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Abstract Semidefinite programming (SDP) relaxations have been intensively
used for solving discrete quadratic optimization problems, in particular in the
binary case. For the general non-convex integer case with box constraints, the
branch-and-bound algorithm Q-MIST has been proposed [11], which is based
on an extension of the well-known SDP-relaxation for max-cut. For solving
the resulting SDPs, Q-MIST uses an off-the-shelf interior point algorithm.

In this paper, we present a tailored coordinate ascent algorithm for solving
the dual problems of these SDPs. Building on related ideas of Dong [15], it
exploits the particular structure of the SDPs, most importantly a small rank
of the constraint matrices. The latter allows both an exact line search and a
fast incremental update of the inverse matrices involved, so that the entire al-
gorithm can be implemented to run in quadratic time per iteration. Moreover,
we describe how to extend this approach to a certain two-dimensional coor-
dinate update. Finally, we explain how to include arbitrary linear constraints
into this framework, and evaluate our algorithm experimentally.
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1 Introduction

We address integer quadratic optimization problem of the following form

min x⊤Q̂x+ l̂⊤x+ ĉ

s.t. Ax ≤ b (IQP)

x ∈ Z
n,

where Q̂ is a symmetric n× n matrix, l̂ ∈ R
n, ĉ ∈ R, A ∈ R

m×n, and b ∈ R
m.

Even in the special case of a convex objective function, i.e., when Q̂ is pos-
itive semidefinite, Problem (IQP) is NP-hard in general due to the presence of
integrality constraints. In fact, in the unconstrained case it is equivalent to the
NP-hard closest vector problem [4]. However, dual bounds can be computed
by relaxing integrality and then solving the resulting convex QP-relaxations.
These bounds can be used within a branch-and-bound algorithm [8] and im-
proved in various ways exploiting integrality [7,9]. Dual bounds can also be
derived from semidefinite relaxations [25]. More generally, convex discrete op-
timization problems can be addressed by solving convex non-linear relaxations
or by other approaches such as outer approximation [5]. In the case of a non-
convex objective, the problem remains NP-hard even if integrality constraints
are dropped. If only box constraints are considered, the resulting problem is
called Box-QP, it has attracted a lot of attention in the literature [14,12,6].

For integer variables subject to box constraints and a general quadratic
objective function, a branch-and-bound algorithm called Q-MIST has been
presented by Buchheim and Wiegele [11]. It is based on SDP formulations that
generalize the well-known SDP relaxation for max-cut [27]. At each node of
the branch-and-bound tree, Q-MIST calls a standard interior point method to
solve a semidefinite relaxation obtained from Problem (IQP). It is well-known
that interior point algorithms are theoretically efficient to solve semidefinite
programs, they are able to solve medium to small size problems with high
accuracy, but they are memory and time consuming, becoming less useful for
large scale instances. For a survey on interior point methods for SDP; see,
e.g., [29].

Several researchers have proposed other approaches for solving SDPs that
all attempt to overcome the practical difficulties of interior point methods.
The most common ones include bundle methods [19] and (low rank) refor-
mulations as unconstrained non-convex optimization problems together with
the use of non-linear methods to solve the resulting problems [21,13,16]. Re-
cently, another algorithm has been proposed by Dong [15] for solving a class
of semidefinite programs. The author also considers Problem (IQP) with box-
constraints and reformulates it as a convex quadratically constrained problem,
then convex relaxations are produced via a cutting surface procedure based
on diagonal perturbations. The separation problem turns out to be a semidef-
inite problem with convex non-smooth objective function, and it is solved by
a primal barrier coordinate minimization algorithm with exact line search.



SDP-based B&B for QIO 3

Our Contribution. In this paper, we focus on improving Q-MIST by using
an alternative method for solving the SDP relaxation. Our approach tries to
exploit the specific problem structure, namely a small total number of (active)
constraints and low rank constraint matrices that appear in the semidefinite
relaxation. We exploit this special structure by solving the dual problem of the
semidefinite relaxation by means of a coordinate ascent algorithm that adapts
and generalizes the algorithm proposed in [15], based on a barrier model. In
particular, we can efficiently find a coordinate with largest gradient entry, even
if the number of constraints is exponentially large, and perform an exact line
search using the Woodbury formula. We can guarantee the existence of an
optimal step length by showing that the level sets of our barrier problem are
always bounded.

Moreover, we can extend this idea and optimize over certain combinations
of two coordinates simultaneously, which leads to a significant improvement
of running times. Finally we explain how to extend this method in order to
include arbitrary linear constraints instead of only box constraints. Experi-
mentally, we show that this method not only improves Q-MIST with respect
to using a general interior point algorithm, but also outperforms standard
optimization software for most types of instances.

Outline. This paper is organized as follows. In Section 2 we recall the semidef-
inite relaxation of Problem (IQP) having box-constraints only, rewrite it in
a matrix form, compute its dual and point out the properties of this prob-
lem that will be used later. In Section 3 we adapt and extend the coordinate
descent algorithm presented in [15]. Then, we improve this first approach by
exploiting the special structure of the constraint matrices. We will see that
this approach can be easily adapted to more general quadratic problems that
include linear constraints, which is presented in Section 4. Finally, in Sec-
tion 5 we evaluate this approach within the branch-and bound framework of
Q-MIST. The experiments show that our approach produces lower bounds of
the same quality but in significantly shorter computation time for instances of
large size.

2 Preliminaries

We first consider non-convex quadratic mixed-integer optimization problems
of the form

min x⊤Q̂x+ l̂⊤x+ ĉ

s.t. x ∈ D1 × · · · ×Dn, (1)

where Q̂ ∈ Sn is not necessarily positive semidefinite, l̂ ∈ R
n, ĉ ∈ R, and the

feasible domain for variable xi is a set Di = {li, . . . , ui} for li, ui ∈ Z; by Sn

we denote the set of all symmetric n×n-matrices. In [11], a more general class
of problems has been considered, allowing arbitrary closed subsets Di ⊆ R.
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Fig. 1 The set P (Di) and its polyhedral description

However, in many applications, the set Di is finite, and for simplicity we
may assume Di = {li, . . . , ui} then. Moreover, the algorithm presented in the
following is easily adapted to a mixed-integer setting. In Section 4, we will
additionally allow arbitrary linear contraints.

2.1 Semidefinite relaxation

In [11] it has been proved that Problem (1) is equivalent to

min 〈Q,X〉

s.t. (x0i, xii) ∈ P (Di) ∀i = 1, . . . n (2)

x00 = 1

rank(X) = 1

X � 0 ,

where P (Di) := conv{(u, u2) | u ∈ Di} and the matrix Q ∈ Sn+1 is defined as

Q =

(

ĉ 1
2 l̂

⊤

1
2 l̂ Q̂

)

.

As only the rank-constraint is non-convex in this formulation, by dropping it
we obtain a semidefinite relaxation of (1).

By our assumption, the setDi is a finite sub-set of Z. In this case, P (Di) is a
polytope in R

2 with |Di|many extreme points. It has therefore a representation
as the set of solutions of a system of |Di| linear inequalities. Figure 1 shows
two examples.

Lemma 1 Let Di = {li, . . . , ui} with li, ui ∈ Z and ni := |Di| = ui − li + 1.
Then P (Di) is completely described by ni − 1 lower bounding facets

−xii + (2j + 1)x0i ≤ j(j + 1), j = li, li + 1, . . . , ui − 1,

and one upper bounding facet

xii − (li + ui)x0i ≤ −liui.
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Fig. 2 The polytope P ({−2,−1, 0, 1, 2}). Lower bounding facets are indexed, from left to
right, by j = −2,−1, 0, 1, the upper bounding facet by 2.

Notice that in case |Di| = 2, i.e., when the variable is binary, there is only one
lower bounding facet that together with the upper bounding facet results in a
single equation. However, for sake of simplicity, we will not distinguish these
cases in the following.

2.2 Matrix formulation

The relaxation of (2) contains the constraint x00 = 1, this fact is exploited to
rewrite the polyhedral description of P (Di) presented in Lemma 1 as

(βij − j(j + 1))x00 − xii + (2j + 1)x0i ≤ βij , j = li, li + 1, . . . , ui − 1

(βiui
+ liui)x00 + xii − (li + ui)x0i ≤ βiui

for an arbitrary vector β ∈ R
m, with m =

∑n

i=1 ni. The introduction of β
does not change the primal problem, but it has a strong impact on the dual
problem: the dual feasible set and objective function are both affected by β,
as shown below. The resulting inequalities are written in matrix form as

〈Aij , X〉 ≤ βij ,

where, for each variable i ∈ {1, . . . , n}, the index ij represents the inequalities
corresponding to lower bounding facets j = li, li + 1, . . . , ui − 1 and j = ui

corresponds to the upper bounding facet; see Figure 2 for an illustration.
Since each constraint links only the variables x00, x0i and xii, the constraint

matrices Aij ∈ Sn+1 are sparse, the only non-zero entries being

(Aij)00 = βiui
+ liui, (Aij)0i = (Aij)i0 = − 1

2 (li + ui), (Aij)ii = 1

in the upper bound constraint and

(Aij)00 = βij − j(j + 1), (Aij)0i = (Aij)i0 = j + 1
2 , (Aij)ii = −1
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in the case of a lower bound constraint. To be consistent, the constraint x00 = 1
is also written in matrix form as 〈A0, X〉 = 1, where A0 := e0e

⊤
0 ∈ Sn+1. In

summary, the SDP relaxation of (2) can now be written as

min 〈Q,X〉

s.t. 〈A0, X〉 = 1 (3)

〈Aij , X〉 ≤ βij ∀j = li, . . . , ui ∀i = 1, . . . , n

X � 0.

The following observation is crucial for the algorithm presented in this paper.

Lemma 2 All constraint matrices Aij have rank one or two. The rank of Aij

is one if and only if

(a) the facet is upper bounding, i.e., j = ui, and βiui
= 1

4 (li − ui)
2, or

(b) the facet is lower bounding, i.e., j < ui, and βij = −
1
4 .

This property of the constraint matrices will be exploited later when solving
the dual problem of (3) using a coordinate-wise approach, leading to a com-
putationally cheap update at each iteration and an easy computation of the
exact step size.

2.3 Dual problem

In order to derive the dual of Problem (3), we first introduce the linear oper-
ator A : Sn+1 −→ R

m+1 as

A(X) :=

(

〈A0, X〉
〈Aij , X〉j∈{li,...,ui},i∈{1,...,n}

)

.

Moreover, a dual variable y0 ∈ R is associated with the constraint 〈A0, X〉 = 1
and a dual variable yij ≤ 0 with the constraint 〈Aij , X〉 ≤ βij , for all j and i,
and y ∈ R

m+1 is defined as

y :=

(

y0
(yij)j∈{li,...,ui},i∈{1,...,n}

)

.

We thus obtain the dual semidefinite program of Problem (3) as

max 〈b, y〉

s.t. Q−A⊤y � 0 (4)

y0 ∈ R

yij ≤ 0 ∀j = li, . . . , ui ∀i = 1, . . . , n,

the vector b ∈ R
m+1 being defined as b0 = 1 and bij = βij .

We conclude this section by emphasizing some characteristics of any feasi-
ble solution of Problem (3).
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Lemma 3 Let X∗ be a feasible solution of Problem (3). For i ∈ {1, . . . , n},
consider the active set

Ai = {j ∈ {li, . . . , ui} | 〈Aij , X
∗〉 = βij}

corresponding to variable i. Then

(i) for all i ∈ {1, . . . , n}, |Ai| ≤ 2, and
(ii) if |Ai| = 2, then x∗

ii = (x∗
0i)

2 and x∗
0i ∈ Di.

Proof The polytope P (Di) is two-dimensional with non-degenerate vertices.
Due to the way the inequalities 〈Aij , X〉 ≤ βij are defined it is impossible
to have more than two inequalities intersecting at one point; see for example
Figures 1 and 2. Therefore, a given point (x∗

ii, x
∗
0i) ∈ P (Di) satisfies zero, one,

or two inequalities with equality. In the last case, we have x∗
ii = (x∗

0i)
2 by

construction, which implies x∗
0i ∈ Di. ⊓⊔

For the dual problem (4), Lemma 3 (i) means that in any optimal solution at
most 2n + 1 out of the m + 1 variables can be non-zero. Such a small num-
ber of non-zero variables motivates to consider a coordinate-wise optimization
method to solve the dual problem (4). Moreover, by Lemma 3 (ii), if two dual
variables corresponding to the same primal variable are non-zero in an optimal
dual solution, then this primal variable will obtain an integer feasible value in
the optimal primal solution.

2.4 Primal and dual strict feasibility

We next show that both Problem (3) and its dual, Problem (4), are strictly
feasible. Using this we can conclude that strong duality holds and that both
problems attain their optimal solutions.

Theorem 1 Assume in the following that binary variables are modeled by one
equation (instead of two inequalities). Then Problem (3) is strictly feasible.

Proof Consider the functions li(x) and ui(x) bounding xii in terms of x0i,
given by the upper and the lower bounding facets described in Lemma 1:

xi ∈ [j, j + 1] 7−→ li(xi) := (2j + 1)xi − j(j + 1), j = li, . . . , ui − 1

xi ∈ [li, ui] 7−→ ui(xi) := (li + ui)xi − liui.

Notice that in case of binary variables, li(xi) = ui(xi). Now, define x0 := 1
and xi :=

1
2 (li + ui) and let

x0
ij :=

{

xixj if i 6= j
1
2 (li(xi) + ui(xi)) otherwise.

By the Schur complement, now X0 ≻ 0 if and only if

X0
{1,...,n},{1,...,n} −X0

{1,...,n},0X
0
0,{1,...,n} ≻ 0 .
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The latter matrix is a diagonal matrix with entries 1
2 (li(xi)+ui(xi))−x2

i > 0.
By construction, it is clear that X0 satisfies all equations (concerning x00

and resulting from binary variables) and that it strictly satisfies all linear
inequalities. ⊓⊔

Theorem 2 Problem (4) is strictly feasible.

Proof If Q ≻ 0, we have that y0 = 0 is a feasible solution of Problem (4).
Otherwise, define a ∈ R

n by ai = (Aiui
)0i for i = 1, . . . , n. Moreover, define

ỹ := min{λmin(Q̂)− 1, 0},

y0 := ĉ− ỹ

n
∑

i=1

(Aiui
)00 − 1− (12 l̂ − ỹa)⊤(12 l̂− ỹa),

and y0 ∈ R
m+1 as

y0 :=

(

y0
(yij)j∈{li,...,ui},i∈{1,...,n}

)

, yij =

{

ỹ, j = ui, i = 1, . . . , n

0, otherwise.

We have y0ij ≤ 0 by construction, so it remains to show that Q − A⊤y0 ≻ 0.
To this end, first note that

c̃ := ĉ− y0 − ỹ

n
∑

i=1

(Aiui
)00 = 1 + (12 l̂ − ỹa)⊤(12 l̂ − ỹa) > 0 . (5)

By definition,

Q−A⊤y0 = Q − y0A0 − ỹ

n
∑

i=1

Aiui

= Q − y0A0 − ỹ

(∑n

i=1(Aiui
)00 a⊤

a In

)

=

(

c̃ (12 l̂ − ỹa)⊤

1
2 l̂− ỹa Q̂− ỹIn

)

,

which by Schur complement and (5) is positive definite if

(Q̂− ỹIn)−
1
c̃
(12 l̂ − ỹa)(12 l̂ − ỹa)⊤ ≻ 0.

Denoting B := (12 l̂−ỹa)(
1
2 l̂−ỹa)

⊤, we have λmax(B) = (12 l̂−ỹa)
⊤(12 l̂−ỹa) ≥ 0

and thus

λmin

(

(Q̂− ỹIn)−
1
c̃
B
)

≥ λmin(Q̂− ỹIn) +
1
c̃
λmin(−B)

= λmin(Q̂)− ỹ −
λmax(B)

1 + λmax(B)
> 0

by definition of ỹ. We have found y0 such that y0 ≤ 0 and Q − A⊤y0 ≻ 0,
hence we know that there exists ǫ > 0 small enough such that y0−ǫ1l is strictly
feasible, i.e., such that y0 − ǫ1l < 0 and Q−A⊤(y0 − ǫ1l) ≻ 0. ⊓⊔

Corollary 3 Problem (3) and its dual, Problem (4), both admit optimal so-
lutions, and there is no duality gap.
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3 A coordinate ascent method

Our approach tries to exploit the specific structure of Problem (3), namely a
small total number of (active) constraints and low rank constraint matrices
that appear in the semidefinite relaxation. We exploit this special structure by
solving the dual problem (4) by coordinate-wise optimization methods, in order
to obtain fast lower bounds to be used inside the branch-and-bound framework
Q-MIST. Our approach is motivated by Algorithm 2 proposed by Dong [15].
Dong reformulates Problem (1) as a convex quadratically constrained problem
and then produces convex relaxations via a cutting surface procedure based on
diagonal perturbations. The separation problem turns out to be a semidefinite
problem with convex non-smooth objective function, and it is solved by a
primal barrier coordinate minimization algorithm with exact line search.

As can be seen, the dual problem (4) has a similar structure to the semidef-
inite problems solved in [15], therefore similar ideas can be applied to solve it.
However Problem (4) is more general, it contains more general constraints with
matrices of rank two (instead of one) and most of our variables are constrained
to be non-positive. Another difference is that we deal with an exponentially
large number of constraints, out of which only a few are non-zero however. On
the other hand, our objective function is linear.

As a first step, we introduce a barrier term in the objective function of
Problem (4) to model the semidefinite constraint Q−A⊤y � 0. We obtain

max f(y;σ) := 〈b, y〉+ σ log det(Q−A⊤y)

s.t. Q−A⊤y ≻ 0 (6)

y0 ∈ R

yij ≤ 0 ∀j = li, . . . , ui ∀i = 1, . . . , n

for σ > 0. The barrier term tends to −∞ if the smallest eigenvalue of Q−A⊤y

tends to zero, in other words, if Q − A⊤y approaches the boundary of the
semidefinite cone. Therefore, the role of the barrier term is to prevent that
dual variables will leave the set {y ∈ R

m+1 | Q − A⊤y ≻ 0}. We will see
later that we do not need to introduce a barrier term for the non-negativity
constraints yij ≤ 0, as they can be dealt with directly.

Observe that f is strictly concave, indeed it is a sum of a linear function
and the log det function, which is a strictly concave function in the interior of
the positive semidefinite cone; see e.g., [18].

Theorem 4 For all σ > 0 and z ∈ R, the level set

Lf(z) := {y0 ∈ R, yij ≤ 0 | Q−A⊤y ≻ 0, f(y;σ) ≥ z}

of Problem (6) is bounded.

Proof We define the following set N := {y ∈ R
m | yij ≤ 0} and first show that

for all y ∈ N \ {0} with A⊤y = 0, it holds that 〈b, y〉 6= 0. For this, assume
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that there exists y ∈ N such that A⊤y = 0 and 〈b, y〉 = 0. We have thus that
there exist i′ ∈ {1, . . . , n} and j′ ∈ {li′ , . . . , ui′} such that

Ai′j′ = δ0A0 +
∑

ij 6=i′j′

δijAij and bi′j′ = δ0b0 +
∑

ij 6=i′j′

δijbij

with δ0 ∈ R and δij ≤ 0. By Theorem 1, we know that there exists a strictly
feasible solution X0 ≻ 0 of Problem (3), for which

〈

A0, X
0
〉

= b0 and
〈

Aij , X
0
〉

< bij ∀ij.

Thus

bi′j′ >
〈

Ai′j′ , X
0
〉

= δ0
〈

A0, X
0
〉

+
∑

ij 6=i′j′

δij
〈

Aij , X
0
〉

≥ δ0b0 +
∑

ij 6=i′j′

δijbij = bi′j′ ,

but this is a contradiction. Secondly, observe that for all y ∈ N , it holds that

〈

Q,X0
〉

− 〈y, b〉 ≥
〈

Q,X0
〉

−
〈

y,A(X0)
〉

=
〈

Q−A⊤y,X0
〉

≥ λmax(Q−A
⊤y)λmin(X

0).

The last inequality follows by Lemma 1.2.4 in [18]. We have that λmin(X
0) > 0

since X0 ≻ 0. Thus

λmax(Q −A
⊤y) ≤

1

λmin(X0)

( 〈

Q,X0
〉

− 〈b, y〉
)

. (7)

Since the level sets Lf (z) are convex and closed, in order to prove that
they are bounded, it is enough to prove that they do not contain an unbounded
ray. We will prove thus that for all feasible solutions ȳ of Problem (6), and
all y ∈ N \ {0} there exists s such that f(ȳ + sy;σ) < z for all z ∈ R.

First, consider the case when A⊤y = 0, then

f(ȳ + sy;σ) = 〈b, ȳ〉+ s 〈b, y〉+ σ log det(Q)

and 〈b, y〉 6= 0 as argued above. Now, take the limit of f(ȳ+ sy;σ) for s→∞:
if 〈b, y〉 > 0, then f(ȳ+ sy;σ)→∞, but this contradicts primal feasibility. If,
instead 〈b, y〉 < 0, then f(ȳ + sy;σ)→ −∞.

On the other hand, if A⊤y 6= 0, we either have λmin(Q−A⊤ȳ−s∗A⊤y) = 0
for some s∗ > 0, and hence

lim
s→s∗

log det(Q −A⊤ȳ − sA⊤y) = −∞,

or

lim
s→∞

λmax(Q−A
⊤ȳ − sA⊤y) =∞,



SDP-based B&B for QIO 11

and from (7) it follows that 〈b, ȳ + sy〉 must tend to −∞ when s→∞. In the
second case, observe that p(s) := det(Q−A⊤ȳ − sA⊤y) is a polynomial in s,
and denote h(s) := 〈b, ȳ + sy〉 = 〈b, ȳ〉+ 〈b, y〉 s. We have that

lim
s→∞

log p(s)

h(s)
= lim

s→∞

p′(s)
p(s)

〈b, y〉
= lim

s→∞

p′(s)

〈b, y〉 p(s)
= 0.

This means that h(s) dominates log p(s) when s→∞. Thus f(ȳ+ sy)→ −∞
for s→∞. ⊓⊔

The boundedness of the upper level sets and the strict concavity of the objec-
tive function guarantee the convergence of a coordinate ascent method, when
using the cyclical rule to select the coordinate direction and exact line search
to compute the step length [24]. However, for practical performance reasons,
we apply the Gauss-Southwell rule to choose the coordinate direction. Below
we describe a general algorithm to solve Problem (6) in a coordinate-wise
maximization manner.

Outline of a barrier coordinate ascent algorithm for Problem (4)

1: Starting point: choose σ > 0 and any feasible solution y of (4).
2: Direction: choose a coordinate direction eij .
3: Step size: using exact line search, determine the step length s.
4: Move along chosen coordinate: y ← y + seij .
5: Decrease the barrier parameter σ.
6: Go to (2), unless some stopping criterion is satisfied.

In the following sections, we will explain each step of this algorithm in detail.
We propose to choose the ascent direction based on a coordinate-gradient
scheme, similar to [15]. We thus need to compute the gradient of the objective
function of Problem (6). See, e.g., [18] for more details on how to compute the
gradient. We have that

∇yf(y;σ) = b− σA((Q −A⊤y)−1).

For the following, we denote

W := (Q−A⊤y)−1,

so that
∇yf(y;σ) = b− σA(W ) . (8)

We will see that, due to the particular structure of the gradient of the
objective function, the search of the ascent direction reduces to considering
only a few possible candidates among the exponentially many directions. In
the chosen direction, we solve a one-dimensional minimization problem to
determine the step size. It turns out that this problem has a closed form
solution. Each iteration of the algorithm involves the update of the vector of
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dual variables and the computation ofW , i.e., the inverse of an (n+1)×(n+1)-
matrix that only changes by a factor of one constraint matrix when changing
the value of the dual variable. Thanks to the Woodbury formula and to the fact
that our constraint matrices are rank-two matrices, the matrixW can be easily
computed incrementally, the updates at each iteration of the algorithm can be
performed in O(n2) time, which is crucial for the performance of the algorithm
proposed. In fact, the special structure of Problem (3) can be exploited even
more, considering the fact that the constraint matrix associated with the dual
variable y0 has rank-one, and that every linear combination with another linear
constraint matrix still has rank at most two. This suggests that we can perform
a plane-search rather than a line search, and simultaneously update two dual
variables and still recompute W in O(n2) time (see Section 3.4). Thus, the
main ingredient of our algorithm is the computationally cheap update of W
at each iteration and an easy computation of the optimal step size.

Before describing in detail how to choose an ascent direction and how
to compute the step size, we address the choice of a feasible starting point.
Compared to [15], the situation is more complex. We propose to choose as
starting point the vector y0 defined in the proof of Theorem 2. The construc-
tion described there can be directly implemented, however, it involves the
computation of the smallest eigenvalue of Q̂. Together with the computation
of the inverse of Q−A⊤y0, this is the most expensive task in our algorithm,
it requires O(n3) time.

3.1 Choice of an ascent direction

We improve the objective function coordinate-wise: at each iteration k of the
algorithm, we choose an ascent direction eij(k) ∈ R

m+1 where ij(k) is a coor-
dinate of the gradient with maximum absolute value

ij(k) ∈ argmax
ij

|∇yf(y;σ)ij | . (9)

However, moving a coordinate ij to a positive direction is allowed only in
case yij < 0, so that the coordinate ij(k) in (9) has to be chosen among those
satisfying either ∇yf(y;σ)ij > 0 and yij < 0, or ∇yf(y;σ)ij < 0. The entries
of the gradient depend on the type of inequality. By (8), we have

∇yf(y;σ)ij = βij − σ 〈W,Aij〉

=

{

βij − σ((βij − j(j + 1))w00 + (2j + 1)w0i − wii) j = li, . . . , ui − 1,

βiui
− σ((βiui

+ liui)w00 − (li + ui)w0i + wii) j = ui.

The number of lower bounding facets for a single primal variable xi is ui − li,
which is not polynomial in the input size from a theoretical point of view. From
a practical point of view, a large domain Di may slow down the coordinate
selection if all potential coordinates have to be evaluated explicitly.
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However, the regular structure of the gradient entries corresponding to
lower bounding facets for variable xi allows to limit the search to at most
three candidates per variable. To this end, we define the function

ϕi : [li, ui − 1] −→ R

j 7−→ βij − σ((βij − j(j + 1))w00 + (2j + 1)w0i − wii) .

Our task is then to find a minimizer of |ϕi| over {li, . . . , ui − 1}. As ϕi is
a uni-variate quadratic function, we can restrict our search to at most three
candidates, namely the bounds li and ui−1 and the rounded global minimizer
of ϕi, if it belongs to li, . . . , ui − 1; the latter is

⌈

w0i

w00
− 1

2

⌋

.

In summary, taking into account also the upper bounding facets and the co-
ordinate zero, we need to test at most 1 + 4n candidates in order to solve (9),
independent of the sets Di.

3.2 Computation of the step size

We compute the step size s(k) by exact line search in the chosen direction. For
this we need to solve the following one-dimensional maximization problem

s(k) = argmax
s

{f(y(k) + seij(k) ;σ) | Q−A⊤(y(k) + seij(k)) ≻ 0, s ≤ −yij(k)} ,

unless the chosen coordinate is zero, in which case the upper bound on s is
dropped. Note that the function s 7→ f(y(k) + seij(k) ;σ) is strictly concave

on {s ∈ R | Q − A⊤(y(k) + seij(k) ) ≻ 0}. We thus need to find an s(k) ∈ R

satisfying the semidefinite constraint Q −A⊤(y(k) + s(k)eij(k) ) ≻ 0 such that
either

∇sf(y
(k) + s(k)eij(k) ;σ) = 0 and yij(k) + s(k) ≤ 0

or
∇sf(y

(k) + s(k)eij(k) ;σ) > 0 and s(k) = −y
(k)

ij(k) .

In order to simplify the notation, we omit the index (k) in the following. From
the definition, we have

f(y + seij ;σ) = 〈b, y〉+ s 〈b, eij〉+ σ log det(Q−A⊤y − sA⊤eij)

= 〈b, y〉+ βijs+ σ log det(W−1 − sAij).

Then, the gradient with respect to s is

∇sf(y + seij ;σ) = βij − σ
〈

Aij , (W
−1 − sAij)

−1
〉

. (10)

The next lemma states that if the coordinate direction is chosen as explained
in the previous section, and the gradient (10) has at least one root in the right
direction of the line search, then there exists a feasible step length.
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Lemma 4

(i) Let the coordinate ij be chosen such that ∇yf(y;σ)ij > 0 and yij < 0. If
there exists s ≥ 0 with ∇sf(y + seij ;σ) = 0, then for the smallest s+ ≥ 0
with ∇sf(y + s+eij ;σ) = 0, one of the following holds:
(a) y + s+eij is dual feasible
(b) s+ > −yij, y − yijeij is dual feasible, and ∇sf(y − yijeij ;σ) > 0.

(ii) Let the coordinate ij be chosen such that ∇yf(y;σ)ij < 0. If there exists
some s ≤ 0 with ∇sf(y + seij ;σ) = 0, then for the biggest s− ≤ 0 such
that ∇sf(y + s−eij ;σ) = 0 it holds that y + s−eij is dual feasible.

Proof We show (i), the proof of (ii) follows analogously. Let y be a feasible
point of Problem (6) and ij such that ∇yf(y;σ)ij > 0 and yij < 0. Choose
the smallest positive s+ with ∇sf(y + s+eij ;σ) = 0 and assume that (a) is
false, we then have to show that (b) holds.

If (a) is false, then y + s+eij is infeasible, hence either Q−A⊤(y + s+eij)
is not positive definite or s+ ≥ −yij . In the first case, there exists 0 < s′ ≤ s+

with f(s, σ)→ −∞ for s→ s′. From the continuous differentiability of f(s, σ)
on the feasible region and since ∇yf(y;σ)ij > 0, there exists 0 ≤ s′′ ≤ s′ with
∇sf(y+ s′′eij ;σ) = 0, in contradiction to the minimality of s+. In the second
case, by the same reasoning, we may assume that y+seij is dual feasible for all
0 ≤ s ≤ s+. If there is no s′ ∈ [0, s+] with ∇sf(y+ s′eij ;σ) = 0, we must have
∇sf(y + s′eij ;σ) > 0 for all s′ ∈ [0, s+], again by continuous differentiability
and ∇yf(y;σ)ij > 0. ⊓⊔

If in addition we exploit that the level sets of the function are bounded, as
shown by Theorem 4, then we can derive the following theorem:

Theorem 5

(i) Let the coordinate ij be chosen such that ∇yf(y;σ)ij > 0 and yij < 0.
Then the gradient (10) has at least one positive root, and for the smallest
positive root s+, either y+s+eij is dual feasible and ∇sf(y+s+eij ;σ) = 0,
or yij + s+ > 0 and ∇sf(y − yijeij ;σ) > 0.

(ii) Let the coordinate ij be chosen such that ∇yf(y;σ)ij < 0. Then the gradi-
ent (10) has at least one negative root, and for the biggest negative root s−,
we have that y + s−eij is dual feasible and ∇sf(y + s−eij ;σ) = 0.

Proof We show (i), the proof of (ii) follows analogously. Let y be a feasible
point of Problem (6) and ij such that ∇yf(y;σ)ij > 0 and yij < 0.

From Theorem 4, we know that Lf(z), the level set of f at z := f(y;σ), is
bounded. Thus, when moving in the positive direction of the gradient from y

to y+ seij , at some point either the value of the function f at y+ seij will be
equal to f(y;σ), or yij + s > 0.

In the first case, from continuous differentiability of s 7→ f(y + seij ;σ),
and using ∇yf(y;σ)ij > 0, we have that there exists s+ ≤ −yij such that
∇sf(y + s+eij ;σ) = 0. By Lemma 4, the smallest s+ is feasible (which also
directly follows from y + s+eij ∈ Lf (z)).
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yij yij + s

b
s+

(a) s+ ≤ s

yij yij + s

(b) s+ = −yij

Fig. 3 Illustration of the existence of an optimal step size s+, Theorem 5 (i)

Otherwise, if yij + s > 0, choose s+ = −yij and assume for a contradiction
that ∇sf(y− yijeij ;σ) ≤ 0. This means that there was a point where the gra-
dient changed its direction and thus, from the same arguments as before, there
must be s∗ ≤ s+ such that ∇sf(y + s∗eij ;σ) = 0, but this is a contradiction.
Therefore the gradient of f at y + s+eij remains non-negative. See Figure 3
for an illustration. ⊓⊔

Observe that the computation of the gradient requires to compute the
inverse of W−1 − sAij , it is worth mentioning that this is the crucial task
since it is a matrix of order n+ 1. Notice however that W−1 is changed by a
rank-one or rank-two matrix sAij ; see Lemma 2. Therefore, we will compute
the inverse matrix (W−1− sAij)

−1 using the Woodbury formula for the rank-
one or rank-two update. The computation is detailed in Appendix A.

3.3 Algorithm overview and running time

Our approach to solve Problem (4) is summarized in Algorithm CD.

Algorithm CD: Barrier coordinate ascent algorithm for Problem (4)

Input: Q ∈ Sn+1

Output: A lower bound on the optimal value of Problem (3)
1 Use Lemma 2 to compute y(0) such that Q−A⊤y(0) ≻ 0

2 Compute W (0) ← (Q −A⊤y(0))−1

3 for k = 0, 1, 2, . . . do
4 Choose a coordinate direction e

ij(k) as described in Section 3.1

5 Compute the step size s(k) as described in Section 3.2

6 Update y(k+1) ← y(k) + s(k)e
ij(k)

7 Update W (k) using the Woodbury formula
8 Update σ

9 Terminate if some stopping criterion is met

10 return
〈

b, y(k)
〉

Before entering the main loop, the running time of Algorithm CD is dom-
inated by the computation of the minimum eigenvalue of Q̂ needed to com-
pute y(0) and by the computation of the inverse of the matrix Q − A⊤y(0).
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Both can be done in O(n3) time. Each iteration of the algorithm can be per-
formed in O(n2). Indeed, as discussed in Section 3.1, we need to consider O(n)
candidates for the coordinate selection, so that this task can be performed
in O(n) time. For calculating the step size and updating the matrix W (k), we
need O(n2) time using the Woodbury formula.

Notice that Algorithm CD produces a feasible solution y(k) of Problem (4)
at every iteration and hence a valid lower bound

〈

b, y(k)
〉

for Problem (3).
In particular, when used within a branch-and-bound algorithm, this means
that Algorithm CD can be stopped as soon as

〈

b, y(k)
〉

exceeds a known upper
bound for Problem (3). Otherwise, the algorithm can be stopped after a fixed
number of iterations or when other criteria show that only a small further
improvement of the bound can be expected. The choice of an appropriate
termination rule however is closely related to the update of σ performed in
Step 8, this is further discussed in Section 5.

3.4 Two dimensional approach

In Algorithm CD, we change only one coordinate in each iteration, as this
allows to update the matrix W (k) in O(n2) time using the Woodbury formula.
This was due to the fact that all constraint matrices in the primal SDP (3)
have rank at most two. However, taking into account the special structure
of the constraint matrix A0, one can observe that every linear combination
of any constraint matrix Aij with A0 still has rank at most two. In other
words, we can simultaneously update the dual variables y0 and yij and still
recompute W (k) in O(n2) time. Geometrically, we thus search along the plane
spanned by the coordinates (e0, eij(k)) rather than the line spanned by a single
coordinate eij(k) . For sake of readability, we again omit the index (k) in the
following.

Let ij be a given coordinate and denote by s the step size along coordi-
nate eij and by s0 the step size along e0. At each iteration we then perform
an update of the form y ← y+ s0e0+ seij. The value of the objective function
in the new point is

f(y + s0e0 + seij ;σ) = 〈b, y〉+ s0 + sβij + σ log det(W−1 − s0A0 − sAij) .

To obtain a closed formula for the optimal step length s0 in terms of a fixed
step length s, we exploit the fact that the update of coordinate e0 is rank-one,
and that the zero coordinate does not have a sign restriction. Consider the
gradient of f(y + s0e0 + seij ;σ) with respect to s0:

∇s0f(y + s0e0 + seij ;σ) = 1− σ
〈

A0, (W
−1 − s0A0 − sAij)

−1
〉

. (11)

Defining W (s) := (W−1− sAij)
−1 and using the Woodbury formula for rank-

one update, we obtain

(W−1 − s0A0 − sAij)
−1 = (W (s)−1 − s0A0)

−1

= W (s) +
s0(s)

1− s0(s)w00
(W (s)e0)(W (s)e0)

⊤.



SDP-based B&B for QIO 17

Substituting the last expression in the gradient (11) and setting the latter to
zero, we get

s0(s) := s0 =
1

w(s)00
− σ.

It remains to compute w(s)00, which can be done using the Woodbury formula
for rank-two updates. In summary, we have shown

Lemma 5 Let s be a given step size along coordinate direction eij, then

s0 =
1

w(s)00
− σ (12)

is the unique maximizer of f(y + s0e0 + seij ;σ), and hence the optimum step
size along coordinate e0.

The next task is to compute a step length s such that (s0(s), s) is an
optimal two-dimensional step in the coordinate plane spanned by (e0, eij). To
this end, we consider the function

gij(s) := f(y + s0(s)e0 + seij ;σ)

over the set {s ∈ R | Q −A⊤(y + s0(s)e0 + seij) ≻ 0} and solve the problem

max
s
{gij(s) | Q−A

⊤(y(k) + s0(s)e0 + seij(k)) ≻ 0, s ≤ −y
(k)
ij } . (13)

Since the latter problem is uni-variate and differentiable, we need to find s ∈ R

such that either g′ij(s) = 0 and s ≤ −yij or g′ij(s) > 0 and s = −yij . The
derivative of gij(s) is

g′ij(s) = s′0(s) + βij − σ
〈

s′0(s)A0 +Aij , (W
−1 − s0(s)A0 − sAij)

−1
〉

, (14)

which is a quadratic rational function. The next lemma shows that at least
one of the two roots of g′ij(s) leads to a feasible update if the direction ij is an
ascent direction. Similar to Theorem 5 in the one dimensional approach, the
proof is based on Theorem 4.

Theorem 6

(i) Let the coordinate ij be chosen such that g′ij(0) > 0 and yij < 0. The
expression (14) has at least one positive solution, and for the smallest
such solution s+, either the point y + s0(s

+)e0 + s+eij is dual feasible
and g′ij(s

+) = 0, or yij + s+ > 0 and g′ij(−yij) > 0.
(ii) Let the coordinate ij be such that g′ij(0) < 0. The expression (14) has

at least one negative solution, and for the biggest such solution s−, the
point y + s0(s

−)e0 + s−eij is dual feasible and g′ij(s
−) = 0.
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It remains to discuss the choice of the coordinate ij, which is similar to the
one-dimensional approach: we choose the coordinate direction eij such that

ij ∈ argmax
ij

|g′ij(0)| , (15)

where moving into the positive direction of a coordinate eij is allowed only
if yij < 0, thus the candidates are those coordinates satisfying

(g′ij(0) > 0 and yij < 0) or g′ij(0) < 0.

Note that

g′ij(0) =







j(j + 1)− 2w0i

w00
j − w0i

w00
− (σw00 − 1)

w2
0i

w2
00

+ σwii j = li, . . . , ui − 1,

liui +
w0i

w00
(li + ui) + (σw00 − 1)

w2
0i

w2
00
− σwii j = ui,

therefore, as before, we do not need to search over all potential coordinates ij,
since the regular structure of g′ij(0) for the lower bounding facets again allows
us to restrict the search to at most three candidates per variable. Thus only 4n
potential coordinate directions need to be considered.

Using these ideas, a slightly different version of Algorithm CD is obtained
by changing Steps 4, 5 and 6 adequately, we call it Algorithm CD2D. In Sec-
tion 5, we compare Algorithm CD and its improved version, Algorithm CD2D,
experimentally.

3.5 Primal solutions

This section contains an algorithm to compute an approximate solution of
Problem (3) using the information given by the dual optimal solution of Prob-
lem (4). We will prove that under some additional conditions the approximate
primal solution produced is actually the optimal solution, provided that an op-
timal solution y∗ for the dual problem (4) is given. First note that the primal
optimal solution X∗ ∈ S+

n+1 must satisfy the complementarity condition

(Q −A⊤y∗)X∗ = 0 (16)

and the primal feasibility conditions X∗ � 0 and
{

〈A0, X
∗〉 = 1,

〈Aij , X
∗〉 = βij ∀i, j ∈ A(y∗),

(17)

where A(y∗) := {i, j | yij < 0}.
Notice that in order to find a primal optimal solution X∗, we need to solve

a semidefinite program, and this is in general computationally too expensive.
Since this has to be done at every node of the branch-and-bound tree, we need
to devise an alternative method to compute an approximate matrix X that
will be used mainly for taking a branching decision in Algorithm Q-MIST.
The idea is to ignore the semidefinite constraint X � 0. We thus proceed as
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follows. We consider the spectral decomposition Q − A⊤y∗ = PDiag(λ)P⊤.
Since Q − A⊤y∗ � 0, we have λ ≥ 0. Define Z := P⊤XP , then X = PZP⊤

and (16) is equivalent to

0 = (PDiag(λ)P⊤)(PZP⊤) = PDiag(λ)ZP⊤.

Since P is a regular matrix, the last equation implies that Diag(λ)Z = 0,
which is at the same time equivalent to say that zij = 0 whenever λi > 0
or λj > 0. Replacing also X = PZP⊤ in (17), we have

1 = 〈A0, X〉 =
〈

A0, PZP⊤
〉

=
〈

P⊤A0P,Z
〉

,

βij = 〈Aij , X〉 =
〈

Aij , PZP⊤
〉

=
〈

P⊤AijP,Z
〉

.

This suggests, instead of solving the system (16) and (17) in order to com-
pute X , to solve the system above and then compute X = PZP⊤. The system
above can be simplified, since Z has a zero row/column for each λl > 0. Thus
it is possible to reduce the dimension of the problem as follows: let Ā be the
sub-matrix of A where all rows and columns l with λl > 0 are removed; let r
be the number of positive entries of λ. Let Y ∈ Sn+1−r, we have that the
system above is equivalent to







〈

P⊤A0P , Y
〉

= 1
〈

P⊤AijP , Y
〉

= βij ∀i, j ∈ A(y∗).

Then we can extend Y by zeros to obtain a matrix Z ∈ Sn+1, and finally
compute X = PZP⊤. We formulate this procedure in Algorithm 2. In the im-
plementation of the algorithm, we will always consider the smallest eigenvalue
of Q−A⊤y as zero, this means that r is at least one, and there may be more
zero eigenvalues considered as zero, depending on the allowed tolerance.

Algorithm 2: Compute approximate solution of (3) from dual solution

Input: optimal solution y∗ ∈ R
m+1 of Problem (4)

Output: X ∈ Sn+1

1 Compute P ∈ R
(n+1)×(n+1) orthogonal and λ ≥ 0 with Q −A⊤y∗ = PDiag(λ)P⊤

2 Find a solution Y ∈ Sn+1−r of the system of equations (18)
3 Set Z ∈ Sn+1 as zij = 0, ∀ij, except for i, j = 1, . . . , n+ 1− r, where zij = yij

4 Compute X = PZP⊤

5 return X

Notice that we are not enforcing explicitly that Y � 0, but if Y turns out
to be positive semidefinite, then Z is positive semidefinite and therefore X as
well. We have the following theorem.

Theorem 7 Let y∗ be a feasible solution of (4) and X∗ ∈ Sn+1 the cor-
responding matrix produced by Algorithm 2. If X∗ � 0, then (X∗, y∗) are
primal-dual optimal solutions of Problems (3) and (4).
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Proof Let X∗ be produced by Algorithm 2 such that it is positive semidefinite.
We have that X∗ is a feasible solution of Problem (3), since it satisfies the set
of active constraints for the optimal dual solution y∗:

〈A0, X〉 =
〈

A0, PZP⊤
〉

=
〈

P⊤A0P,Z
〉

=
〈

P⊤A0P , Y
〉

= 1

〈Aij , X〉 =
〈

Aij , PZP⊤
〉

=
〈

P⊤AijP,Z
〉

=
〈

P⊤AijP , Y
〉

= βij

for all ij ∈ A(y∗), this holds since Y ∈ Sn+1−r is the solution of the system
of equations (18). It also satisfies complementarity slackness:

(Q −A⊤y∗)X∗ = PDiag(λ)P⊤PZP⊤ = PDiag(λ)ZP⊤ = 0,

where the last equation holds since Z is computed as in Step 3 of Algorithm 2.
Namely, if λl = 0, then the corresponding row l of Diag(λ)Z is equal to zero.
The other rows of Diag(λ)Z are equal to zero from the definition of Z. ⊓⊔

Corollary 8 Let y∗ be a feasible solution of the dual problem (4). If the system

(Q−A⊤y∗)X = 0

〈A0, X〉 = 1,

〈Aij , X〉 = βij ∀i, j ∈ A(y∗)

has a unique solution, then Algorithm 2 produces that solution.

In summary, we have proposed a faster approach than solving a semidefi-
nite problem, but without any guarantee that the solution obtained will satisfy
the positive semidefiniteness constraint. However there are theoretical reasons
to argue that this approach will work in practice. In [1], it was proved that
dual non-degeneracy in semidefinite programming implies the existence of a
unique optimal primal solution. Additionally, it was proved that dual non-
degeneracy is a generic property. Putting these two facts together, it means
that for randomly generated instances the probability of obtaining a unique
optimal primal solution is one. From the practical point of view, we have
implemented Algorithm 2 and run experiments to check the positive semidefi-
niteness of the computed matrix X . We will see that for the random instances
considered in Section 5 this approach works very well in practice.

4 Adding linear constraints

Many optimization problems, such as the quadratic knapsack problem [26,
20], can be modeled as a quadratic problem with linear constraints. Linear
constraints can be easily included into the current setting of our problem.
Consider the following extension of Problem (IQP),

min x⊤Q̂x+ l̂⊤x+ ĉ

s.t. a⊤j x ≤ bj ∀j = 1, . . . , p (18)

x ∈ D1 × · · · ×Dn .
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Notice that the linear constraint a⊤j x ≤ bj can be equivalently written as

〈

Aj ,

(

1
x

)(

1
x

)⊤
〉

≤ βj ,

where

Aj =











βj − bj
aj0

2 . . .
ajn−1

2
aj0

2 0 . . . 0
...

. . .
ajn−1

2 0 . . . 0











.

Following a similar procedure as the one described in Section 2.1, we can
formulate a semidefinite relaxation of Problem (18) as follows

min 〈Q,X〉

s.t. 〈A0, X〉 = 1

〈Aij , X〉 ≤ βij ∀j = li, . . . , ui ∀i = 1, . . . , n (19)

〈Aj , X〉 ≤ βj ∀j = 1, . . . , p

X � 0.

The matrices Q, A0 and Aij are defined as in Section 2.2. Observe that the
new constraint matrices Aj have rank two. The dual of Problem (19) can be
calculated as

max 〈b, y〉

s.t. Q−A⊤y � 0 (20)

y0 ∈ R

yij ≤ 0 ∀j = li, . . . , ui ∀i = 1, . . . , n

yj ≤ 0 ∀j = 1, . . . , p,

where A and b are extended in the obvious way. Again, we want to solve the
log-det form of Problem (20)

max f(y;σ) := 〈b, y〉+ σ log det(Q −A⊤y)

s.t. Q−A⊤y ≻ 0 (21)

y0 ∈ R

yij ≤ 0 ∀j = li, . . . , ui ∀i = 1, . . . , n

yj ≤ 0 ∀j = 1, . . . , p.

Notice that the overall form of the dual problem to be solved has not changed.
The new dual variables yj corresponding to the additional linear constraints
play a similar role as the dual variables yij , both must satisfy the non-positivity
constraint. Even more, the dual problem (20) remains strictly feasible, this fact
can be easily derived from Theorem 2.
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Corollary 9 Problem (20) is strictly feasible.

If also the primal problem (19) is strictly feasible, we can show as before
that the level sets in our coordinate ascent method are bounded and that we
can always find a feasible step length. However, due to the addition of linear
constraints, primal strict feasibility might no longer be satisfied. However, by
Corollary 9 strong duality holds. In particular, we obtain

Corollary 10 If the primal problem (19) is infeasible, then Problem (21) is
unbounded.

Proof From Corollary 9 strong duality holds, hence Problem (20) is unbounded
due to primal infeasibility. Thus, we can find an unbounded ray y0+sy, s ≥ 0,
starting at a strictly feasible solution y0. Now consider the concave function
h(s) = λmin(Q − A⊤(y0 + sy)). If there exists s′ > 0 such that h(s′) < h(0),
then by concavity h(s) → −∞ for s → ∞ which is a contradiction to the
feasibility of the ray. Thus h(s) ≥ h(0) = λmin(Q − A⊤y0) > 0 for all s ≥ 0.
Hence, log det(Q−A⊤(y0 + sy)) is bounded from below so that the objective
function of (21) goes to infinity. ⊓⊔

The proof of Corollary 10 shows how to adapt the coordinate search in this
case: either an appropriate root such as in Theorem 5 or Theorem 6 exists,
which can be used to determine the step length, or we have proven primal
infeasibility.

In case Problem (19) is feasible but not strictly feasible, the barrier ap-
proach fails. In this case, Problem (21) may be unbounded and hence the
algorithm wrongly concludes primal infeasibility.

5 Experiments

We now present the results of an experimental evaluation of our approach. Our
experiments were carried out on Intel Xeon processors running at 2.60 GHz.
For all the algorithms, the optimality tolerance OPTEPS was set to 10−6. We
have used as a base the code that already exists for Q-MIST. Algorithms CD
and CD2D were implemented in C++, using routines from the LAPACK pack-
age [2] only in the initial phase for computing a starting point, namely, to
compute the smallest eigenvalue of Q̂ needed to determine y(0), and the in-
verse matrix W (0) = (Q − A⊤y(0))−1. The updates in each iteration can be
realized by elementary calculations, as explained in Section 3.

For our experiments, we have generated random instances in the same
way as proposed in [11]. We will consider two types of variable domains: for
ternary instances, we have Di = {−1, 0, 1}, while for integer instances we
set Di = {−10, . . . , 10}, for all i.

In our implementation, we use the following rule to update the barrier
parameter: whenever the entry of the gradient corresponding to the chosen
coordinate has an absolute value below 0.1 in the case of ternary instances or



SDP-based B&B for QIO 23

below 0.001 for integer instances, we multiply σ by 0.25. As soon as σ falls
below 10−8, we fix it to this value. The initial σ is set to 1.

Recall that in Section 2.2, the parameter βij can be chosen arbitrarily. As
it was pointed out, this parameter does not change the feasible region of the
primal problem (3), however it does have an influence on its dual problem.
We have tested several choices of βij , such as setting it to zero for all the
constraints, or, according to Lemma 2, so that all constraint matrices have
rank one. We have found out experimentally that when choosing the value
of the parameter βij in such way that the constraint matrices Aij have their
first entry equal to zero, our approach has faster convergence. Hence, we set
βiui

= −liui for the upper bounding facets and βij = j(j + 1) for lower
bounding facets, see Section 2.2.

5.1 Stopping criterion

It is important to find a good stopping criterion that either may allow an early
pruning of the nodes as soon as the current upper bound is reached, or stops
the algorithm when it cannot be expected any more to reach this bound. Our
approach has the advantage of producing feasible solutions of Problem (4) and
thus a valid lower bound for Problem (3) at every iteration. This means that
we can stop the iteration process and prune the node as soon as the current
lower bound exceeds a known upper bound for Problem (3).

We propose the following stopping criterion. Every n iterations, we compare
the gap at the current point (new-gap) with the previous one n iterations before
(old-gap). If (1 −GAP)old-gap < new-gap and the number of iterations is at
least |Di|·n, or new-gap < OPTEPS, we stop the algorithm. The gap is defined
as the difference of the best upper bound known so far and the current lower
bound. The value of GAP has to be taken in [0, 1].

In Figure 4 we illustrate the influence of the parameter GAP on the run-
ning time and number of nodes needed in the entire branch-and-bound tree,
for both Algorithm CD and CD2D. We have chosen 110 random ternary in-
stances of size 50, 10 instances for each p ∈ {0, 10, . . . , 100}. The horizontal
axis corresponds to different values of GAP, while the vertical axis corresponds
to the average running time (Figure 4 (a)) and the average number of nodes
(Figure 4 (b)), taken over the 110 instances. If GAP=0, then the algorithm
will stop only when the new-gap reaches the absolute optimality tolerance.
As expected, strong bounds are obtained, and thus the number of nodes is
reduced and the time per node increases. When GAP=1, the algorithm will
stop immediately after |Di|n iterations, the lower bound produced may be too
weak and therefore the number of nodes is large. A similar behavior of GAP is
repeated for integer instances. We conclude that choosing GAP=0.1 produces
a good balance between the quality of the lower bounds and the number of
nodes. We use the same stopping rules for both Algorithm CD and CD2D.
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Fig. 4 Influence of the gap criterion on the running time and the number of nodes for
ternary instances, the behavior for integer instances is similar.

5.2 Total running time

Next, we are interested in evaluating the performance of the branch-and-bound
framework Q-MIST using the new Algorithms CD and CD2D, and compare
them to CSDP. Furthermore, we compare to other non-convex integer pro-
gramming software: COUENNE [3] and BARON [28].

In the following tables, n in the first column represents the number of
variables. For each approach, we report the number of solved instances (#),
the average number of nodes explored in the branch-and-bound scheme (nodes)
and the average running time in seconds (time). All lines report average results
over 110 random instances. We have set a time limit of one hour, and compute
the averages considering only the instances solved to proven optimality within
this period of time.

In Table 1 we present the results for ternary instances. As it can be ob-
served, Q-MIST manages to solve all 110 instances for n ≤ 50 with all three
approaches. Both Algorithms CD and CD2D require less time than CSDP
even if the number of nodes enumerated is much larger. For n > 50, Q-MIST
with the new approach solves much more instances than with CSDP. Note
that BARON and COUENNE solved all 110 instances only for n ≤ 20 and
n ≤ 30, respectively.

Table 2 reports the results for integer instances, the results show that
Algorithm CD2D outperforms all the other approaches. In this case, the lower
bounds of Algorithm CD are too weak, leading to an excessive number of
nodes, and it is not able to solve all instances even of size 10 within the time
limit. On contrary, Algorithm CD2D manages to solve much more instances
than its competitors, also in this case of integer instances.

From the experiments reported in [11], it was already known that CSDP
outperforms a previous version of COUENNE. The comparison of Q-MIST
with BARON is new. We have used also ANTIGONE [22] for the comparison,
but we do not report the results observed since they are not better than those
obtained with COUENNE.
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Table 1 Results for ternary instances, Di = {−1, 0, 1}

Q-MIST COUENNE BARON
n CD CD2D CSDP

# nodes time # nodes time # nodes time # nodes time # nodes time

10 110 49.31 0.03 110 28.05 0.02 110 10.11 0.07 110 11.91 0.10 110 1.42 0.07
20 110 250.31 0.16 110 174.24 0.06 110 67.95 0.32 110 2522.35 10.40 110 8.87 0.80
30 110 1531.29 1.25 110 668.47 0.65 110 247.24 2.17 85 150894.54 1225.72 110 8.67 27.59
40 110 3024.42 4.98 110 2342.75 3.47 110 1030.25 12.20 4 134864.75 2330.83 65 45.88 280.17
50 110 14847.49 46.61 110 10357.11 31.62 110 7284.09 136.81 0 – – 21 29.14 222.93
60 107 34353.45 197.60 110 33780.15 155.84 109 17210.14 526.96 0 – – 12 10.67 219.77
70 83 76774.30 515.98 98 94294.82 656.58 71 17754.41 887.17 0 – – 3 2.33 257.51
80 63 98962.24 1151.22 65 126549.25 1150.02 34 19553.47 1542.38 0 – – 0 – –

Table 2 Results for integer instances, Di = {−10, . . . , 10}

Q-MIST COUENNE BARON
n CD CD2D CSDP

# nodes time # nodes time # nodes time # nodes time # nodes time

10 107 1085009.52 105.54 110 70.58 0.07 109 26.29 0.16 110 5817.25 7.51 110 45.43 0.49
20 10 296203.60 154.30 110 969.11 0.99 110 324.71 2.85 98 91473.86 489.05 109 140.43 6.44
30 4 179909.00 336.25 110 5653.71 13.89 110 2196.87 34.49 0 – – 104 137.47 38.20
40 0 – – 110 38458.96 187.76 108 13029.41 386.68 0 – – 59 202.93 255.65
50 0 – – 96 99205.07 944.79 67 24292.79 1247.10 0 – – 15 17.87 279.82
60 0 – – 53 84802.25 1329.92 26 30105.15 2088.00 0 – – 8 11.25 282.82
70 0 – – 2 48648.00 1218.50 1 2011.00 254.00 0 – – 7 12.43 457.47



26 Christoph Buchheim et al.

Summarizing, we can state that Algorithm CD2D yields a significant im-
provement of the algorithm Q-MIST when compared with CSDP, and it is
even capable to compete with other commercial and free software as BARON
and COUENNE. However, it is important to point out that the performance
of BARON is almost not changed when considering ternary or integer variable
domains, it solves more or less the same number of instances in both cases. On
contrary, it is obvious that the change of the domains affected the performance
of our approach significantly, especially in Algorithm CD.

5.3 Primal solution

At the root node, we have performed the evaluation of Algorithm 2, designed
to compute an approximate primal solution of Problem (3) using the dual
feasible solution y∗ of Problem (4); see the details in Section 3.5. Recall that
we need to compute the eigenvalue decomposition of the matrix Q−A⊤y∗, and
set a tolerance to decide which other eigenvalues will be considered as zero.
In the experiments we have taken into account that Q −A⊤y∗ has always at
least one zero eigenvalue, and considered as zero all the eigenvalues smaller or
equal to 0.01. We have run experiments to check the positive semidefiniteness
of the matrix X∗ at the root node of the branch-and-bound tree, with the dual
variables obtained from Algorithms CD and CD2D. We did this test for all
instances used in the experiments of the previous section. We have observed
that in all the cases the smallest eigenvalue ofX is always greater than −10−14.
Based on this fact we can conclude that the method works.

5.4 Behavior with linear constraints

In Section 4 we have described how our approach can be extended when in-
equality constraints are added to Problem (1). For the experiments in this
section we will consider ternary instances and two types of inequality con-
straints:

∑n

i=1 xi ≤ 0 and a⊤x ≤ b. The vector a ∈ R
n and the right hand

side of a⊤x ≤ b are generated as follows: each entry ai is chosen randomly
distributed in {1, 2, . . . , 5} and b is randomly distributed in {1, . . . ,

∑n

i=1 ai}.
The objective function is generated as explained before. Tables 3 and 4 report
the results of the performance of Algorithm Q-MIST with CD2D and CSDP,
and compare with BARON. The dimension n of the problem is chosen from 10
to 50 and p ∈ {0, 10, . . . , 100}; as before each line in the tables corresponds
to the average computed over 110 instances solved within the time limit, 10
instances for each combination of n and p.

Comparing the results reported in Table 1 with those of Tables 3 and 4,
one can conclude that the addition of a linear constraint does not change
the overall behavior of our approach. As it can be seen, Q-MIST – with
both approaches CD2D and CSDP – outperforms BARON. However, Algo-
rithm CD2D, as shown in Table 1, is much faster even if the number of nodes
explored is larger.
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Table 3 Results for ternary instances plus
∑n

i xi ≤ 0

Q-MIST BARON
n CD2D CSDP

# nodes time # nodes time # nodes time

10 110 35.85 0.01 110 12.73 0.02 110 1.29 0.09
20 110 195.56 0.35 110 74.18 0.34 110 6.70 1.10
30 110 993.21 1.08 110 332.38 2.65 110 17.31 43.86
40 110 3160.16 4.85 110 1199.55 16.47 48 13.44 233.40
50 110 13916.13 40.35 110 7235.00 159.66 20 61.20 174.96

Table 4 Results for ternary instances plus a⊤x ≤ b

Q-MIST BARON
n CD2D CSDP

# nodes time # nodes time # nodes time

10 110 29.36 0.01 110 11.15 0.05 110 1.41 0.08
20 110 185.78 0.24 110 70.75 0.29 110 9.15 1.04
30 110 685.64 0.74 110 247.80 2.16 110 16.04 38.17
40 110 2361.33 3.85 110 1035.29 14.95 56 37.23 289.56
50 110 9844.31 31.10 110 7140.91 165.15 21 67.48 191.01

6 Conclusion

We have developed an algorithm that on the one hand exploits the structure
of the semidefinite relaxations proposed by Buchheim and Wiegele, namely a
small total number of active constraints and constraint matrices characterized
by a low rank. On the other hand, our algorithm exploits this special structure
by solving the dual problem of the semidefinite relaxation, using a barrier
method in combination with a coordinate-wise exact line search, motivated
by the algorithm presented by Dong. The main ingredient of our algorithm is
the computationally cheap update at each iteration and an easy computation
of the exact step size. Compared to interior point methods, our approach is
much faster in obtaining strong dual bounds. Moreover, no explicit separation
and re-optimization is necessary even if the set of primal constraints is large,
since in our dual approach this is covered by implicitly considering all primal
constraints when selecting the next coordinate. Even more, the structure of
the problem allows us to perform a plane search instead of a single line search,
this speeds up the convergence of the algorithm. Finally, linear constraints are
easily integrated into the algorithmic framework.

We have performed experimental comparisons on randomly generated in-
stances, showing that our approach significantly improves the performance of
Q-MIST when compared with CSDP and outperforms other specialized global
optimization software, such as BARON.
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A Step size for CD

Each constraint matrix Aij can be factored as follows:

Aij = EijICij ,

where Eij ∈ R
(n+1)×2 is defined by Eij := (e0 ei), e0, ei ∈ R

n+1, Cij ∈ R
2×(n+1) is defined

by C := (Aij){0,i},{0,...,n}, and I is the 2×2-identity matrix. By the Woodbury formula [17]

(W−1 − sAij)
−1 = (W−1 − sEijICij)

−1 = W +WEij(
1
s
I − CijWEij)

−1CijW . (22)

Notice that the matrix 1
s
I−CijWEij is a 2×2-matrix, so its inverse can be easily computed

even as a closed formula.
On the other hand, from Lemma 2, we know under which conditions a constraint ma-

trix Aij has rank-one. In that case, we obtain the following factorization:

Aij = (Aij)iivv
⊤, (23)

where v := (Aij)0ie0 + (Aij)iiei. The inverse of (W−1 − sAij) is then computed using the
Woodbury formula for rank-one update,

(W−1 − sAij)
−1 = (W−1 − s(Aij)iivv

⊤)−1 = W +
(Aij)iis

1− (Aij)iisv⊤Wv
Wvv⊤W. (24)

Now, we need to find the value of s that makes the gradient in (10) zero, this requires
to solve the following equation

βij − σ
〈

Aij , (W
−1 − sAij)

−1
〉

= 0.

In order to solve this equation, we distinguish two possible cases, depending on the rank of
the constraint matrix of the chosen coordinate. We use the factorizations of the matrix Aij

explained above.

Rank-two. By replacing the inverse matrix (22) in the gradient (10) and setting it to zero,
we obtain

βij − σ 〈Aij ,W 〉 − σ
〈

Aij ,WEij(
1
s
I + CijWEij)

−1CijW
〉

= 0.

Due to the sparsity of the constraint matrices Aij , the inner matrix product is simplified
a lot, in fact we have to compute only the entries 00, 0i, 0i and ii of the matrix product
WEij(

1
s
I + CijWEij)

−1CijW . We obtain a rational equation on s of degree two, namely

βijα1ws2 + (2σα1w − α2βij)s+ βij − σα2

α1ws2 − α2s+ 1
= 0,

where

α1 := (Aij)00(Aij)ii − (Aij)
2
0i,

α2 := (Aij)00w00 + 2(Aij)0iw0i + (Aij)iiwii,

w := w00wii −w2
0i.

Theorem 5 shows that, since s 7→ f(y + seij ;σ) is continuously differentiable on the level
sets, the denominator of the latter equation can not become zero before finding a point
where the gradient is zero. Therefore, the step size s is obtained setting the numerator to
zero, and using the quadratic formula for the roots of the general quadratic equation:

s =
−2σα1w + α2βij ±

√

((2σα1w − α2βij)2 − 4βijα1w(βij − σα2)

2βijα1w
.

Then, according to Theorem 5 we will need to take the smallest/biggest s on the right
direction of the chosen coordinate.
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Rank-one. In case the rank of Aij is one, the computations can be simplified. We proceed
as before, replacing (24) in the gradient (10) and setting it to zero:

βij − σ

〈

(Aij)iivv
⊤ ,W +

(Aij)iis

1− (Aij)iisv⊤Wv
Wvv⊤W

〉

= 0.

Denote t :=
〈

vv⊤,W
〉

= v⊤Wv = v20w00 + 2v0viw0i + v2i wii, then
〈

vv⊤ ,Wvv⊤W
〉

=

(v⊤Wv)2 = t2. Replacing this in the last equation yields

βij − σ(Aij )iit− σt2
(Aij)

2
iis

1− (Aij)iits
= 0. (25)

The last expression turns out to be a rational equation linear in s, and the step size is

s =
1

(Aij)iit
−

σ

βij

.

Notice that s 6= 1
(Aij)iit

and hence the denominator in (25) is different from zero. We have

to point out that the zero coordinate can also be chosen as ascent direction, in that case the
gradient is

∇sf(y + se0;σ) = 1− σ
〈

A0, (W
−1 − sA0)

−1
〉

.

As before, the inverse of W−1− sA0 is computed using the Woodbury formula for rank-one
update

(W−1 − sA0)
−1 = (W−1 − se0e

⊤
0 )−1 = W +

s

1− sw00
(We0)(We0)

⊤.

The computation of the step size becomes simpler, we just need to find a solution of the
linear equation

1− σ
〈

A0, (W
−1 − sA0)

−1
〉

= 0.

Solving the last equation, the step size is

s =
1

w00
− σ.

A similar formula for the step size is obtained for other cases when the constraint ma-
trix Aij has rank-one and corresponds to an upper facet such that li = −ui. Since in this
case (Aij)00 = (Aij)0i = 0 and (Aij)ii = 1, the factorization of Aij in (23) reduces to

Aij = eie
⊤
i ,

and t = wii. Thus, the step is:

s =
1

wii

−
σ

βij

.

With the step size s(k) determined, we use the following formulae for a fast update,
again making use of the Woodbury formula:

y(k+1) := y(k) + s(k)e
ij(k)

W (k+1) := W (k) +W (k)E
ij(k)

(

1
s(k) I − C

ij(k)W
(k)E

ij(k)

)−1
C

ij(k)W
(k),

or

W (k+1) := W (k) +
(Aij)iis

(k)

1− (Aij)iis(k)
(W (k)v(k))(W (k)v(k))⊤.
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B Adding linear constraints

In the following sections, we detail the two main points where Algorithms CD and CD2D
are changed, namely, the choice of the ascent direction and the closed-form formula for the
step size.

B.1 Algorithm CD including linear constraints

The addition of p linear constraints in the primal problem implies that for the search of a
coordinate direction there are p additional potential directions. As before, the entries of the
gradient for the new coordinates can be explicitly computed as

∇yf(y; σ)j = βj − σ 〈W,Aj〉

= βj − σ((Aj )00w00 + 2
n
∑

k=1

(Aj)0kw0k).

We then choose the coordinate of the gradient with largest absolute value, considering
coordinates both corresponding to the lower bounding facets, the upper bounding facet
and the new linear constraints. In Section 3.2, we observed that at most 1 + 4n candidates
have to be considered to select the coordinate direction. Thus, in this case, we will have at
most 1 + 4n+ p candidates.

The computation of the step size follows an analogous procedure as in Section 3.2.
Therefore, if one of the new possible candidates for coordinate direction ej ∈ R

m+p+1

for j ∈ {1, . . . , p} has been chosen, we need to compute s such that either

∇sf(y + sej ; σ) = 0 and s ≤ −yj

or
∇sf(y + sej; σ) > 0 and s = −yj .

We have that
∇sf(y + sej ;σ)j = βj − σ

〈

Aj , (W
−1 − sAj)

−1
〉

. (26)

The existence of an optimal step size now depends on primal feasibility. There is no
guarantee that the level sets of the function are bounded, or as we already mentioned, if
the primal problem is not feasible, the dual problem will be unbounded. Testing primal
feasibility is a difficult task, however, from Lemma 4 we know that if there exists s in the
correct direction of the line search that makes the gradient (26) zero, then there exists also
one on the feasible region. This implies the following result.

Theorem 11

(i) Let the coordinate j be such that ∇yf(y; σ)j > 0 and yj < 0. If the gradient (26) has
a positive root, then for the smallest positive root s+, either y + s+ej is dual feasible
and ∇sf(y+s+ej ;σ) = 0, or yj+s+ > 0, y−yjej is dual feasible, and ∇sf(y−yjej ;σ) >
0. Otherwise, y+ seij is dual feasible with ∇sf(y + sej; σ) > 0 for all s ∈ [0,−yij ].

(ii) Let the coordinate j be such that ∇yf(y; σ)j < 0. If the gradient (26) has a negative root,
then for the biggest negative root s−, the point y + s−ej is dual feasible and ∇sf(y +
s−ej ;σ) = 0. Otherwise, y+ seij is dual feasible with ∇sf(y+ sej;σ) > 0 for all s ≤ 0.

As before, in order to find the step size, it is necessary to compute the inverse of W−1−
sAj . As it was mentioned, the constraint matrices Aj are rank-two matrices. They admit
the following factorization

Aj = EjICj ,

where

Ej =











1
2
(Aj)00 1
(Aj)01 0

...
...

(Aj)0n 0











and Cj =

(

1 0 . . . 0
1
2
(Aj)00 (Aj)01 . . . (Aj)0n

)

.
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With the Woodbury formula and the factorization above, we have that the inner product
of Aj and (W−1 − sAj)−1 reduces to the inner product of two 2× 2 matrices:

〈

Aj , (W
−1 − sAj)

−1
〉

=
〈

EjICj ,W +WEj(
1
s
I − CjWEj)

−1CjW
〉

=
〈

I,E⊤
j WC⊤

j + E⊤
j WEj(

1
s
I − CjWEj)

−1CjWC⊤
j

〉

.

We obtain

E⊤
j WEj =

(

d f

f w00

)

, CjWC⊤
j =

(

w00 f

f d

)

,

CjWEj =

(

f w00

d f

)

, E⊤
j WC⊤

j =

(

f d

w00 f

)

,

where

d = 1
4
w00(Aj)

2
00 + (Aj)00

n
∑

i=1

w0i(Aj)0i +
n
∑

i=1

n
∑

k=1

wik(Aj)0i(Aj)0k

=
〈

W, (Aj)0·(Aj)
⊤
0·

〉

,

f = 1
2
w00(Aj)00 +

n
∑

i=1

w0i(Aj)0i

= W⊤
0· (Aj)0·.

Replacing the inner product in the gradient (26), we obtain a rational function of degree
two

∇sf(y + sej ;σ)j =
βj(dw00 − f2)s2 + (2dσw00 − 2f2σ + 2βjf)s+ 2fσ − βj

(dw00 − f2)s2 + 2fs− 1
.

Finally the step size is obtained setting the numerator to zero, yielding

s =
−dσw00 + f2σ − βjf ±

√

d2σ2w2
00 − 2df2σ2w00 + f4σ2 + β2

j dw00

βj(dw00 − f2)
.

In the implementation of the algorithm, if no root of the gradient (26) is found in
the right direction, the step size has to be set to −yij when the coordinate j is such
that ∇yf(y; σ)j > 0 and yj < 0, or s = M , where M ≪ 0, when the coordinate j is
such that ∇yf(y; σ)j < 0.

It is clear that Algorithm CD can be easily extended to compute lower bounds for the
optimal value of Problem 19. In the next section, we describe the steps that have to be
changed in Algorithm CD2D. We will see that in this case, due to the structure of the
constraint matrices Aj , Algorithm CD2D has some advantages over Algorithm CD.

B.2 Algorithm CD2D including linear constraints

A two-dimensional update is also possible for solving the dual of Problem (19), again in
this case, any linear combination of a constraint matrix Aj with A0 remains being a rank-
two matrix. The optimal two-dimensional step size (s0(s), s) along the coordinate plane
spanned by (e0, ej) can be computed following an analogous procedure to the one explained
in Section 3.4. It turns out, in this case, that the computation of the step size is technically
less complicated. Lemma 5 can be used to compute the step size s0(s) along the direction
e0, in terms of a given step size s along coordinate direction ej . Recall that W (s) = (W−1−
sAj)

−1, and thus

s0(s) =
1

w(s)00
− σ = −

1

w00
((dw00 − f2)s2 + 2fs+ σw00 − 1),
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with f , d defined as in the last section. We can define then the function

gj(s) := f(y + s0(s)e0 + sej ; σ)

over the set {s ∈ R | Q −A⊤(y + s0(s)e0 + sej) ≻ 0}. We have to solve a similar problem
to (13), namely, we need to find s ∈ R such that

(g′j(s) = 0 and s ≤ −yj) or (g′j(s) > 0 and s = −yj).

We thus need to compute the derivative of gj(s)

g′j(s) = s′0(s) + βj − σ
〈

s′0(s)A0 +Aj , (W
−1 − s0(s)A0 − sAj)

−1
〉

. (27)

As we already pointed out, the existence of a step size is related with primal feasibility.
We have the following theorem that, analogous to Theorem 11, is a direct consequence of
Lemma 4.

Theorem 12

(i) Let the coordinate j be such that g′j(0) > 0 and yj < 0. If the derivative (27) has

a positive root, then for the smallest positive root s+, either y + s0(s+)e0 + s+ej is
dual feasible and g′j(s

+) = 0, or yj + s+ > 0, y + s0(−yj)e0 − yjej is dual feasible

and g′j(−yj) > 0. Otherwise, y + s0(s)e0 + sej is dual feasible with g′j(s) > 0 for all

s ∈ [0,−yij ].
(ii) Let the coordinate j be such that g′j(0) < 0. If the derivative (27) has a negative

root, then for the biggest negative s−, the point y + s0(s−)e0 + s−ej is dual feasi-
ble and g′j(s

−) = 0. Otherwise, y+ s0(s)e0 + sej is dual feasible with with g′j(s) > 0 for
all s ≤ 0.

In order to compute the inner product in (27), we propose the following factorizations
for the matrices Āj := s′0(s)A0 + Aj and Ãj := s0(s)A0 + sAj :

Āj = ĒjIC̄j , and Ãj = ẼjIC̃j ,

where

Ēj =











1
2
(s′0(s) + (Aj)00) 1

(Aj)01 0
..
.

..

.
(Aj)0n 0











, C̄j =

(

1 0 . . . 0
1
2
(s′0(s) + (Aj)00) (Aj)01 . . . (Aj)0n

)

,

Ẽj =











1
2
(s0(s) + s(Aj)00) 1

s(Aj)01 0
.
..

.

..
s(Aj)0n 0











, C̃j =

(

1 0 . . . 0
1
2
(s0(s) + s(Aj)00) s(Aj)01 . . . s(Aj)0n

)

.

In this way, the inner product of matrices in (27) can be rewritten as the inner product of
two 2× 2 matrices:

〈

Āj , (W
−1 − Ãj)

−1
〉

=
〈

ĒjIC̄j ,W +WẼj(I − C̃jWẼj)C̃jW
〉

=
〈

I, Ē⊤
j WC̄⊤

j + Ē⊤
j WẼj(I − C̃jWẼj)C̃jWC̄⊤

j

〉

,

where

Ē⊤
j WẼj =

(

d1 f̄

f̃ w00

)

, C̃jWC̄⊤
j =

(

w00 f̄

f̃ d1

)

,

C̃jWẼj =

(

f̃ w00

d̃ f̃

)

, Ē⊤
j WC̄⊤

j =

(

f̄ d̄

w00 f̄

)

,
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and

d̄ =
〈

W, (Āj)0·(Āj)
⊤
0·

〉

,

d̃ =
〈

W, (Ãj)0·(Ãj)
⊤
0·

〉

,

f̄ = W⊤
0· (Āj)0·,

f̃ = W⊤
0· (Ãj)0·,

d1 =
〈

W, (Ãj)0·(Āj)
⊤
0·

〉

.

By doing all calculations, one can verify that
〈

Aj , (W−1 − sAj)−1
〉

is actually zero. Re-
placing this into (27) we get g′j(s) = s′0(s) + βj , where

s′0(s) = −
2

w00
((dw00 − f2)s+ f),

and setting g′j(s) to zero, we obtain a linear equation on the step size s, whose root is

s =
2f − βjw00

2(f2 − dw00)
. (28)

Observe that the step size s is independent on the value of σ, however the step s0 is still
dependent. From Theorem 12 it follows that:

(i) if the coordinate j is such that g′j(0) > 0 and yj < 0, and if the derivative (27) has a

positive root, then the step size (28) must be positive. When there is no positive root s

can be set to −yij .
(ii) if the coordinate j is such that g′j(0) < 0, and if the derivative (27) has a negative root,

then the step size (28) must be negative. When there is no negative root set s = M ,
with M ≪ 0.

The coordinate selection will be done in a similar way as in Section 3.4, i.e., we will
choose the coordinate with the largest absolute value of g′j(0). Recall that from Section 3.4,
we have 4n potential coordinates, after adding p linear constraints we will have that 4n+ p

candidates to be considered.


