
Noname manuscript No.
(will be inserted by the editor)

A Benders squared (B2) framework for infinite-horizon
stochastic linear programs

Giacomo Nannicini · Emiliano Traversi ·
Roberto Wolfler Calvo

Received: date / Accepted: date

Abstract We propose a nested decomposition scheme for infinite-horizon stochas-
tic linear programs. Our approach can be seen as a provably convergent extension
of stochastic dual dynamic programming to the infinite-horizon setting: we explore
a sequence of finite-horizon problems of increasing length until we can guarantee
convergence with a given confidence level. The methodology alternates between a
forward pass to explore sample paths and determine trial solutions, and a back-
ward pass to generate a polyhedral approximation of the optimal value function
by computing subgradients from the dual of the scenario subproblems. A compu-
tational study on a large set of randomly generated instances for two classes of
problems shows that the proposed algorithm is able to effectively solve instances
of moderate size to high precision, provided that the instance structure allows
the construction of what we call constant-state policies with satisfactory objective
function value.

Keywords Benders Decomposition · Stochastic Programming · Cutting Planes

1 Introduction

In the context of optimal planning under uncertainty, there are many situations in
which the decision maker is interested in solving a steady-state planning problem.

G. Nannicini
IBM T.J. Watson, Yorktown Heights, NY
E-mail: nannicini@us.ibm.com

E. Traversi
Laboratoire d’Informatique de Paris Nord,
Université de Paris 13; and Sorbonne Paris Cité,
CNRS (UMR 7538), 93430 Villetaneuse, France
E-mail: traversi@lipn.fr

R. Wolfler Calvo
Laboratoire d’Informatique de Paris Nord,
Université de Paris 13; and Sorbonne Paris Cité,
CNRS (UMR 7538), 93430 Villetaneuse, France
E-mail: wolfler@lipn.fr

2 Giacomo Nannicini et al.

Such a scenario arises whenever there are repeated decisions that have to be taken
over an infinite (i.e. unbounded) time horizon, for example if production of a
given set of items has to be planned every day under uncertain demands, and
this process is repeated indefinitely. In this type of model there is a discrete time
index t that ranges from zero (present time) to infinity, and a decision problem
must be solved for every integer value of t (called a stage). The decision problem
at each stage depends on the state of the system, which is influenced by both the
realization of uncertain events, and previous decisions (often called actions). For
example, the state of the system could be the inventory of the items at hand, and
the actions could be the set of items ordered from a supplier at that point in time.
Each action incurs a cost, and the objective is to find a rule that maps states
into actions (called a policy) in order to minimize the total expected cost over the
time horizon t = 0, . . . ,∞. A geometric discount factor for the cost is typically
introduced, to model the fact that the present-time value of decisions that will
be taken in the far future is small, and goes to zero the longer the distance in
time; this guarantees finiteness of the cost under mild conditions. A problem of
this form is naturally described as a dynamic program (DP, to be distinguished
from “dynamic programming” by context), introduced in the seminal work [2].
Well-known methodologies to solve infinite-horizon DPs are value iteration and
policy iteration, which converge to an optimal solution under some assumptions,
see [3]. These methodologies however encounter considerable difficulties when the
state space (the set of possible states) is infinite, because in that case the basic
iteration step of these algorithms is no longer able to loop over all the states [26,
Ch. 3].

A class of DPs exhibiting infinite state and action spaces is that of multistage
stochastic linear programs, see e.g. [5,6,30]. This type of problems finds many
applications within the broad context of optimal planning under uncertainty. Ex-
amples of such applications are financial planning [22,23,31] and capacity expan-
sion [6, S. 1.3]. Despite their infinite state and action spaces, multistage stochastic
LPs can be solved using various methodologies under the assumption that the time
horizon is finite: a widely used approach is Stochastic Dual Dynamic Programming
(SDDP), first proposed in [24] and with many follow-up works, e.g. [9]. SDDP is
essentially a Benders decomposition scheme that assumes that the sample space
Ω is discrete and finite, and the realizations of uncertainty are time-wise (inter-
stage) independent. In case the sample space is not discrete and finite, sampling
can be used to reduce to the finite case, as discussed in [29], where error bounds
are provided.

This paper presents a Benders decomposition scheme for infinite-horizon stochas-
tic LPs that is provably convergent to an optimal policy; we call this algorithm B2

(Benders squared). B2 can be seen as an extension of SDDP to the infinite-horizon
setting, and it works under similar assumptions: the sample space Ω is discrete and
finite, and the realizations of uncertainty are not only interstage independent but
also identically distributed (i.i.d.). Notice that some degree of (linear) stagewise
dependence can be introduced by modifying the problem formulation extending
the state variables just as in SDDP, see e.g. [29]. Requiring identically distributed
data at each stage is natural for an infinite-horizon problem when one is interested
in a steady-state solution, because such solution may not be reached if the data
process changes over time. B2 follows a typical Benders scheme for multistage

B2 for infinite-horizon stochastic linear programs 3

problems, but it dynamically determines the length of the time horizon to explore,
and exploits the i.i.d. assumption to strengthen the cut generation problems.

We test B2 on two classes of randomly generated (continuous) problems: a
classical multi-product production planning problem, and the rebalancing prob-
lem. The rebalancing problem arises e.g. in the context of bike sharing systems,
where we are looking for a policy to optimally rebalance the availability of bikes at
a given set of stations, subject to uncertain demand. Notice that these problems
are often stated with integrality restrictions on the decision variables, whereas
in this paper we aim to solve their continuous relaxation. However, the solution
of multi-stage and infinite-horizon problems with discrete variables is notoriously
difficult, and often practically impossible, due to nonconvexities. For this reason,
a commonly employed heuristic strategy consists in determinining a polyhedral
description of the optimal policy for the continuous relaxation of the problem,
adding integrality restrictions on the decision variables only at a later time to
determine a feasible (and most likely suboptimal) policy. If the original problem
involves discrete variables, the approach presented in this paper can be used as a
heuristic in this manner. Numerical experiments show that our algorithm is con-
siderably more effective than applying SDDP to a truncated problem, and is able
to solve medium-sized instances (tens of variables, constraints, and scenarios) to
high accuracy, i.e. with small gaps between lower and upper bounds. This sug-
gests that the methodology could scale to larger instances (hundreds of variables
and constraints) provided the user is willing to accept lower accuracy. Since our
methodology makes extensive use of Benders cuts, our computational evaluation
sheds some light on which implementation details are more effective in practice,
in particular showing that a multicut implementation [7] converges much faster
than a single cut implementation, which is predominant in the literature, e.g. [24,
19,33].

The rest of this paper is organized as follows. Section 2 formally describes the
problem studied in this paper and states our assumptions. Section 3 paves the way
for a decomposition algorithm. Section 4 presents a solution methodology to obtain
dual bounds, discusses the computation of primal bounds, and the convergence
properties of our scheme. Section 5 provides a numerical evaluation of the proposed
methodology, and Section 6 concludes the paper. The rest of this section overviews
some of the existing literature that is most relevant for our paper.

Literature review. The area of multistage stochastic LP has received considerable
attention in the mathematical optimization literature, due to its many real-world
applications. [14] studies how an infinite-horizon LP can be approximated by a fi-
nite horizon problem, but the paper considers a deterministic setting rather than a
stochastic setting. In [27], an extension of LP duality theory to infinite-dimensional
problems is studied. However, the literature discussing practical solution strategies
typically focuses on finite problems, i.e., finite horizon, finite number of variables
and constraints.

The most commonly used solution methodologies exploit LP duality to devise
some form of decomposition scheme, see [5,24,30]. Typically, the data of the prob-
lem is assumed to be interstage independent, which facilitates the decomposition
scheme: this is also the assumption in the present paper. However, some work that
addresses interstage dependency can be found in the literature: for example, [17]

4 Giacomo Nannicini et al.

studies how to adapt Benders cuts to the case of a model with interstage depen-
dence, while [15] proposes a SDDP scheme that can take into account some types
of interstage dependency. The popularity of SDDP (and Benders decomposition
in general) prompted computational studies on how to generalize and improve its
performance: particularly relevant for our work are the papers [8], which discusses
the tuning of SDDP to solve a specific instance and some general-purpose cut
selection strategies, and [7], which investigates the issue of multicut versus single
cut on a small set of test problems. Some papers proposed to augment the Benders
subproblem with a regularization term: for example, [1] studies the impact of a
quadratic regularization terms when solving high-dimensional multistage stochas-
tic programs, and [13] shows how to generalize SDDP to solve nonlinear convex
problems. There have also been studies about sequencing protocols to choose the
order in which subproblems of the decomposition scheme are solved, see [5,9,11].
To deal with problems with a scenario tree that is too large to handle, a method-
ology to select an ε-optimal subtree of the scenario tree is given in [16]. While
nested decomposition approaches are usually formulated for continuous problem,
they can be extended to integer problems under some conditions, as in the recent
work [33]. It is likely that some of the techniques discussed in these papers can
also be applied to our setting, because the underlying algorithm closely mimicks
SDDP.

2 Problem formulation and assumptions

We study a sequential stochastic decision-making problem in which time evolves
in a discrete manner over an infinite horizon. Information carried from one stage
to the next is encoded by a state. At each stage t we need to determine xt,
representing the action taken, and yt, representing the state in which we leave the
system. The set of feasible states and actions is encoded by linear constraints. We
assume that actions and state incur a linear cost of the form c>xt + h>yt at each
stage t, with a discount factor δ < 1 for future costs. The vector of right-hand side
values Rt is random, and it takes values from the sample space Ω. Our goal is to
compute a policy that maps states to actions and achieves minimum total cost;
a more precise formulation is given later in this section, see (IHLP). A possible
interpretation of such a model is that of optimally planning production of a certain
set of items over an infinite horizon, with uncertain demand Rt. At each stage we
need to determine a vector xt of production decisions, as well as a carryover vector
yt that represents inventory or backlogged demand.

We make the following assumptions, discussed below:

(A1) Ω = {ω1, . . . , ωκ} with κ <∞.
(A2) There exists U < ∞ and an integer θ such that imposing the constraints

‖xt‖∞ ≤ Utθ, ‖yt‖∞ ≤ Utθ does not change the solution to the problem.
(A3) Rt, t = 0, . . . ,∞, are i.i.d.
(A4) The problem has relatively complete recourse, i.e., at every stage t = 1, . . . ,∞,

for every feasible yt−1, there exists a feasible choice of xt, yt.
(A5) There is no feasible direction with unbounded cost for t = 0, . . . ,∞ and

ω ∈ Ω.

Assumption (A1) enforces finiteness of the sample space possibly by taking a
finite number of samples from the original space, see e.g. [29]. It is a standard as-

B2 for infinite-horizon stochastic linear programs 5

sumption for approaches based on Benders decomposition [6]. Assumption (A2),
ensuring that xt and yt grow at most polynomially with t, is a sufficient condition
to show that the total cost is bounded. Assumption (A3) is fundamental for the
computational efficiency of the B2 algorithm, which is based on SDDP. As men-
tioned in the introduction, this assumption ensures that the data process has a
steady state, and some degree of (linear) stagewise dependence can be introduced
extending the state variables [29]. Assumption (A4) simplifies our exposition and
avoid dealing with hard-to-detect infeasibilities of the mathematical optimization
problem. Assumption (A5) ensures that the costs δt(c>xt + h>yt) are uniformly
bounded, see e.g. [27].

Let K := {1, . . . , κ}. The realizations of uncertainty {ω1, . . . , ωκ} are also
called “scenarios” in the following. Due to nonanticipativity, the number of possi-
ble states and therefore of possible decisions that can be taken at time t is equal to
the number of sample paths up to time t, which is |K|t under our assumptions. Fol-
lowing the general description given at the beginning of this section, the vector of
right-hand side values at time t is a random variable Rt(ω) = (bt(ω), dt(ω), wt(ω)).
For k ∈ K, denote pk = Pr(ωk), bk = b(ωk), dk = d(ωk), wk = w(ωk), since the
time index is not necessary for b, d, w due to independence. For t = 0, . . . ,∞, let
St := Kt = K ×K × · · · ×K︸ ︷︷ ︸

t times

; hence, St represents the possible sample paths up

to stage t. For s ∈ Sτ , we denote by ps the probability of occurrence of all sample

paths that concide with s up to stage τ ; by (A3), ps =
∏

t=1,...,τ

pst . Given s ∈ Sτ ,

we denote by s := (s1, . . . , sτ−1), i.e. the τ -tuple s truncated to the (τ − 1)-th
element. We index s ∈ Sτ as a vector, e.g. sτ is the last element of s. Through-
out this paper, for notational convenience we assume that s0 = 0 and the special
scenario index “0” is used to refer to the initial (deterministic) conditions of the
problem. We can now precisely state the problem addressed in this paper:

min c>x0 + h>y0 +
∞∑
t=1

δt
∑
s∈St

ps(c
>xt(s) + h>yt(s))(IHLP)

t = 0, . . . ,∞, s ∈ St Axt(s)− Tyt−1(s) +Gyt(s) ≥ bst
t = 0, . . . ,∞, s ∈ St Dxt(s) ≥ dst
t = 0, . . . ,∞, s ∈ St Wyt(s) ≥ wst

where A ∈ Rm×n1 , G ∈ Rm×n2 , T ∈ Rm×n2 , D ∈ Rp×n1 , W ∈ Rq×n2 , 0 ≤ δ < 1,
bk ∈ Rm, dk ∈ Rp, wk ∈ Rq, and the matrices D,W subsume lower and upper
bounds on the decision variables. In the formulation (IHLP), which stands for
“Infinite-Horizon Linear Program”, we allow a different decision xt(s) and state
yt(s) for every sample path. Note that this automatically ensures nonanticipativity.
The formulation (IHLP) is an infinite-horizon discounted linear program. This
problem is called “doubly-infinite” because it has an infinite number of decision
variables and constraints [27], but just as in [27], each variable appears in a finite
number of constraints, and each constraint contains a finite number of variables,
see also [28]. In (IHLP), uncertainty only affects the right-hand side vectors of
the mathematical program. It may be possible to generalize B2 to the case in
which the matrices A,G, T,D,W are also affected by uncertainty, but this is not

6 Giacomo Nannicini et al.

straightforward because, at a minimum, it entails keeping track of which of the
generated inequalities (discussed later in the paper) are valid for each scenario.

The constraints of (IHLP) describe the evolution of the system through time.
In particular, the variables yt represent the state of the system from the dynamic
programming point of view, see e.g. [3], because for any given τ , problem (IHLP)
is completely determined for time t = τ, . . . ,∞ given the realization Rτ and yτ−1.
Notice that in our notation, at stage τ the endogenous part of the state is given
by yτ−1 rather than yτ , because yτ is a decision that is taken at time τ . Here and
throughout the paper, the vector y−1 represents the initial state of the system and
is part of the problem input.

It is well known that under our assumptions the problem admits an optimal
stationary policy, see e.g. [3]. More specifically, regardless of the initial conditions
R0, there exists an optimal value function V ∗,k(ȳ) for each scenario k that gives the
optimal cost-to-go, i.e. the minimum discounted cost incurred until the end of the
time horizon starting in state ȳ with uncertainty realization ωj . The optimal policy
for realization ωk is then simply given by the solution of the Bellman equations
[2], which in this specific case read:

V ∗,k(ȳ) := min c>x+ h>y + δ
∑
j∈K

V ∗,j(y)

Ax− T ȳ +Gy ≥ bk (1)

Dx ≥ dk
Wy ≥ wk

One can also define the average value function V ∗(ȳ) =
∑
k∈K pkV

∗,k(ȳ), giving
the expected cost of being in state ȳ. Conversely, any stationary policy that attains
the above minimum for every state ȳ is optimal.

3 Benders decomposition: preliminaries

Problem (IHLP) has infinite size, and therefore it cannot be solved directly by
means of linear programming tools. However, under assumptions (A1)-(A5) the
optimal cost of (IHLP) is bounded: the present value of future costs decreases
following a geometric series with a discount factor δ < 1, whereas the optimal so-
lution value at each stage increases at most polynomially. Hence, we are interested
in a methodology to determine the optimal cost and the optimal policy.

In this paper we propose a solution methodology based on Benders decom-
position. Benders decomposition has been successfully applied to a finite-horizon
version of (IHLP), for example in SDDP [24] and in the L-shaped method [30]. We
refer to [6] for a more detailed discussion of decomposition methods in stochas-
tic programming, including nested decomposition methods for multi-stage prob-
lems. Note that a possible way to solve (IHLP) within a certain optimality tol-
erance ε > 0 is to determine a large enough truncation τ of the time hori-
zon so that the objective function contribution becomes sufficiently small, i.e.∑∞
t=τ δ

t∑
s∈St ps(c

>xt(s) + h>yt(s)) ≤ ε. Then, solving the truncated problem,
for example via SDDP, yields a solution with error at most ε. The desired τ exists
due to the boundedness assumption, but it may not be easy to determine its value.

B2 for infinite-horizon stochastic linear programs 7

Moreover, in practice it is likely that τ will be very large if ε is small, therefore
it would be very inefficient or even practically impossible to compute the solution
to the truncated problem using a methodology for finite-horizon problems, and
a tailored decomposition scheme is desirable. The algorithm that we propose is
based on SDDP, and can be seen as its extension to the infinite-horizon case.

In a Benders decomposition scheme, the decision variables are assigned to a
master problem and/or to one or several slave problems. Each subproblem only
keeps the constraints involving at least one of its variables. Assuming that all
variables that contribute to the objective function are in the master (as is the case
in this paper, after a reformulation), a solution of the master problem is optimal if it
can be completed to a feasible solution for all slave problems. To ensure feasibility
of the slave problems we rely on properties of linear programming duality and
iteratively derive inequalities that can be added to the master, see e.g. [4]; in
particular, the dual of the slave problems must be bounded. We remark that,
because our problem is doubly-infinite, strong duality may not hold in general:
see e.g. [10], which points out the existence of a duality gap in case some interior
point conditions fail to hold. However, an advantage of the approach presented
in this paper is that the algorithm works with a sequence of finite-dimensional
linear programs only, and the convergence proof relies on well-known properties
of dynamic programs and a classical cutting plane approach [18]. For this reason,
we do not have to rely on sufficient conditions for strong duality [27].

It will be convenient to introduce auxiliary variables to represent upper bounds
on the one-stage costs; this way, all slave problems are feasibility problems. From
now on, zt(s) denotes an upper bound on the cost from time t to ∞ starting from
sample path s ∈ St. We obtain the following formulation, which is easily seen to
be equivalent to (IHLP):

min c>x0 + h>y0 + δ
∑
k∈K

pkz1(k)(IHLP-F)

t = 0, . . . ,∞, s ∈ St Axt(s)− Tyt−1(s) +Gyt(s) ≥ bst
t = 0, . . . ,∞, s ∈ St Dxt(s) ≥ dst
t = 0, . . . ,∞, s ∈ St Wyt(s) ≥ wst
t = 1, . . . ,∞, s ∈ St zt(s)− c>xt(s)− h>yt(s)− δ

∑
k∈K

pkzt+1(s× {k}) ≥ 0

We label this problem (IHLP-F) for “Infinite-Horizon Linear Program – Feasi-
bility version”. We can apply Benders decomposition on this problem, solving a
master problem with variables x0, y0, z1, keeping the constraints for t = 0 only
and ensuring feasibility for the remaining constraints through a set of Benders
cuts C obtained from the dual variables of the slave problem. Note that the slave
problem has an infinite number of variables and constraints, therefore its feasible
region may not be representable by a finite number of Benders cuts, see Sect. 4.
However, as noted earlier in this section, there exists a truncation of the time
horizon that yields an ε-optimal solution, and we will implicitly work with such a
truncation. Hence, for now we simply assume that we aim at ensuring feasibility
of the slave problem with a finite number of Benders cuts: Sect. 4.3 shows that our
methodology indeed converges to an ε-optimal solution. The proposed decompo-
sition scheme yields the following master problem (denoted (MP-L0) for “Master

8 Giacomo Nannicini et al.

Problem, Level 0”):

min c>x0 + h>y0 + δ
∑
k∈K

pkz1(k)(MP-L0)

Ax0 +Gy0 ≥ b0 + Ty−1

Dx0 ≥ d0
Wy0 ≥ w0

∀γ ∈ C γ>y y0 +
∑
k∈K

γkz1(k) ≥ γ0.

Since all constraints in (IHLP-F) that contain x0 are kept in (MP-L0), the Ben-
ders cuts in C do not involve the variables x0, but they can involve the other
variables. Furthermore, if we look at the constraints in (IHLP-F) that are not part
of (MP-L0), we notice that at any given time step τ we can decompose the remain-
ing constraints into κ independent problems, since decision variables for scenario
k ∈ K do not interact with decision variables from any other scenario k′ 6= k.
Hence, we can decompose the slave problem into κ feasibility subproblems, which
we state for a generic time index τ (assume τ = 1 for now) and scenario index
j ∈ K:

min 0(SP-Lτ -j)

Axτ +Gyτ ≥ bj + T ŷτ−1

Dxτ ≥ dj
Wyτ ≥ wj

−c>xτ − h>yτ − δ
∑
k∈K

pkzτ+1(j × {k}) ≥ −ẑτ (j)

t = τ + 1, . . . ,∞, s ∈ St Axt(s)− Tyt−1(s) +Gyt(s) ≥ bst
t = τ + 1, . . . ,∞, s ∈ St Dxt(s) ≥ dst
t = τ + 1, . . . ,∞, s ∈ St Wyt(s) ≥ wst
t = τ + 1, . . . ,∞, s ∈ St zt(s)− c>xt(s)− h>yt(s)− δ

∑
k∈K

pkzt+1(s× {k}) ≥ 0.

This problem is denoted (SP-Lτ -j) for “Slave Problem, Level τ , scenario j”. Notice
that according to (IHLP-F), xτ , yτ should in principle depend on the sample path
up to stage τ , but mimicking the notation of (MP-L0) we do not make such
dependency explicit because the sample path up to τ is already determined when
subproblem (SP-Lτ -j) is considered. In the case of the slave problems for (MP-L0),
τ = 1, j ∈ K is fixed and ŷ0, ẑ1(j) are given from the master (MP-L0). Because
of assumption (A4), the only possible infeasibility in (SP-Lτ -j) with τ = 1 is a
violation of the upper bound on the objective function imputed from the master
ẑ1(j). Problem (SP-Lτ -j) for τ = 1 is again a doubly-infinite linear program, and
we want to solve it with the same decomposition scheme: we consider a master
problem with the variables x1, y1, z2(j) only, keep the constraints for t = 1 and
delegate the rest to the slave problems, one for each scenario. Feasibility for the
slave problems is ensured via set of Benders cuts C, which are added to the master.

Iterating this idea for a generic time index τ and solving (SP-Lτ -j) by Benders
decomposition, the master problem of the level τ slave for a given scenario j ∈ K

B2 for infinite-horizon stochastic linear programs 9

with a set of cuts C is the following problem, where we indicate labels for the dual
variables corresponding to each set of constraints within square brackets on the
right:

min 0(MP-Lτ -j)

Axτ +Gyτ ≥ bj + T ŷτ−1 [µy]

Dxτ ≥ dj [µd]

Wyτ ≥ wj [µw]

−c>xτ − h>yτ − δ
∑
k∈K

pkzτ+1(j × {k}) ≥ −ẑτ (j) [µz]

∀γ ∈ C γ>y yτ +
∑
k∈K

γkzτ+1(j × {k}) ≥ γ0. [µγ]

Notice that in principle we have an infinite number of these problems, each of
which should have its own set of Benders cuts that come from the respective slave
problems. Furthermore, so far we have not shown that |C| is finite, but clearly this
is the case if the time horizon is truncated at some point, see Sect. 4.3.

The decomposition algorithm that we propose always generates Benders cuts
from problems of the form (MP-Lτ -j). The following proposition establishes va-
lidity of the Benders cuts generated from any given (MP-Lτ -j) with fixed j = ̂
for every other problem (MP-Lτ -j). Since (MP-Lτ -j) is a relaxation of (SP-Lτ -j),
the Benders cuts are valid for (SP-Lτ -j).

Proposition 1 Let µ̂ be an unbounded ray of the dual of (MP-Lτ -j) with τ = τ̂ ,
j = ̂, C = Ĉ. Then the inequality µ̂>y Tyτ − µ̂zzτ+1(j) ≤ −µ̂>b̂− µ̂>d d̂− µ̂>wŵ−∑
γ∈Ĉ µ̂

>
γ γ0 is valid for problem (MP-Lτ -j) for every τ , j and C ⊇ Ĉ, including

(MP-L0).

Proof The dual of (MP-Lτ -j) is:

max µ>y (bj + T ŷτ−1) + µ>d dj + µ>wwj − µz ẑτ (j) +
∑
γ∈C

µ>γ γ0(D-MP-Lτ -j)

µ>y A+ µ>d D − µ>z c = 0

µ>y G+ µ>wW − µ>z h+
∑
γ∈C

µγγy = 0

k ∈ K −µzδpk +
∑
γ∈C

µγγk = 0

µy, µd, µw, µz, µγ ≥ 0

We first show validity for τ = τ̂ , j = ̂, C = Ĉ, and then argue why we can
generalize to every τ , j and C ⊇ Ĉ, as well as (MP-L0).

Feasibility for problem (MP-Lτ -j) requires that its dual is feasible and bounded.
Clearly (D-MP-Lτ -j) is feasible as it admits the all-zero solution. Hence, for every
unbounded ray µ̂ of (D-MP-Lτ -j) we must impose that the ray makes a neg-
ative angle with the objective function, i.e. µ̂>y (bj + T ŷτ−1) + µ̂>d dj + µ̂>wwj −
µ̂z ẑτ (j) +

∑
γ∈C µ̂

>
γ γ0 ≤ 0. Remembering that the ray µ̂ comes from (MP-Lτ -j)

10 Giacomo Nannicini et al.

with j = ̂, C = Ĉ and that the only decision variables coming from the previous-
level problem in the expression above are ŷτ−1 and ẑτ (j), we obtain the desired
inequality with the time index shifted by 1.

We now show that the above inequality is valid for (MP-Lτ -j) every τ , j and
C ⊇ Ĉ. First, notice that the description of the feasible region of this problem
depends neither on τ nor on j ∈ K, and is therefore the same for all problems
(MP-Lτ -j) provided C does not change. Then, it is easy to verify that solutions
to (D-MP-Lτ -j) are feasible for the dual of (MP-Lτ -j) with any larger set of cuts
C ⊇ Ĉ, as the dual variables for the new cuts can simply be fixed to zero. This
implies that the inequality derived from an unbounded ray is valid regardless of
the choice of τ , j and C ⊇ Ĉ.

To conclude the proof, we note that (MP-Lτ -j) for τ = 1 is a slave problem for
the Benders decomposition in which (MP-L0) is the master. Thus, the inequality
is valid for (MP-L0) as well. ut

From a computational perspective, the important consequence of Prop. 1 is that
a Benders cut generated at any level of the decomposition scheme, i.e. for any τ ,
can be added to all levels of the decomposition. This is in contrast to the classical
SDDP approach, where cuts are generated in a backward fashion starting from
the last time period, and added only to the master problems of the immediately
preceding time period. The possibility of sharing the same pool of Benders cuts
among the different levels of the decomposition is due to the fact that we are
working on an infinite-horizon, in which case the shape of the value function is the
same, regardless of the specific time period. This is not the case in the classical
SDDP approach, where the time horizon is finite. On the other hand, we remark
that if the matrices A,D,G,W depend on j rather than being fixed, then a cut
generated according to Prop. 1 is valid only for problems (MP-Lτ -j) with the
corresponding ̂.

4 Description of the algorithm and convergence

We now describe in detail our decomposition algorithm, called B2, discuss the
computation of primal bounds, and prove convergence of B2.

4.1 Description of B2

B2 relies on a sampled nested Benders decomposition scheme. The algorithm works
in a similar way to SDDP, alternating between a forward pass that determines a
sequence of trial solutions following a sample path, and a backward pass that
improves the value function approximation at the trial solutions. A pseudocode
description of algorithm B2 is given in Algorithm 1. The auxiliary problems solved
by the algorithm are defined below: P (b̄, d̄, w̄, C) is the problem solved in the
forward pass, RB(b̄, d̄, w̄, z̄, C) the problem solved in the backward pass. The label
“P” stands for “Primal”, “RB” for “Relaxed Benders”. Note that RB(b̄, d̄, w̄, z̄, C)

B2 for infinite-horizon stochastic linear programs 11

Algorithm 1 Infinite-horizon B2 algorithm.

1: C ← ∅, τ ← 0, LB ← −∞, UB ← +∞, S∗ ← ∅ , n← 0
2: while stopping criterion not satisfied do
3: τ ← τ + 1 /* This is the length of the time horizon under consideration */

4: Choose S̃τ ⊆ Sτ .
5: for s ∈ S̃τ do
6: n← n+ 1 /* This is the iteration number, i.e., number of passes */
7: for t = 0, . . . , τ do
8: Solve P (bst + T ŷt−1(s), dst , wst , C). Let (x̂t(s), ŷt(s), ẑt+1(s)) be the solution.
9: for t = τ, . . . , 1 do

10: Generate Benders cuts from RB(bst + T ŷt−1(s), dst , wst , ẑt+1(s), C).
11: Add cuts to C.
12: for s ∈ S∗ do
13: Sample k ∈ K and extend s← s× {k}
14: Solve P (bk + T ŷτ−1(s), dk, wk, C). Let (x̂τ (s), ŷτ (s), ẑτ+1(s)) be the solution.
15: Generate Benders cuts from RB(bk + T ŷt−1(s), dk, wk, ẑt+1(s), C).
16: Add cuts to C.
17: S∗ ← S∗ ∪ S̃τ
18: Solve P (b0, d0, w0, C). Let LB be the value of its optimal solution.
19: UB ← ComputeUB(τ, S∗, δ, C, α)
20: return (x0, y0), LB,UB

Algorithm 2 ComputeUB(τ, S̃τ , δ, C, α)

1: U ← ∅
2: Determine a steady-state constant state vector ȳ, see Sect. 4.2.
3: for s ∈ S̃τ do
4: for t = 0, . . . , τ do
5: Solve P (bst + T ŷt−1(s), dst , wst , C). Let (x̂t(s), ŷt(s), ẑt+1(s)) be the solution.
6: U ← U ∪ {

∑τ
t=0 δ

t(c>x̂t(s) + h>ŷt(s)) + δτ+1
∑
k∈K cost(ŷτ (s), ȳ, ωk)}

7: return mean(U) +
qα√
|S̃τ |

stdev(U) + δτ+2

1−δ
∑
k∈K pkcost(ȳ, ȳ, ωk)

is a feasibility problem, consistently with the definition of (MP-Lτ -j).

min c>x+ h>y + δ
∑
k∈K

pkz(k)

Ax+Gy ≥ b̄
Dx ≥ d̄
Wy ≥ w̄

∀γ ∈ C γ>y y +
∑
k∈K

γkz(k) ≥ γ0

P (b̄, d̄, w̄, C)

min 0
Ax+Gy ≥ b̄

Dx ≥ d̄
Wy ≥ w̄

−c>x− h>y − δ
∑
k∈K

pkz(k) ≥ −z̄

∀γ ∈ C γ>y y +
∑
k∈K

γkz(k) ≥ γ0

RB(b̄, d̄, w̄, z̄, C)

The main idea of the algorithm is to consider a truncated time horizon and ap-
ply the sampled nested Benders decomposition scheme to the resulting problem,

12 Giacomo Nannicini et al.

dynamically expanding the time horizon until convergence is reached. During the
course of the algorithm we take advantage of assumption (A3) and Prop. 1 to
immediately add all Benders cuts to all levels of the decomposition. Upper bounds
are obtained using a heuristic, see Sect. 4.2, combined with the classical SDDP
approach to compute upper bounds via sampling, which would not work on its
own because we are considering an infinite-horizon setting.

The B2 algorithm bears strong similarities with value iteration (see [3,26]),
because it iteratively constructs an approximation of the value function: it starts
from the empty (i.e., identically zero) approximation, and in each iteration it
improves the approximation relying on the one obtained in the previous step.
However, a straightforward value iteration scheme would not work in our setting
because the state space is infinite, hence we cannot loop over all the states to apply
the value function iteration. The convergence rate associated with a value iteration
scheme, e.g. [26, Thm. 3.4.2], can in principle be adapted, but its usefulness is
limited in our context: its application requires a bound on the absolute change of
the value function approximation over the entire space state, which is a polyhedral
set in this paper rather than a finite set as in the classical DP setting.

4.2 Computation of upper bounds

Any policy for problem (IHLP) corresponds to an upper bound, but the infinite-
horizon nature of the problem introduces difficulties in checking feasibility of a
policy, and in computing its value. In practice, to overcome these difficulties we
are interested in policies that guarantee feasibility by construction, and for which
the corresponding value can be computed in a finite number of steps, e.g. a closed-
form formula. The approach that we propose to compute upper bounds is described
in Algorithm 2, where the function cost(·, ·, ·) and the meaning of the vector ȳ will
be explained below. The computation is split into two parts: the first part concerns
estimating the cost of a feasible policy up to stage τ , the second part computes
the cost of a feasible policy from stage τ to ∞. Here, τ is the length of the time
horizon considered at that specific iteration by the B2 algorithm: the first part of
the computation is performed in the usual SDDP fashion [24], yielding an upper
bound with a given confidence level as explained in [29]. We now discuss the second
part of the computation in more detail.

To obtain an estimation of the cost from a given stage τ to ∞, we restrict
our attention to constant-state policies, defined as policies that always leave the
system in the same state regardless of the time index. Note, however, that the
existence of such policies is not guaranteed. Therefore, our implementation by
default applies a routine that tries to compute a constant-state policy in a heuristic
way; if this routine fails, which is possible depending on the problem at hand, it is
necessary to provide a problem-specific algorithm to compute upper bounds. The
advantage of a constant-state policy is obvious: suppose that given a realization
ω = ωk, we can compute the cost cost(ȳ, ȳ′, ωk) of a policy that starts from state
ȳ with right-hand side vector Rt(ωk), and leaves the system in state ȳ′. Then we
have:

Eω

[∞∑
t=τ

δtcost(ȳ, ȳ, ω)

]
=

δτ

1− δ

(∑
k∈K

pkcost(ȳ, ȳ, ωk)

)
,

B2 for infinite-horizon stochastic linear programs 13

because the cost depends only on ω and not on t, as the system is always left in the
same state. Provided we have a method to obtain cost(ȳ, ȳ, ωk), the right-hand side
of the equation above is easily computable. We remark that the above equation
assumes that the system starts in state ȳ: the first part of the computation (stage
1 to τ) may not leave the system in state ȳ, but rather in some state ŷτ , see
Algorithm 2. Thus, we include the term cost(ŷτ , ȳ, ωk), appropriately discounted,
to account for the cost of trasitioning from ŷτ to ȳ, after which we pay cost(ȳ, ȳ, ωk)
at every stage.

Our default strategy to compute the cost of a constant-state policy is the
following. We first try to determine a value ȳ of the state variables y that allows
feasibility to be recovered just by changing the x variables, for all realizations ωk.
In other words, we try to determine a value ȳ such that imposing yt = ȳ does not
make (IHLP) infeasible. We remark that assumption (A4) does not guarantee that
such a value exists because we are now imposing yt−1 = yt, which is not part of
the original problem. If the desired value ȳ exists, we can compute cost(ȳ, ȳ, ωk)
for any value ȳ simply by solving (1) setting y = ȳ and V ∗(y) ≡ 0. Hence, the main
difficulty is determining ȳ. We attempt to do so by solving a linear program. Let bU
be the componentwise maximum of b1, . . . , bκ, dU the componentwise maximum of
d1, . . . , dκ, wU the componentwise maximum of w1, . . . , wκ. We solve the problem:

min c>x+ h>y
Ax+ (G− T)y ≥ bU

Dx ≥ dU
Wy ≥ wU ,

 (2)

that can be interpreted as considering a worst case scenario in which all resources
are maximally constrained, yt−1 = yt (hence the constraint Ax+ (G−T)y ≥ bU),
and we try to determine the least-cost state that satisfies the constraints. Note
that by definition of bU , dU , wU , if (2) has a solution ȳ, then we are guaranteed
that all scenarios admit a constant-state policy with state ȳ. If (2) does not have
a solution our heuristic fails, and we must resort to a problem-specific approach
to construct upper bounds. We remark that based on the problem structure it is
sometimes possible to check if (2) is guaranteed to have a solution, e.g. D ≥ 0,
dU = 0, wU = 0, and A ≥ 0 with maxj=1,...,n1 Aij > 0 for all i = 1, . . . ,m, in
which case y = 0 is feasible for (2). This is the type of structure encountered in the
two applications tested in Sect. 5. In terms of the production planning example
given at the beginning of Sect. 2, the conditions stated above correspond to having
unlimited single-stage production capabilities: this implies that the solution with
no inventory (y = 0) is feasible for (2).

4.3 Convergence

We now discuss convergence of the B2 algorithm as given in Algorithm 1. The basic
idea for the proof is to apply Benders decomposition to the problem obtained with
a sufficiently large truncation of the time horizon, and show that as the number of
iterations goes to infinity, with probability 1 our algorithm yields value functions
that are at least as good as those of the truncated problem. The proof requires
some care because the two most natural approaches, stated below, do not seem to
work.

14 Giacomo Nannicini et al.

The first natural approach would be to apply a standard SDDP convergence
proof on the truncated problem. This does not work because such proofs typically
use a finiteness argument on the number of cutting planes, i.e. extreme points of
the dual problems, that cannot be employed in our case: we keep adding cutting
planes to the cut generating problem, therefore the number of extreme points may
increase as the iterations progress. The second natural approach would be to use
Kelley’s cutting plane convergence proof [18] to show convergence to the optimal
value function V ∗. This does not work because the cutting planes that we generate
may not be supporting for V ∗. We will eventually rely on the result in [18], but
not by applying it directly to V ∗.

We call a policy ε-optimal if, from the initial uncertainty realization R0, it
determines a sequence of actions that yields a total cost no more than ε away
from the optimal total cost. Our goal is to show convergence to an ε-optimal
policy. The proof will show that with probability 1 we obtain good value function
approximations along any sample path. Notice that our definition of ε-optimal
policy is only concerned with states that can be visited along a sample path: the
proof given below leaves open the possibility that the value function approximation
is poor at states that are never visited (i.e., with probability 0) by the ε-optimal
policy. These states, however, do not affect the expected quality of the policy.

Assumption (A5) implies that it is always possible to identify ¯̀ such that the
constraint c>xt(s) + h>yt(s) ≥ ¯̀ is valid (i.e. redundant) for all t. Therefore,
` =

∑∞
t=0 δ

t ¯̀ = ¯̀/(1 − δ) is a lower bound to the total cost of (IHLP). Given ε,
let T (ε) be the smallest stage index such that

max

∣∣∣∣∣∣
∞∑

t=T (ε)

δt
∑
s∈St

ps(c
>xt(s) + h>yt(s))

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
∞∑

t=T (ε)

δt`

∣∣∣∣∣∣
 ≤ ε/2, ∀ feasible

xt(s),yt(s),

i.e. T (ε) is large enough that both upper and lower bounds on the cost contribution
of subsequent time periods are smaller than ε/2 in absolute value. Assumption (A2)
together with 0 ≤ δ < 1 imply that both terms inside the max decrease with T (ε),
hence T (ε) exists and is well defined.

Let PT (ε) be the problem obtained by truncating (IHLP) at time horizon T (ε)

(included). For stage t = 1, . . . , T (ε) and k ∈ K, let V kt (yt−1) be the corresponding
value function. Thus, V kt (yt−1) gives the optimal cost-to-go for PT (ε), i.e. the
optimal cost from stage t with state yt−1 and scenario k ∈ K until stage T (ε).
Since the time horizon is finite, PT (ε) is a multi-stage linear program, therefore the

value functions V kt , t = 1, . . . , T (ε), k ∈ K exist and are piecewise linear (convex)
functions with a finite number of pieces. The optimal policy for PT (ε) can be
computed by solving the following problems, where t = 0, . . . , T (ε) and j ∈ K
(when t = 0 take j = 0)1:

min c>xt + h>yt + δ
∑
k∈K

pkV
k
t+1(yt)

Axt +Gyt ≥ bj + Tyt−1 (VF-Lt-j)

Dxt ≥ dj

1 To be precise, the value of the optimal policy for PT (ε) can be found by solving (VF-L0-0),
the remaining problems (VF-Lt-j) are used to identify the optimal policy.

B2 for infinite-horizon stochastic linear programs 15

Wyt ≥ wj .

By definition of PT (ε) and V kt , solving (VF-Lt-j) for t = 0, . . . , T (ε) following the
solutions according to the realization of the sample path is an ε

2 -optimal policy

to (IHLP). Since V kt are convex piecewise linear, (VF-Lt-j) can be cast as an LP.
We will show that Algorithm 1 constructs an approximation of the value functions
V kt of PT (ε). We remark that our definition of T (ε) is only important to prove

existence of the polyhedral value functions V kt ; we choose T (ε) so that it yields a
total error of ε/2 because an additional error of ε/2 will be introduced in the value
function approximations.

It will be convenient to define V kt (yt−1) = ` for all t > T (ε). This is not
restrictive because taking into account the discount factor, the total objective
function contribution for stages t > T (ε) is at most ε/2. Let n denote the iteration
number, and Cn the set of cuts collected up to iteration n. Let V kCn be the value

function for scenario k induced by the Benders cuts collected in Cn, i.e. V kCn(y) :=

min{z(k) : γ>y y +
∑
j∈K γjz(j) ≥ γ0 ∀γ ∈ Cn}; thus, V kCn(yt−1) ≤ V kt (yt−1) for

all t = 0, . . . , T (ε). We can assume w.l.o.g. that the cut z(k) ≥ ` is implied by
Cn for all n and k ∈ K, by initializing C0 with the cut z(k) ≥ ` if necessary. We
call π∗n the policy implied by the value function approximations obtained from the
cuts in Cn. More specifically, the states visited by the policy π∗n at stages t ≥ 1
are thus identified by the set of optimal solutions of the problem obtained from
(VF-Lt-j) by using the value function approximation V kCn rather than V kt+1. For a
given sample path s ∈ St, these states are denoted by x̂st , ŷ

s
t , t = 1, . . . , T (ε).

Define the sets Qkt := {(yt−1, zt) : zt ≥ V kt (yt−1)}, i.e. the epigraph of
V kt (yt−1), and Qkt (ε̄) := {(yt−1, zt) : zt ≥ V kt (yt−1) − ε̄}, i.e. an ε̄-relaxation
of the epigraph of V kt (yt−1). The next result shows that the sequence of states
and the corresponding costs explored by π∗n converges to Qkt for all t.

Lemma 1 As the number of iterations n of Algorithm 1 goes to infinity, for any
ε̄ > 0, for all t = 1, . . . ,∞, for all sample paths s ∈ St, and for all (x̂st , ŷ

s
t) visited

by following the policy π∗n, (ŷst , V
st
Cn

(ŷst)) ∈ Qstt (ε̄) with probability 1.

Proof As the number of iterations goes to infinity, the length of the time horizon
visited by Algorithm 1 grows infinitely large. Hence, the critical length of the time
horizon T (ε) is reached, and we are working with a finite-horizon problem that
has PT (ε) as a subproblem.

Define ε̂t = (T (ε)−t)+1
T (ε)+1 ε̄ for t ≤ T (ε), ε̂t = ε̄ otherwise. We will prove that

(ŷt−1(s), V stCn(ŷt−1(s))) ∈ Qstt (ε̂t), which implies the original statement since ε̂t ≤ ε̄
for all t. Recall that in DP terminology, ŷst−1 is the endogenous state at time t.

For the sake of contradiction, suppose that there exists a stage index t and a
sample path s ∈ St such that (ŷst−1, ẑ

s
t = V stCn(ŷst−1)) is visited following π∗n along

sample path s, and (ŷst−1, ẑ
s
t) 6∈ Qstt (ε̂t) with probability greater than zero. Notice

that this implies ẑst < V stt (ŷst−1) − ε̂t. In case there are multiple sample paths s
and stage indices t for which the above statement holds, we consider the sample
path s and stage index t such that t is the largest.

First, we claim that t ≤ T (ε). Indeed, if t > T (ε), V stCn(ŷst−1) ≥ ` = V kt (ŷst−1), so
(ŷst−1, V

st
Cn

(ŷst−1)) ∈ Qstt ⊂ Q
st
t (ε̄) for every ε̄ ≥ 0. Thus, we now assume t ≤ T (ε).

16 Giacomo Nannicini et al.

As n → ∞, a sample path s′ that coincides with s up to stage t will be
sampled infinitely often. The solution of the forward pass problem for P (bs′t +

T ŷs
′

t−1, ds′t , ws′t , Cn) along s′ at stage t is the solution to:

v := min c>xs
′

t + h>ys
′

t + δ
∑
k∈K

pkV
k
Cn(ys

′

t)

Axs
′

t +Gys
′

t ≥ bs′t + T ŷs
′

t−1

Dxs
′

t ≥ ds′t
Wys

′

t ≥ ws′t .

By assumption V kCn(ŷs
′

t) ≥ V kt+1(ŷs
′

t)− ε̂t+1 with probability 1 (recall that t is the
largest time index ≤ T (ε) for which this property does not hold for all sample
paths), implying that the objective function value v is greater than or equal to:

c>x̂s
′

t + h>ŷs
′

t + δ
∑
k∈K

pkV
k
t+1(ŷs

′

t)− δε̂t+1.

Because the first part of the above expression is the cost of performing (potentially

suboptimal) action x̂s
′

t starting from state ŷs
′

t−1 at stage t, we can write:

c>x̂s
′

t + h>ŷs
′

t + δ
∑
k∈K

pkV
k
t+1(ŷs

′

t)− δε̂t+1 ≥ V
s′t
t (ŷs

′

t−1)− δε̂t+1.

But then, since ẑs
′

t < V
s′t
t (ŷs

′

t−1)− ε̂t < V
s′t
t (ŷs

′

t−1)− ε̂t+1 < V
s′t
t (ŷs

′

t−1)− δε̂t+1 ≤ v,
a violated Benders cut will be generated during the backward pass. The new cut

is either supporting for the set Q
s′t
t (ε̂t+1), or cuts inside the set (because v could

be strictly greater than V
s′t
t (ŷs

′

t−1) − ε̂t+1). As a straightforward generalization
of [18, Sect. 2], the cutting process must converge to a point with distance at

most 1
T (ε)+1 ε̄ from the set Q

s′t
t (ε̂t+1) after a finite number of cutting planes (the

distance 1
T (ε)+1 ε̄ is chosen as the ε of the result stated in [18, Sect. 2]). Indeed,

notice that the assumptions of [18, Sect. 2] are satisfied, as ŷs
′

t−1 belongs to a

compact set, Q
s′t
t (ε̂t+1) is convex, and the gradients of the cutting planes are

bounded (a cutting plane with unbounded gradient would not be valid for Q
s′0
0 , a

contradiction). Furthermore, ε̂t+1 + 1
T (ε)+1 ε̄ = ε̂t. Hence, convergence to a point

with distance at most 1
T (ε)+1 ε̄ from the set Q

s′t
t (ε̂t+1) implies convergence to a

point (ŷs
′

t−1, ẑ
s′

t) ∈ Qs
′
t
t (ε̂t).

To summarize, if a sample path s′ coinciding with s up to stage t is sampled

infinitely often, then (ŷs
′

t−1, ẑ
s′

t) ∈ Qs
′
t
t (ε̂t) after a finite number of iterations. As

n → ∞, this event occurs with probability 1 because each sample path is chosen
with positive probability. Thus, the probability that (ŷst−1, V

st
t (ŷst−1)) 6∈ Qkt (ε̂t)

goes to 0, a contradiction because we had assumed the converse. ut

We are now ready to state the main convergence result.

B2 for infinite-horizon stochastic linear programs 17

Theorem 1 For any ε > 0, as the number of iterations n of Algorithm 1 goes to
infinity, the policy computed by Algorithm 1 converges to an ε-optimal policy with
probability 1. Furthermore, the algorithm returns a gap that, with an (approximate)
confidence level of α, is an upper bound to the gap between the cost of the computed
policy, and the cost of the optimal policy.

Proof The value of the forward pass problem P (b0, d0, w0, Cn) is a lower bound to
the cost of the optimal policy by the cut validity argument of Prop. 1. Furthermore,
for all k ∈ K a sample path s with s1 = k is sampled infinitely often; then,
by Lemma 1, the values V kCn(ŷ1(s)) converge to a ε̄-relaxation of the true value

functions V k1 of the finite-horizon problem PT (ε), for any ε̄ > 0. Choose ε̄ =
ε
2κ . Then P (b0, d0, w0, Cn) underestimates the optimal value of PT (ε) by at most
ε/2 (each of the value function approximation in the summation of the objective
function introduces an error of at most ε

2κ , and there are κ of them). Recall that
by construction, PT (ε) estimates the cost of the optimal policy of (IHLP) with
an absolute error of at most ε/2. Hence, with probability 1 the lower bound in
Algorithm 1 converges to an (ε2 + ε

2) = ε-optimal cost, as n→∞. Lemma 1 shows

that the policy π∗n implied by the value function approximations V kCn enjoys the
same error bound.

At the same time, as n → ∞, the sample mean of the costs of the (uniformly
drawn) sample paths converges to an unbiased estimate of the true cost, and using
the central limit theorem, the α quantile of the costs of the sample paths is larger
than the true cost up to the current time horizon τ with a confidence of α (the
approximation mentioned in the theorem statement is due to the approximation
of the distribution of the average with a normal distribution, using the central
limit theorem). Since the cost of a heuristic policy from time τ to ∞ provides a
deterministic upper bound to the cost from τ to∞, the upper bound UB computed
by Algorithm 2 is a valid upper bound with a confidence of α. When the algorithm
stops, the difference between the cost of the policy implicitly defined by the value
function approximation, and the cost of the optimal policy, is therefore smaller
than UB − LB with an (approximate) confidence of α. ut

5 Computational experiments

In this section we report and discuss the results of a computational evaluation of
the algorithm proposed in this paper. To test the validity of our algorithm we use
a testbed based on two problems considered over an infinite time horizon: Produc-
tion Planning with Backlog (PPB), and Continuous Rebalancing (CR). For each
problem, we provide a mathematical programming formulation, we describe how
we constructed the set of instances used in our computational evaluation, and we
discuss the empirical behavior of our algorithm, also in comparison to other algo-
rithms when applicable. All the experiments reported in this section are executed
on a homogeneous cluster equipped with Xeon E7-4850 processors (2.00GHz 64 GB
RAM). Note that since the experiments are run in parallel and job scheduling is
unpredictable, the timing statistics reported here are likely to be affected by some
noise. However, the ranking of the algorithms indicated by aggregate statistics is
so clear that the noise introduced by running parallel computations is irrelevant.
In particular, standard deviations can be large and we do not report them for

18 Giacomo Nannicini et al.

concisiveness, but our conclusions are supported by additional analysis, as will be
explained in the text. Before providing a full description of the test problems, we
briefly comment on important implementation choices.

5.1 Implementation details

We implemented the B2 algorithm in Python 2.7, using Cplex 12.6.1 as an LP
solver via its Python interface. As a stopping criterion for the algorithm, we
adopted a check on the absolute and relative gap between lower and upper bounds,
where the relative gap is computed as UB−LB

UB+10−10 . Notice that the upper bounds
are estimated via sampling and are only valid at a given confidence level δ, set
to 95% in our experiments. These stopping criteria are employed with the same
tolerances by all algorithms.

The following parameters have a major impact on the computational perfor-
mance of the B2 algorithm:

– The number ρ of rounds before purging cuts. We opted for a dynamic manage-
ment of the set C of Benders cuts, as dynamic management typically improves
performance in LP-based cutting plane algorithms. At each iteration, we check
which Benders cuts are active. A cut is considered active on a current forward
pass solution if the corresponding dual variable is smaller than 10−5 in abso-
lute value. If a cut is inactive for more than ρ LP solves, it is removed from
C. We remark that in principle this could affect convergence of the algorithm
from a theoretical point of view, as the value function approximations may
deteriorate after cut removal.

– The number φ of sample paths before increasing τ . An important aspects in
the B2 Algorithm is the choice of the size of S̃τ , see Alg. 1, line 4: we denote
by φ = |S̃τ | the number of sample paths generated before increasing the length
τ of the time horizon.

In the context of SDDP, other cut selection strategies have been discussed.
Notably, [8] presents some possibilities (see also [25]) for cut management based on
the assumption that cuts should never be deleted to ensure convergence. However,
only a subset of the cuts is used at each stage, and an important part of [8] is
precisely how to select such a subset. Nevertheless, the difference in performance
between all “reasonable” strategies (i.e., excluding the naive approach of keeping
a fixed number of cuts in FIFO order) is small. The approach used in this paper is
normally used for cut management in MIP solvers, and is known to perform well
while introducing little overhead. Of course, care should be taken in ensuring that ρ
is not too small, to avoid purging useful cuts just because the sample paths leading
to solutions at which those cuts are active are not sampled for a few consecutive
iterations.

5.2 Production Planning with Backlog

Production Planning is a classical problem in the stochastic LP literature, see
e.g. [27,12] for a discussion on infinite-horizon problems. Production Planning re-
quires deciding the production quantity of a set of items in each stage of the

B2 for infinite-horizon stochastic linear programs 19

planning horizon, so as to satisfy demand at minimum cost. In this work, we con-
sider a version of the problem in which backlogs are allowed. Production Planning
with Backlogs (PPB) allows postponing part of the demand to a future stage, for
a price. Another common PP model allows carrying over inventory to subsequent
stages, rather than backlogging. From a mathematical point of view, the two mod-
els are similar (the only difference is that some decision variables have their sign
flipped), and in our experience they also perform in a similar way from a com-
putational point of view. Since we did not observe any significant computational
difference, we limit the discussion to PPB.

The problem can be modeled as follows. We consider the problem of deciding
the production effort xj,t dedicated to a certain group of items j at stage t in
order to satisfy an uncertain demand. There are M item categories indexed by
i = 1, . . . ,M with demands bi,t, and N different production plans indexed by
j = 1, . . . , N with the property that dedicating one time unit xj,t to production
plan j produces aij units of item i. Any unfulfilled demand can be backlogged and
satisfied in future stages, but this carries a cost. The variable yi,t represents the
amount of unsatisfied demand of category i at stage t. We have two costs in the
objective function: cj represents the cost of producing a unit of item j, while hi
represents the cost of backlogging one unit of category i. This yields the following
model:

min
N∑
j=1

cjxj,0 +
M∑
i=1

hiyi,0 +
∞∑
t=1

δt
∑
k∈K

Pr(ωk)(
N∑
j=1

cjxj,t +
M∑
i=1

hiyi,t)

i = 1, . . . ,M
∑
j∈N

aijxj,0 + yi,0 ≥ b0

t = 1, . . . ,∞, i = 1, . . . ,M, k ∈ K
N∑
j=1

aijxj,t − yi,t−1 + yi,t ≥ bi,t(ωk)

t = 0, . . . ,∞, j = 1, . . . , N xj,t ≥ 0

t = 0, . . . ,∞, i = 1, . . . ,M yi,t ≥ 0

We generate instances with the following values:M ∈ {10, 20},N ∈ {M
2
,M, 2M},

and κ ∈ {10, 20, 30, 40, 50}. Let U(α, β) be an integer drawn uniformly at random
between α and β. For each combination of the parameters M,N, κ, we generate 10

random instances with the following coefficients: cj = R(1, 100), hi =
R(75, 125)

75N
,

aij = max(0, R(cj − 10, cj + 10)) and bi = R(0.75

∑N
j=1 aij

2
, 1.25

∑N
j=1 aij

2
), where

as usual i = 1, . . . ,M and j = 1, . . . , N . This yields a total of 300 PPB instances.
This choice of parameters is dictated by the desire to obtain challenging in-

stances, i.e., instances in which determinining the trade-off between production
and backlogging is nontrivial. Our starting point was the discussion in [21] about
the generation of difficult knapsack problems.

5.2.1 Experiments on PPB instances

We begin our numerical study with an empirical evaluation of several versions of
the B2 algorithm, as well as the classical SDDP approach. In this section, unless

20 Giacomo Nannicini et al.

otherwise stated, the absolute gap is set to 1, δ is set to 0.95, the relative gap is
set to 1%, ρ is set to 2 and φ is set to 10.

In our first experiment we consider two versions of B2: a multicut implemen-
tation and a single cut implementation. This terminology refers to the way cuts
from the scenario subproblems are handled: in a multicut implementation, each
violated scenario produces a cut, that is added to the master problem directly;
in a single cut implementation, cuts from all scenarios are aggregated based on
the corresponding probability, and a single aggregated cut is added to the master
problem. As the aggregated cut is implied by the individual cuts, the multicut im-
plementation produces tighter bounds, but this comes at the cost of introducing
extra constraints. [7] and [32] investigate the difference between single and multi-
cut. The empirical study of [7] is of limited size (only five problem instances) and
it suggests that multicut speeds up convergence. Conversely, [32] shows no clear
dominance between single and multicut. Our survey of the literature indicates that
single cut implementations are more commonly found than multicut.

Table 1 reports the results of a multicut implementation of B2 (column “B2”),
a single cut implementation of B2 (column “B2 aggr”), and our implemention
of the SDDP algorithm [24] (column “PP” for Pereira-Pinto) with multicut for
two different values of absolute gap (i.e., 1% and 100%). We remark that all
tested algorithms are implemented within the same framework and share most
of the subroutines, such as the basic iteration of the forward or backward pass,
and the cut management routines. Thus, all algorihms are tested under similar
conditions. Unlike the original paper [24], our implementation “PP” is multicut
because the computation times for the single cut version are prohibitive. Indeed,
Table 1 clearly indicates that B2 multicut is faster than B2 single cut: B2 is faster
than B2 aggr for all instance sizes that we could try. Similarly, preliminary tests
indicate that the multicut version of the Pereira-Pinto finite horizon SDDP is
faster than single cut, and since the multicut version “PP” is already the slowest
algorithm in our numerical evaluation, we only discuss multicut implementations
in subsequent sections.

In order to apply finite-horizon SDDP to our problem, given the allowed abso-
lute gap we heuristically determine the length of the time horizon τ ′ such that the
total cost in subsequent time periods does not exceed 90% of the allowed absolute
gap. This calculation is based on an estimation of the expected single-stage costs.
Once τ ′ is determined, we apply SDDP employing the usual stopping criteria on
absolute and relative gap with a small modification to account for the objective
function contribution after τ ′.

As remarked earlier, we only report results for small instances, because the
running times for PP get prohibitively high on larger problems. While increasing
the absolute gap helps especially PP, larger values (e.g., 1000) do not yield a sig-
nificant reduction of the running times, and a very large absolute gap makes some
instances trivial to solve. We verified that B2 is faster than PP for all instance
sizes that we could try. As an additional verification, we performed pairwise com-
parisons of the algorithms for each group of instances. For equal instance size, B2

is faster than PP, in all cases. We consider this to be compelling evidence of the
ranking of the algorithms.

To understand if the discount factor δ affects the ranking of the algorithms,
we report in Figure 1 the average computation time of B2, B2 aggr and PP for
δ varying from 0.9 to 0.99 (details are reported in Table 5 in Appendix A). The

B2 for infinite-horizon stochastic linear programs 21

M N k B2 B2 aggr PP

10 5 10 1.2 7.6 2176.5
20 5.3 44.6 9376.9
30 9.2 3843.9 14189.3
40 11.1 255.4 18392.2
50 19.7 4021.4 25445.6

Avg. 9.3 1634.6 13916.1

Absolute gap = 1

M N k B2 B2 aggr PP

10 5 10 1.0 5.5 263.8
20 2.1 22.8 924.6
30 3.6 45.6 1863.3
40 5.2 95.4 2361.1
50 8.8 3739.1 4758.7

Avg. 4.1 781.7 2034.3

Absolute gap = 100

Table 1: Average CPU times for three algorithms on the Production Planning with
Backlog problem. Each row indicates the average over 10 instances.

0.1

1

10

100

1000

10000

100000

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

δ

B2

+ + + + + + + + +
+

+
B2 aggr

× × × × × × × × ×
×

×
PP∗ ∗ ∗ ∗

∗ ∗ ∗
∗

∗
∗

∗

Fig. 1: Computation time (logarithmic scale) vs. values of δ. The instances used
in this graph are generated with M = 10, N = 5, k = 10. The absolute gap is set
to 1.

graph shows that the ranking of the algorithms is not affected by δ, although
computation times increase with δ as expected.

Based on this discussion, from now on we focus our attention on B2 only, with
a small absolute gap set to 1 and δ = 0.95.

In an additional round of experiments on PPB instances, we investigate the
impact of the algorithmic parameters ρ and φ, see Section 5.1, on a large variety
of instance sizes. In Table 2 we report average CPU times over 10 instances when
using values ρ = 2, 5, 10 and φ = 2, 5, 10.

All results obtained with ρ = 2 exhibit high standard deviation, indicating
unstable behavior (although we remark that for the small instances used in Tables
1 and 5, ρ = 2 is sufficient for fast and consistent convergence of B2). The erratic
behavior induced by ρ = 2 is evident also from the average times, with large
fluctuations across the table. This is due to purging cuts too aggressively, so that
useful cuts are frequently deleted and have to be generated again in subsequent
iterations. We therefore only analyze results with ρ = 5 and ρ = 10 in the following.
Among the other parameterizations, φ = 2 yields the fastest convergence. Indeed,
φ = 2 is faster than φ = 5 and φ = 10 on every instance, not only on average.

22 Giacomo Nannicini et al.

(ρ,φ)

M N k (2,2) (2,5) (2,10) (5,2) (5,5) (5,10) (10,2) (10,5) (10,10)

10 5 10 1.4 1.0 1.0 1.4 0.8 1.1 1.6 1.1 1.2
20 6.9 4.9 5.3 5.2 4.6 5.9 6.1 5.9 5.3
30 3673.7 7.5 6.2 18.7 8.1 7.2 18.5 10.4 9.2
40 7.6 6.0 6.6 8.6 7.2 8.6 10.7 9.1 11.1
50 12.6 13.2 11.5 12.8 12.5 15.2 16.8 16.9 19.7

10 10 9.8 66.7 76.3 9.6 17.4 42.5 8.9 16.8 35.6
20 3792.0 3927.4 4574.8 80.9 293.6 846.2 82.9 197.2 541.7
30 4246.7 1636.8 5712.1 315.6 549.4 2310.1 275.3 563.4 1738.3
40 3861.4 1681.4 3976.5 160.0 904.5 2177.6 191.0 681.0 1822.9
50 10407.2 9599.3 13009.1 2479.8 7693.7 9956.6 1289.8 4087.7 9763.9

20 10 203.4 462.0 1596.3 123.8 353.8 995.7 115.2 306.7 792.0
20 4389.6 5423.6 14021.8 574.8 2673.5 10796.4 514.4 1838.8 8069.1
30 4103.2 8671.1 20153.1 1298.2 5835.2 18457.9 1006.5 4661.4 16338.6
40 15050.6 24742.3 37995.4 4365.7 22362.7 36847.2 2771.4 20072.6 35744.7
50 16032.6 30212.9 35363.4 13158.7 29841.8 36326.7 12690.2 27620.9 34409.9

20 10 10 4.5 13.0 22.8 4.2 9.4 21.0 4.3 10.1 19.7
20 52.2 42.2 78.6 33.8 40.8 74.0 38.0 44.5 77.8
30 316.8 1001.1 1997.6 169.1 560.9 1612.2 150.8 514.7 1376.0
40 113.4 132.6 278.0 98.2 116.1 161.6 124.3 129.5 220.0
50 135.5 913.9 3363.5 143.3 672.6 1923.0 178.4 593.6 1759.8

20 10 17.7 22.0 38.1 15.2 20.7 36.0 16.9 20.9 33.8
20 357.5 742.3 2277.3 238.2 450.2 1630.2 190.3 424.1 1315.7
30 572.5 2325.8 7421.4 407.3 1363.6 6065.5 445.8 1197.3 5687.7
40 6540.4 10881.2 17995.5 1820.5 10200.6 16330.7 1463.5 8499.7 15533.3
50 8349.3 15674.5 20665.2 6145.2 15511.0 19846.6 5195.7 15418.0 20264.7

40 10 558.1 1146.8 5627.8 373.3 841.6 3293.8 321.6 726.3 2348.6
20 15096.6 25070.4 35448.0 4209.2 21087.5 34286.6 2695.4 19003.2 33595.2
30 29509.0 38800.8 39364.3 23482.8 38752.6 39989.0 20793.4 34792.3 40359.3
40 29918.5 36610.3 41725.3 28272.9 36621.1 42492.6 27592.6 35925.5 44750.7
50 38656.2 39688.9 43527.5 36103.6 41466.8 44181.1 36020.7 39861.1 44588.7

Avg. 6533.2 8650.7 11878.0 4137.7 7942.5 11024.6 3807.7 7241.7 10707.8

Table 2: Average CPU times for B2 with different values of ρ and φ on the Pro-
duction Planning with Backlog problem. Each row indicates the average over 10
instances.

This indicates that increasing the length of the time horizon aggressively is more
effective than investing a significant amount of time in exploring many sample
paths for fixed time horizon. As expected, increasing k, M , and N makes the
problem more difficult to solve. Nevertheless, we are able to solve all instances to
within the specified gap.

5.3 Continuous Rebalancing Problem

The Continuous Rebalancing Problem (CRP) concerns the allocation of items from
a finite pool to a set of locations, when facing an uncertain demand from customers
that move items between two locations, see for example [20]. To give a concrete
example, we will call the items “bikes”. The locations can then be thought of as
bike sharing stations. The system operator can rebalance the number of bikes once

B2 for infinite-horizon stochastic linear programs 23

a day (e.g. late at night), incurring some cost. Let N be the set of locations with
pairwise distances cij , i, j ∈ N . Let d0i be the number of bikes at location i at the
beginning of the time horizon, and bij,t(ωk) the number of bikes that users wish
to rent to go from i to j in period t and scenario k (this number is also referred to
as a demand). Let D =

∑
i∈N d0i be the total number of bikes. For each location

i ∈ N , we define a fictitious location i′ that represents location i at the end of a
stage; N ′ is the set of fictitious locations. At the beginning of each time period,
yi,t−1 represents the number of bikes at location i: the y variables link the stages.
Variables xij,t represent the number of bikes moved from i to j by the system
operator at the beginning of time period t, which comes at a cost. Variables fij′,t
represent the number of bikes moved by the users during period t (fii′,t represents
bikes that did not move, or moved but ended up in their starting location). Finally,
variables uij′,t represent lost (unfulfilled) demand between i and j′. We implicitly
assume that lost demand has a higher unit cost `ij than the cost for moving a bike
incurred by the system operator, otherwise the system operator has no incentive
to intervene.

min
∑
i,j∈N,
j 6=i

(cijxij,0 + `ijuij,0) +
∞∑
t=1

δt
κ∑
k=1

Pr(ωk)(
∑
i,j∈N,
j 6=i

(cijxij,t + `ijuij,t))

i ∈ N
∑
j∈N

xji,0 −
∑
j∈N

xij,0 −
∑
j′∈N ′

fij′,0 ≥ −d0i (3)

i′ ∈ N ′ −yi,0 +
∑
j∈N

fji′,0 ≥ 0 (4)

t=1,...,∞,
i∈N

∑
j∈N

xji,t −
∑
j∈N

xij,t + yi,t−1 −
∑
j′∈N ′

fij′,t ≥ 0 (5)

t=1,...,∞,
i′∈N ′ −yi,t +

∑
j∈N

fji′,t ≥ 0 (6)

t=1,...,∞,
k∈K,

i∈N,j′∈N ′
fij′,t + uij′,t ≥ bij,t(ωk) (7)

t = 0, . . . ,∞
∑

i∈N,j′∈N ′
fij′,t = D (8)

t = 0, . . . ,∞
∑
i∈N

yi,t ≥ D (9)

t=0,...,∞,
i,j∈N xij,t, uij,t, fij′,t, yi,t ≥ 0 (10)

The objective function minimizes the total cost, that consists of two parts:
a cost that the system operator incurs to move bikes in order to rebalance the
locations, and a cost for unfulfilled demand. Constraints (3) and (5) represent
the natural inventory constraints: users can only take bikes that are present in a
station at the beginning of the time period. Constraints (4) and (6) impose that
the number of bikes at a given location at the beginning of a time period is equal
to the number of bikes brought to that location by users, plus bikes that were
already present at the beginning of the time period and did not leave the station.
Constraints (7) state that the total demand is split into fulfilled and unfulfilled

24 Giacomo Nannicini et al.

demand. Finally (8) and (9) define the total number of bikes that are present in
the system.

For the generation of random instances of the CRP problem, besides the size
parameter |N | and the number of scenarios κ, we define a saturation parameter
ψ that represents the fraction of bikes in the system that are in demand at each
stage. If the saturation parameter is small, the system naturally balances itself
and the optimal policy is to do nothing. This leads to uninteresting instances from
a computational point of view, as the starting policy (with the identically zero
function as initial value function estimate) is optimal.

We generated instances with |N | = 10, κ ∈ {10, 20, 30, 40, 50} and ψ ∈ {1.0, 0.99, 0.98, 0.97}.
These values for ψ provided the most challenging problems. For each combina-
tion of these three parameters, we randomly generate 10 different instances in
the following way. First, we sample a base scenario b̄ij = U(1, 100), then set
D =

∑
i,j∈N,i 6=j b̄ij and d0i = D/|N |. We generate the rhs value for the scenarios

setting bij = U(0.75ψb̄ij , 1.25ψb̄ij), i, j ∈ N, i 6= j. We consider only feasible sce-
narios, i.e., scenarios where the number of bikes is lower than the total demand
D. For all instances, we set the cost coefficients to cij = 1 and `ij = 100, i, j ∈ N .
The final CR testbed consists of 200 instances.

5.3.1 Comments on CRP instances

In Table 3, we report results for ρ = 10, 5 and φ = 2 on the CR instances.

Solving CR instances of reasonable size to optimality is considerably hard,
much harder than PPB instances. This is mainly due to the difficulty of finding
a good constant-state policy. Even if the technique explained in Section 4.2 can
be applied to CR instances, it typically provides bad primal bounds, and closing
the gap often becomes an insurmountable obstacle. For this reason, in Table 3
we restrict ourselves to instances with N = 10 and a relative gap (column “gap”
in the Table) between 45% and 50%. An interesting observation is that problems
with smaller saturation are more difficult to solve: this is because for instances
with low saturation there is a large number of unused bikes in each time step, and
in extreme cases the optimal policy has a value close to zero (i.e., it is optimal to
let the system balance itself). This increases the difficulty because when the lower
bound is close to zero, the upper bound also must take a very low value to close
the gap, but our primal heuristic makes conservative assumptions on the future
demand, and is therefore not able to close the gap.

To investigate in more detail whether or not the difficulty in closing the gap
is mainly due to the primal bound, we add an additional stopping criterion based
only on the improvement of the dual bound. More precisely, let LBi be the dual
bound obtained at iteration i: we stop the algorithm at iteration i if

LBi−LBi−1

LBi
≤

10−3. In Table 4, we compare the results obtained when adding the new stopping
criterion (columns “dual impr”) with those obtained with the standard criteria
based on absolute and relative gap only (columns “default”). Here we only report
results with relative gap 45%, ρ = 10 and φ = 2. For each setting, we provide
the average CPU time and the final dual bound obtained. We can see that the
computation times decreases by at least an order of magnitude with the new
stopping criteration, while the dual bound obtained does not change significantly.

B2 for infinite-horizon stochastic linear programs 25

g
a
p

(ρ
,
φ
)

4
5
%

4
6
%

4
7
%

4
8
%

4
9
%

5
0
%

|N
|

ψ
k

(1
0
,2
)

(5
,2
)

(1
0
,2
)

(5
,2
)

(1
0
,2
)

(5
,2
)

(1
0
,2
)

(5
,2
)

(1
0
,2
)

(5
,2
)

(1
0
,2
)

(5
,2
)

1
0

0
.9
7

1
0

2
3
7
0
.7

9
1
5
5
.8

2
1
7
4
.8

5
9
9
5
.0

1
6
8
3
.2

2
7
5
7
.5

1
6
5
1
.5

2
3
1
6
.9

1
5
9
7
.9

1
7
4
5
.6

1
3
7
5
.8

1
6
4
1
.5

2
0

2
7
7
0
.3

3
2
4
2
.8

2
4
9
2
.5

3
1
4
5
.8

2
4
3
9
.3

2
7
7
9
.3

2
3
5
1
.8

2
6
8
9
.0

2
2
7
7
.1

2
5
9
9
.0

2
2
3
3
.7

2
4
8
8
.8

3
0

5
6
0
4
.5

6
9
6
0
.7

5
0
7
9
.7

6
7
3
6
.3

4
8
5
7
.0

6
4
4
1
.6

4
7
1
4
.1

5
7
1
9
.0

4
1
0
8
.3

5
4
0
1
.5

4
0
3
8
.7

5
3
2
0
.7

4
0

9
2
9
0
.5

1
2
7
0
1
.8

8
8
1
7
.6

1
2
0
5
9
.7

8
5
6
4
.0

1
1
0
7
8
.1

8
2
5
8
.1

1
1
0
5
8
.8

7
7
8
3
.3

1
0
6
5
1
.0

7
5
3
3
.3

1
0
2
8
5
.8

5
0

2
2
8
2
9
.6

2
5
4
3
3
.1

2
1
7
8
2
.0

2
5
0
8
8
.1

2
1
6
0
2
.9

2
4
7
5
6
.4

2
0
1
0
9
.5

2
4
3
8
4
.9

1
9
6
4
0
.6

2
4
3
4
3
.2

1
8
9
7
7
.3

2
3
5
6
9
.1

0
.9
8

1
0

1
4
6
3
.1

1
6
4
2
.0

1
3
6
8
.0

1
4
5
5
.0

1
2
4
5
.7

1
4
1
6
.7

1
2
3
2
.3

1
3
5
1
.9

1
1
3
8
.2

1
1
7
0
.0

1
1
1
6
.6

1
1
4
2
.6

2
0

1
8
1
3
.5

2
0
2
7
.2

1
8
3
7
.8

2
0
4
4
.5

1
7
6
4
.6

1
9
5
1
.8

1
7
4
6
.8

1
8
9
9
.0

1
6
1
0
.9

1
7
8
5
.6

1
5
8
5
.1

1
7
4
7
.4

3
0

3
1
7
4
.0

3
4
4
7
.5

2
8
9
7
.2

3
2
7
8
.1

2
9
1
6
.6

3
2
0
0
.1

2
9
2
2
.7

3
0
1
6
.2

2
8
1
1
.2

3
0
2
6
.0

2
6
3
9
.9

2
8
4
0
.6

4
0

5
6
8
6
.4

6
7
6
5
.8

5
3
1
4
.3

6
6
5
8
.0

5
3
2
2
.3

6
4
8
0
.1

5
1
3
3
.8

6
0
5
4
.9

4
7
6
5
.0

6
0
0
6
.0

4
6
5
9
.5

5
7
9
9
.0

5
0

1
8
5
2
0
.2

2
2
7
0
6
.6

1
7
7
5
7
.9

2
2
2
9
2
.8

1
7
4
1
3
.2

2
1
6
5
2
.9

1
6
9
0
4
.8

2
1
3
9
1
.9

1
6
0
2
8
.8

2
1
1
4
6
.0

1
5
5
6
1
.2

2
0
6
9
6
.4

0
.9
9

1
0

6
5
4
.0

7
6
2
.7

6
2
9
.3

6
5
6
.1

6
6
1
.0

7
1
2
.1

5
8
5
.0

6
9
3
.6

6
1
9
.0

6
9
2
.5

5
8
5
.5

5
8
5
.3

2
0

1
2
3
2
.7

1
3
2
1
.8

1
1
0
8
.7

1
1
9
0
.6

1
0
7
0
.7

1
2
1
9
.8

1
1
1
2
.3

1
1
8
0
.3

1
0
7
8
.5

1
0
7
5
.6

9
9
7
.2

1
1
0
6
.8

3
0

2
2
2
6
.8

2
2
4
2
.3

2
1
7
9
.8

2
2
5
5
.8

2
0
1
6
.6

2
1
7
0
.0

2
0
3
6
.9

2
2
1
0
.6

1
9
6
0
.2

2
0
7
6
.5

1
8
0
2
.3

2
0
5
7
.9

4
0

3
5
5
3
.4

3
9
8
2
.9

3
3
1
2
.1

3
9
2
9
.9

3
3
6
8
.0

3
8
5
2
.9

3
2
7
4
.6

3
5
1
3
.7

3
1
9
3
.6

3
4
3
6
.9

3
0
0
2
.3

3
4
7
0
.4

5
0

1
0
4
1
4
.8

1
4
1
3
9
.6

9
5
9
7
.3

1
3
8
1
3
.5

9
4
5
0
.4

1
3
5
2
6
.3

9
2
4
2
.5

1
2
7
9
9
.0

8
6
8
2
.7

1
2
6
2
4
.0

8
4
7
3
.5

1
2
2
1
2
.4

1
.0
0

1
0

3
0
9
.5

3
4
4
.1

2
9
1
.0

3
3
2
.4

3
0
8
.6

3
1
9
.7

2
6
2
.2

3
0
7
.0

2
7
4
.6

3
0
4
.7

2
6
1
.0

2
5
3
.0

2
0

6
6
2
.1

7
0
2
.8

6
2
5
.9

6
2
1
.1

6
2
3
.8

6
3
9
.8

5
9
9
.6

6
1
2
.9

5
9
8
.9

6
1
3
.8

5
5
0
.6

5
5
3
.3

3
0

1
3
3
1
.3

1
4
0
4
.2

1
3
0
0
.7

1
3
0
5
.4

1
1
4
4
.5

1
2
8
7
.0

1
1
3
8
.3

1
2
0
5
.5

1
1
7
6
.0

1
1
2
7
.9

1
1
2
6
.9

1
1
5
0
.8

4
0

1
9
4
4
.0

1
9
2
8
.4

1
9
0
6
.7

1
9
1
7
.9

1
8
0
2
.1

1
9
2
4
.7

1
7
5
2
.2

1
8
5
0
.7

1
6
9
1
.4

1
7
4
5
.5

1
5
0
3
.0

1
6
6
4
.6

5
0

4
3
7
9
.7

5
0
8
8
.5

3
8
8
4
.7

4
9
0
5
.3

3
9
7
7
.3

4
6
9
8
.4

3
8
2
9
.1

4
3
6
8
.1

3
7
3
3
.0

4
2
9
2
.4

3
5
1
8
.1

4
1
0
0
.8

A
v
g
.

5
0
1
1
.6

6
3
0
0
.0

4
7
1
7
.9

5
9
8
4
.1

4
6
1
1
.6

5
6
4
3
.3

4
4
4
2
.9

5
4
3
1
.2

4
2
3
8
.5

5
2
9
3
.2

4
0
7
7
.1

5
1
3
4
.4

T
a
b

le
3
:

A
v
er

a
g
e

C
P

U
ti

m
es

fo
r
B

2
o
n

th
e

C
o
n
ti

n
u

o
u

s
R

eb
a
la

n
ci

n
g

p
ro

b
le

m
.

E
a
ch

ro
w

in
d

ic
a
te

s
th

e
av

er
a
g
e

ov
er

1
0

in
st

a
n

ce
s.

26 Giacomo Nannicini et al.

time dual bound

N ψ k default dual impr default dual impr

10 0.97 10 2370.7 85.3 4779.9 4429.0
20 2770.3 86.3 7879.1 7849.8
30 5604.5 168.8 8004.4 7937.4
40 9290.5 303.4 7636.2 7614.5
50 22829.6 741.3 6226.0 6295.5

0.98 10 1463.1 32.4 6800.5 6648.6
20 1813.5 47.8 14133.4 14017.9
30 3174.0 200.7 12943.8 12981.3
40 5686.4 228.0 12127.5 11834.6
50 18520.2 347.7 9044.1 9087.4

0.99 10 654.0 28.7 15628.4 15426.6
20 1232.7 49.9 26051.2 26286.0
30 2226.8 162.2 22198.2 21986.6
40 3553.4 103.7 21060.6 21238.6
50 10414.8 167.5 17184.5 17521.9

1.00 10 309.5 20.6 45044.2 45336.9
20 662.1 28.1 54885.1 55352.5
30 1331.3 53.2 47497.9 48025.8
40 1944.0 93.8 48101.6 48646.6
50 4379.7 138.3 42908.9 43227.0

Avg. 5011.6 154.4 21506.8 21587.2

Table 4: Average CPU times for B2 on the Continuous Rebalancing problem, using
different stopping criteria.

This suggests that a considerable amount of time is spent in trying to improve the
primal bound, while the dual bound is already close to its final value.

6 Conclusions

This paper presents a provably convergent nested decomposition algorithm for
infinite-horizon stochastic LP. The convergence proof is based on a combination
of Benders decomposition with Kelley’s cutting plane algorithm. The advantage
of the approach proposed in this paper is that it allows us to use the well-known
Benders scheme on an infinite-horizon problem, while retaining strong theoretical
guarantees.

Our computational experiments lead to the following conclusions. First, the
multicut implementation in the nested decomposition scheme converges much
faster than a single cut implementation. The effect is particularly evident in our
setting because our algorithm relies heavily on Benders decomposition, in the sense
that all subproblems in the decomposition scheme are solved by Benders decompo-
sition themselves. This compounds the effect of implementation details, and shows
that keeping a cut for each violated scenario is worth the computational burden,
thanks to tighter bounds. Second, the construction of primal bounds is a delicate
step in the infinite-horizon setting: it can lead to a deterioration of performance
if general-purpose heuristics are not effective and problem-specific primal bounds
are not available. However, in our experiments the dual bound always converges

B2 for infinite-horizon stochastic linear programs 27

relatively quickly, so that even if we cannot prove tight gap guarantees, the set of
cuts generated by the algorithm should yield high-quality policies.

References

1. Asamov, T., Powell, W.B.: Regularized decomposition of high-dimensional multistage
stochastic programs with markov uncertainty. SIAM Journal on Optimization 28(1),
575–595 (2018)

2. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton, NJ (1957)
3. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont,

MA (1995)
4. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific, Bel-

mont (1997)
5. Birge, J.R.: Decomposition and partitioning methods for multistage stochastic linear pro-

grams. Operations Research 33(5), 989–1007 (1985)
6. Birge, J.R., Louveaux, F.: Introduction to stochastic programming. Springer Science &

Business Media (2011)
7. Birge, J.R., Louveaux, F.V.: A multicut algorithm for two-stage stochastic linear programs.

European Journal of Operational Research 34(3), 384 – 392 (1988)
8. de Matos, V.L., Philpott, A.B., Finardi, E.C.: Improving the performance of stochastic

dual dynamic programming. Journal of Computational and Applied Mathematics 290,
196 – 208 (2015)

9. Donohue, C., Birge, J.R.: The abridged nested decomposition method for multistage
stochastic linear programs with relatively complete recourse. Algorithmic Operations Re-
search 1(1) (2006)

10. Duffin, R.J., Karlovitz, L.A.: An infinite linear program with a duality gap. Management
Science 12(1), 122–134 (1965)

11. Gassmann, H.I.: Mslip: A computer code for the multistage stochastic linear programming
problem. Mathematical Programming 47(1), 407–423 (1990)

12. Ghate, A., Smith, R.: Optimal backlogging over an infinite horizon under time-varying
convex production and inventory costs. Manufacturing & Service Operations Management
11(2), 362–368 (2009)

13. Girardeau, P., Leclere, V., Philpott, A.B.: On the convergence of decomposition methods
for multistage stochastic convex programs. Mathematics of Operations Research 40(1),
130–145 (2014)

14. Grinold, R.C.: Finite horizon approximations of infinite horizon linear programs. Mathe-
matical Programming 12(1), 1–17 (1977)

15. Guigues, V.: SDDP for some interstage dependent risk-averse problems and application to
hydro-thermal planning. Computational Optimization and Applications 57(1), 167–203
(2014)

16. Heitsch, H., Römisch, W.: Scenario tree modeling for multistage stochastic programs.
Mathematical Programming 118(2), 371–406 (2009)

17. Infanger, G., Morton, D.P.: Cut sharing for multistage stochastic linear programs with
interstage dependency. Mathematical Programming 75(2), 241–256 (1996)

18. Kelley, J.E.: The cutting-plane method for solving convex programs. Journal of the Society
of Industrial and Applied Mathematics 8(4), 703–712 (1960)

19. Kim, K., Mehrotra, S.: A two-stage stochastic integer programming approach to integrated
staffing and scheduling with application to nurse management. Operations Research 63(6),
1431–1451 (2015)

20. Laporte, G., Meunier, F., Wolfler Calvo, R.: Shared mobility systems. 4OR 13(4), 341–360
(2015)

21. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations.
John Wiley & Sons, Inc., New York, NY, USA (1990)

22. Mulvey, J.M., Vladimirou, H.: Solving multistage stochastic networks: an application of
scenario aggregation. Networks 21(6), 619–643 (1991)

23. Mulvey, J.M., Vladimirou, H.: Stochastic network programming for financial planning
problems. Management Science 38(11), 1642–1664 (1992)

24. Pereira, M., Pinto, L.: Multi-stage stochastic optimization applied to energy planning.
Mathematical Programming 52(1-3), 359–375 (1991)

28 Giacomo Nannicini et al.

25. Pfeiffer, L., Apparigliato, R., Auchapt, S.: Two methods of pruning Benders’ cuts and
their application to the management of a gas portfolio. Tech. Rep. 8133, INRIA (2012)

26. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimensionality,
2nd Edition. Wiley (2011)

27. Romeijn, E.H., Smith, R.L., Bean, J.C.: Duality in infinite dimensional linear program-
ming. Mathematical Programming 53(1-3), 79–97 (1992)

28. Schochetman, I.E., Smith, R.L.: Finite dimensional approximation in infinite dimensional
mathematical programming. Mathematical Programming 54(1-3), 307–333 (1992)

29. Shapiro, A.: Analysis of stochastic dual dynamic programming method. European Journal
of Operational Research 209(1), 63 – 72 (2011)

30. Van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal control
and stochastic programming. SIAM Journal on Applied Mathematics 17(4), 638–663
(1969)

31. Zenios, S.A.: Financial Optimization. Cambridge University Press, Cambridge, UK (1993)
32. Zhang, W.: Water network design and management via stochastic programming. The

University of Arizona (2013)
33. Zou, J., Ahmed, S., Sun, X.A.: Nested decomposition of multistage stochastic integer

programs with binary state variables. Tech. rep., Georgia Institute of Technology (2016).
URL http://www.optimization-online.org/DB_HTML/2016/05/5436.html

A Computational tests with different values of δ

In Table 5 we show the details about the computation times of the different algorithms when
δ increases.

B2 for infinite-horizon stochastic linear programs 29

δ M N k B2 B2 aggr PP
0.90 10 5 10 0.9 5.4 9137.2

20 7.0 34.1 8182.4
30 8.6 3729.1 6525.6
40 10.2 165.5 19246.7
50 20.7 3838.5 15689.9

Avg. 9.5 1554.5 11756.3

δ M N k B2 B2 aggr PP
0.91 10 5 10 0.8 5.7 6339.6

20 6.8 36.3 8085.4
30 8.6 3753.6 7685.9
40 10.2 171.7 18519.8
50 17.6 3815.6 16159.8

Avg. 8.8 1556.6 11358.1

δ M N k B2 B2 aggr PP
0.92 10 5 10 0.9 6.2 5093.6

20 6.0 39.7 6995.6
30 8.4 3770.2 8900.6
40 10.0 179.4 17885.9
50 17.3 3837.9 18451.4

Avg. 8.5 1566.7 11465.4

δ M N k B2 B2 aggr PP
0.93 10 5 10 1.3 7.6 5452.5

20 6.4 44.4 6510.4
30 9.4 3780.9 10732.8
40 8.2 206.5 13604.5
50 20.0 3855.1 19915.5

Avg. 9.1 1578.9 11243.1

δ M N k B2 B2 aggr PP
0.94 10 5 10 1.4 8.3 2683.0

20 5.8 49.0 7225.2
30 10.2 3840.7 10636.9
40 11.9 208.8 16873.6
50 24.1 3920.5 22571.4

Avg. 10.7 1605.4 11998.0

δ M N k B2 B2 aggr PP
0.95 10 5 10 1.3 10.3 2710.3

20 6.1 54.6 9670.6
30 9.8 3819.2 16110.7
40 11.9 270.3 20278.3
50 21.8 3973.7 26071.2

Avg. 10.2 1625.6 14968.2

δ M N k B2 B2 aggr PP
0.96 10 5 10 1.5 12.8 3861.6

20 8.6 64.8 10956.1
30 9.7 3846.9 19455.9
40 11.8 333.0 25230.4
50 17.3 4099.4 28982.2

Avg. 9.8 1671.4 17697.2

δ M N k B2 B2 aggr PP
0.97 10 5 10 2.1 16.5 6555.8

20 9.8 84.0 16924.4
30 13.4 3950.8 28367.6
40 14.3 407.7 31461.0
50 26.5 4202.1 31953.4

Avg. 13.2 1732.2 23052.4

δ M N k B2 B2 aggr PP
0.98 10 5 10 2.8 26.0 14520.0

20 12.9 127.0 26234.7
30 17.8 4168.4 36000.0
40 21.0 592.3 36000.0
50 32.1 4436.7 35679.0

Avg. 17.3 1870.1 29686.8

δ M N k B2 B2 aggr PP
0.99 10 5 10 5.8 52.3 32586.6

20 32.4 271.9 35305.7
30 43.7 3019.6 36000.0
40 48.1 1235.7 36000.0
50 93.0 5255.0 36000.0

Avg. 44.6 1966.9 35178.4

Absolute gap = 1

δ M N k B2 B2 aggr PP
0.90 10 5 10 0.8 5.2 9132.1

20 3.7 23.4 8505.6
30 5.7 57.1 7299.8
40 7.0 83.4 20005.0
50 15.0 169.9 15791.8

Avg. 6.4 67.8 12146.8

δ M N k B2 B2 aggr PP
0.91 10 5 10 0.8 5.4 5505.9

20 3.3 25.1 8541.8
30 5.7 58.4 8576.3
40 7.7 86.3 18931.2
50 12.4 138.5 15113.0

Avg. 6.0 62.8 11333.6

δ M N k B2 B2 aggr PP
0.92 10 5 10 0.9 6.4 5101.0

20 3.8 27.6 7766.2
30 5.6 69.5 8946.8
40 7.7 96.3 16383.8
50 11.8 228.6 18964.8

Avg. 6.0 85.7 11432.5

δ M N k B2 B2 aggr PP
0.93 10 5 10 1.3 7.5 5382.5

20 4.8 30.9 7421.1
30 7.5 78.9 10747.2
40 7.3 113.0 16037.6
50 18.0 261.9 18641.6

Avg. 7.8 98.5 11646.0

δ M N k B2 B2 aggr PP
0.94 10 5 10 1.3 8.2 2622.9

20 4.9 36.1 8332.1
30 8.4 91.5 13362.8
40 10.7 122.7 15189.4
50 21.5 274.2 23230.0

Avg. 9.4 106.5 12547.4

δ M N k B2 B2 aggr PP
0.95 10 5 10 0.9 9.9 2707.5

20 5.0 43.0 10695.0
30 6.6 112.3 16244.9
40 12.3 154.3 20670.2
50 13.7 382.2 26082.5

Avg. 7.7 140.3 15280.0

δ M N k B2 B2 aggr PP
0.96 10 5 10 1.5 12.7 3915.3

20 5.2 55.5 10025.2
30 10.1 138.8 20867.9
40 12.1 245.7 22452.7
50 18.9 502.9 29430.4

Avg. 9.6 191.1 17338.3

δ M N k B2 B2 aggr PP
0.97 10 5 10 2.1 16.4 6501.5

20 6.6 73.3 17165.8
30 12.4 187.1 25055.3
40 14.8 306.7 32520.1
50 28.9 646.3 31310.2

Avg. 13.0 246.0 22510.6

δ M N k B2 B2 aggr PP
0.98 10 5 10 2.8 26.1 16395.5

20 9.5 110.9 23445.6
30 17.0 281.5 34534.8
40 22.2 502.9 36000.0
50 34.4 997.5 35213.4

Avg. 17.2 383.8 29117.9

δ M N k B2 B2 aggr PP
0.99 10 5 10 5.7 52.0 29514.9

20 19.8 225.9 35215.0
30 35.4 565.4 36000.0
40 51.0 1053.1 36000.0
50 98.0 2097.9 36000.0

Avg. 42.0 798.9 34546.0

Absolute gap = 100

Table 5: Extended results concerning the average CPU times for three algorithms
on the Production Planning with Backlog problem. Each row indicates the average
over 10 instances.

