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Abstract

We study the problem of repositioning autonomous vehicles in a shared mobility system in or-
der to simultaneously minimize the unsatisfied demand and the total operating cost. We first
present a mixed integer linear programming formulation for the deterministic version of the prob-
lem, and based on that we develop an extended formulation that is easier to work with in the
non-deterministic setting that we aim to explore. We then show how the travel time uncertainty
can be incorporated into the extended deterministic formulation using chance-constraint program-
ming. Finally, two new reformulations for the proposed chance-constraint program are developed.
We show a critical result that the size of one of the reformulations (in terms of the number of
variables and constraints) does not depend on the number of scenarios, and so it outperforms the
other reformulation. Both reformulations are bi-objective mixed integer linear programs with finite
number of nondominated points and so they can be solved directly by algorithms such as the bal-
anced box method (Boland et al., 2015). A computational study demonstrates the efficacy of the
proposed reformulations.

Keywords: autonomous vehicle repositioning problem, bi-objective integer linear programming,
chanced-constraint programming

1. Introduction

In transportation science, carsharing is known to have many benefits (Jorge and de Almeida Cor-
reia, 2013). Martin et al. (2010) report that carsharing systems can substantially reduce the total
number of vehicles held by household members. Shaheen and Cohen (2007) report that a single
carsharing vehicle can reduce the need for 6 to 23 cars in North America. Shaheen et al. (2006)
argue that carsharing can also reduce congestion, deliver cost savings through economies of scale,
reduce emissions through deployment of clean technology and fuels, facilitate more efficient land
use (for example by reducing the number of parking spaces needed), and increase mobility options
and connectivity among other transportation modes. Overall, the prospects of carsharing systems
look promising because more than a million people use carsharing around the world (Shaheen and
Cohen, 2013) and the benefits of carsharing cannot be overstated.

In recent years, autonomous (or driverless) vehicles have garnered increasing interest from car
manufacturers and the community of transportation researchers and practitioners (Fagnant et al.,
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2015; Fagnant and Kockelman, 2015; Kek et al., 2009). For example, Google has driven more than
two million miles on public streets (https://waymo.com/ontheroad/) under autonomous mode since
2009. In October 2016, Uber’s Otto used a self driving truck to make a delivery for Budweiser by
driving 125 miles without human input (http://ot.to/). In addition to this, many automobile
manufactures like General Motor, Mercedes-Benz, Audi, Nissan, BMW and Renault expect to sell
driverless vehicles by 2020 (Liang et al., 2016).

In light of the above, the focus of this study is on the idea of combining carsharing with the
technology of autonomous vehicles. It is worth mentioning that the business model for carsharing
can take variety of forms including but not limited to the car rental companies and the traditional
taxi services. The business model considered in this study is a free floating taxi service containing a
fleet of autonomous vehicles. More specifically, we assume that there is a finite set of zones/stations,
a finite set of time periods and a finite set of inter-zone demand, and also each autonomous vehicle
can freely move from one zone to another (with or without a passenger). Two typical optimization
problems arising in almost all carsharing systems are fleet sizing and fleet repositioning (or reloca-
tion). The second problem concerns with optimally repositioning vehicles between stations to serve
the demand in future time periods (de Almeida Correia and Santos, 2014), and this is precisely
what we explore in this study.

We note that there are several recent studies about operations of autonomous vehicles, but
the relevant literature is not rich yet and so further research is required. For example, Chebbi
and Chaouachi (2016) study the problem of repositioning a fleet of autonomous vehicles but in
the framework of personal rapid transit system, i.e., autonomous vehicles should carry passengers
between certain guideways. The goal of their study is to minimize the wasted capacity of the system.
Lees-Miller (2016) studies a similar problem but with the goal of minimizing the total waiting time.
In another research, Lam et al. (2016) explore the problem of scheduling and admission control for a
taxi fleet of autonomous vehicles in an urban setting. They propose a mixed integer linear program
for the former and a bi-level optimization model for the latter problem. In another recent study,
Liang et al. (2016) propose two modeling schemes for optimizing automated taxi systems. In the
first scheme, they assume that trip requests can be accepted or rejected according to the objective
of profit maximization. In the second scheme, they assume that all travel requests must be satisfied.
Interested readers may refer to Lam et al. (2016) for further details about studies on operations
of autonomous vehicles, and to Jorge and de Almeida Correia (2013) and de Almeida Correia and
Santos (2014) for further details about studies on operations of carsharing.

There are five distinguishing features between our research and the relevant existing studies
in the literature. (1) Our proposed approach minimizes the total cost and the total unsatisfied
demand at the same time. (2) Our proposed approach does not allow ride sharing or parallel
demand fulfillment. In other words, it does not assign more than one passenger to an autonomous
vehicle for a single journey. (3) Our proposed approach considers the uncertainty in the travel
time since the underlying assumption is that a demand from zone i to zone j at time period t
will be missed if there is no car available at zone i at time period t. (4) Our proposed approach
does not consider uncertainty in the travel cost from zone i to zone j. We note that since our
study is about driverless vehicles, it is not unreasonable to assume that the travel cost between
two zones depends mainly on the travel distance and not the time taken to travel between the
zones. This is highlighted by the fact that the fuel consumption of an idling engine is estimated to
be about 0.6 litres/hr per litre of engine displacement (http://www.ecomobile.gouv.qc.ca/en/
ecomobilite/tips/idling_engine.php), which is not too high. Furthermore, we can even assume
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that autonomous vehicles are electric and also smart enough to turn off their engines whenever
appropriate to save energy. (5) Finally, our proposed approach does not consider uncertainty in
demand from zone i to zone j at time period t. This can also be justified because, in the business
model that we consider, customers are expected to contact the company to book cars in advance.

The main contributions of our research are as follows:

• We develop a bi-objective mixed integer linear programming formulation for the deterministic
version of the problem, and based on that we develop an extended formulation that is easier
to work with in the non-deterministic setting that we will explore. Note that the idea of
employing multi-objective optimization techniques is not new in transportation science in
general (see for instance Jozefowiez et al. (2008)). However, in the scope of autonomous
vehicles, we were only able to find one relevant paper, i.e., Chebbi and Chaouachi (2016),
in which the main focus of the authors is on heuristic approaches whereas our focus, in this
paper, is on exact solution approaches.

• We use chance-constraint programming to incorporate the travel time uncertainty in the
proposed extended deterministic formulation. It is worth mentioning that using stochastic
and robust optimization techniques have been studied for a long time in transportation science
(see for instance Laporte et al. (1992) and Gounaris et al. (2013)). However, there are not
many (if any) studies in the scope of autonomous vehicles.

• We present two new mixed integer linear programming reformulations for the proposed
chance-constraint program. We prove a critical result that the size of one of the reformula-
tions in terms of the number of variables and constraints is independent of the number of
scenarios. Consequently, we show numerically that this reformulation outperforms the other
one significantly as the number of scenarios increases.

The remainder of the paper is organized as follows. In Section 2, we introduce notation and
some fundamental concepts of bi-objective mixed integer linear programming. In Section 3, the
deterministic version of the problem will be formulated using bi-objective mixed integer linear
programming. In Section 4, the non-deterministic version of the problem is formulated using
chance-constraint programming. In Section 5, we conduct a computational study. Finally, in
Section 6, we give some concluding remarks.

2. Preliminaries

A Bi-Objective Mixed Integer Linear Program (BOMILP) can be stated as follows:

min
(x1,x2)∈X

{z1(x1,x2), z2(x1,x2)}, (1)

where X :=
{

(x1,x2) ∈ Zn1
≥ × Rn2

≥ : A1x1 + A2x2 ≤ b
}

represents the feasible set in the decision
space, Zn1

≥ := {s ∈ Zn1 : s ≥ 0}, Rn2
≥ := {s ∈ Rn2 : s ≥ 0}, A1 ∈ Rm×n1 , A2 ∈ Rm×n2 , and

b ∈ Rm. It is assumed that zi(x1,x2) = cᵀi,1x1 + cᵀi,2x2 where ci,1 ∈ Rn1 and ci,2 ∈ Rn2 for i = 1, 2
represents a linear objective function. The image Y of X under vector-valued function z := (z1, z2)

ᵀ

represents the feasible set in the objective/criterion space, that is Y := {o ∈ R2 : o = z(x1,x2) for
all (x1,x2) ∈ X}.
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Definition 1. A feasible solution (x1,x2) ∈ X is called efficient or Pareto optimal, if there is no
other (x′1,x

′
2) ∈ X such that z1(x

′
1,x
′
2) ≤ z1(x1,x2) and z2(x

′
1,x
′
2) < z2(x1,x2) or z1(x

′
1,x
′
2) <

z1(x1,x2) and z2(x
′
1,x
′
2) ≤ z2(x1,x2). If (x1,x2) is efficient, then z(x1,x2) is called a nondomi-

nated point. The set of all efficient solutions is denoted by XE. The set of all nondominated points
z(x1,x2) for (x1,x2) ∈ XE is denoted by YN and referred to as the nondominated frontier.

Definition 2. If there exists a vector (λ1, λ2)
ᵀ ∈ R2

> := {s ∈ R2 : s > 0} such that (x∗1,x
∗
2) ∈

arg min(x1,x2)∈X λ1z1(x1,x2) + λ2z2(x1,x2), then (x∗1,x
∗
2) is called a supported efficient solution

and z(x∗1,x
∗
2) is called a supported nondominated point.

Definition 3. Let Ye be the set of extreme points of the convex hull of Y, that is the smallest convex
set containing the set Y. A point z(x1,x2) ∈ Y is called an extreme supported nondominated point,
if z(x1,x2) is a supported nondominated point and z(x1,x2) ∈ Ye.

The convex hull of Y

Non-extreme supported nondominated point

Extreme supported nondominated point

Unsupported nondominated point

Dominated point

z 2
(x

1
,x

2
)

z1(x1,x2)

Figure 1: An illustration of different types of (feasible) points in the criterion space.

In summary, based on Definition 1, the elements of Y can be divided into two groups including
dominated and nondominated points. Furthermore, based on Definitions 2 and 3, the nondomi-
nated points can be divided into unsupported nondominated points, non-extreme supported non-
dominated points and extreme supported nondominated points. Overall, bi-objective optimization
problems are concerned with finding all elements of YN , that is all nondominated points, including
supported and unsupported nondominated points. An illustration of the set Y and its corresponding
categories are shown in Figure 1.

In this study, the BOMILPs that we develop have two features. (1) The second objective
function can only take integer values for any feasible solution, i.e., z2(x1,x2) ∈ Z for all (x1,x2) ∈
X ; (2) The feasible set in the decision space, i.e., X , is bounded. These two features guarantee
that the BOMILPs that we develop have finite number of nondominated points (Stidsen et al.,
2014). Recently, several studies have been conducted on exact solution approaches for BOMILPs
with finite number of nondominated points, see for instance Boland et al. (2015), Dächert et al.
(2012), and Stidsen et al. (2014). The balanced box method (BBM) is one of these algorithms
(Boland et al., 2015). Since it is shown that BBM is promising for large size problems, we employ
this algorithm in this study (Boland et al., 2015). Next, we provide a high-level description of this
algorithm.

BBM maintains a priority queue of rectangles in the criterion space containing all not-yet found
nondominated points. At the beginning, the priority queue is empty. So, the algorithm first finds
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Figure 2: Progression of BBM in terms of the discovery of nondominated points.

the endpoints of the nondominated frontier denoted by zT and zB. These two points result in
defining the first rectangle, i.e., R(zT , zB), containing all not yet found nondominated points.
Next, we explain the workings of the algorithm in each iteration.

In each iteration, the algorithm pops out a rectangle, denoted by R(z1, z2), from the priority
queue. The algorithm then splits the rectangle horizontally into two equal parts. It first explores
the bottom rectangle for a nondominated point with minimum value for the first objective function,
which is illustrated with an unfilled circle in Figure 2a. Based on the position of the new point,
it next splits the rectangle vertically. It then explores the left rectangle for a nondominated point
with minimum value for the second objective function, which is illustrated with an unfilled circle
in Figure 2b. It can be shown that by finding these two (new) nondominated points the rectangle
can be split into (at most) two independent rectangles containing all not yet found nondominated
points as shown in Figure 2c. So, a similar procedure can be repeated in each of them in the next
iterations.

3. Deterministic formulations

In this section, we introduce two deterministic BOMILPs. In order to do so, we first present
some basic assumptions and notation about the problem.

We divide the area under consideration into a finite number of zones/stations. We denote the
index set of zones by N := {1, . . . , N}. The number of zones depends on the level of granularity
desired. For the sake of simplicity, we assume that the starting and ending points of trips are the
center of zones. We also divide the planning horizon under consideration into a finite number of
time periods of equal length. We denote the index set of time periods by T := {1, . . . , T}. The
number of time periods can vary depending on the level of detail desired. We assume that there is
no car pooling option. In other words, each demand should be satisfied by a separate autonomous
vehicle. We denote the cost of moving from zone i ∈ N to zone j ∈ N by cij ∈ Z≥. As mentioned
in Introduction, we assume that the cost does not depend on time and it is simply a function of
distance between zone i ∈ N and zone j ∈ N .

The list of mathematical notation used in the first formulation is given in Table 1. Using this
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Table 1: Mathematical notation for the basic formulation.

N The index set of zones
T The index set of time periods in the planning horizon
dijt Demand from zone i ∈ N to zone j ∈ N at time period t ∈ T
ajt′it A binary parameter such that ajt′it = 1 if a vehicle is expected to arrive to zone

i ∈ N at time period t ∈ T by leaving zone j ∈ N at time period t′ ∈ T , and
ajt′it = 0 otherwise

cij The cost of traversing from zone i ∈ N to zone j ∈ N for an autonomous vehicle
mi The number of autonomous vehicles available in zone i ∈ M at the beginning of

time period one
yit A non-negative integer variable denoting the number of cars available in zone i ∈ N

at the beginning of time period t ∈ T
xijt A non-negative integer variable denoting the number of cars moved from zone i ∈ N

to zone j ∈ N at time period t ∈ T
zijt A non-negative continuous variable for capturing the value of max{dijt − xijt, 0},

which is basically the number of unsatisfied demands from zone i ∈ N to zone
j ∈ N at time period t ∈ T

table, the first formulation of the problem can be stated follows:

P1 min
∑
i∈N

∑
j∈N

∑
t∈T

zijt (2)

min
∑
i∈N

∑
j∈N

∑
t∈T

cijxijt (3)

s.t.

yi,1 = mi ∀i ∈ N , (4)

yit = Recursive(i, t) ∀i ∈ N ,∀t ∈ T \{1}, (5)∑
j∈N

xijt ≤ yit ∀i ∈ N ,∀t ∈ T , (6)

dijt − xijt ≤ zijt ∀i, j ∈ N ,∀t ∈ T , (7)

xijt, yit ∈ Z+ ∀i, j ∈ N ,∀t ∈ T , (8)

zijt ∈ R+ ∀i, j ∈ N , ∀t ∈ T , (9)

where

Recursive(i, t) = yi,t−1 +
∑
j∈N

t∑
t′=1

ajt′it.xjit′ −
∑
j∈N

xij,t−1.

The objective function (2) minimizes the unsatisfied demand. The second objective function (3)
minimizes the total cost of operation over the entire time horizon. Constraints (4) and (5) are
the inventory update constraints. The number of cars at zone i and time period t depends on the
number of cars at zone i and time period t − 1, the number of cars that arrived to zone i at the
beginning of time period t, and the number of cars that left zone i at time period t− 1. Constraint
(6) ensures that the number of cars available at zone i ∈ N and time period t ∈ T serves as an upper

6



bound for the total number of vehicles that can move to all other zones from zone i in time period
t. Finally, Constraint (7) is introduced for computing the value of zijt for all i, j ∈ N and t ∈ T .
Note that since we are minimizing the first objective function, zijt naturally takes integer values in
an efficient solution for each i, j ∈ N and t ∈ T . It is also worth mentioning that the feasible set
of this problem in the decision space is basically bounded since we can easily bound the decision
variables of the problem, i.e., 0 ≤ zijt ≤ dijt, 0 ≤ yijt ≤

∑
i∈Mmi, and 0 ≤ xijt ≤

∑
i∈Mmi, when

we are defining them. Consequently, based on our discussion in Section 2, this implies that the
nondominated points of this problem must be finite since for any feasible solution, the value of the
second objective function is always integer.

Since the ultimate goal of this study is to solve a non-deterministic version of the problem, we
next present an extended formulation of the problem. We note that working with the extended
formulation in the non-deterministic setting is easier, and all the theoretical results that we will
provide in Section 4 are valid because of employing this formulation.

Based on our assumptions for the basic formulation, we know that the total number of vehicles
in the entire network is

∑
i∈N

mi. So, in the new formulation, we distinguish the vehicles in the entire

network by giving each one a designated label. This helps us to know where each vehicle is located
at any time. Table 2 details the mathematical notation used in the extended formulation which
cannot be found in Table 1.

Table 2: Mathematical notation for the extended formulation.

M The index set of vehicles in the entire network, i.e., M = {1, . . . ,
∑
i∈N

mi}

M1
i The index set of vehicles that are located at zone i at the beginning of time period

one. Without loss of generality, we assume that M1
i = {

i−1∑
j=1

mj + r : r = 1, . . . ,mi}

ȳkit A binary variable that takes the value of one if vehicle k is at zone i at the beginning
of time period t, and zero otherwise.

x̄kijt A binary variable that takes the value of one if vehicle k has moved from zone i to
zone j at time period t, and zero otherwise.

Using the notation defined in this Tables 1 and 2, the problem can be stated as follows:

P2 min
∑
i∈N

∑
j∈N

∑
t∈T

zijt (10)

min
∑
k∈M

∑
i∈N

∑
j∈N

∑
t∈T

cij x̄
k
ijt (11)

s.t.

ȳki,1 = 1 ∀i ∈ N ,∀k ∈M1
i , (12)

ȳki,1 = 0 ∀i ∈ N ,∀k ∈M\M1
i , (13)

ȳkit = Recursive(k, i, t) ∀i ∈ N ,∀t ∈ T \{1},∀k ∈M, (14)∑
j∈N

x̄kijt ≤ ȳkit ∀i ∈ N ,∀t ∈ T ,∀k ∈M, (15)
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dijt −
∑
k∈M

x̄kijt ≤ zijt ∀i, j ∈ N ,∀t ∈ T , (16)

x̄kijt, ȳ
k
it ∈ {0, 1} ∀i, j ∈ N ,∀t ∈ T ,∀k ∈M, (17)

zijt ∈ R+ ∀i, j ∈ N ,∀t ∈ T , (18)

where

Recursive(k, i, t) = ȳki,t−1 +
∑
j∈N

t∑
t′=1

ajt′it.x̄
k
jit′ −

∑
j∈N

x̄kij,t−1.

Similar to our discussion for P1, in P2 the objective function (10) minimizes the unsatisfied demand.
Also, the second objective function (10) minimizes the total cost of operation over the entire time
horizon. Constraints (12), (13) and (14) are the inventory update constraints. Constraint (15)
ensures that the number of available cars at zone i ∈ N and time period t ∈ T serves as an upper
bound for the total number of vehicles that can move to all other zones from zone i in time period
t. Finally, Constraint (16) is introduced for computing the value of zijt for all i, j ∈ N and t ∈ T .

The following valid inequalities ensure that each vehicle is at most in one zone at any time
period: ∑

i∈N
ȳkit ≤ 1 ∀t ∈ T ,∀k ∈M. (19)

Although P2 will be valid even without this set of valid inequalities, we assume that they are part
of P2 in the rest of this paper because they are helpful under nondeterministic setting (see the
proof of Lemma 6).

4. Non-deterministic formulations

For a carsharing company (with autonomous vehicles), time is an important factor for ensuring
that the company remains competitive in an urban setting with traffic and congestion. Hence,
the uncertainty in the travel time should be considered to alleviate its possible impact on demand
fulfillment and relocation operations. So, we assume that ajt′it for each i, j ∈ N and t, t′ ∈ T is
uncertain. Consequently, Constraint (14) is uncertain for each i ∈ N , ∀t ∈ T \{1}, ∀k ∈M in P2.

We denote the index set of all scenarios by S := {1, . . . , S}. We also denote the scenario with
index s ∈ S by As, which is a four dimensional matrix that its entries are denoted by asjt′it ∈ {0, 1}
where i, j ∈ N and t, t′ ∈ T . Consequently, S is definitely a finite set since its cardinality, i.e., S,
cannot be larger than 2N

2T 2
. We assume that we have the full probabilistic knowledge of possible

scenarios and to deal with the uncertainty, we apply the chance-constraint programming (Charnes
and Cooper, 1959; Klein Haneveld, 1986). The following proposition is helpful.

Proposition 4. P2 will be still a valid formulation if Constraint (14) is replaced by

ȳki,t ≤ ȳki,t−1 +
∑
j∈N

t∑
t′=1

ajt′it.x̄
k
jit′ −

∑
j∈N

x̄kij,t−1 ∀i ∈ N ,∀t ∈ T \{1}, ∀k ∈M.
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Proof. Suppose that we use the new set of constraints, and there exists a solution such that for
a given i ∈ N , t ∈ T \{1} and ∀k ∈M, we have that

ȳki,t < ȳki,t−1 +
∑
j∈N

t∑
t′=1

ajt′it.x̄
k
jit′ −

∑
j∈N

x̄kij,t−1.

This immediately implies that ȳki,t = 0 and ȳki,t−1 +
∑

j∈N
∑t

t′=1 ajt′it.x̄
k
jit′ −

∑
j∈N x̄

k
ij,t−1 = 1. This

means that vehicle k is available at zone i at time period t, but we simply ignored it. Therefore,
based on Constraint (15), vehicle k will remain at zone i (and cannot move at all from this zone) at
time period t and all subsequent iterations. However, this solution is obviously equivalent to just
simply setting ȳki,t = 1 and forcing vehicle k to remain in zone i at time period t and all subsequent
iterations. In other words, we have not generated a new solution using the new set of constraints.
Basically, a different representation of a solution of P2 is generated. �

So, in the rest of this paper, we assume that Constraint (14) is replaced by the one introduced in
Proposition 4. Note that this proposition is important since it implies that downward violation of
Constraints (14) is not important. In other words, only upward infeasibility of these constraints
is undesirable. So, we use this observation to develop our non-deterministic formulation. For
notational convenience, given a linear constraint of the form aᵀix− bi ≤ 0, we define I(aᵀix− bi) ∈
{0, 1} such that I(aᵀix − bi) = 1 if aᵀix − bi > 0. Using this notation and P2, our proposed
non-deterministic formulation is as follows,

P3 min
∑
i∈N

∑
j∈N

∑
t∈T

zijt

min
∑
k∈M

∑
i∈N

∑
j∈N

∑
t∈T

cij x̄
k
ijt

s.t.

(12), (13), (15), (16), (17), (18), (19),∑
s∈S

ps.I(ȳki,t − ȳki,t−1 −
∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1) ≤ αk
it ∀i ∈ N , ∀t ∈ T \{1}, ∀k ∈M,

where ps ∈ (0, 1] is the probability of scenario s and αk
it ∈ [0, 1] is the maximum probability allowed

for violating the uncertain Constraint (14) for each i ∈ N , t ∈ T \{1} and ∀k ∈ M. Note that
we assume that all ps and αk

it are known (given as parameters by decision makers). Note too that∑
s∈S ps = 1.

4.1. A small example

We later explain how P3 can be transformed to a BOMILP (to be solved by BBM). However,
before that, we compare the deterministic formulation, i.e., P2, and the non-deterministic formu-
lation, i.e., P3, on a small example with N = 3 and T = 3. We randomly generated three scenarios
for this example (based on a method that we will explain in Section 5). P3 considers all scenarios
at the same time but since P2 is a deterministic formulation, it only considers the first scenario.
Figure 3 shows cij for each i ∈ N and j ∈ N\{i} where nodes represent the zones. Also, dijt for
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Figure 3: The cost of moving from zone i ∈ N to zone j ∈ N\{i}.
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Figure 4: The demand from zone i ∈ N to zone j ∈ N\{i} at each time period.

each i ∈ N and j ∈ N\{i} and t ∈ T can be found in Figure 4. Note that we assume that there
is no demand with the same starting and ending points. The nondominated frontier obtained by
P2 and P3 are illustrated in Figure 5. Not surprisingly, we observe from the top endpoints of the
nondominated frontiers that P2 can reach to a better, i.e., smaller, value for the first objective
function. We next compare the top endpoints of the nondominated frontiers in terms of solution.
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(b) Non-deterministic, i.e., P3

Figure 5: The nondominated frontier of the small example.
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Figures 6 and 7 illustrate an efficient solution corresponding to the top endpoint of the nondom-
inated frontier produced by solving P2. Similarly, Figures 8 and 9 illustrate an efficient solution
corresponding to the top endpoint of the nondominated frontier produced by solving P3. Specif-
ically, in Figures 6 and 8, the number of vehicles available at each zone at the beginning of each
time period and the number of vehicles that will move from zone i ∈ N to zone j ∈ N\{i} at
each time period is shown. We note that some vehicles may be on their way to reach a zone since
they may have moved to reach a zone in previous time periods. We note too that some vehicles
may have reached to a particular zone but since we have applied Proposition 4, their corresponding
inventory variable,, i.e., ykit, may take the value of zero and so they cannot move again. Therefore,
we report the number of vehicles satisfying these two remarks in parentheses wherever appropriate
in Figures 6 and 8. In Figures 7 and 9, the unsatisfied demand from zone i ∈ N to zone j ∈ N\{i}
at each time period is shown.
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Figure 6: The number of vehicles available at each zone at the beginning of each time period and the number of
vehicles that will move from zone i ∈ N to zone j ∈ N\{i} at each time period for a solution corresponding to the
top endpoint of the nondominated frontier produced by solving P2. Note that the number of vehicles that are either
on their ways to reach a zone (but did not arrive yet) or they have previously arrived at that zone but they cannot
technically move again (because of applying Proposition 4) is given in parentheses.
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Figure 7: The unsatisfied demand from zone i ∈ N to zone j ∈ N\{i} at each time period for a solution corresponding
to the top endpoint of the nondominated frontier produced by solving P2.

For example, we observe from Figure 6a that there are 13 vehicles available at the beginning of
time period t = 1 in zone 1. However, at the same time period, i.e., t = 1, we send seven vehicles
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Figure 8: The number of vehicles available at each zone at the beginning of each time period and the number of
vehicles that will move from zone i ∈ N to zone j ∈ N\{i} at each time period for a solution corresponding to the
top endpoint of the nondominated frontier produced by solving P3. Note that the number of vehicles that are either
on their way to reach a zone (but have not arrived yet) or they have previously arrived at that zone but they cannot
technically move again (because of applying Proposition 4) is given in parentheses.

1 2

3

0

3

7
0

0
10

(a) t = 1

1 2

3

0

0

0
0

0
0

(b) t = 2

1 2

3

2

0

0
0

0
0

(c) t = 3

Figure 9: The unsatisfied demand from zone i ∈ N to zone j ∈ N\{i} at each time period for a solution corresponding
to the top endpoint of the nondominated frontier produced by solving P3.
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from zone 1 to zone 2, one vehicle from zone 1 to zone 3, three vehicles from zone 2 to zone 1,
and five vehicles from zone 3 to zone 1. Consequently, we see that in Figure 6b, ten vehicles are
available at zone 1 at t = 2, and the number of vehicles that are either on their ways to reach
zone 1 (but have not arrived yet) or they have arrived at zone 1 but they cannot technically move
again is three. For another example, consider Figure 4a. We observe from this figure that at t = 1,
there are five customers that want to move from zone 3 to zone 1. Figure 8a shows that at zone 3
there are seven vehicles available at the beginning of time period t = 1. So, we send all of them to
zone 1 at t = 1 in which only five of them are required for satisfying the existing demand and the
others are empty, i.e., they are sent for repositioning purposes. So, we see that in Figure 9a, the
unsatisfied demand from zone 3 to zone 1 is zero.

4.2. A basic reformulation of P3

By generating all possible scenarios explicitly, P3 can be written as a BOMILP as follows:

P4 min
∑
i∈N

∑
j∈N

∑
t∈T

zijt

min
∑
k∈M

∑
i∈N

∑
j∈N

∑
t∈T

cij x̄
k
ijt

s.t.

(12), (13), (15), (16), (17), (18), (19),

ȳkit − ȳki,t−1 −
∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1 ≤M.bks ∀i ∈ N ,∀t ∈ T \{1},∀k ∈M, s ∈ S,

∑
s∈S

ps.b
k
s ≤ αk

it ∀i ∈ N ,∀t ∈ T \{1},∀k ∈M,

bks ∈ {0, 1} ∀k ∈M, s ∈ S,

where M > 0 is a sufficiently large value. This formulation simply removes the function I(.) by
introducing new binary variables, i.e., bks for each k ∈M and s ∈ S. It is clear that if

ȳkit − ȳki,t−1 −
∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1 > 0

then bks = 1. The main drawback of this method is its size since it can be exponentially large. It is
worth mentioning that there are some approaches to approximately solve a single-objective version
of this optimization problem using sample-based techniques (see for instance Campi and Garatti
(2011); Pagnoncelli et al. (2009); Luedtke et al. (2010)). However, the focus of this study is on
solving this problem, i.e., the bi-objective version, exactly.

We next prove that in P4, we can set M = 1 and relax the integrality condition of bks for each
k ∈M and s ∈ S.

Lemma 5. For any solution satisfying (12), (13), (15), (16), (17), (18), and (19) we have −ȳki,t−1+∑
j∈N

x̄kij,t−1 ∈ {−1, 0} for each i ∈ N , t ∈ T \{1}, and k ∈M.

13



Proof. We know that ȳki,t−1{0, 1} and x̄kij,t−1 ∈ {0, 1} for each j ∈ N . Therefore, based on

Constraint (15), if
∑
j∈N

x̄kij,t−1 = 1 then ȳki,t−1 = 1 and if ȳki,t−1 = 0 then
∑
j∈N

x̄kij,t−1 = 0. So, the

result follows.

Lemma 6. For any solution satisfying (12), (13), (15), (16), (17), (18), and (19) we have ȳkit −∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ ∈ {−1, 0, 1} for each i ∈ N , t ∈ T \{1}, k ∈M and s ∈ S.

Proof. We know that ȳkit and x̄kjit′ ∈ {0, 1} for each j ∈ N and t′ ∈ {1, . . . , t}. Therefore, based

on Constraints (15) and (19), we have that
∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ ∈ {0, 1} since all asjt′it ∈ {0, 1}. So,

the result follows.

Proposition 7. For any solution satisfying (12), (13), (15), (16), (17), (18), and (19) we have

ȳkit − ȳki,t−1 −
∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1 ∈ {−2,−1, 0, 1}, (20)

for each i ∈ N , t ∈ T \{1}, k ∈M, and s ∈ S.

Proof. The result follows immediately from Lemmas 5 and 6.

Corollary 8. P4 is equivalent to the following problem:

P5 min
∑
i∈N

∑
j∈N

∑
t∈T

zijt

min
∑
k∈M

∑
i∈N

∑
j∈N

∑
t∈T

cij x̄
k
ijt

s.t.

(12), (13), (15), (16), (17), (18), (19),

ȳkit − ȳki,t−1 −
∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1 ≤ bks ∀i ∈ N , ∀t ∈ T \{1}, ∀k ∈M, s ∈ S,

∑
s∈S

ps.b
k
s ≤ αk

it ∀i ∈ N , ∀t ∈ T \{1}, ∀k ∈M,

0 ≤ bks ≤ 1 ∀i ∈ N , ∀t ∈ T \{1}, ∀k ∈M, s ∈ S.

4.3. An advanced reformulation of P3

We now present a novel reformulation of P3, denoted by P6. It is wroth mentioning that the
new reformulation is interesting since its size (in terms of the number of variables and constraints)
is precisely equal to P2. In other words, the number of scenarios does not affect the size of this
reformulation at all.
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P6 min
∑
i∈N

∑
j∈N

∑
t∈T

zijt

min
∑
k∈M

∑
i∈N

∑
j∈N

∑
t∈T

cij x̄
k
ijt

s.t.

(12), (13), (15), (16), (17), (18), (19),

ȳkit − ȳki,t−1 −
∑
j∈N

t∑
t′=1

ājt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1 ≤ αk
it ∀i ∈ N , ∀t ∈ T \{1},∀k ∈M,

where ājt′it :=
∑
s∈S

ps.a
s
jt′it.

Proposition 9. For any solution satisfying (12), (13), (15), (16), (17), (18), and (19) if

∑
s∈S

ps.I(ȳki,t − ȳki,t−1 −
∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1) ≤ αk
it

then

ȳkit − ȳki,t−1 −
∑
j∈N

t∑
t′=1

ājt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1 ≤ αk
it

for each i ∈ N , t ∈ T \{1} and k ∈M.

Proof. By Proposition 7 and the assumption, we shall have

∑
s∈S

ps.(ȳ
k
it − ȳki,t−1 −

∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1) ≤

∑
s∈S

ps.I(ȳki,t − ȳki,t−1 −
∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1) ≤ αk
it.

So, since
∑
s∈S

ps = 1, we have

ȳkit − ȳki,t−1 −
∑
j∈N

t∑
t′=1

ājt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1 =

∑
s∈S

ps.(ȳ
k
it − ȳki,t−1 −

∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1) ≤ αk
it.

�
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Proposition 10. For any solution satisfying (12), (13), (15), (16), (17), (18), and (19) if∑
s∈S

ps.I(ȳki,t − ȳki,t−1 −
∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1) > αk
it

then

ȳkit − ȳki,t−1 −
∑
j∈N

t∑
t′=1

ājt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1 > αk
it

for each i ∈ N , t ∈ T \{1} and k ∈M.

Proof. By Lemma 5, we know that −ȳki,t−1 +
∑
j∈N

x̄kij,t−1 ∈ {−1, 0}. Now, if −ȳki,t−1 +
∑
j∈N

x̄kij,t−1 =

−1 then by Lemma 6, we shall have

ȳki,t − ȳki,t−1 −
∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1 ≤ 0

for each s ∈ S. Therefore, we must have∑
s∈S

ps.I(ȳki,t − ȳki,t−1 −
∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1) ≤ αk
it.

However, this contradicts the assumption. Hence, we must have −ȳki,t−1 +
∑
j∈N

x̄kij,t−1 = 0 and that

∑
s∈S

ps.I(ȳki,t −
∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′) > αk

it.

Obviously, the latter implies that we must have ȳki,t = 1, and so by Lemma 6, we must have

ȳki,t −
∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ ∈ {0, 1} for each s ∈ S. Consequently,

∑
s∈S

ps.(ȳ
k
i,t −

∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′) =

∑
s∈S

ps.I(ȳki,t −
∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′) > αk

it,

So, since −ȳki,t−1 +
∑
j∈N

x̄kij,t−1 = 0, we have

∑
s∈S

ps.(ȳ
k
i,t − ȳki,t−1 −

∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′ +

∑
j∈N

x̄kij,t−1) =
∑
s∈S

ps.(ȳ
k
i,t −

∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′) > αk

it.

Finally, since
∑
s∈S

ps = 1, we have

ȳkit−ȳki,t−1−
∑
j∈N

t∑
t′=1

ājt′it.x̄
k
jit′+

∑
j∈N

x̄kij,t−1 =
∑
s∈S

ps.(ȳ
k
i,t−ȳki,t−1−

∑
j∈N

t∑
t′=1

asjt′it.x̄
k
jit′+

∑
j∈N

x̄kij,t−1) > αk
it.

�

Theorem 11. P6 is equivalent to P3.

Proof. The result follows immediately from Propositions 9 and 10. �
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5. Computational results

To evaluate the performance of the proposed BOMILPs for the non-deterministic version of
the problem, i.e., P5 and P6, a computational study is conducted. We use Julia to implement all
formulations and BBM. In this computational study, BBM uses GUROBI 7.0 as the single-objective
integer programming solver. All computational experiments are carried out on a Dell PowerEdge
R630 with two Intel Xeon E5-2650 2.2 GHz 12-Core Processors (30MB), 128GB RAM, and the
RedHat Enterprise Linux 6.8 operating system, and using eight threads.

We generate 20 different instances to solve each one under three different settings including: 10,
15, and 100 scenarios denoted by S10, S15 and S100, respectively. We construct these settings such
that all the scenarios of S10 exist in S15 (but with different probabilities), and all the scenarios of
S15 exist in S100 (but with different probabilities).

To generate each instance, the values of N and T are randomly drawn from the discrete uniform
distribution on interval [5, 8]. We set αk

it = 0.1 for each i ∈ N , t ∈ T \{1} and k ∈ M. The value
of dijt is randomly drawn from the discrete uniform distribution on interval [1, 10] for each i ∈ N ,
j ∈ N\{i}, and t ∈ T . Also, we set diit = 0 for i ∈ N and t ∈ T . Moreover, cij is randomly drawn
from the discrete uniform distribution on interval [1, 10] for each i ∈ N and t ∈ T . Furthermore,
the value of mi is randomly drawn from the discrete uniform distribution on interval [1, 5(N − 1)].
Finally, p1, . . . , pS are randomly drawn from the uniform distribution on interval (0, 1] but then
we normalize these values to assure that

∑
s∈S ps = 1. Next, we explain how each scenario is

generated.
To create the scenarios, the following three observations are taken into account:

• By definition, for each s ∈ S, i, j ∈ N and t, t′ ∈ T , we have asjt′it = 0 if t′ > t. We make this
stronger by assuming that asjt′it = 0 if t′ ≥ t or j = i.

• By definition, for each s ∈ S, i, j ∈ N and t ∈ T , we have
∑

t∈T a
s
jt′it ≤ 1.

• In practice, if a vehicle is expected to arrive at a particular zone at time period t, then it
will most likely arrive about the same time, maybe a few time periods earlier or a few time
period later. So, it is probably unreasonable to generate the scenarios completely randomly.

In light of the above, we first set all entries of As for each s ∈ S equal to zero, and then modify the
scenarios. First we explain how we modify the first scenario, i.e., A1. For each i ∈ N , j ∈ N\{i}
and t ∈ T , we randomly selected a t′ ∈ {1, . . . , t} (if possible) and set a1jt′it = 1. We modified the

other scenarios recursively. Specifically, for each i, j ∈ N and t, t′ ∈ T with as−1jt′it = 1, we randomly
set either asjt′i,t−1 = 1 or asjt′i,t+1 = 1. Note that if we select to set asjt′i,t−1 = 1 but we realize that
t − 1 ≤ t′ then we set asjt′it = 1 instead. Similarly, if we select to set asjt′i,t+1 = 1 but we realize
that t+ 1 > T then we set asjt′it = 1 instead.

Table 3 reports the numerical results for all 20 instances under S10, S15 and S100 settings.
For each instance, the first three columns, i.e., ‘Ins’, ‘M’, and ‘T’, show the instance number, the
number of zones, and the number of time periods, respectively. There are three columns under
each setting including ‘#NDP’, ‘#IP’, and ‘Time (Sec.)’ that show the number of nondominated
points in the nondominated frontier, the number of single-objective integer linear programs solved
by BBM to compute the entire nondominated frontier, and the solution time of BBM, respectively.

The solution time contains two numbers labeled by ‘P6’ and ‘P5
P6’. The first one is basically the

solution time of BBM (in seconds) when solving P6, but the latter is the ratio of the solution time
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Table 3: Numerical results obtained by running the BBM to solve P5 and P6.

Ins N T
S10 S15 S100

#NDP #IP
Time (Sec.)

#NDP #IP
Time (Sec.)

#NDP #IP
Time (Sec.)

P6 P5
P6

P6 P5
P6

P6 P5
P6

1 7 7 190 416 907.1 2.8 190 420 389.2 - 190 420 303.5 -
2 5 8 155 339 799.4 1.0 148 312 472.3 2.1 148 312 267.1 -
3 8 8 - - - - - - - - 289 617 2,206.5 -
4 5 6 77 161 25.5 3.1 85 183 75.0 2.8 77 161 26.1 131.9
5 7 7 226 486 1,737.0 - 221 479 743.6 - 221 479 606.3 -
6 5 6 93 203 49.3 2.4 93 203 33.4 8.5 93 203 27.4 -
7 6 6 151 331 218.4 3.7 138 296 159.6 5.1 138 296 90.3 -
8 5 8 55 121 25.2 2.1 55 121 23.0 5.2 55 121 16.3 139.0
9 7 7 - - - - 201 443 632.6 - 201 443 389.9 -
10 8 5 272 574 1,000.7 - 267 579 642.6 - 267 579 423.4 -
11 5 7 133 287 642.7 1.1 120 258 154.5 4.4 120 258 74.1 -
12 5 7 147 313 164.1 4.1 147 313 435.5 2.4 147 313 151.4 -
13 6 6 167 359 140.6 5.4 161 341 172.3 8.0 161 341 125.5 -
14 7 8 162 344 673.6 2.4 155 327 481.9 5.2 155 327 293.7 -
15 6 5 115 255 49.1 5.5 115 255 59.5 10.1 115 255 51.9 -
16 6 6 187 405 339.2 3.8 173 377 326.2 3.8 173 377 250.2 -
17 6 5 138 302 93.0 3.9 135 295 82.5 6.3 135 295 78.0 -
18 6 8 153 337 670.4 1.5 153 337 343.3 5.8 153 337 239.1 -
19 7 7 - - - - 267 563 1,142.9 - 267 563 840.1 -
20 5 7 117 257 120.9 2.2 117 257 136.4 3.5 117 257 80.2 -

of BBM when solving P5 to the solution time of BBM when solving P6. We impose a time limit of
3,600 seconds to solve each instance, and so the symbol ‘-’ is used whenever BBM fails to solve P5
within the time limit. Next, we make a few observations from Table 3:

• For each instance, the number of single-objective integer linear programs solved by BBM to
compute the entire nondominated frontier is no more than three times larger than the number
of nondominated points. This perfectly follows the theory of BBM (Boland et al., 2015).

• Overall, it seems that for each instance, the number of nondominated points converges (to
some number) as we increase the number of scenarios. This can be better understood by
considering P6 and the way that we created the scenarios. By construction, all the scenarios
of S10 exist in S15 and all the scenarios of S15 exist in S100. Also, all the scenarios are created
recursively starting from the first scenario, i.e., A1. So, roughly speaking, it is expected that,

in P6, the value of ājt′it converges to
a1
jt′it
2 for each i, j ∈ N and t, t′ ∈ T as we increase the

number of scenarios. Consequently, this can be a reason for the convergence of the number
of nondominated points.

• The solution time of BBM when solving P6 varies as the number of scenarios increases.
However, overall, increasing the number of scenarios seems to help BBM solve the problem
faster. This is justifiable by the fact that the size of P6 does not depend on the number of
scenarios and only the structure of its uncertain constraints changes by increasing the number
of scenarios, i.e., the value of ājt′it changes for each i, j ∈ N and t, t′ ∈ T .

• By increasing the number of scenarios, the solution time of BBM significantly increases when
solving P5 since the size of this reformulation depends on the number of scenarios. We see
that the solution time of BBM when solving P5 is more than the solution time of BBM when
solving P6 by a factor of up to (around) 6, 10 and 139 for S10, S15, and S100, respectively
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(for the instances solved within the imposed time limit). It is also worth mentioning, in our
computational experiments, we observed that Instance 9 under the setting S10 is the only
case that is solved by P5 in about 3,200 seconds but it is not solved by P6 within the imposed
time limit.

6. Final remarks

Repositioning vehicles between stations to serve the demand in future time periods is a typical
problem that arises in carsharing systems. When the carsharing business model combines with
the technology of autonomous vehicles, a responsive, fast paced and time sensitive repositioning
operation becomes crucial. In this paper, we studied a bi-objective version of this problem when the
goal is to minimize both the unsatisfied demand and the total operating cost. The most important
contribution of our study is that we considered the travel time uncertainty and developed a BOMILP
to handle it in a way that the size of the formulation is independent of the number of scenarios. We
showed that BBM can compute all nondominated points of the proposed BOMILP. These points
can in turn be provided to decision makers for selecting their most desirable nondominated point.
Improving the proposed BOMILP, for example by developing valid inequalities or preprocessing
techniques, to be able to solve larger instances can be one further research direction building on
this study. Incorporating the demand uncertainty in the formulation is another research direction.
Finally, incorporating the option of ride sharing for the autonomous vehicles also requires further
research.
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