
Universidade

Federal

Fluminense
LOGIS
Núcleo de Logística
Integrada e Sistemas

CADERNOS DO LOGIS

Volume 2017, Number 1

Improved Space-State Relaxation for

Constrained Two-Dimensional Guillotine

Cutting Problems

André Soares Velasco, Eduardo Uchoa

July, 2017



Improved Space-State Relaxation for Constrained Two-Dimensional

Guillotine Cutting Problems

André Soares Velascoa, Eduardo Uchoab,∗

a Instituto Federal Fluminense – IFF/Universidade Federal Fluminense – UFF
Av. Souza Mota, 350. Parque Fundão – Campos dos Goytacazes – RJ. CEP: 28060-010.
b Departamento de Engenharia de Produção – Universidade Federal Fluminense – UFF

Rua Passo da Pátria 156, Bloco D. São Domingos – Niterói–RJ. CEP:24210-240.

Abstract

Christofides and Hadjiconstantinou (1995) introduced a dynamic programming state space re-

laxation for obtaining upper bounds for the Constrained Two-dimensional Guillotine Cutting

Problem. The quality of those bounds depend on the chosen item weights, they are adjusted

using a subgradient-like algorithm. This paper proposes Algorithm X, a new weight adjusting

algorithm based on integer programming that provably obtains the optimal weights. In order to

obtain even better upper bounds, that algorithm is generalized into Algorithm X2 for obtaining

optimal two-dimensional item weights. We also present a full hybrid method, called Algorithm

X2D, that computes those strong upper bounds but also provides feasible solutions obtained

by: (1) exploring the suboptimal solutions hidden in the dynamic programming matrices; (2)

performing a number of iterations of a GRASP based primal heuristic; and (3) executing X2H,

an adaptation of Algorithm X2 to transform it into a primal heuristic. Extensive experiments

with instances from the literature, for both variants with and without item rotation, show that

X2D can consistently deliver high-quality solutions and sharp upper bounds. In many cases the

provided solutions are certificated to be optimal.

Keywords: Cutting, Dynamic Programming, Integer Programming

1. Introduction

The Two-dimensional Guillotine Cutting Problem (TGCP) consists in determining the most

valuable way of cutting a rectangular object with length L and width W , using only orthogonal

guillotine cuts, in order to produce smaller rectangular pieces, that are copies of m distinct items

with predefined dimensions and value. For 1 ≤ i ≤ m, li denotes the length of i, wi its width and

vi its value. Some authors also refer to that problem as the Guillotine Two-dimensional Knapsack

Problem. The Constrained TGCP (CTGCP) is the generalization where each item i also has a

∗Corresponding author
Email addresses: asvelasco@iff.edu.br (André Soares Velasco), uchoa@producao.uff.br (Eduardo Uchoa )

Research papers in Cadernos do LOGIS-UFF are not peer reviewed, authors are responsible for their contents.



Cadernos do LOGIS-UFF L-2017-1 3

given demand Di, the maximum number of copies of an item in the cutting pattern. Orthogonal

Rotations of items in the cutting patterns may be permitted or not. This work addresses both

variants: CTGCP with rotation and without rotation. We assume that there are no restrictions

on the number of stages of a cutting pattern. Sometimes the value of an item is defined by its

area, the so called unweighted case. We also consider the case known as weighted, where item

values are arbitrary.

The CTGCP is a classical problem with many industrial applications. For examples,

the objects to be cut may be glass or wood panels, metal sheets, marble or granite slabs,

etc. While TGCP can be solved in pseudo-polynomial time by Dynamic Programming (DP),

CTGCP is known to be strongly NP-hard (Hifi, 2004) and can be much harder in prac-

tice. The proposed exact methods for CTGCP include Christofides and Whitlock (1977);

Christofides and Hadjiconstantinou (1995); Cung et al. (2000); Chen (2008); Dolatabadi et al.

(2012); Furini et al. (2016). Recent heuristics for CTGCP can be found in Alvarez-Valdés et al.

(2002); Hifi (2004); Morabito and Pureza (2010). A class of heuristics of particular interest is the

primal-dual heuristic, where a dual method (able to find upper bounds on the optimal solution

value) is adapted for also finding primal feasible solutions (that yield lower bounds on the op-

timal solution value). As shown in Morabito and Pureza (2010), primal-dual heuristics can find

some solutions that are difficult to be found using pure primal heuristics, like metaheuristics. By

their own nature, primal-dual heuristics provide solutions with a guarantee of quality. Sometimes

the upper bound matches the lower bound, certificating that the best solution found is indeed

optimal.

The best known upper bounds for the CTGCP that can be obtained in pseudo-

polynomial time are usually those by the DP State Space Relaxation (DPSSR), introduced in

Christofides and Hadjiconstantinou (1995). It is based in the following idea:

• The DP for the TGCP cannot be turned into an efficient exact algorithm for CTGCP, since

that would require adding up to m dimensions to its recursion, leading to an exponential

explosion in the number of states. Instead, they propose a DP recursion with a single

additional dimension that can be viewed as a relaxation of the exact recursion: a non-

negative integer weight qi is associated to each item i and it is imposed that the sum of the

weights of the items in a solution should not exceed Q =
∑m

i=1(Diqi).

The upper bound actually provided by DPSSR depends on the chosen weights.

Christofides and Hadjiconstantinou (1995) proposed an iterative procedure where all weights start

with value zero and are adjusted by a subgradient-like formula. Morabito and Pureza (2010) used

DPSSR as the basis of their primal-dual heuristic DP AOG and proposed an improved formula

for weight adjusting. The main contribution of this paper is Algorithm X, an alternative algorithm

for weight adjusting in DPSSR. Algorithm X is based on an integer programming model and is

proved to be optimal, in the sense that it finds the weights that yield the best possible upper bound



Cadernos do LOGIS-UFF L-2017-1 4

obtainable by DPSSR. Other important contributions are:

• A generalized variant of the DPSSR that uses two-dimensional item weights for obtaining

even stronger upper bounds. Algorithm X2, also based on integer programming, for the

optimal adjustment of those weights is proposed.

• A full primal-dual heuristic, called X2D. It executes Algorithms X and X2, but also uses a

number of additional methods for obtaining good feasible solutions:

– The suboptimal solutions hidden in the dynamic programming matrices are explored.

While the optimal DPSSR solution can only be feasible if it is also the optimal CTGCP

solution, suboptimal DPSSR solutions can be good feasible CTGCP solutions. More-

over, “near-feasible” solutions obtained from those matrices can often be corrected into

good feasible solutions by performing local substitutions.

– On instances where the gaps between upper and lower bounds are still large (> 0.3%),

a number of iterations of a GRASP based pure primal heuristic (Velasco and Uchoa,

2014) are performed.

– Finally, Algorithm X2H, an adaptation of Algorithm X2 to transform it into a primal

heuristic, may be executed.

We report extensive computational experiments on 1,000 instances. On instances without ro-

tation, X2D is compared with the best heuristic (Morabito and Pureza, 2010) and the best exact

algorithm (Dolatabadi et al., 2012) available in the literature. We also report results for the CT-

GCP with rotation. In that case, there are no recent algorithms in the literature for comparisons.

Anyway, for both with or without rotation variants, we show that X2D can consistently deliver

high-quality solutions and sharp upper bounds in reasonable times. The provided solutions are

often certificated to be optimal.

The article is organized as follows. Section 2 describes the existing DPSSR. Section 3 and 4

presents Algorithms X and X2, respectively. Section 5 describes the primal components used in

primal-dual heuristic X2D. Section 6 presents computational results. The last section presents

final remarks. For simplicity, all the proposed algorithms will assume the variant without rotation.

However, in Section 6, we indicate how they can be easily adapted for the variant with rotation.

2. Dynamic Programming State Space Relaxation for the CTGCP

An optimal solution for the Unconstrained TGCP can be assembled from the optimal solutions

of the two subproblems defined by each possible horizontal or vertical guillotine cut. This fact

allows its solution in pseudo-polynomial time by Dynamic Programming (DP), the complexity

depends on the values of L and W . The original recursion proposed by Gilmore and Gomory

(1965) limits the maximum number of cutting stages. Of course, it can be used to obtain the



Cadernos do LOGIS-UFF L-2017-1 5

optimal solution without restriction on the number of stages by setting a sufficiently large stage

limit. Beasley (1985) gives a simpler recursion for the case without any stage limit. That recursion,

together with the concept of Discretization Points from (Herz, 1972), was used by Cintra et al.

(2008) on developing an exact DP algorithm for TGCP that is very effective when the values of L

and W are not too large. Instances with values of L and W around 100 are solved in milliseconds;

instances with L and W around 1000 can be solved in a few seconds in a modern computer.

On the other hand, solving the CTGCP by DP is a much more demanding task. This is

related to the need of controlling how many copies of each item appear in the solutions of each

subproblem. Let D = [D1, . . . ,Dm] and C = [C1, . . . , Cm] be integer vectors indicating the

original demand and the maximum number of copies of each item allowed in the solution of a

subproblem, respectively. Define

v(l, w,C) = max({vi|1 ≤ i ≤ m : li ≤ l, wi ≤ w,Ci ≥ 1} ∪ {0}) (1)

as the maximum value that can be obtained by cutting, without rotation, a single copy of an item

i with positive Ci from a rectangle with dimensions (l, w). Considering that an optimal solution

for a subproblem either has a single piece or is obtained after applying a vertical guillotine cut

at position l′ or an horizontal guillotine cut at position w′, the value of the best solution for a

rectangle (l, w) respecting the limits indicated by C, is obtained by:

V (l, w,C) = max



















{v(l, w,C)}∪

{V (l′, w,C′) + V (l − l′, w,C −C′) | l′ ∈ P1, l
′ ≤ l/2,0 ≤ C′ ≤ C}∪

{V (l, w′,C′) + V (l, w − w′,C−C′) | w′ ∈ P2, w
′ ≤ w/2,0 ≤ C′ ≤ C}

(2)

The value of the optimal CTGCP solution is given by V (L,W,D). The sets P1 and P2 are the

discretization points for the vertical and horizontal cuts, respectively. Assuming the no rotation

case, P1 is calculated from the property that states that, without losing optimality, it can be

assumed that vertical guillotine cuts may only be performed in points that correspond to an

integer conic combination of item lengths; an analogous property defines P2 (Herz, 1972). More

precisely:

P1 = {x | x =
m
∑

i=1

αili, α ∈ Z
m
+ ;x ≤ L/2} (3)

P2 = {x | x =

m
∑

i=1

αiwi, α ∈ Z
m
+ ;x ≤ W/2} (4)

The resulting DP can be used only for very small instances. Since it is necessary to consider



Cadernos do LOGIS-UFF L-2017-1 6

all possible ways of splitting a vector C into integer vectors C′ and C−C′, the number of

states grows by a factor of
∏m

i=1(Di + 1) with respect to the number of states of a DP for the

corresponding TGCP. It is possible to do better: instead of adding all the m dimensions to the

DP, add then incrementally. In other words, start with the unconstrained DP, add only the

dimensions corresponding to the items in excess in that solution, solve the new DP, and so on.

However, the resulting algorithm would still be unpractical on most instances, since even 5 or 6

added dimensions would already result in a huge number of DP states.

In order to avoid that exponential explosion in the number of states,

Christofides and Hadjiconstantinou (1995) proposed a DP State Space Relaxation (DPSSR) for

producing upper bounds for CTGCP. The idea is associating a non-negative integer weight qi for

each item i and impose that the sum of the weights of the items in a solution should not exceed

the scalar value Q defined as Q =
∑m

i=1(Diqi). The recursion for determining the value V (l, w, d)

of the best solution for a rectangle (l, w) with total weight not larger than the integer scalar d is

defined by the following recursion:

v(l, w, d) = max({vi|1 ≤ i ≤ m : li ≤ l, wi ≤ w, qi ≤ d} ∪ {0}) (5)

V (l, w, d) = max



















{v(l, w, d)}∪

{V (l′, w, d′) + V (l − l′, w, d − d′) | l′ ∈ P1, l
′ ≤ l/2, 0 ≤ d′ ≤ d}∪

{V (l, w′, d′) + V (l, w − w′, d− d′) | w′ ∈ P2, w
′ ≤ w/2, 0 ≤ d′ ≤ d}

(6)

The upper bound for CTGCP is given by Z = V (L,W,Q). The DP for that relaxation is

likely to be better solved because the number of states is only multiplied by the factor (Q + 1)

with respect to the number of states in the corresponding TGCP. In fact, attributing zero weights

for most of the items, it is possible to keep the value Q relatively low.

The value of the upper bound obtained by that state space relaxation depends a lot on the

chosen weight vector q = [q1, . . . , qm]. In order to obtain good vectors q, those that yield high

quality upper bounds, Christofides and Hadjiconstantinou (1995) proposed the following weight

adjustment algorithm, inspired by the subgradient method. Let b = [b1, . . . , bm] be the vector

corresponding to the number of copies of each item in the optimal solution of the DP for a certain

q, with value Z. If bi ≤ Di for each item i, then it corresponds to a feasible and optimal CTGCP

solution. Otherwise, b corresponds to an unfeasible CTGCP solution and Z is only a valid upper

bound. The algorithm starts with a zero vector q, therefore Q is also zero. The DP is executed

and returns a solution corresponding to vector b. The next iteration will use an adjusted q

obtained by the following expression:

qi =

{

qi + ⌊t
√

bi −Di⌋ if bi > Di

max(0, qi − ⌊t
√

Di − bi⌋) if bi ≤ Di,

(7a)

(7b)



Cadernos do LOGIS-UFF L-2017-1 7

where t is a positive scalar representing the step size. The idea consists in increasing the weights

of the items in excess and reducing the weights of the items with positive slack demand. The step

size is defined as:

t =
1

2

√

√

√

√π(ZUB − ZLB)/

m
∑

i=1

(di − bi)2, (8)

where π is initialized with 1.0 and halved at each 3 iterations; ZUB and ZLB are the current

upper and lower bounds on the optimal solution value. The lower bound comes from external

heuristics, it may be improved by the method itself only if the current solution b is feasible (in

that case it should be also optimal); the upper bound is the smaller Z value found until the current

iteration. The algorithm stops if ZUB = ZLB or if π becomes smaller than a parameter ε or if

Q =
∑m

i=1(Diqi) exceeds a parameter MaxQ. Morabito and Pureza (2010) proposed changing

the calculation of the step size to

t = max







1,

√

√

√

√π(ZUB − ZLB)/

m
∑

i=1

(di − bi)2







, (9)

where π is initialized with 2.0.

3. Algorithm X

We propose a new algorithm for obtaining upper bounds using the DPSSR of

Christofides and Hadjiconstantinou (1995). The weight adjustment of the new algorithm not

only considers the solution b of the current iteration, it considers the solutions obtained in all the

n iterations already performed. Let bj = [bj1, . . . , b
j
m] be the vector corresponding to the solution

of value Zj obtained in iteration j, bji is the number of times item i appears in that solution. It is

assumed that all those n solutions are unfeasible, otherwise the optimal CTGCP solution would

already had been found. Define the following Integer Program, named IPX(n):

minQ =

m
∑

i=1

Diqi (10)

s.t.

m
∑

i=1

(bji −Di)qi ≥ 1, ∀j = 1, . . . , n

q ≥ 0 and integer

(11)

(12)

The new weights for the next iteration are given be the solution of IPX(n). Inequalities

(11) are based in the fact that a new vector q can only improve ZUB if it eliminates all the n

previous solutions from the relaxed DP. In the algorithm described below, MaxIter and MaxQ

are parameters limiting the maximum number of iterations and maximum value of Q allowed, the



Cadernos do LOGIS-UFF L-2017-1 8

output CertOpt notifies whether a certificate of optimality was obtained.

Algorithm X(MaxIter,MaxQ)

1: n = 1,q = 0, ZUB = ∞
2: Solve the relaxed DP with vector q, obtaining a solution bn with value Zn;
3: if Zn < ZUB then ZUB = Zn;
4: if (bn is feasible) then return (ZUB, CertOpt = True);
5: Solve IPX(n);
6: if (IPX(n) is infeasible) then return (ZUB, CertOpt = False);
7: Update q and Q with the optimal solution of IPX(n);
8: n = n+ 1
9: if (n > MaxIter or Q > MaxQ) then return (ZUB, CertOpt = False);

10: Goto 2;

Lemma 1. Even if MaxIter = ∞ and MaxQ = ∞, algorithm X terminates in a finite number

of iterations.

Proof. The definition of IPX(n) ensures that vector bn+1 will be distinct from vectors bj, 1 ≤ j ≤

n. As there is a finite number of possible vectors, the algorithm must stop.

Theorem 1. If MaxIter = ∞ and MaxQ = ∞, Algorithm X always returns ZUB = Z1∗ , the

best upper that can be found by the state space relaxed DP with any vector q. Moreover, bound

Z1∗ is first found in an iteration that uses the least expensive DP (i.e., it uses the smallest value

of Q) that can obtain that upper bound.

Proof. By Lemma 1, Algorithm X stops. If X stops with a certificate of optimality, certainly

ZUB = Z1∗. Otherwise, X stopped in iteration n because IPX(n) is infeasible. Suppose that the

returned ZUB is not optimal, i.e., ZUB > Z1∗. In that case, there exists some vector q∗ that

produces Z1∗. It is not possible that
∑m

i=1(b
j
i − Di)q

∗

i < 1 for some j, 1 ≤ j ≤ n. Otherwise,

solution bj with value Zj ≥ ZUB would be a solution of the relaxed DP with vector q∗. Therefore,

q∗ is feasible for IPX(n). Contradiction.

Let n′ be the first iteration that produced a solution with value Zn′

= Z1∗. If n′ = 1, then the

value of Q was 0 in that iteration. If n′ > 1, the vector q used in iteration n′ was obtained from

the optimal solution of IPX(n′ − 1). For every j, 1 ≤ j ≤ n′ − 1, Zj > Z1∗. So, any vector q that

produces a solution with value Z1∗ must satisfy
∑m

i=1(b
j
i − Di)qi ≥ 1, for all j = 1, . . . , n′ − 1.

Therefore, Q =
∑m

i=1 Diqi can not be smaller than the value of Q obtained from the solution of

IPX(n′ − 1).

In the majority of the tests with instances from the literature, Algorithm X withMaxIter = ∞

and MaxQ = ∞ terminates in less than 10 iterations and with values of Q up to 30. However, in

a few instances the number of iterations and the values of Q can grow a lot, so the algorithm gets

slow. Moreover, in those cases the final optimal bound Z1∗ obtained is not significantly better

than the bounds obtained in the first iterations, when the values of Q were reasonable small.



Cadernos do LOGIS-UFF L-2017-1 9

P19

P13

P13

P19

P13

P26

P19 P19

P19 P19

(a)

P29

P29

P29P29

P29P29

P29P29

P29

(b)

P13

P19

P13

P26

P19

P19

P29

P29

P13

P27

(c)

P13

P19

P13

P26

P19

P19

P29

P13

P27

P13

(d)

Figure 1: Infeasible solutions found by Algorithm X on CW4.

In order to avoid such waste of time, it is recommended to make use of parameters MaxIter

and MaxQ. Theorem 2 shows that Algorithm X is still optimal for a given MaxQ. Its proof is

omitted for being similar to the proof of Theorem 1.

Theorem 2. Suppose that Algorithm X is executed with MaxIter = ∞ and a finite value for

MaxQ. The returned ZUB will be always equal to Z1∗(MaxQ), the best upper that can be found

by the state space relaxed DP with any vector q such that Q =
∑m

i=1Diqi ≤ MaxQ.

In order to illustrate Algorithm X, we present a detailed run over the classical instance CW4,

introduced in Christofides and Whitlock (1977). In that weighted instance (item values are not

proportional to their areas), m = 38, L = 465, and W = 387. Algorithm X starts by solving the

DP with q = 0. This is equivalent to solving the Unconstrained TGCP. The optimal solution

obtained, with value Z1 = 6551, is shown in Figure 1(a). The hatches indicate excess production

of some item. The solution vector b1 has as non-zero components b113 = 3(D13 = 6), b119 = 6(D19 =

2), and b126 = 1(D26 = 3), IPX(1) is shown next. Remark that variables corresponding to items



Cadernos do LOGIS-UFF L-2017-1 10

that do not appear in any solution bj , 1 ≤ j ≤ n, can always be omitted from IPX(n) as they

have value zero in any optimal solution.

minQ = 6q13 + 2q19 + 3q26

s.t. − 3q13 + 4q19 − 2q26 ≥ 1

q ≥ 0 and integer

The optimal solution of IPX(1) provides a weight vector where the only non-zero component

is q19 = 1, so Q = 2. The DP in iteration 2 obtains the solution with value Z2 = 6183 depicted

in Figure 1(b). Item 28 is produced 9 times, but its demand is only 4. IPX(2) is shown next and

has an optimal solution where the non-zero components are q19 = 2, q29 = 1, so Q = 8.

minQ = 6q13 + 2q19 + 3q26 + 4q29

s.t. − 3q13 + 4q19 − 2q26 − 4q29 ≥ 1

−6q13 − 2q19 − 3q26 + 5q29 ≥ 1

q ≥ 0 and integer

Iteration 3 produces the solution shown in Figure 1(c), with Z3 = 6238. As D27 = 7, IPX(3)

shown next, has optimal solution with q19 = 7, q29 = 3 and Q = 26.

minQ = 6q13 + 2q19 + 3q26 + 7q27 + 4q29

s.t. − 3q13 + 4q19 − 2q26 − 7q27 − 4q29 ≥ 1

−6q13 − 2q19 − 3q26 − 7q27 + 5q29 ≥ 1

−3q13 + q19 − 2q26 − 6q27 − 2q29 ≥ 1

q ≥ 0 and integer

The solution obtained in iteration 4, with Z4 = 6233 is depicted in Figure 1(d) and leads to

IPX(4):

minQ = 6q13 + 2q19 + 3q26 + 7q27 + 4q29

s.t. − 3q13 + 4q19 − 2q26 − 7q27 − 4q29 ≥ 1

−6q13 − 2q19 − 3q26 − 7q27 + 5q29 ≥ 1

−3q13 + q19 − 2q26 − 6q27 − 2q29 ≥ 1

−2q13 + q19 − 2q26 − 6q27 − 3q29 ≥ 1

q ≥ 0 and integer

As IPX(4) is infeasible, Algorithm X terminates with ZUB = Z2 = Z1∗ = 6183 and CertOpt =

false. The time solve those IPs is negligible with respect to the time taken by the DP.



Cadernos do LOGIS-UFF L-2017-1 11

4. Algorithm X2

In order to obtain even stronger upper bounds using DP, we introduce here a generalization

of the state space relaxation proposed in Christofides and Hadjiconstantinou (1995). The idea

is that each item i will be associated to an integer non-negative two-dimensional weight qi =

(q1i , q
2
i ). Define q = [q1 = (q11, q

2
1), . . . , qm = (q1m, q2m)], q1 = [q11, . . . , q

1
m] and q2 = [q21, . . . , q

2
m].

The new relaxed DP imposes that the sum of the two-dimensional weights of the items in a

solution should not exceed the two-dimensional value Q = (Q1, Q2), where Q1 =
∑m

i=1(Diq
1
i ) and

Q2 =
∑m

i=1(Diq
2
i ). The new recursion is given by:

v(l, w, (d1, d2)) = max({vi|1 ≤ i ≤ m : li ≤ l, wi ≤ w, (d1, d2) ≥ (q1i , q
2
i )} ∪ {0}) (13)

and

V (l, w, d) = max



















{v(l, w, d)}∪

{V (l′, w, d′) + V (l − l′, w, d − d′) | l′ ∈ P1, l
′ ≤ l/2, 0 ≤ d′ ≤ d}∪

{V (l, w′, d′) + V (l, w − w′, d− d′) | w′ ∈ P2, w
′ ≤ w/2, 0 ≤ d′ ≤ d},

(14)

where d = (d1, d2) are now two-dimensional weight limits. The upper bound for the CTGCP

solution is given by V (L,W, (Q1, Q2)) The number of states in that DP is increased by a factor of

(Q1 + 1).(Q2 + 1) with respect to the number of states of the DP for the Unconstrained TGCP.

The updating of two-dimensional weights can be done by a Quadratic Integer Program that will

be called QIPX2(n):

min (Q1 + 1)(Q2 + 1) (15)

s.t. Q1 =

m
∑

i=1

(Diq
1
i )

Q2 =
m
∑

i=1

(Diq
2
i )

m
∑

i=1

(bji q
1
i )−Q1 +M(1− yj) ≥ 1 ∀j = 1, . . . , n

m
∑

i=1

(bji q
2
i )−Q2 +Myj ≥ 1 ∀j = 1, . . . , n

y1 = 1

y binary

q1,q2 ≥ 0 and integer

(16)

(17)

(18)

(19)

(20)

(21)

(22)

There are 2(m + 1) non-negative integer variables and n binary variables in model QIPX2(n).

Equalities (16) and (17) define variables Q1 and Q2 in terms of the vector of variables q1 and q2.



Cadernos do LOGIS-UFF L-2017-1 12

For each i, 1 ≤ i ≤ m, individual variables q1i and q2i represent the two dimensions of the weight

of item i. For each j, 1 ≤ j ≤ n, binary variable yj indicates whether solution bj should be

eliminated from the relaxed DP by the first dimension of the weights (if yj = 1) or by the second

dimension (if yj = 0). Constraints (18) and (19) implement those requirements. Coefficient M

should be big enough to make sure that a solution bj never needs to be eliminated by both

dimensions. Constraint (20) is not essential, it helps to reduce the symmetry of QIPX2(n) by

forcing solution b1 to be eliminated by the first dimension. The objective function (15) aims at

minimizing the number of states in the relaxed DP.

Define Algorithm X2 as being the direct generalization of algorithm X for two-dimensional

weights, that are now updated by the solution of QIPX2(n).

Algorithm X2(MaxIter,MaxQ)

1: n = 1,q = (0,0), ZUB = ∞
2: Solve the relaxed DP with bidimensional vector q, obtaining a solution bn with value Zn;
3: if Zn < ZUB then ZUB = Zn;
4: if (bn is feasible) then return (ZUB, CertOpt = True);
5: Solve QIPX2(n);
6: if (QIPX2(n) is infeasible) then return (ZUB , CertOpt = False);
7: Update q = (q1,q2) and Q = (Q1, Q2) with the optimal solution of QIPX2(n);
8: n = n+ 1
9: if (n > MaxIter or Q1 > MaxQ or Q2 > MaxQ) then return (ZUB, CertOpt = False);

10: Goto 2;

The proof of the following theorem is similar to the proof of Theorem 1.

Theorem 3. If MaxIter = ∞ and MaxQ = ∞, Algorithm X2 always returns ZUB = Z2∗,

the best upper that can be found by the state space relaxed DP with any bidimensional vector q.

Moreover, bound Z2∗ is found in an iteration that uses the least expensive DP (i.e., with the

smallest value of (Q1 + 1)(Q2 + 1)) that can obtain that upper bound.

Theorem 4. Z2∗ ≤ Z1∗ and there are instances where the inequality is strict.

Proof. In order to obtain upper bound Z1∗ using a DP with bidimensional weights, it is enough

to use q = (q∗,0), where q∗ is the optimal unidimensional weight vector. In order to show that

the inequality can be strict, we refer to the example over instance CW4 shown in end of this

section.

There is software for solving integer programs with quadratic objective function. However, by

simplicity and also for avoiding the risk of that solution taking too much time, in our experiments

we decided to simplify the objective function to:

min Q1 +Q2 (23)



Cadernos do LOGIS-UFF L-2017-1 13

We refer to (23) subject to constraints (16)-(22) as IPX2(n). If MaxIter = ∞ and MaxQ =

∞, Algorithm X2 using IPX2(n) (instead of QIPX2(n)) still finds the best possible upper bound

Z2∗. However, that bound possibly will be obtained with a vector of bidimensional weights that

do not minimize the number of states in the DP.

Bidimensional weights may obtain stronger upper bounds but also may lead to DPs that are

more expensive to be solved than those from unidimensional weights. For that reason, we opted

in our experiments to first apply Algorithm X. When it stops without a certificate of optimality,

Algorithm X2 is called. However, X2 is hot started with the unfeasible solutions bj, 1 ≤ j ≤ n,

found by Algorithm X. This means X2 will start to be executed in Step 5, solving IPX2(n). This

makes sense because X2 can only improve upon the upper bound from X using weights that

eliminate from the space state relaxation all the infeasible solutions with value equal or larger

than that bound. We illustrate this on instance CW4. Algorithm X2 is initialized with the 4

unfeasible solutions found by Algorithm X, so the first IP solved is IPX2(4):

minQ1 +Q2

s.t. Q1 = 6q113 + 2q119 + 3q126 + 7q127 + 4q129

Q2 = 6q213 + 2q219 + 3q226 + 7q227 + 4q229

3q113 + 6q119 + q126 −Q1 +M(1 − y1) ≥ 1

3q213 + 6q219 + q226 −Q2 +My1 ≥ 1

9q129 −Q1 +M(1 − y2) ≥ 1

9q229 −Q2 +My2 ≥ 1

3q113 + 3q119 + q126 + q127 + 2q129 −Q1 +M(1 − y3) ≥ 1

3q213 + 3q219 + q226 + q227 + 2q229 −Q2 +My3 ≥ 1

4q113 + 3q119 + q126 + q127 + q129 −Q1 +M(1 − y4) ≥ 1

4q213 + 3q219 + q226 + q227 + q229 −Q2 +My4 ≥ 1

y1 = 1,y binary

q1,q2 ≥ 0 and integer

The optimal solution of IPX2(4) yields y1 = 1, y2 = 0, y3 = 1 and y4 = 1, the non-zero weights

are q119 = 1 and q229 = 1, yielding Q1 = 2 and Q2 = 4. Then, the DP with those bidimensional

weights finds the feasible solution shown in Figure 2, with value Z5 = 6175. That solution is

certified to be optimal and Algorithm X2 terminates.

5. Primal Dual Heuristic X2D

Morabito and Pureza (2010) proposed DP AOG, a primal dual heuristic that combines

the dynamic programming with space-state relaxation with the And/Or Graph Heuristic



Cadernos do LOGIS-UFF L-2017-1 14

P29 P29P29

P13

P13

P26

P26

P19 P19

Figure 2: Optimal solution of instance CW4, value 6175.

(Morabito et al., 1992). In the same spirit, we propose X2D, a primal dual heuristic that combines

the improved space-state relaxations presented in the previous section with primal elements, able

to find feasible solutions.

5.1. Solutions from the Dynamic Programming Matrix

Algorithms X and X2 can only find feasible solutions that correspond to the optimal solution

of a DP. In fact, they can only find feasible solutions in their last iteration and only for instances

where Z1∗ and Z2∗, respectively, are equal to the value of the optimal CTGCP solution. It would

be good to use the significant computational effort already spent in solving each DP for also trying

to find feasible solutions in every iteration of those algorithms.

The first observation is that, according to equations (6) and (14), we calculate V (L,W,Q)

as the best of several solutions, corresponding to all ways of performing the first guillotine cut

in the original object. It may happen that some suboptimal solutions are feasible, even though

the optimal one is unfeasible. The computational effort for checking each of those solutions is

negligible compared with the time spent by the DP. Moreover, checking the suboptimal solutions

is worthy: in several instances, good lower bounds are obtained from Algorithms X and X2 in this

way. For example, the optimal solution of CW4 depicted in Figure 2 can be found as a suboptimal

solution of the dynamic programming in the third iteration of Algorithm X.

The second observation is that some solutions found by the DP, optimal or suboptimal, are

near-feasible (very few items exceed their demands) and have value larger than ZLB. In those

cases, a feasibility heuristic is applied to “fix” those near-feasible solutions into feasible ones,

replacing an item in excess with a smaller item with available demand. Those replacements

usually decrease the value of a solution, but sometimes the new value is still larger than ZLB .

Algorithm DP AOG also contains a feasibility heuristic.



Cadernos do LOGIS-UFF L-2017-1 15

5.2. Algorithm X2H

Suppose an unidimensional weight vector q with several positive components. In order to

obtain a valid upper bound, it is necessary to calculate V (L,W,Q), where Q =
∑m

i=1(Diqi). That

value of Q comes from the fact that is possible that all optimal CTGCP solutions use exactly Di

copies from each item i with qi > 0. However, in practice, it is very unlikely that this happens.

This means that if Qheu is a value a little smaller than Q, V (L,W,Qheu) will not be a valid upper

bound. However, there is often still a chance of that an optimal CTGCP solution (or at least

an improving solution) will appear in the corresponding DP matrix. The proposed Algorithm

X2H is an heuristic based on that observation, to be used if X2 terminates without a certificate

of optimality.

In fact, X2H uses bidimensional weights and starts by considering all the n unfeasible solutions

found along Algorithms X and X2, all of them have value larger or equal to the current ZUB .

The idea is fixing values for Qheu = (Q1
heu, Q

2
heu) and then choosing the weights q by solving the

model IPX2H(n, Qheu), that is obtained by replacing Constraints (18) and (19) in IPX2(n) by:

m
∑

i=1

(bji q
1
i )−Q1

heu +M(1− yj) ≥ 1 ∀j = 1, . . . , n

m
∑

i=1

(bji q
2
i )−Q2

heu +Myj ≥ 1 ∀j = 1, . . . , n.

(24)

(25)

Model IPX2H(n,Qheu) is always feasible, even if IPX2(n) is not. This happens because IPX2H(n)

can always satisfy Constraints (24) and (25) by using arbitrarily large values for (q1,q2). In

fact, if (q1,q2) is such that Q1 =
∑m

i=1(Diq
1
i ) > Q1

heu or Q2 =
∑m

i=1(Diq
2
i ) > Q2

heu, the value

V (C,L,Qheu) does not provide a valid upper bound. However, the corresponding solution may

be feasible and better than ZLB , the current best lower bound. However, it may also be another

unfeasible solution. Procedure DescentX2H, described next, is a search for a feasible solution

using a fixed value of Qheu. It always starts using the n unfeasible solutions available at the end

of Algorithm X2, but each subsequent unfeasible solution found by the DP is incorporated into

IPX2H (n) in order to be eliminated in the next iterations. It was called a “descent” because the

successive values of Zn are likely to decrease, the procedure stops whenever Zn ≤ ZLB .

Algorithm DescentX2H(MaxIter,Qheu , n, ZLB)

1: Solve IPX2H(n,Qheu)
2: Update vector q with optimal solution of IPX2H(n,Qheu);
3: n = n+ 1;
4: Solve the relaxed DP with bidimensional vector q and Qheu, obtaining a solution bn with value Zn;
5: if (bn is feasible and Zn > ZLB) then ZLB = Zn;
6: if (Zn ≤ ZLB or n > MaxIter) then return (ZLB);
7: Goto 1.

Algorithm X2H consists in calling DescentX2H, perhaps for different values of Qheu. After



Cadernos do LOGIS-UFF L-2017-1 16

some experiments, we decided to perform a single descent, with Qheu set to the value of Q

obtained by the solution of IPX2(n−1). Even when X2 terminates because IPX2(n) is infeasible,

IPX2(n− 1) is certainly feasible.

5.3. G-2D Heuristic

Since Herz (1972), it is known that there is always an optimal solution where the guillotine

cuts are applied only in points such that the resulting smaller rectangle has exactly the sum of

the length of the items produced in the bottom of it (in case of a vertical cut) or exactly to the

sum of the width of the items produced in the left of it (in case of a horizontal cut). However, it

was verified that by only using cuts that correspond to the length or width of a single item it is

possible to obtain optimal or high quality solutions for most practical instances. This experimental

observation was recently confirmed by the extensive tests in Furini et al. (2016). The G2-D

heuristics for CTGCP, first proposed in Velasco et al. (2008) and improved in Velasco and Uchoa

(2014), produce solutions by repeatedly cutting strips, a subrectangle defined by the dimensions

of a single item. For a given rectangle, there are several strips that can be cut from it. Those

algorithms consider some possible strips and evaluate their strip values. Those values are not

calculated exactly, they correspond to the values obtained by a constructive algorithm that try

to fit items with positive residual demand into it. It must be decided which cut to perform. This

could be done in a deterministic way by greedily taking the largest strip value. However, it is

better to use the GRASP concepts for randomly selecting, among a list of candidates, the strip

to be cut and for repeating the whole procedure many times in order to perform a diversified

search in the solution space. The procedure is reactive (Prais and Ribeiro, 2000), because some

parameters are dynamically adjusted based on the results of previous iterations.

G-2D Heuristic is used in X2D in two situations:

1. As a stand-alone heuristic, for building solutions from scratch. In that context, 50,000

iterations of G2-D are run in the instances where Algorithms X and X2 not performed

well, as measured by the gap between the lower and upper bounds in the end of Algorithm

X2. The main reason for including G-2D in X2D was to make X2D more competitive with

DP AOG, that also includes a pure primal heuristic (And/Or Graph Heuristic).

2. In the feasibility heuristic applied to near-feasible solutions obtained during Algorithms X,

X2 and X2H. In those cases, a single G-2D iteration is performed to replace items in excess

with combinations of smaller items with available demand. This is only done for unfeasible

solutions with up to two pieces in excess. Actually, as G2-D in that context works over

quite restricted areas, the resulting replacing patterns are likely to be simple, composed by

few items. The feasibility heuristic in Algorithm DP AOG also contains a procedure for

replacing items in excess by combinations of items.



Cadernos do LOGIS-UFF L-2017-1 17

5.4. Complete X2D Heuristic

The X2D heuristic is composed by the following Phases:

1. Execute Algorithm X with MaxIter = 100 and MaxQ = 20. Feasible solutions may be also

be obtained from suboptimal solutions in the DP matrix, perhaps with help of the feasibility

heuristic. X2D stops if a certificate of optimality is obtained.

2. Execute Algorithm X2 with MaxIter = 100 and MaxQ = 30. X2 is initialized with the n

unfeasible solutions found in X. Again, feasible solutions may be also be obtained from the

DP matrix, perhaps using the feasibility heuristic. X2D stops if a certificate of optimality

is obtained.

3. If (ZUB − ZLB)/ZLB > 0.3%, execute 50,000 iterations of G2-D.

4. Execute X2H with a single descent, with Qheu set to the value of Q obtained by the solution

of IPX2(n− 1).

X2D is stopped at any point, if a time limit of 600 seconds is reached.

6. Computational Results

Algorithm X2D was tested in the following environment: single core of a processor i7-

4790 at 3.6 GHz, 16GB RAM and Windows 8 (64 bits) OS. The algorithms were coded in

C and compiled in Microsoft Visual Studio 2010. CPLEX 12.6 solved the IPs in Algorithms

X, X2 and X2H. The tests were performed over instances available in the ESICUP web page

(http://paginas.fe.up.pt/∼esicup/datasets). The first set of 30 instances corresponds to the most

classical instances from the literature: 14 of them are unweighted (Classes WANG, OF and CU),

the remaining 16 (Classes ChW and CW) are weighted. The second set contains 450 unweighted

random instances generated by Morabito and Pureza (2010). They are divided into 3 classes:

instances in Class 1 are moderately constrained (relatively large demands), those in Class 2 are

more constrained (small demands), instances in Class 3 are highly constrained (unitary demands).

Each class is divided into 10 groups of 15 instances. Each group is denoted by R m X, where the

number of distinct items m can be 10, 20, 30, 40 or 50; and X can be S or L, representing small

or large items, respectively. The third set of 20 instances is composed by the hard APT instances

proposed in Alvarez-Valdés et al. (2002): 10 of them are unweighted (APT30-39), the remaining

10 are weighted (APT40-49).

Algorithm X2D is first compared (on the variant without rotation) with Algorithm DP AOG

in Morabito and Pureza (2010). That comparison is very relevant not only because the latter al-

gorithm has the best published heuristic results, but also because both algorithms are primal-dual

heuristics heavily based in the DPSSR of Christofides and Hadjiconstantinou (1995). Therefore,

the superior performance of X2D attests the effectiveness of the proposed improvements in that



Cadernos do LOGIS-UFF L-2017-1 18

DPSSR, the main contribution of this paper. The times for DP AOG were obtained in a proces-

sor Pentium IV 2.99GHz. According to PassMark web page (http://www.passmark.com), that

processor is about 3.5 times slower than the one used in our tests.

Table 1 contains the comparison over the first set of classical instances. The value m̄ is defined

as
∑m

i=1 Di. For Algorithm X2D, ZLB and ZUB are the lower and upper bounds obtained, bestT

is the time (in seconds) when the best feasible solution was found and totalT is the total time

(seconds) spent. For DP AOG, only the lower bounds are available. The authors only indicate

the cases where the lower bounds were certificate to be optimal. Those cases are maked with a ∗.

In order to keep the notation consistent, lower bounds obtained by X2D certificate to be optimal

are also marked with ∗, even though that information is already available in column ZUB. It can

be seen that both methods obtain all the optimal solutions. However, X2D is significantly faster

and obtains two additional certificates of optimality.

Table 2 is a comparison over the second set, for Classes 1, 2 and 3. Each entry below a group

name R m X correspond to results for the 15 instances in that group. Rows ZUB, ZLB , bestT ,

totalT and Gap(%) are averages of upper bounds, lower bounds, time to best (seconds), total

time (seconds), and percent gap. Rows CO(%) are the percentage of instances where a certificate

of optimality was obtained. Columns Avg. are aggregated averages over 75 instances from 5

groups. Due to the improvements in DPSSR of Christofides and Hadjiconstantinou (1995), the

upper bounds from X2D are often significantly better than those from DP AOG. They were better

in 21 groups, equal in 7 groups, and worse only in groups Class 3 R 30 S and Class 3 R 40 S.

Those last two results are explained by the fact that Algorithms X and X2 are being truncated

by parameters MaxIter and MaxQ. The lower bounds by X2D are also usually better, but the

difference is smaller. They were better in 6 groups, equal in 22 groups and worse in groups Class

2 R 40 S and Class 3 R 20 S. As a result, X2D obtain better values of Gap(%) and CO(%) in

most cases. Moreover, even taking the difference in machine speeds into account, X2D is almost

always faster. The overall conclusions of the experiments reported in Table 2 are the following:

• Both primal-dual heuristics based on DPSSR of Christofides and Hadjiconstantinou (1995)

(X2D and DP AOG) are clearly better on instances with large items and with larger de-

mands. Anyway, the gaps obtained are good, except for the instances in Class 3 with small

demands. In those cases, even the improved DPSSR in X2D fails to obtain high-quality

upper bounds, as a result, the lower bounds obtained from the DP matrices (even after

trying the feasibility heuristic) are also poorer. In those instances the pure primal heuristic

G2-D is likely to be executed and sometimes improves the lower bounds significantly. We

guess that DP AOG is also helped a lot by the pure primal And/Or Graph Heuristic in

those cases.

Table 3 is a comparison of X2D with Algorithm A1, the best exact algorithm in the literature,

proposed in Dolatabadi et al. (2012). As the test instances APT are larger, we increase the

time limit in X2D to 900 seconds. The times for A1 were obtained in a Intel Dual CPU T3400 at



Cadernos do LOGIS-UFF L-2017-1 19

P49

P49

P24

P18

P21 P21

P21 P21

P26

P26

P58

P58

P36 P36 P36

P11 P11

 P27

P26

P15

P15

P49 P49 P49

P41 P21 P18 P18

P18 P18

P48

P48

P48

P48

P34 P33

P49

P45

P14

P22

P24

P1

P1

P1

P49

P45

P5 P5

P22

P38

P34 P34

P49 P49

P34

Figure 3: Improved solutions for instances APT42 and APT43 (no rotation).



Cadernos do LOGIS-UFF L-2017-1 20

2.16GHz, a processor about 3.1 times slower than the processor used in this work. The comparison

is made in the ATP instances. It should be noted that A1 received as input the values of an

external lower bound (taken from Hifi (2004)) and an external upper bound (taken from Chen

(2008)), the times for computing those bounds are not included in their article. For example,

on APT30 Algorithm A1 already received the information that the optimal solution value was

140,904, it took 2.43 seconds in order to actually find a solution with that value. Disregarding

the external bound issue, A1 performed better than X2D, obtaining 18 solutions certificated to

be optimal. Algorithm X2D obtained 16 of those optimal solutions, but only 8 of them could

be certified. However, X2D clearly outperformed A1 in the open instances APT42 and APT43.

In those cases, A1 could not improve its received external bounds in its time limit of 1 hour.

In contrast, X2D not only improved the best known solutions for those two instances but also

improved their best upper bounds, as marked in bold. That behavior is somehow expected:

• Exact Algorithm A1 uses clever acceleration tricks, but is still based on a worst-case expo-

nential time enumeration. As so, it can solve many instances to optimality in reasonable

times, but it can also fail completely in some harder/larger instances. On the other hand,

Primal Dual Heuristic Algorithm X2D is based on a DPSSR that has a pseudo-polynomial

worst-case complexity (assuming limited MaxIter and MaxQ), so (unless L and W are too

large) it may produce reasonable results even for those harder/larger instances.

The solution with value 33,598 for APT42 is depicted in the left of Figure 3. That solution was

directly found (the feasibility heuristic was not called) as a suboptimal solution of the DP during

Phase 2, in an iteration where n = 47 and Q = (12, 7). The solution with value 217,288 for

APT43 in the right of Figure 3 was directly found as a suboptimal solution of the DP during

Phase 1, in an iteration where n = 7 and Q = 20.

The algorithms proposed in this paper can be easily adapted to the CTGCP variant that allows

item rotations. There are only two differences: (1) The discretization points should be calculated

as the conic combinations of both item lengths and widths; (2) the base of the DP recursions,

Equations (5) and (13), should consider the possibility that an item is rotated. Besides that,

Algorithms X, X2 and X2H remain the same. Tables 4, 5 and 6 present results for the CTGCP.

Unhappily, there are no recent algorithms in the literature for comparisons. It seems that allowing

rotations make the instances a bit easier for X2D. The total number of solutions certified to be

optimal increases from 342 to 377.

Finally, Table 7 is aimed at showing the contribution of each element of X2D for its results. The

rows are organized by phases. Columns CO and ZUB shows how many certificates of optimality

and best upper bounds were obtained in Phases 1 and 2. Column ZUB show how many times

the best lower bound found for an instance was found in each phase, from Phase 1 to 4. The

next columns detail that information, for Phases 1, 2 and 4: how many times the lower bound

was found directly as an optimal solution of the DP, by the feasibility heuristic over an optimal



Cadernos do LOGIS-UFF L-2017-1 21

DP solution, as a suboptimal solution in the DP matrix, and by the feasibility heuristic over a

suboptimal DP solution.

Instances X2D DP AOG

name m m̄ L W
OPT

ZLB ZUB bestT totalT ZLB bestT totalT

WANG1 20 42 33 69 2277 *2277 2277 0.01 0.01 *2277 0.1 0.1

WANG2 20 42 39 70 2694 *2694 2694 0.01 0.01 *2694 0.1 0.2

WANG3 20 42 40 70 2721 *2721 2721 0.01 0.02 *2721 0.1 0.6

OF1 10 23 70 40 2737 *2737 2737 0.03 0.05 *2737 0.1 11.2

OF2 10 24 70 40 2690 *2690 2690 0.11 0.25 2690 0.1 23.6

CU1 25 82 100 125 12330 *12330 12330 0.01 0.01 *12330 0.1 0.5

CU2 35 90 150 175 26100 *26100 26100 0.01 0.01 *26100 0.2 1.4

CU3 45 158 134 125 16723 *16723 16723 0.01 0.02 *16723 0.3 5.8

CU4 45 113 285 354 99495 *99495 99495 0.01 0.05 *99495 3.8 35.0

CU5 50 120 456 385 173364 *173364 173364 0.02 0.12 *173364 2.7 873.2

CU6 45 124 356 447 158572 *158572 158572 0.02 0.02 *158572 1.3 11.8

CU7 25 56 563 458 247150 247150 247392 0.30 0.64 247150 0.1 1800.0

CU8 35 78 587 756 433331 *433331 433331 0.01 0.01 *433331 0.5 26.8

CU9 25 76 856 785 657055 *657055 657055 0.01 0.01 *657055 0.1 19.7

CU10 40 129 794 985 773772 773772 774954 2.33 52.61 773772 69.2 1800.0

CU11 50 134 977 953 924696 924696 925276 0.16 600.00 924696 333.6 1293.1

Average 0.18 40.86 25.8 368.9

ChW1 7 16 15 10 244 *244 244 0.10 0.11 *244 0.1 0.1

ChW2 10 23 40 70 2892 *2892 2892 0.34 0.34 *2892 0.8 38.4

ChW3 20 62 40 70 1860 *1860 1860 0.03 0.05 *1860 0.1 19.9

CW1 25 67 125 105 6402 *6402 6402 0.01 0.02 *6402 1.1 25.6

CW2 35 63 145 165 5354 *5354 5354 0.05 0.44 5354 0.7 1118.8

CW3 40 96 267 207 5689 *5689 5689 0.03 0.03 *5689 0.5 26.9

CW4 39 86 465 387 6175 *6175 6175 0.09 0.24 *6175 1.3 46.8

CW5 35 91 524 678 11659 *11659 11659 0.10 0.10 *11659 0.8 1268.5

CW6 55 149 781 657 12923 *12923 12923 0.13 0.13 *12923 33.3 890.6

CW7 45 123 276 374 9898 *9898 9898 0.01 0.01 *9898 4.1 10.7

CW8 60 168 305 287 4605 *4605 4605 0.05 0.08 *4605 20.8 340.5

CW9 50 131 405 362 10748 *10748 10748 0.12 0.12 *10748 7.0 121.3

CW10 60 130 992 970 6515 *6515 6515 0.15 0.15 *6515 2.8 182.2

CW11 60 114 982 967 6321 *6321 6321 0.32 1.22 *6321 2.0 1375.0

Average 0.11 0.22 5.4 390.4

Table 1: Comparison with Algorithm DP AOG on 20 classical instances (no rotation), unweighted and weighted.

7. Conclusions

The main contribution of this article was Algorithm X, an improved scheme based on integer

programming for updating the weights in a DPSSR for CTCGP. Unless the scheme is truncated,

it always obtains the optimal weights. The general principle behind the new scheme, that is

valid to any kind of combinatorial relaxation, is the following: a relaxation can only improve the

current dual bound if it forbids all the known unfeasible solutions with value better than that bound.

Additional contributions are Algorithm X2, a new DPSSR for CTCGP that uses bidimensional

weights, and a full primal-dual heuristic called X2D. Extensive tests with X2D show that it

can indeed obtain optimal or near-optimal solutions in many cases. Comparisons with the best



Cadernos do LOGIS-UFF L-2017-1 22

Class 1 R 10 S R 20 S R 30 S R 40 S R 50 S Avg. R 10 L R 20 L R 30 L R 40 L R 50 L Avg.

D ZLB 9834 9976 10000 10000 10000 9962.0 9129 9595 9835 9861 9892 9662.4

P ZUB 9838 9978 10000 10000 10000 9963.2 9129 9598 9838 9880 9898 9668.6

bestT 8.3 7.8 3.1 1.4 0.3 4.2 < 0.1 1.1 < 0.1 < 0.1 < 0.1 0.3

A totalT 46.3 79.6 7.3 5.8 4.2 28.70 0.8 6.7 7.2 12.8 8.5 7.2

O Gap(%) 0.04 0.02 0 0 0 0.01 0 0.03 0.03 0.19 0.06 0.06

G CO(%) 93.3 86.7 100 100 100 96.0 100 93.3 93.3 80.0 93.3 92.0

ZLB 9834 9976 10000 10000 10000 9962.0 9129 9595 9835 9861 9892 9662.4

X ZUB 9835 9977 10000 10000 10000 9962.4 9129 9595 9835 9863 9892 9662.8

2 bestT 0.1 0.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

D totalT 0.1 1.5 < 0.1 < 0.1 0.3 0.1 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1

Gap(%) 0.01 0.01 0 0 0 < 0.01 0 0 0 0.02 0 < 0.01

CO(%) 93.3 93.3 100 100 100 97.3 100 100 100 93.3 100 98.7

Class 2 R 10 S R 20 S R 30 S R 40 S R 50 S Avg. R 10 L R 20 L R 30 L R 40 L R 50 L Avg.

D ZLB 9640 9909 9958 9996 10000 9900.6 9230 9635 9842 9867 9902 9695.2

P ZUB 9829 9961 9998 10000 10000 9957.6 9253 9660 9842 9870 9904 9705.8

bestT 19.1 46.2 85.4 48.3 26.1 45.00 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

A totalT 942.3 929.9 1206.4 350.6 31.6 692.20 8.3 19.8 7.6 12.6 9.9 12

O Gap(%) 1.92 0.52 0.40 0.04 0 0.58 0.25 0.26 0 0.03 0.02 0.11

G CO(%) 6.7 6.7 6.7 66.7 100 37.4 86.7 60.0 93.3 86.7 93.3 84.0

ZLB 9644 9909 9960 9995 10000 9901.6 9230 9635 9842 9867 9902 9695.2

X ZUB 9717 9935 9981 10000 10000 9926.6 9242 9635 9842 9867 9902 9697.6

2 bestT 7.5 0.5 6.8 36.7 8.6 12.00 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

D totalT 89.7 74.3 92.8 60 8.6 65.10 0.4 < 0.1 < 0.1 < 0.1 < 0.1 0.1

Gap(%) 0.75 0.26 0.21 0.05 0 0.25 0.13 0 0 0 0 0.03

CO(%) 20.0 20.0 26.7 66.7 100 46.7 93.3 100 100 100 100 98.7

Class 3 R 10 S R 20 S R 30 S R 40 S R 50 S Avg. R 10 L R 20 L R 30 L R 40 L R 50 L Avg.

D ZLB 8115 9575 9671 9807 9770 9387.6 8746 9322 9685 9767 9823 9468.6

P ZUB 9263 9923 9880 9890 10000 9791.2 8883 9469 9745 9832 9881 9562.0

bestT 0.7 89.5 194.7 425.7 1.73 142.50 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

A totalT 752.2 532.6 638.6 670.6 1442.4 807.30 11.9 42.4 47 46.2 59.2 41

O Gap(%) 12.39 3.51 2.12 0.84 2.30 4.23 1.54 1.55 0.62 0.66 0.59 0.99

G CO(%) 0 0 0 0 0 0 46.7 33.3 40.0 26.7 26.7 34.7

ZLB 8116 9544 9751 9865 9903 9435.8 8746 9322 9685 9767 9823 9468.6

X ZUB 8910 9844 9952 9996 9998 9740.0 8769 9364 9708 9778 9842 9492.2

2 bestT 9.9 108.1 120.2 85.5 184.9 101.70 0.1 < 0.1 0.1 0.1 0.2 0.1

D totalT 39.4 167.6 355.3 279.7 257.4 219.90 0.6 1.5 3.6 2 5.3 2.6

Gap(%) 8.91 3.05 2.02 1.31 0.95 3.25 0.26 0.45 0.24 0.11 0.19 0.25

CO(%) 6.7 0 0 0 0 1.3 86.7 73.3 53.3 80.0 40.0 66.7

Table 2: Comparison with Algorithm DP AOG on 450 instances (no rotation) by Morabito and Pureza (2010).



Cadernos do LOGIS-UFF L-2017-1 23

Instances OPT/ X2D A1

name m m̄ L W BKS ZLB ZUB bestT totalT ExtZLB ExtZUB ZLB totalT

APT30 38 192 152 927 140904 *140904 140904 23.67 23.67 140904 140904 *140904 2.43

APT31 51 258 964 856 823976 823976 824483 150.24 900.00 823976 824931 *823976 178.99

APT32 56 249 124 307 38068 *38068 38068 23.98 23.98 38068 38068 *38068 0.37

APT33 44 224 983 241 236611 236588 236678 744.03 900.00 236611 236818 *236611 40.62

APT34 27 130 456 795 361398 361398 362219 176.17 900.00 361197 362520 *361398 79.08

APT35 29 153 649 960 621021 620948 622161 18.89 900.00 621021 622644 *621021 15.36

APT36 28 153 244 537 130744 130744 130800 1.43 900.00 130744 130744 *130744 18.06

APT37 43 222 881 440 387276 *387276 387276 24.27 277.31 387276 387276 *387276 48.03

APT38 40 202 358 731 261395 261395 261572 117.68 900.00 261395 261698 *261395 44.63

APT39 33 163 501 538 268750 268750 268926 602.00 900.00 268750 268750 *268750 33.70

Average 128.24 662.50 46.13

APT40 56 290 138 683 67154 *67154 67154 1.04 23.41 67154 67654 *67154 25.86

APT41 36 177 367 837 206542 *206542 206542 2.14 59.18 206542 215699 *206542 229.30

APT42 59 325 291 167 33503 33598 33680
1 280.27 900.00 33503 34098 33503 3600.00

APT43 49 259 917 362 214651 214840 217288 24.05 900.00 214651 222570 214651 3600.00

APT44 39 196 496 223 73868 *73868 73868 93.54 194.20 73868 74887 *73868 19.23

APT45 33 156 578 188 74691 *74691 74691 0.53 7.40 758082 75888 *74691 19.73

APT46 42 197 514 416 149911 *149911 149911 0.62 0.62 149911 151813 *149911 37.00

APT47 43 204 554 393 150234 150234 150659 286.57 900.00 150234 153747 *150234 51.80

APT48 34 167 254 931 167660 167660 167835 144.38 900.00 167660 170914 *167660 75.93

APT49 25 119 449 759 219354 219354 220383 254.31 900.00 218388 226346 *219354 2680.39

Average 108.74 478.48 1033.92

Table 3: Comparison with Algorithm A1 on 30 instances (no rotation) by Alvarez-Valdés et al. (2002).
1 Our UB contradicts the LB of 34,015 reported in Chen (2008). So, we believe that the LB of 33,598 is indeed the new best.
2 This LB, reported in Chen (2008), could not be found by any of the exact methods tried in Dolatabadi et al. (2012).

According to our code, the optimal solution of APT45 indeed has value 74,691.

Instance X2D

name ZLB ZUB bestT totalT

WANG1 *2277 2277 < 0.01 < 0.01

WANG2 *2716 2716 < 0.01 < 0.01

WANG3 *2771 2771 0.02 0.02

OF1 *2757 2757 0.02 0.53

OF2 *2769 2769 0.27 0.31

CU1 *12500 12500 < 0.01 < 0.01

CU2 *26200 26200 < 0.01 0.02

CU3 *16750 16750 < 0.01 < 0.01

CU4 *100230 100230 0.05 0.33

CU5 *174705 174705 0.08 0.02

CU6 *158572 158572 0.02 0.02

CU7 *255684 255684 0.02 0.02

CU8 *438383 438383 0.03 0.22

CU9 *659648 659648 0.02 0.09

CU10 *779239 779239 0.16 0.16

CU11 928170 928215 0.38 600.00

Average 0.06 37.61

Instance X2D

name ZLB ZUB bestT totalT

ChW1 *260 260 0.02 0.23

ChW2 *2901 2901 0.03 0.94

ChW3 *1920 1920 0.23 1.05

CW1 *6766 6766 0.02 0.30

CW2 *5689 5689 0.03 0.28

CW3 *5744 5744 0.06 7.61

CW4 *7496 7496 0.52 0.52

CW5 *11659 11659 0.47 0.47

CW6 *13203 13203 0.34 19.25

CW7 *10880 10880 0.02 0.02

CW8 *4736 4736 0.02 0.13

CW9 *11479 11479 0.27 0.27

CW10 *6835 6835 1.39 1.39

CW11 *6784 6784 1.53 2.48

Average 0.35 2.49

Table 4: Results on 20 classical instances (with rotation), unweighted and weighted.



Cadernos do LOGIS-UFF L-2017-1 24

Class 1 R 10 S R 20 S R 30 S R 40 S R 50 S Avg. R 10 L R 20 L R 30 L R 40 L R 50 L Avg.

ZLB 9961 9999 10000 10000 10000 9992.0 9286 9774 9904 9929 9971 9772.8

ZUB 9961 9999 10000 10000 10000 9992.0 9286 9776 9904 9929 9971 9773.2

bestT < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

totalT < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1

Gap(%) 0 0 0 0 0 0 0 0.02 0 0 0 < 0.01

CO(%) 100 100 100 100 100 100 100 93.3 100 100 100 98.7

Class 2 R 10 S R 20 S R 30 S R 40 S R 50 S Avg. R 10 L R 20 L R 30 L R 40 L R 50 L Avg.

ZLB 9850 9976 10000 10000 10000 9965.4 9546 9797 9909 9945 9966 9832.6

ZUB 9887 9989 10000 10000 10000 9975.2 9546 9797 9909 9945 9966 9832.6

bestT 18.2 1.4 2.5 0.7 0.6 4.70 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

totalT 175.1 90.4 2.5 0.7 0.6 53.90 < 0.1 < 0.1 0.1 0.1 < 0.1 < 0.1

Gap(%) 0.37 0.13 0 0 0 0.10 0 0 0 0 0 0

CO(%) 20.0 46.7 100 100 100 73.3 100 100 100 100 100 100

Class 3 R 10 S R 20 S R 30 S R 40 S R 50 S Avg. R 10 L R 20 L R 30 L R 40 L R 50 L Avg.

ZLB 8413 9781 9887 9949 9967 9599.4 9183 9621 9803 9900 9927 9686.8

ZUB 9205 9950 10000 10000 10000 9831.0 9188 9624 9812 9910 9933 9693.4

bestT 3.2 80.4 91 13.3 33.2 44.20 0.1 0.1 0.7 0.1 < 0.1 0.2

totalT 75.2 180.5 161.9 49.3 41.5 101.70 0.7 0.4 1.9 1.8 1.7 1.3

Gap(%) 8.60 1.70 1.13 0.51 0.33 2.45 0.05 0.03 0.09 0.10 0.06 0.07

CO(%) 0 0 0 6.7 13.3 4.0 93.3 93.3 80.0 60.0 73.3 80.0

Table 5: Results on 450 instances (with rotation) by Morabito and Pureza (2010).

Instance X2D

name ZLB ZUB bestT totalT

APT30 *140904 140904 771.18 771.18

APT31 824878 825184 723.32 900.00

APT32 *38068 38068 424.94 458.79

APT33 *236903 236903 0.39 0.39

APT34 361952 362520 499.10 900.00

APT35 622518 622965 144.88 900.00

APT36 130965 130988 0.13 900.00

APT37 387439 387640 19.54 900.00

APT38 261625 261698 288.06 900.00

APT39 269278 269376 38.16 900.00

Average 290.97 753.04

Instance X2D

name ZLB ZUB bestT totalT

APT40 *67294 67294 103.19 226.49

APT41 210713 211613 140.04 900.00

APT42 33756 34010 880.95 900.00

APT43 218820 219654 727.45 900.00

APT44 76122 76306 235.88 900.00

APT45 *74691 74691 1.15 16.70

APT46 *150983 150983 18.48 56.73

APT47 152778 152951 89.38 900.00

APT48 170678 171896 135.95 900.00

APT49 222248 224987 727.90 900.00

Average 306.04 659.99

Table 6: Results on 30 instances (with rotation) by Alvarez-Valdés et al. (2002).

Without Rotation
CO ZUB ZLB Opt.DP Feas.Opt Sub.DP Feas.Sub

Phase 1 (X) 286 329 382 134 12 214 22
Phase 2 (X2) 56 171 74 7 0 45 22
Phase 3 (G-2D) - - 34 - - - -
Phase 4 (X2H) - - 10 1 0 8 1

With Rotation
Phase 1 (X) 316 373 403 147 14 201 41
Phase 2 (X2) 61 127 60 13 0 35 12
Phase 3 (G-2D) - - 36 - - - -
Phase 4 (X2H) - - 1 0 0 1 0

Table 7: Effectiveness of each X2D Phase.



Cadernos do LOGIS-UFF L-2017-1 25

previous heuristic and exact algorithms for the CTCGP without rotation are made. We also

provide results for the important CTCGP variant that permits rotations.

Modern codes are very efficient on solving linear IPs with only a few dozen variables and

constraints. In fact, at least in our experiments, the time for solving the IPs in Algorithms X,

X2 and X2H was always negligible with respect to the time spent to solve the DP recursions.

Nevertheless, in the future it could be interesting to devise fast heuristics for solving the IPs with

quadratic objective function that arise when bidimensional weights are used.

Acknowledgments

This work was partially supported by the Brazilian research agencies CNPq and Faperj.

References

R. Alvarez-Valdés, A. Parajón, J. M. Tamarit, A tabu search algorithm for large-scale guillotine

(un)constrained two-dimensional cutting problems, Computers & Operations Research 29 (7)

(2002) 925 – 947.

J. E. Beasley, Algorithms for unconstrained two-dimensional guillotine cutting, Journal of the

Operational Research Society 36 (4) (1985) 297–306.

Y. Chen, A recursive algorithm for constrained two-dimensional cutting problems, Computational

Optimization and Applications 41 (3) (2008) 337–348.

N. Christofides, E. Hadjiconstantinou, An exact algorithm for orthogonal 2-d cutting problems

using guillotine cuts, European Journal of Operational Research 83 (1) (1995) 21 – 38.

N. Christofides, C. Whitlock, An algorithm for two-dimensional cutting problems, Oper. Res.

25 (1) (1977) 30–44.

G. Cintra, F. Miyazawa, Y. Wakabayashi, E. Xavier, Algorithms for two-dimensional cutting stock

and strip packing problems using dynamic programming and column generation, European

Journal of Operational Research 191 (1) (2008) 61 – 85.

V.-D. Cung, M. Hifi, B. Le Cun, Constrained two-dimensional cutting stock problems a best-first

branch-and-bound algorithm, International Transactions in Operational Research 7 (3) (2000)

185–210.

M. Dolatabadi, A. Lodi, M. Monaci, Exact algorithms for the two-dimensional guillotine knapsack,

Computers & Operations Research 39 (1) (2012) 48–53.

F. Furini, E. Malaguti, D. Thomopulos, Modeling two-dimensional guillotine cutting problems

via integer programming, INFORMS Journal on Computing 28 (4) (2016) 736–751.



Cadernos do LOGIS-UFF L-2017-1 26

P. C. Gilmore, R. E. Gomory, Multistage cutting stock problems of two and more dimensions,

Operations Research 13 (1) (1965) 94–120.

J. C. Herz, Recursive computational procedure for two-dimensional stock cutting, IBM J. Res.

Dev. 16 (5) (1972) 462–469.

M. Hifi, Dynamic programming and hill-climbing techniques for constrained two-dimensional cut-

ting stock problems, Journal of Combinatorial Optimization 8 (1) (2004) 65–84.

R. Morabito, M. Arenales, V. Arcaro, An and-or-graph approach for two-dimensional cutting

problems, European Journal of Operational Research 58 (2) (1992) 263–271.

R. Morabito, V. Pureza, A heuristic approach based on dynamic programming and and/or-graph

search for the constrained two-dimensional guillotine cutting problem, Annals of Operations

Research 179 (1) (2010) 297–315.

M. Prais, C. C. Ribeiro, Reactive GRASP: An application to a matrix decomposition problem in

TDMA traffic assignment, INFORMS Journal on Computing 12 (3) (2000) 164–176.

A. Velasco, G. G. Paula Junior, E. Vieira Neto, Um algoritmo heuŕıstico baseado na GRASP

para o problema de corte bidimensional guilhotinado e restrito, Gepros: Gestão da Produção,

Operações e Sistemas 3 (1) (2008) 129–141.

A. Velasco, E. Uchoa, Geração de padrões de corte bidimensionais guilhotinados via GRASP, in:

Proceedings of XLVI SBPO, Salvador, 1–12, 2014.


	Introduction
	Dynamic Programming State Space Relaxation for the CTGCP
	Algorithm X
	Algorithm X2
	Primal Dual Heuristic X2D
	Solutions from the Dynamic Programming Matrix
	Algorithm X2H
	G-2D Heuristic
	Complete X2D Heuristic

	Computational Results
	Conclusions

