly. ManyOpt also
supports SMT solvers MathSAT (Bruttomesso et al. 2008), CVC4 (Bar-
rett et al. 2011) and YICES (Dutertre 2014) through the PySMT library
(Gario and Micheli 2015).

Many of the ManyOpt features mimick techniques familiar from MINLP
optimization, but the ManyOpt approach tends to delegate algorithmic as-
pects to the SMT solver and focus on declarative aspects. In other words,

28

Figure 8: The architecture, approach, and dataflow of ManyOpt (Callia D’Iddio and Huth
2017). Section 4.3.5 describes how each layer (yellow block) contains a number of possible
features (orange blocks). A feature vector is a specific choice of a feature (or features)
from each layer. ManyOpt competes many feature vectors in parallel.

29

ManyOpt solves MINLP by solving a series of SMT problems rather than di-
rectly developing the algorithmic machinery present in most MINLP solvers.

4.3.6. ManyOpt Pre-Processing Features
Disabled. The MINLP can be directly sent to the main optimization process.

Binarization. Binarization transforms integer variables into binary {0, 1}
variables, e.g. as described by Floudas (1995). An integer variable x ∈ Z
bounded by xLO ≤ x ≤ xUP may be replaced by q many variables y1, . . . , yq

with q = 1+
⌈
log2(xUP − xLO)

⌉
, equality constraint x = xLO+y1+· · ·+2q−1yq,

and yi ∈ {0, 1} for all i = 1, . . . , q.

Binarized flattening. An alternative to (algorithmic) branch-and-bound declar-
atively flattens the integer variables during the pre-processing stage, thus
moving algorithmic complexity to the SMT solvers via the logical OR (∨)
operator. In other words, binarized flattening reformulates all integer vari-
ables x ∈ Z with xLO ≤ x ≤ xUP into a continuous variable x ∈ R and Eq.
(23) introduces one OR operator for each integer in the range [xLO, xUP].

(
x = xLO

)
∨
(
x = xLO + 1

)
∨ · · · ∨

(
x = xUP − 1

)
∨
(
x = xUP

)
. (23)

Binarization and binarized flattening. We can combine binarization and bi-
narized flattening using 1 +

⌈
log2(xUP − xLO)

⌉
OR operators.

4.3.7. ManyOpt Integrality Management Features
If the pre-processing layer uses the binarized flattening feature or if there

are no discrete variables in the optimization problem, then this layer is ir-
relevant. Otherwise, this layer performs the same function as a standard
branch-and-bound approach by developing a new constraint or set of con-
straints that enforce any integrality violated in the feasibility checking layer.

Disabled. Disabling integrality management delegates enforcing integrality
to the feasibility checking layer, where SMT solvers can attempt to manage
this – for example with integer type variables.

One-by-one. If a relaxed solution violates at least one integrality constraint,
choose one variable x whose value v violates an integrality constraints and
add the assertion x ≤ bvc ∨ x ≥ dve to the optimization problem. Since
disjunctions are supported in SMT as assertions, this avoids splitting into
two optimization problems by delegating combinatorial complexity to the
SAT engine of the SMT solver.

30

All-in-one. The one-by-one approach only adds one assertion per iteration,
but SMT solvers permit adding more than one constraint at a time. The
all-in-one approach collects all variables whose values violate integrality con-
straints in a feasible solution and adds the above disjunction as an assertion
for all such variables simultaneously.

4.3.8. ManyOpt Continuous relaxation optimization features
This layer provides algorithms to solve nonlinear optimization problems

with propositional formulas. ManyOpt supports: the naive method (Eén
and Sörensson 2006), the unbounded binary search method (Beaumont et al.
2015, Callia D’Iddio and Huth 2017), and a hybrid combination of these two
methods (Callia D’Iddio and Huth 2017).

Naive. The naive approach is equivalent to the Section 4.1.4 descending strat-
egy. It consists of a loop in which the feasibility checker (i) finds a value for
the objective function and (ii) attempts to find a lower value by adding an
assertion that the objective function must be smaller than that value, e.g.
Eén and Sörensson (2006). When the problem becomes infeasible, the last
found objective value, if there is one, is the optimal solution.

Unbounded binary search. This method has two main phases:

1. The bounds search which establishes initial lower and upper bounds on
the objective value. The optimal value is between these bounds.

2. The bisection phase, in which the interval between the lower and upper
objective bound is split in two equal parts, until the optimal value of
the objective is found, relative to the specified accuracy.

Hybrid method. This modifies unbounded binary search so that in each phase
a naive step decides if the current value is optimal and the method can stop.

4.3.9. Manyopt experimental results
ManyOpt is not directly comparable to other MINLP solvers in the pro-

cess systems engineering literature, e.g. ANTIGONE (Misener and Floudas
2014), because it has a different set of capabilities. ManyOpt relies on ex-
act, rational arithmetic in an SMT solver, so it is robust to floating point
rounding errors. In the Neumaier (2004) classification, ManyOpt is a rigor-
ous method. Meanwhile, ANTIGONE (Misener and Floudas 2014) relies on
floating point arithemtic in a linear programming solver and is therefore a
complete method (Neumaier 2004), i.e. ANTIGONE assumes exact compu-
tations. At this writing, most SMT solvers only support nonlinearity in the

31

form of polynomials. Since ManyOpt relies on the SMT solvers, it does not
currently support transcendental functions.

Warm-starting enables what-if scenarios. ManyOpt calls an SMT solver, so it
directly inherits the warm-start capabilities of SMT. To see the advantage of
warm-starting an MINLP solver, consider prob03 from MINLPLib2:

min
x1,x2

3 · x1 + 2 · x2

x1 · x2 ≥ 3.5
x1, x2 ∈ {1, 2, 3, 4, 5}.

Solving prob03, ManyOpt accurately gives an objective value of 10 (x1 =
x2 = 2). But what if, after inspecting the solution, we want to also add the
constraint x1 ≤ x2 − 1? In ManyOpt, we can immediately add the constraint
and, after warm-starting, get the new optimal objective value of 11 (x1 =
1, x2 = 4). Of course, an alternative (and the only option in most MINLP
solvers) is to cold-start a new MINLP problem.

In the case of prob03, ManyOpt uses 37 calls to SMT solver Z3 for the ini-
tial solve and 19 additional Z3 calls for the warm-start. For a cold-start of the
new problem, ManyOpt requires 39 Z3 calls. So, for prob03, using the warm-
starting utility in ManyOpt saves 20 Z3 calls. Of course, SMT solvers use ex-
ponential algorithms, so there is no guarantee that warm-starting ManyOpt
will improve performance. But the core ManyOpt strategy is to parallelize
different approaches to a problem input, so the warm-starting utility of-
fers a possibility of returning more quickly by giving more feature vectors.
ManyOpt has more opportunities to benefit from warm-starting if the problem
has many integer variables.

Warm-starting enables model exploration. When solving the classical pooling
problem haverly in MINLPLib2 with a relative optimality tolerance of 10−6,
ManyOpt returns an objective value of -399.9997. The known optimal objec-
tive value is -400 and ManyOpt is correct with respect to the tolerance. Inves-
tigating a solution, ManyOpt also returns some small values for flows within
the network, e.g. x3 = 125/33554432, x6 = x8 = 1/4096. As engineers, we
may wish to know: (i) are those flow effectively 0? or (ii) will setting those
flows to 0 somehow damage the best feasible solution? In ManyOpt, we can
set those three variables to 0, i.e. x3 = x6 = x8 = 0, and warm-start the
solver. The returned solution, with objective value −399.9999, shows that
those flows are effectively 0.

32

Other experimental results. Appendix A gives some experimental results for
MINLPLib (Bussieck et al. 2003) benchmarks solved by ManyOpt. The results
show that ManyOpt is an effective MINLP solver and that ManyOpt can be
used on a wide range of test instances. ManyOpt is frequently slower than
state-of-the-art MINLP solvers, but it offers the trade-off of a completely
different method to address the problem.

5. Conclusion

This manuscript proposes applying satisfiability modulo theories to pro-
cess systems engineering. We motivate our position using three test beds: (i)
two-dimensional bin packing, (ii) model explainers, and (iii) MINLP solvers.

Acknowledgments
The following support is gratefully acknowledged: the EPSRC Centre for
Doctoral Training in High Performance Embedded and Distributed Systems
to M.M. (EP/L016796/1), EPSRC with a Doctoral Training Fees Award to
A.C.D., EPSRC projects EP/N020030/1 and EP/N023242/1 to M.R.H., an
EPSRC Research Fellowship to R.M. (EP/P016871/1), and EPSRC project
EP/P008739/1 to R.M.

References

Achterberg, T. 2007a. Conflict analysis in mixed integer programming. Discrete
Optim. 4 4–20.

Achterberg, T. 2007b. Constraint integer programming. Ph.D. thesis, Technische
Universität Berlin.

Achterberg, T. 2009. SCIP: solving constraint integer programs. Math. Program.
Comput. 1 1–41.

Aminof, B., O. Kupferman, R. Lampert. 2011. Formal analysis of online algo-
rithms. Automated Technology for Verification and Analysis, 9th Interna-
tional Symposium, ATVA 2011, Taipei, Taiwan. Proceedings. 213–227.

Baker, B. S., E. G. Coffman, Jr., R. L. Rivest. 1980. Orthogonal packings in two
dimensions. SIAM J. Comput. 9 846–855.

Balas, E. 1974. Intersection cuts from disjunctive constraints. Tech. Rep. Man-
agement Sciences Research Report No. 330, Graduate School of Industrial
Administration, Carnegie Mellon University.

Balas, E. 1975. Disjunctive programming: Cutting planes from logical conditions.
Nonlinear Programming 2 . Elsevier, 279–312.

Balas, E. 1977. A note on duality in disjunctive programming. J. Optim. Theory
Appl. 21 523–528.

Balas, E. 1979. Disjunctive programming. Ann. Discrete Math. 5 3–51.
Barrett, C., C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,

A. Reynolds, C. Tinelli. 2011. CVC4. Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA. 171–177.

33

Beaumont, P., N. Evans, M. Huth, T. Plant. 2015. Confidence analysis for nuclear
arms control: SMT abstractions of Bayesian belief networks. Computer Secu-
rity - ESORICS 2015 - 20th European Symposium on Research in Computer
Security, Vienna, Austria. 521–540.

Bemporad, A., N. Giorgetti. 2004. SAT-Based Branch & Bound and Optimal
Control of Hybrid Dynamical Systems. Springer Berlin Heidelberg, Berlin,
Heidelberg, 96–111.

Bemporad, A., N. Giorgetti. 2006. Logic-based solution methods for optimal con-
trol of hybrid systems. IEEE Transactions on Automatic Control 51 963–976.

Benders, J. F. 1962. Partitioning procedures for solving mixed-variables program-
ming problems. Numerische Mathematik 4 238–252.

Berkey, J. O., P. Y. Wang. 1987. Two-dimensional finite bin-packing algorithms.
Journal of the Operational Research Society 38 423–429.

Biere, A., A. Cimatti, E. Clarke, Y. Zhu. 1999. Tools and Algorithms for the Con-
struction and Analysis of Systems: 5th International Conference, TACAS’99 ,
chap. Symbolic Model Checking without BDDs. Springer Berlin Heidelberg,
Berlin, Heidelberg, 193–207.

Biere, A., M. Heule, H. van Maaren, T. Walsh. 2009. Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press,
Amsterdam, The Netherlands.

Bjørner, N., L. De Moura. 2011. Satisfiability modulo theories: Introduction and
applications. Commun. ACM 69–77.

Bjørner, N., A.-D. Phan. 2014. νZ - maximal satisfaction with Z3. Proceedings
of the 6th International Symposium on Symbolic Computation in Software
Science, SCSS , vol. 30. 1–9.

Bjørner, N., A.-D. Phan, L. Fleckenstein. 2015. Tools and Algorithms for the Con-
struction and Analysis of Systems: 21st International Conference, TACAS
2015 , chap. νZ - An Optimizing SMT Solver. Springer Berlin Heidelberg,
194–199.

Bofill, M., R. Nieuwenhuis, A. Oliveras, E. Rodŕıguez-Carbonell, A. Rubio. 2008.
Computer Aided Verification: 20th International Conference, CAV 2008 ,
chap. The Barcelogic SMT Solver. Springer Berlin Heidelberg, 294–298.

Bollapragada, S., O. Ghattas, J. N. Hooker. 2001. Optimal design of truss struc-
tures by logic-based branch and cut. Oper. Res. 49 42–51.

Boukouvala, F., R. Misener, C. A. Floudas. 2016. Global optimization advances in
mixed-integer nonlinear programming, MINLP, and constrained derivative-
free optimization, CDFO. Eur. J. Oper. Res. 252 701–727.

Bruttomesso, R., A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani. 2008. The
MathSAT 4SMT solver. Computer Aided Verification, 20th International
Conference, CAV 2008, Princeton, NJ, USA. 299–303.

Bussieck, M. R., A. S. Drud, A. Meeraus. 2003. MINLPLib—A Collection of Test
Models for Mixed-Integer Nonlinear Programming. INFORMS J. Comput.
15 114–119.

Callia D’Iddio, A., M. Huth. 2017. Manyopt: An extensible tool for mixed, non-
linear optimization through SMT solving. CoRR abs/1702.01332.

Carbonneau, R. A., G. Caporossi, P. Hansen. 2011. Globally optimal clusterwise
regression by mixed logical-quadratic programming. Eur. J. Oper. Res. 212
213 – 222.

34

Carbonneau, R. A., G. Caporossi, P. Hansen. 2012. Extensions to the repeti-
tive branch and bound algorithm for globally optimal clusterwise regression.
Comput. Oper. Res. 39 2748 – 2762.

Carvajal, R., S. Ahmed, G. Nemhauser, K. Furman, V. Goel, Y. Shao. 2014. Using
diversification, communication and parallelism to solve mixed-integer linear
programs. Oper. Res. Lett. 42 186–189.

Cimatti, A., A. Griggio, B. J. Schaafsma, R. Sebastiani. 2013. Tools and Algorithms
for the Construction and Analysis of Systems: 19th International Conference,
TACAS 2013 , chap. The MathSAT5 SMT Solver. Springer Berlin Heidelberg,
93–107.

Cook, Stephen A. 1971. The complexity of theorem-proving procedures. Proceed-
ings of the third annual ACM symposium on Theory of computing - STOC
’71 . ACM Press, New York, New York, USA, 151–158.

D’Ambrosio, C., A. Frangioni, L. Liberti, A. Lodi. 2012. A storm of feasibility
pumps for nonconvex MINLP. Math. Program. 136 375–402.

Davis, M., G. Logemann, D. Loveland. 1962. A machine program for theorem-
proving. Commun. ACM 5 394–397.

Davis, M., H. Putnam. 1960. A computing procedure for quantification theory. J.
ACM 7 201–215.

de Moura, L., N. Bjørner. 2008a. Tools and Algorithms for the Construction and
Analysis of Systems: 14th International Conference, TACAS 2008 , chap. Z3:
An Efficient SMT Solver. Springer Berlin Heidelberg, 337–340.

de Moura, L., N. Bjørner. 2008b. Z3: an efficient SMT solver. Tools and Algorithms
for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Budapest, Hungary. 337–340.

de Moura, L., G. O. Passmore. 2013. Computation in real closed infinitesimal
and transcendental extensions of the rationals. M. P. Bonacina, ed., Auto-
mated Deduction - CADE-24 , Lecture Notes in Computer Science, vol. 7898.
Springer Berlin Heidelberg, 178–192.

Dolan, E. D., J. J. Moré. 2002. Benchmarking optimization software with perfor-
mance profiles. Math. Program. 91 201–213.

Dutertre, B. 2014. Yices 2.2. Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, AU . 737–744.

Dutertre, B., L. de Moura. 2006. Computer Aided Verification: 18th International
Conference, CAV 2006 , chap. A Fast Linear-Arithmetic Solver for DPLL(T).
Springer Berlin Heidelberg, 81–94.

Eén, N., N. Sörensson. 2006. Translating pseudo-Boolean constraints into SAT.
JSAT 2 1–26.

Fattahi, A., S. Elaoud, E. S. Azer, M. Turkay. 2014. A novel integer programming
formulation with logic cuts for the U-shaped assembly line balancing problem.
International J. Production Res. 52 1318–1333.

Floudas, C.A. 1995. Nonlinear and mixed-integer optimization: fundamentals and
applications. Oxford University Press, New York, NY.

Fourer, R., J. Ma, R. K. Martin. 2010. OSiL: An instance language for optimiza-
tion. Comp. Opt. Appl. 45 181–203.

35

Ganzinger, H., G. Hagen, R. Nieuwenhuis, A. Oliveras, C. Tinelli. 2004. Com-
puter Aided Verification: 16th International Conference, CAV 2004 , chap.
DPLL(T): Fast Decision Procedures. Springer Berlin Heidelberg, 175–188.

Gario, M., A. Micheli. 2015. PySMT: a solver-agnostic library for fast prototyping
of SMT-based algorithms. In Proc. of the 13th International Workshop on
Satisfiability Modulo Theories (SMT). 373–384.

Grossmann, I. E., J. P. Ruiz. 2012. Generalized disjunctive programming: A
framework for formulation and alternative algorithms for MINLP optimiza-
tion. J. Lee, S. Leyffer, eds., Mixed Integer Nonlinear Programming. Springer
New York, New York, NY, 93–115.

Hamadi, Y., S. Jabbour, L. Sais. 2009. ManySAT: A parallel SAT solver. JSAT
6. IOS Press.

Hart, W. E., J.-P. Watson, D. L. Woodruff. 2011. Pyomo: modeling and solving
mathematical programs in Python. Math. Program. Comput. 3 219–260.

Hart, William E, Carl Laird, Jean-Paul Watson, David L Woodruff. 2012. Pyomo–
optimization modeling in Python, vol. 67. Springer Science & Business Media.

Hooker, J. N. 2002. Logic, optimization, and constraint programming. INFORMS
J. Comput. 14 295–321.

Hooker, J. N. 2007. Planning and scheduling by logic-based Benders decomposi-
tion. Oper. Res. 55 588–602.

Hooker, J. N., M. A. Osorio. 1999. Mixed logical-linear programming. Discrete
Appl. Math. 96-97 395–442.

Hooker, J. N., G. Ottoson. 2003. Logic-based Benders decomposition. Math.
Program. 96 33–60.

Jain, V., I. E. Grossmann. 2001. Algorithms for Hybrid MILP/CP Models for a
Class of Optimization Problems. INFORMS J. Comput. 13 258–276.

Kautz, H., B. Selman. 1992. Planning as satisfiability. European Conference on
Artificial Intelligence. ECAI ’92, John Wiley & Sons, Inc., New York, NY,
USA, 359–363.

Lee, S., I. E. Grossmann. 2000. New algorithms for nonlinear generalized disjunc-
tive programming. Comput. Chem. Eng. 24 2125–2141.

Li, H., K. Womer. 2008. Scheduling projects with multi-skilled personnel by a
hybrid MILP/CP Benders decomposition algorithm. J. Sched. 12 281–298.

Li, Y., A. Albarghouthi, Z. Kincaid, A. Gurfinkel, M. Chechik. 2014. Symbolic
optimization with SMT solvers. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages - POPL ’14 .
ACM Press, New York, New York, USA, 607–618.

Lodi, A., S. Martello, D. Vigo. 1999. Heuristic and metaheuristic approaches for
a class of two-dimensional bin packing problems. INFORMS J. Comput. 11
345–357.

Malik, S., L. Zhang. 2009. Boolean satisfiability from theoretical hardness to
practical success. Commun. ACM 52 76.

Manolios, P., V. Papavasileiou. 2013. Computer Aided Verification: 25th Interna-
tional Conference, CAV 2013 , chap. ILP Modulo Theories. Springer Berlin
Heidelberg, 662–677.

Maravelias, C. T. 2006. A decomposition framework for the scheduling of single-
and multi-stage processes. Comput. Chem. Eng. 30 407–420.

36

Maravelias, C. T., I. E. Grossmann. 2004. A hybrid MILP/CP decomposition
approach for the continuous time scheduling of multipurpose batch plants.
Comput. Chem. Eng. 28 1921–1949.

Maravelias, C. T., C. Sung. 2009. Integration of production planning and schedul-
ing: Overview, challenges and opportunities. Comput. Chem. Eng. 33 1919–
1930.

Martello, S., D. Vigo. 1998. Exact solution of the two-dimensional finite bin pack-
ing problem. Management Sci. 44 388–399.

Misener, R., C. A. Floudas. 2014. ANTIGONE: Algorithms for coNTinuous Integer
Global Optimization of Nonlinear Equations. J. Glob. Optim. 59 503–526.

Narodytska, N., F. Bacchus. 2014. Maximum satisfiability using core-guided
MaxSAT resolution. AAAI Conference on Artificial Intelligence. 2717–2723.

Nelson, G., D. C. Oppen. 1979. Simplification by cooperating decision procedures.
ACM T. Program. Lang. Syst. 1 245–257.

Nelson, G., D. C. Oppen. 1980. Fast decision procedures based on congruence
closure. J. ACM 27 356–364.

Nemhauser, G. L., L. A. Wolsey. 1988. Integer and Combinatorial Optimization.
Wiley-Interscience, New York, NY, USA.

Neumaier, A. 2004. Complete search in continuous global optimization and con-
straint satisfaction. Acta Numerica 13 271–369.

Nieuwenhuis, R., A. Oliveras. 2006. Theory and Applications of Satisfiability Test-
ing - SAT 2006 , chap. On SAT Modulo Theories and Optimization Problems.
Springer Berlin Heidelberg, 156–169.

Papageorgiou, D. J., F. Trespalacios. 2016. Pseudo basic steps: Bound im-
provement guarantees from Lagrangian decomposition in convex disjunc-
tive programming URL http://www.optimization-online.org/DB_FILE/
2016/09/5627.pdf.

Park, M., S. Park, F. D. Mele, I. E. Grossmann. 2006. Modeling of purchase and
sales contracts in supply chain optimization. 2006 SICE-ICASE International
Joint Conference. 5727–5732.

Pisinger, D., M. Sigurd. 2007. Using decomposition techniques and constraint pro-
gramming for solving the two-dimensional bin-packing problem. INFORMS
J. Comput. 19 36–51.

Raman, R., I. E. Grossmann. 1994. Modelling and computational techniques for
logic based integer programming. Comput. Chem. Eng. 18 563–578.

Raman, V., N. Piterman, H. Kress-Gazit. 2013. Provably correct continuous con-
trol for high-level robot behaviors with actions of arbitrary execution du-
rations. 2013 IEEE International Conference on Robotics and Automation,
Karlsruhe, Germany. 4075–4081.

Rodriguez, M. A., A. Vecchietti. 2009. Logical and generalized disjunctive pro-
gramming for supplier and contract selection under provision uncertainty.
Ind. Eng. Chem. Res. 48 5506–5521.

Ruiz, J. P., J.-H. Jagla, I. E. Grossmann, A. Meeraus, A. Vecchietti. 2012. Algebraic
Modeling Systems: Modeling and Solving Real World Optimization Problems,
chap. Generalized Disjunctive Programming: Solution Strategies. Springer
Berlin Heidelberg, Berlin, Heidelberg, 57–75.

37

http://www.optimization-online.org/DB_FILE/2016/09/5627.pdf
http://www.optimization-online.org/DB_FILE/2016/09/5627.pdf

Sawaya, N. W., I. E. Grossmann. 2005. A cutting plane method for solving lin-
ear generalized disjunctive programming problems. Comput. Chem. Eng. 29
1891–1913.

Sebastiani, R. 2007. Lazy Satisfiability Modulo Theories. Journal on Satisfiability,
Boolean Modeling and Computation 3 141–224.

Sebastiani, R., S. Tomasi. 2015. Optimization modulo theories with linear rational
costs. ACM T. Comput. Log. (TOCL) 16 1–43.

Sebastiani, R., P. Trentin. 2015. Computer Aided Verification: 27th International
Conference, CAV 2015 , chap. OptiMathSAT: A Tool for Optimization Mod-
ulo Theories. Springer International Publishing, 447–454.

Shostak, R. E. 1979. A practical decision procedure for arithmetic with function
symbols. J. ACM 26 351–360.

Shostak, R. E. 1982. 6th Conference on Automated Deduction: New York, USA,
chap. Deciding combinations of theories. Springer Berlin Heidelberg, Berlin,
Heidelberg, 209–222.

Silva, J. P. M., K. A. Sakallah. 1996. GRASP: a new search algorithm for sat-
isfiability. IEEE/ACM International Conference on Computer-aided Design.
ICCAD ’96, IEEE Computer Society, Washington, DC, USA, 220–227.

Sitek, P. 2014. A hybrid CP/MP approach to supply chain modelling, optimization
and analysis. Computer Science and Information Systems (FedCSIS). 1345–
1352.

Thorsteinsson, E. S. 2001. Branch-and-check: A hybrid framework integrating
mixed integer programming and constraint logic programming. Principles
and Practice of Constraint Programming - CP 2001 2239 16–30.

Trespalacios, F., I. E. Grossmann. 2014. Review of mixed-integer nonlinear and
generalized disjunctive programming methods. Chemie Ingenieur Technik 86.

Trespalacios, F., I. E. Grossmann. 2016. Cutting plane algorithm for convex gen-
eralized disjunctive programs. INFORMS J. Comput. 28 209–222.

Türkay, M., I. E. Grossmann. 1996. Logic-based MINLP algorithms for the optimal
synthesis of process networks. Comput. Chem. Eng. 20 959–978.

Vecchietti, A., S. Lee, I. E. Grossmann. 2003. Modeling of discrete/continuous
optimization problems: Characterization and formulation of disjunctions and
their relaxations. Comput. Chem. Eng. 27 433–448.

Zhang, H. 2002. Generating college conference basketball schedules by a SAT
solver. Proceedings of the Fifth International Symposium on the Theory and
Applications of Satisfiability Testing. 281–291.

Appendix A. ManyOptStatistics for Solved Benchmarks

38

St
at

is
ti

cs
fo

r
so

lv
ed

be
nc

hm
ar

ks
Be

nc
hm

ar
k

Ty
pe

#
Va

r
#

C
on

Fo
un

d
ob

je
ct

iv
e

So
lv

ed
by

#
It

er
So

lv
in

g
tim

e
To

ta
l

tim
e

ge
ar

IN
LP

5
1

0.
00

07
al

lin
on

e.
ub

s
48

0.
19

0.
28

nv
s0

4
IN

LP
3

1
0.

72
al

lin
on

e.
ub

s
55

0.
32

0.
38

nv
s0

6
IN

LP
3

1
1.

77
03

on
eb

yo
ne

.n
ve

28
0.

40
0.

47
nv

s0
7

IN
LP

4
3

4.
0

al
lin

on
e.

hy
b

37
0.

23
0.

29
nv

s1
6

IN
LP

3
1

0.
70

31
al

lin
on

e.
nv

e
36

0.
24

0.
28

pr
ob

02
IQ

C
P

7
9

11
22

35
.0

bi
n

fla
t.h

yb
36

17
.7

1
17

.7
6

pr
ob

03
IQ

C
P

3
2

10
.0

bi
n

fla
t.u

bs
5

0.
00

0.
03

nv
s0

3
IQ

C
Q

P
3

3
16

.0
bi

n
fla

t.n
ve

4
0.

02
0.

06
nv

s1
0

IQ
C

Q
P

3
3

-3
10

.8
bi

n
fla

t.h
yb

12
0.

13
0.

19
nv

s1
1

IQ
C

Q
P

4
4

-4
31

.0
bi

n
fla

t.n
ve

9
2.

71
2.

72
nv

s1
2

IQ
C

Q
P

5
5

-4
81

.2
bi

n
fla

t.n
ve

12
99

2.
20

99
9.

18
nv

s1
5

IQ
P

4
2

1.
0

bi
n

fla
t.u

bs
4

0.
02

0.
03

st
m

iq
p2

IQ
P

5
4

2.
0

al
lin

on
e.

hy
b

43
0.

31
0.

38
st

m
iq

p3
IQ

P
3

2
-6

.0
no

bb
.u

bs
14

0.
02

0.
06

st
te

st
1

IQ
P

6
2

-3
2.

00
59

bi
n

fla
t.u

bs
20

0.
11

0.
14

st
te

st
2

IQ
P

7
3

-9
.2

5
bi

n
fla

t.n
ve

3
26

.0
4

26
.0

7
st

te
st

3
IQ

P
14

11
-7

.0
bi

n
fla

t.u
bs

6
41

.7
7

41
.9

3
st

te
st

4
IQ

P
7

6
-7

.0
no

bb
.u

bs
14

0.
06

0.
08

st
te

st
ph

4
IQ

P
4

11
-8

0.
5

bi
n

fla
t.n

ve
6

0.
03

0.
06

ex
12

21
M

BN
LP

6
6

7.
66

71
bi

n
fla

t.h
yb

4
0.

13
0.

14
ex

12
26

M
BN

LP
6

6
-1

7.
0

bi
n

fla
t.h

yb
2

0.
02

0.
03

ge
ar

2
M

BN
LP

29
5

0.
00

03
al

lin
on

e.
nv

e
10

1.
35

1.
45

st
e1

5
M

BN
LP

6
6

7.
66

71
bi

n
fla

t.h
yb

4
0.

12
0.

15
au

to
co

rr
be

rn
20

-0
3

M
BQ

C
P

22
2

-7
2.

0
bi

n
fla

t.n
ve

74
0.

35
0.

41
au

to
co

rr
be

rn
25

-0
3

M
BQ

C
P

27
2

-9
2.

0
bi

n
fla

t.n
ve

94
3.

65
3.

78
sp

or
tt

ou
rn

am
en

t0
6

M
BQ

C
P

17
2

12
.0

bi
n

fla
t.h

yb
12

0.
05

0.
07

st
e1

3
M

BQ
C

P
3

3
2.

0
bi

n
fla

t.n
ve

2
0.

01
0.

03
al

an
M

BQ
P

9
8

2.
92

52
bi

n
fla

t.n
ve

7
0.

06
0.

08
gb

d
M

BQ
P

5
5

2.
2

al
lin

on
e.

ub
s

12
0.

00
0.

03
st

e2
7

M
BQ

P
5

7
2.

0
bi

n
fla

t.h
yb

4
0.

14
0.

16
ge

ar
3

M
IN

LP
9

5
0.

00
03

al
lin

on
e.

nv
e

50
0.

29
0.

37
ge

ar
4

M
IN

LP
7

2
1.

64
34

bi
n

fla
t.h

yb
52

18
.9

7
19

.3
7

nv
s0

1
M

IN
LP

4
4

12
.4

69
6

al
lin

on
e.

hy
b

92
1.

73
1.

87
nv

s2
1

M
IN

LP
4

3
-5

.6
84

4
on

eb
yo

ne
.u

bs
15

7
1.

78
1.

96
st

e3
8

M
IN

LP
5

4
71

97
.7

27
7

al
lin

on
e.

ub
s

56
2.

37
2.

48

39

Be
nc

hm
ar

k
Ty

pe
#

Va
r

#
C

on
Fo

un
d

ob
je

ct
iv

e
So

lv
ed

by
#

It
er

So
lv

in
g

tim
e

To
ta

l
tim

e
st

e4
0

M
IN

LP
5

9
30

.4
14

2
bi

n
fla

t.n
ve

5
0.

62
0.

67
tln

2
M

IQ
C

P
9

13
5.

3
bi

n
fla

t.h
yb

8
0.

06
0.

08
ch

an
ce

N
LP

5
4

29
.8

94
6

no
bb

.u
bs

14
0.

24
0.

26
ex

14
1

1
N

LP
4

5
0.

00
09

no
bb

.u
bs

13
1.

47
1.

49
ex

14
1

5
N

LP
7

7
0.

0
no

bb
.u

bs
6

0.
02

0.
04

ex
4

1
1

N
LP

2
1

-7
.4

86
7

no
bb

.h
yb

4
0.

02
0.

04
ex

4
1

3
N

LP
2

1
-4

43
.6

70
9

no
bb

.n
ve

12
0.

08
0.

12
ex

4
1

4
N

LP
2

1
0.

0
no

bb
.n

ve
6

0.
02

0.
05

ex
4

1
5

N
LP

3
1

0.
0

no
bb

.u
bs

31
0.

15
0.

18
ex

4
1

6
N

LP
2

1
7.

0
no

bb
.n

ve
3

0.
00

0.
03

ex
4

1
7

N
LP

2
1

-7
.5

no
bb

.n
ve

5
0.

02
0.

04
ex

4
1

8
N

LP
3

2
-1

6.
73

88
no

bb
.n

ve
5

0.
03

0.
05

ex
4

1
9

N
LP

3
3

-5
.5

07
8

no
bb

.h
yb

16
0.

06
0.

11
ex

7
2

2
N

LP
7

6
-0

.3
88

5
no

bb
.n

ve
12

12
3.

07
12

3.
11

ex
7

3
1

N
LP

5
8

0.
34

27
no

bb
.n

ve
60

5.
57

5.
67

ex
7

3
2

N
LP

5
8

1.
09

03
no

bb
.u

bs
15

0.
11

0.
14

ex
8

1
3

N
LP

3
1

3.
0

no
bb

.h
yb

10
0.

28
0.

30
ex

8
1

4
N

LP
3

1
0.

0
no

bb
.h

yb
2

0.
00

0.
03

ex
8

1
5

N
LP

3
1

-1
.0

31
2

no
bb

.u
bs

12
0.

18
0.

21
ex

8
1

6
N

LP
3

1
-1

0.
08

6
no

bb
.n

ve
5

0.
08

0.
11

m
at

ho
pt

1
N

LP
3

3
0.

0
no

bb
.n

ve
18

0.
09

0.
12

m
at

ho
pt

2
N

LP
3

5
0.

0
no

bb
.h

yb
2

0.
01

0.
02

m
at

ho
pt

5
4

N
LP

2
1

0.
0

no
bb

.h
yb

4
0.

02
0.

04
m

at
ho

pt
5

7
N

LP
2

1
-4

.4
36

5
no

bb
.n

ve
11

0.
08

0.
10

m
at

ho
pt

5
8

N
LP

2
1

-0
.6

85
7

no
bb

.n
ve

6
0.

03
0.

05
pr

ob
09

N
LP

4
2

0.
0

no
bb

.n
ve

4
0.

02
0.

04
rb

ro
ck

N
LP

3
1

0.
0

no
bb

.u
bs

42
0.

19
0.

24
st

e0
6

N
LP

4
4

0.
0

no
bb

.h
yb

2
0.

01
0.

02
st

e1
1

N
LP

4
3

18
9.

31
16

no
bb

.n
ve

9
1.

69
1.

72
st

e1
2

N
LP

5
4

-4
.5

13
9

no
bb

.u
bs

16
1.

86
1.

88
st

e1
7

N
LP

3
2

37
6.

29
24

no
bb

.u
bs

18
0.

07
0.

10
st

e1
9

N
LP

3
3

-1
18

.7
04

6
no

bb
.u

bs
22

0.
18

0.
20

ci
rc

le
Q

C
P

4
11

4.
57

51
no

bb
.u

bs
13

3.
45

3.
48

ex
3

1
1

Q
C

P
9

7
70

49
.2

48
5

no
bb

.u
bs

25
0.

31
0.

33
ex

3
1

4
Q

C
P

4
4

-3
.9

99
7

no
bb

.u
bs

14
0.

16
0.

19
ex

5
2

2
ca

se
1

Q
C

P
10

7
-3

99
.9

99
5

no
bb

.u
bs

28
0.

48
0.

50

40

Be
nc

hm
ar

k
Ty

pe
#

Va
r

#
C

on
Fo

un
d

ob
je

ct
iv

e
So

lv
ed

by
#

It
er

So
lv

in
g

tim
e

To
ta

l
tim

e
ex

5
2

2
ca

se
2

Q
C

P
10

7
-5

99
.9

99
7

no
bb

.u
bs

30
0.

42
0.

43
ex

5
2

2
ca

se
3

Q
C

P
10

7
-7

49
.9

99
6

no
bb

.u
bs

30
0.

47
0.

52
ex

5
3

2
Q

C
P

23
17

1.
86

47
no

bb
.u

bs
12

52
.5

7
52

.6
0

ex
5

4
2

Q
C

P
9

7
75

12
.2

30
4

no
bb

.u
bs

20
0.

41
0.

45
ex

9
1

1
Q

C
P

14
13

-1
3.

0
no

bb
.n

ve
9

0.
00

0.
03

ex
9

1
2

Q
C

P
11

10
-1

6.
0

no
bb

.n
ve

4
0.

00
0.

03
ex

9
1

4
Q

C
P

11
10

-3
7.

0
no

bb
.n

ve
3

0.
02

0.
04

ex
9

1
5

Q
C

P
14

13
-1

.0
no

bb
.h

yb
4

0.
00

0.
02

ex
9

1
8

Q
C

P
15

13
-3

.2
5

no
bb

.n
ve

4
0.

01
0.

02
ex

9
2

3
Q

C
P

17
16

0.
00

02
no

bb
.u

bs
18

0.
36

0.
38

ha
ve

rly
Q

C
P

13
10

-3
99

.9
99

7
no

bb
.u

bs
28

0.
58

0.
62

ho
us

e
Q

C
P

9
9

-4
49

9.
99

99
no

bb
.u

bs
32

0.
98

1.
03

po
in

tp
ac

k0
2

Q
C

P
6

4
1.

99
99

no
bb

.u
bs

14
0.

17
0.

18
st

e0
1

Q
C

P
3

2
-6

.6
66

no
bb

.u
bs

16
25

3.
42

25
3.

46
st

e0
2

Q
C

P
4

4
20

1.
15

93
no

bb
.n

ve
2

0.
04

0.
06

st
e0

5
Q

C
P

6
4

70
49

.2
49

5
no

bb
.u

bs
34

0.
83

0.
85

st
e0

7
Q

C
P

11
8

-3
99

.9
99

7
no

bb
.h

yb
53

20
5.

10
20

5.
15

st
e0

8
Q

C
P

3
3

0.
74

19
no

bb
.u

bs
12

0.
06

0.
09

st
e1

8
Q

C
P

3
5

-2
.8

28
3

no
bb

.u
bs

12
0.

06
0.

08
st

e3
0

Q
C

P
15

16
-1

.5
81

no
bb

.u
bs

14
23

.7
3

23
.7

5
st

e3
3

Q
C

P
10

7
-3

99
.9

99
7

no
bb

.u
bs

28
19

3.
08

19
3.

14
st

e3
4

Q
C

P
7

5
0.

01
56

no
bb

.n
ve

6
0.

02
0.

03
wa

st
ew

at
er

02
m

1
Q

C
P

20
15

13
0.

70
26

no
bb

.n
ve

97
30

9.
32

30
9.

38
di

sp
at

ch
Q

C
Q

P
5

3
31

55
.2

88
3

no
bb

.n
ve

69
38

.6
4

38
.7

7
ex

5
2

4
Q

C
Q

P
8

7
-4

49
.9

99
2

no
bb

.u
bs

28
0.

76
0.

79
ex

9
2

4
Q

C
Q

P
9

8
0.

5
no

bb
.n

ve
3

0.
02

0.
04

ex
9

2
6

Q
C

Q
P

17
13

-0
.9

99
2

no
bb

.u
bs

12
0.

31
0.

34
ex

9
2

8
Q

C
Q

P
7

6
1.

5
no

bb
.u

bs
3

0.
01

0.
03

st
e0

9
Q

C
Q

P
3

2
-0

.4
99

no
bb

.u
bs

10
0.

04
0.

06
ex

2
1

3
Q

P
14

10
-1

4.
99

9
no

bb
.h

yb
33

19
.7

1
19

.7
7

ex
2

1
4

Q
P

7
6

-1
1.

0
no

bb
.n

ve
3

0.
01

0.
03

im
m

un
Q

P
22

8
0.

0
no

bb
.u

bs
76

24
.2

1
24

.2
6

ne
m

ha
us

Q
P

6
6

31
.0

no
bb

.h
yb

2
0.

01
0.

02
sa

m
ba

l
Q

P
18

11
3.

96
86

no
bb

.u
bs

30
21

9.
76

21
9.

78
st

bp
af

1b
Q

P
11

11
-4

2.
96

25
no

bb
.u

bs
22

0.
35

0.
39

st
bp

k1
Q

P
5

7
-1

2.
99

94
no

bb
.u

bs
18

0.
13

0.
14

41

Be
nc

hm
ar

k
Ty

pe
#

Va
r

#
C

on
Fo

un
d

ob
je

ct
iv

e
So

lv
ed

by
#

It
er

So
lv

in
g

tim
e

To
ta

l
tim

e
st

bp
v1

Q
P

5
5

10
.0

no
bb

.u
bs

25
0.

00
0.

04
st

bp
v2

Q
P

5
6

-7
.9

99
4

no
bb

.u
bs

18
0.

06
0.

08
st

bs
j2

Q
P

4
6

1.
00

05
no

bb
.h

yb
16

0.
40

0.
41

st
bs

j3
Q

P
7

2
-8

67
68

.5
49

8
no

bb
.u

bs
44

5.
15

5.
22

st
cq

pf
Q

P
5

7
-2

.7
5

no
bb

.h
yb

4
0.

01
0.

03
st

cq
pj

k2
Q

P
4

2
-1

2.
49

9
no

bb
.u

bs
13

0.
06

0.
08

st
e2

2
Q

P
3

6
-8

4.
99

98
no

bb
.u

bs
20

0.
11

0.
14

st
e2

5
Q

P
5

9
0.

89
08

no
bb

.n
ve

75
35

.6
2

35
.6

9
st

e2
6

Q
P

3
5

-1
85

.7
79

2
no

bb
.h

yb
18

0.
11

0.
12

st
gl

m
p

fp
1

Q
P

5
9

10
.0

no
bb

.u
bs

18
45

3.
69

45
3.

75
st

gl
m

p
fp

3
Q

P
5

9
-1

2.
0

no
bb

.h
yb

4
0.

01
0.

02
st

gl
m

p
kk

90
Q

P
6

8
3.

00
01

no
bb

.u
bs

16
40

5.
05

40
5.

09
st

gl
m

p
kk

92
Q

P
5

9
-1

2.
0

no
bb

.h
yb

6
0.

04
0.

05
st

gl
m

p
kk

y
Q

P
8

14
-2

.4
99

8
no

bb
.n

ve
46

82
7.

40
82

7.
46

st
gl

m
p

ss
1

Q
P

6
12

-2
4.

57
05

no
bb

.n
ve

11
5

90
1.

45
90

1.
52

st
ht

Q
P

3
4

-1
.5

99
7

no
bb

.u
bs

14
0.

08
0.

10
st

pa
n1

Q
P

4
5

-5
.2

83
1

no
bb

.u
bs

16
0.

44
0.

48
st

ph
11

Q
P

4
5

-1
1.

28
07

no
bb

.u
bs

18
0.

15
0.

19
st

ph
12

Q
P

4
5

-2
2.

62
46

no
bb

.u
bs

20
0.

19
0.

21
st

ph
13

Q
P

4
11

-1
1.

28
07

no
bb

.u
bs

18
0.

21
0.

23
st

ph
14

Q
P

4
11

-2
29

.7
22

1
no

bb
.u

bs
26

0.
56

0.
60

st
ph

3
Q

P
7

6
-4

20
.2

34
7

no
bb

.h
yb

52
42

3.
17

42
3.

25
st

ph
ex

Q
P

3
6

-8
4.

99
96

no
bb

.u
bs

17
0.

09
0.

11
st

qp
k1

Q
P

3
5

-2
.9

99
5

no
bb

.u
bs

16
0.

07
0.

12
st

z
Q

P
4

6
0.

0
no

bb
.n

ve
3

0.
03

0.
06

gr
ap

hp
ar

t
2p

m
-0

04
4-

00
44

BQ
P

49
17

-1
3.

0
bi

n
fla

t.n
ve

12
17

8.
03

17
8.

18
fa

c1
M

BN
LP

23
19

16
09

12
61

2.
35

1
bi

n
fla

t.u
bs

34
9.

36
9.

40
el

f
M

BQ
C

P
55

39
0.

19
16

bi
n

fla
t.h

yb
20

64
.5

0
64

.5
4

sp
or

tt
ou

rn
am

en
t0

8
M

BQ
C

P
30

2
24

.0
bi

n
fla

t.h
yb

19
10

35
.1

9
10

35
.3

0
ex

12
63

a
M

IQ
C

P
25

36
19

.6
bi

n
fla

t.h
yb

8
2.

20
2.

27
ex

12
64

a
M

IQ
C

P
25

36
8.

6
bi

n
fla

t.h
yb

7
1.

37
1.

42
ex

12
65

a
M

IQ
C

P
36

45
10

.3
bi

n
fla

t.n
ve

9
1.

23
1.

28
tln

4
M

IQ
C

P
25

25
8.

3
bi

n
fla

t.h
yb

6
27

.3
7

27
.4

3
tln

5
M

IQ
C

P
36

31
10

.3
bi

n
fla

t.n
ve

12
15

32
.8

2
15

39
.8

9
ex

14
2

5
N

LP
5

6
0.

00
02

no
bb

.u
bs

13
7.

74
7.

80
ex

4
1

2
N

LP
2

1
-6

63
.5

no
bb

.u
bs

18
3.

10
3.

13

42

Be
nc

hm
ar

k
Ty

pe
#

Va
r

#
C

on
Fo

un
d

ob
je

ct
iv

e
So

lv
ed

by
#

It
er

So
lv

in
g

tim
e

To
ta

l
tim

e
lin

ea
r

N
LP

25
21

89
.0

00
6

no
bb

.n
ve

59
5

4.
28

4.
68

ka
ll

co
ng

ru
en

tc
irc

le
s

c4
1

Q
C

P
13

25
0.

85
84

no
bb

.h
yb

2
0.

32
0.

35
pr

ol
og

Q
C

Q
P

21
23

0.
0

no
bb

.u
bs

27
10

28
.4

2
10

28
.4

9
st

qp
c-

m
3c

Q
P

11
11

0.
0

no
bb

.h
yb

4
0.

54
0.

57
st

qp
c-

m
4

Q
P

11
11

0.
0

no
bb

.n
ve

3
0.

62
0.

64
hm

itt
el

m
an

BN
LP

17
8

13
.0

bi
n

fla
t.h

yb
2

0.
04

0.
06

gr
ap

hp
ar

t
2g

-0
04

4-
16

01
BQ

P
49

17
-9

54
07

7.
0

bi
n

fla
t.n

ve
28

77
3.

26
77

3.
45

ex
12

63
M

BQ
C

P
93

56
19

.6
bi

n
fla

t.n
ve

12
1.

67
1.

69
ex

12
64

M
BQ

C
P

89
56

8.
6

bi
n

fla
t.n

ve
8

0.
41

0.
45

no
us

1
M

BQ
C

Q
P

51
44

N
on

e
al

lin
on

e.
nv

e
1

0.
01

0.
03

no
us

2
M

BQ
C

Q
P

51
44

N
on

e
al

lin
on

e.
nv

e
1

0.
01

0.
02

hy
br

id
dy

na
m

ic
fix

ed
M

BQ
P

72
80

1.
47

37
bi

n
fla

t.n
ve

2
0.

01
0.

04
ex

12
66

a
M

IQ
C

P
49

54
16

.3
bi

n
fla

t.h
yb

16
19

.5
0

19
.5

5
tlo

ss
M

IQ
C

P
49

54
16

.3
bi

n
fla

t.n
ve

19
20

.1
5

20
.4

1
tlt

r
M

IQ
C

P
49

55
48

.0
66

6
bi

n
fla

t.n
ve

9
8.

82
8.

88
fa

c2
M

BN
LP

67
34

33
18

37
49

8.
17

7
bi

n
fla

t.u
bs

48
10

22
.4

8
10

22
.6

5
ex

12
65

M
BQ

C
P

13
1

75
10

.3
bi

n
fla

t.u
bs

16
0.

72
0.

75
ex

12
66

M
BQ

C
P

18
1

96
16

.3
bi

n
fla

t.h
yb

2
3.

05
3.

27
au

to
co

rr
be

rn
20

-0
5

M
BN

LP
22

2
-4

16
.0

bi
n

fla
t.n

ve
41

8
19

3.
18

19
3.

63
fa

c3
M

BQ
P

67
34

31
98

23
09

.8
48

5
bi

n
fla

t.u
bs

46
41

.2
9

41
.4

0
po

rt
fo

lr
ou

nd
lo

t
M

IN
LP

18
12

N
on

e
al

lin
on

e.
ub

s
1

0.
02

0.
04

ed
ge

cr
os

s1
0-

01
0

M
BQ

C
P

92
48

2
1.

0
bi

n
fla

t.n
ve

13
1.

66
1.

71
ed

ge
cr

os
s1

0-
02

0
M

BQ
C

P
92

48
2

11
.0

bi
n

fla
t.u

bs
24

17
34

.1
8

17
34

.3
1

43

	Introduction
	Definitions & Background
	Notation for Logic & Optimization
	Mixed-Integer Nonlinear Optimization
	Propositional Satisfiability
	Satisfiability Modulo Theories

	Logic/Optimization Hybrids
	Disjunctive Programming
	Generalized Disjunctive Programming
	Mixed Logical-Linear Programming
	Optimization Methods based on Satisfiability Modulo Theories
	Logic-Based Benders Decomposition

	Satisfiability Modulo Theories for Process Systems Engineering
	Two-Dimensional Bin Packing
	Logical Model
	MILP Models
	Optimizing with SMT
	Symmetry in Two-Dimensional Bin Packing
	SMT Based Branch-and-Bound for 2BP
	Numerical Results

	Unsatisfiable Core for Cut Generation and Model Explainers
	Cut Generation
	Model Explainers

	Optimization Solvers based on Satisfiability Modulo Theories
	Z
	OptiMathSAT
	Symba
	ManyOpt
	ManyOpt Tool Architecture
	ManyOpt Pre-Processing Features
	ManyOpt Integrality Management Features
	ManyOpt Continuous relaxation optimization features
	Manyopt experimental results

	Conclusion
	ManyOptStatistics for Solved Benchmarks

