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Abstract. Many mixed-integer optimization problems are constrained by
nonlinear functions that do not possess desirable analytical properties like
convexity or factorability or cannot even be evaluated exactly. This is, e.g.,
the case for many problems constrained by differential equations or for models
that rely on black-box simulation runs. For these problem classes, we present,
analyze, and test algorithms that solve mixed-integer problems with Lipschitz
continuous nonlinearities. Our theoretical results depend on the assumptions
made on the (in)exactness of function evaluations and on the knowledge of Lip-
schitz constants. If Lipschitz constants are known, we prove finite termination
at approximate globally optimal points both for the case of exact and inexact
function evaluations. If only approximate Lipschitz constants are known, we
prove finite termination and derive additional conditions under which infeasi-
bility can be detected. A computational study for gas transport problems and
an academic case study show the applicability of our algorithms to real-world
problems and how different assumptions on the constraint functions up- or
downgrade the practical performance of the methods.

1. Introduction

Mixed-integer nonlinear optimization is an important tool for modeling real-world
problems from a large variety of applications like, e.g., engineering, economics, or
the natural sciences. The main reason for this is that this problem class combines
both the capability of modeling nonlinearities and decision making modeled by
discrete variables; cf. the survey [5] and the references therein for an overview
of mixed-integer nonlinear optimization. However, this combination is also the
reason why mixed-integer nonlinear optimization problems (MINLPs) are typically
extremely hard to solve—both in theory [21, 44] and practice [5, Chap. 2].

As it is often the case in optimization, convexity renders MINLPs much easier
to solve. In particular, (extended) cutting plane [83, 84] or outer approximation
techniques [16, 20] can be exploited, which is, in general, not possible for nonconvex
MINLPs. Here, outer approximations (usually convex underestimators and concave
overestimators) are only locally valid and one has to resort to spatial branching for
achieving tight outer approximations that fulfill prescribed tolerances [45].

Unfortunately, many MINLPs neither exhibit convexity properties nor do they
possess other desirable properties like separability or factorability that are frequently
used for nonconvex optimization [55, 74, 75]. Examples include MINLPs with
ordinary or partial differential equations, mixed-integer optimal control problems,
or optimization problems based on “black-box” simulations.

In this paper, we present, analyze, and test algorithms for MINLPs with non-
linearities for which the only usable analytical property is Lipschitz continuity.
Thus, these algorithms fit into the above mentioned frameworks—among others
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like parametric or bilevel optimization, where complicated nondifferentiable but
Lipschitz continuous functions are frequently studied; cf., e.g., [12, 13].

The field of global Lipschitz optimization without integer variables is well-studied.
Such problems are tackled with suitable underestimators in the form of saw-tooth
covers that were first presented in [18, 65] for univariate cases. Extensions were
made for higher dimensions [60–62] including branch-and-bound approaches [41,
43]. Even more sophisticated branch-and-bound procedures have been studied in
[40, 59, 78]. For an overview of the literature, see the books [37, 42, 64] and the
references therein. An example for a software based on these concepts is the so-called
Lipschitz Global Optimizer (LGO) [63]. Moreover, the use of relaxations instead of
underestimators has also been considered; see [49]. Finally, MINLPs with strongly
convex and Lipschitz continuous functions are studied in [3].

Further, in the context of optimal control problems one frequently has problems
governed by a dynamical system involving a Lipschitz continuous right-hand side. In
such a setting, the dynamical system determines a state for given control/decision
variables. These control/decision variables often need to be determined by a mixed-
integer linear program (MIP), cf. [31, 38, 39, 68]. The mentioned methods utilize
the knowledge that the nonlinearity in the problem stems from an evolutionary
equation. In contrast to this, we focus on generic Lipschitz continuous nonlinearities
that, e.g., describe stationary states of such optimal control problems.

The contribution of this paper is the presentation and analysis of algorithms for
nonconvex MINLPs with Lipschitz continuous constraints. All presented algorithms
are decomposition methods that decouple the problem into a master and several
subproblems. We show that the master problem can always be modeled as a MIP
and that the subproblems contain the complicating nonlinear constraints. We study
different variants of this general setup that vary in the aspects of (i) whether we have
exact or only approximate knowledge about the Lipschitz constants and (ii) whether
we are able to evaluate the constraint functions exactly or only approximately.
If both global Lipschitz constants are known and exact function evaluations are
available, we prove that our algorithm terminates finitely at approximate globally
optimal points that satisfy prescribed tolerances. The same holds true for the case
of known Lipschitz constants but only approximate evaluation of the constraint
functions if we assume that we can a-priorily bound the error of the constraint
evaluations. The case of only approximately known Lipschitz constants turns out to
be more difficult. For instance, finite detection of infeasibility can only be achieved
if algorithmic input parameters are chosen very carefully. Numerical results from
the field of gas transport and an academic case study finally show the applicability
of our approaches for solving real-world problems.

There are many related algorithms in the literature on MINLPs. One of our key
algorithmic ideas is the relaxation of the Lipschitz continuous nonlinearities by using
(piecewise) linear relaxations of special type. From a quite general standpoint, this
is also the same for outer approximation [8, 16, 20] or the extended cutting plane
method [83, 84]. However, these algorithms are tailored for the convex case, whereas
our algorithms require only Lipschitz continuity and thus allow for nonconvex or even
non-differentiable constraints. Ideas for the nonconvex case that follow the same
design rationale like over- and underestimating the given nonlinearity by simpler
functions include, e.g., McCormick’s inequalities [55], the piecewise linear relaxation
approach described in [23, 25, 26], or, in general, spatial branching; cf., e.g., [75] and
the references therein. Albeit this similarity, our approach significantly differs in
how the piecewise linear outer approximations are constructed. Since we decompose
our original MINLP into a master and several subproblems, our approach also has
some similarities with generalized Benders decomposition [7, 29]. However, the
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definition of the subproblems as well as the generation of additional constraints for
the subsequent master problems clearly differ. Finally, the topic of inexact function
evaluations in MINLP algorithms is only rarely addressed in the literature. For
finite-dimensional MINLPs, “inexactness” mainly relates to the solution of NLP
subproblems, cf., e.g., [9, 52, 53]. A particular source of such an inexactness occurs
if the NLP involves the solution of an ordinary or partial differential equation since
then relatively large (compared to machine accuracy) errors are unavoidable, and
moreover, the error-estimations are typically true up to an unknown constant, up
to data-oscillation terms, or require a sufficiently fine resolution of the problem; cf.,
e.g., [1, 2, 4, 80, 81].

The rest of the paper is structured as follows. In Sect. 2, we introduce the
class of problems under consideration and define ε-feasibility. Afterward, the
basic algorithmic framework is discussed in Sect. 3, where we also collect the
set of assumptions made on the (in)exactness of constraint evaluations and on
the knowledge of Lipschitz constants. The algorithms for the cases with known
Lipschitz constants—both with exact or approximate constraint evaluations—are
then discussed in Sect. 4. A variant of these algorithms for only approximately known
Lipschitz constants is presented in Sect. 5. Finally, a computational study regarding
the application of our algorithms to gas transport problems and an academic case
study are given in Sect. 6 before the paper closes with a conclusion and a brief
discussion of possible future work in Sect. 7.

2. Problem Setting

We are concerned with the problem

min
x

c>x (1a)

s.t. Ax ≥ b,
¯
x ≤ x ≤ x̄, x ∈ Rn × {0, 1}m, (1b)

fi(xi1) = xi2 , i ∈ [p], (1c)

where c ∈ Rn+m, A ∈ Rq×(n+m),
¯
x ∈ Rn × {0}m, x̄ ∈ Rn × {1}m, and b ∈ Rq

are given data and [p] := 1, . . . , p. The feasible region of (1) is denoted by F .
The nonlinear functions fi : R → R are (locally) Lipschitz continuous functions
that couple certain real values xi1 to certain other real values xi2 for i ∈ [p] and
prohibit the use of standard MINLP solvers. The latter can, e.g., be the case if
the fi are outcome of the solution of an ordinary or partial differential equation
or if fi is only given by black-box simulation runs. In what follows, we also write
xi = (xi1 ,xi2) ∈ R2.

Instead of optimizing the objective of (1) over the feasible set F , we replace F
by an approximating sequence Fk ≈ F and globally optimize the problems

min {c>x : x ∈ Fk}. (2)

The iteration can then be stopped once the solution xk of (2) is close enough to the
feasible set F . To this end, let

min
x

c>x

s.t. Ax ≥ b,
¯
x ≤ x ≤ x̄, x ∈ Rn × {0, 1}m,

|fi(xi1)− xi2 | ≤ ε, i ∈ [p],

(3)

be the ε-relaxed version of the original problem (1). Note that we only relax the
nonlinearities whereas all other constraints stay as they are. The precise choice of
the approximate sets Fk will be detailed later.

Definition 2.1 (ε-feasibility). We call a point ε-feasible if it is feasible for Prob-
lem (3).
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3. Basic Algorithmic Framework

In this section, we introduce the main ideas of our algorithms that will be presented
in the two following sections. Moreover, we introduce some required notation and
state the main assumptions on the knowledge about Lipschitz constants and on the
(in)exactness of function evaluations.

The bounds
¯
x and x̄ of (1) give rise to a-priorily known compact boxes Ωi =

[
¯
xi1 , x̄i1 ]×[

¯
xi2 , x̄i2 ] ⊂ R2 such that the graph of fi over feasible points xi1 is contained

in Ωi. As the details of the algorithms vary depending on certain assumptions we
make regarding the available information on the functions fi, we first provide a
sketch of the generic algorithmic structure to be refined later.

The main idea is that the algorithm constructs a sequence of subsets (Ωki )k such
that Ωki converges to the graph of fi for k →∞. In order to allow the use of standard
MIP solvers, we assume that the relaxations (Ωki )k of the nonlinear constraints (1c)
are finite unions of polytopes, i.e.,

Ωki =
⋃

j∈Jk
i

Ωki (j). (4)

That is, Ωki (j) are polytopes for all j in some finite index set Jki for every i ∈ [p] and
every iteration k. The precise definition of the sets Ωki (j) will follow later. Up to now
it is only important that Ωki is a union of polytopes that forms a relaxation of the
graph of the function fi(xi1) for

¯
xi1 ≤ xi1 ≤ x̄i1 . The algorithm then alternatingly

solves master and subproblems. The master problem is defined over the relaxed
sets Ωki and the subproblems are used to effectively refine these relaxations to finally
obtain an ε-feasible solution of the original problem. With these preparations, we
are now in the position to state the kth master problem

min
x

c>x

s.t. Ax ≥ b,
¯
x ≤ x ≤ x̄, x ∈ Rn × {0, 1}m,

xi ∈ Ωki , i ∈ [p],

(M(k))

that we solve to global optimality providing a solution xk. Note that the variable
vector x in (M(k)) is the same as the one used in the original problem (1). However,
when setting up a concrete MIP formulation for the constraints xi ∈ Ωki , i ∈ [p], we
have to extend the original variable vector by additional auxiliary variables that are
required to formulate mixed-integer linear models of unions of polytopes.

If the master problem’s result is already ε-feasible for the original problem (1), we
are done. If this is not the case, we need to improve our approximation of the graph
of fi. To this end, we consider the kth subproblem providing a new point on, or near,
the graph of fi that is, preferably, close to the solution xk of the previous master
problem (M(k)). This is achieved by restricting the subproblem to the polytope
Ω̃ki (jki ), where jki denotes the polytope with xki ∈ Ωk

i (jki ) for all i ∈ [p]. With this
at hand, the subproblem of the kth iteration reads

min
x̃

‖x̃− xk‖22 s.t. fi(x̃i1) = x̃i2 , x̃i ∈ Ω̃ki (jki ), i ∈ [p]. (S(k))

In order to assert that the newly found point x̃k is not too close to the corners of Ωki (j),
these subproblems work on an polyhedral inner-approximation Ω̃ki (jki ) ⊂ Ωki (jki ).

3.1. Assumptions. For a precise construction of the sets Ωki (j) and Ω̃ki (jki ), we need
to specify what information on f we are allowed to use. The easiest case—although
quite unrealistic in practice—is the following.
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Assumption 1. We have an oracle that evaluates fi(xi1) for all i ∈ [p] and all fi
are globally Lipschitz continuous on

¯
xi1 ≤ xi1 ≤ x̄i1 with known global Lipschitz

constant Li.

More realistic is the setting, where the functions fi cannot be evaluated exactly,
but a reasonably good error bound εfi > 0 is known.

Assumption 2. We have an oracle that provides an approximation f̂i(xi1) of fi(xi1)
such that

fi(xi1) ∈ [f̂i(xi1)− εfi (xi1), f̂i(xi1) + εfi (xi1)]

with known εfi (xi1) > 0 for all i ∈ [p]. Further, all fi are globally Lipschitz continuous
on

¯
xi1 ≤ xi1 ≤ x̄i1 with known global Lipschitz constant Li.

Even more realistic, and one of the novel aspects of this paper, is the setting
in which we have Lipschitz continuous functions, but can only guess the Lipschitz
constant, e.g., by evaluation of derivatives. This is formalized by the following
assumption.

Assumption 3. We have an oracle that evaluates fi(xi1) for all i ∈ [p] and all fi
are locally Lipschitz continuous with known local Lipschitz constant Li(xi1), i.e.,
there exists an unknown εLi > 0 (independent of xi1 for simplicity) such that fi is
Lipschitz continuous on the interval

Θi(xi1) := [xi1 − εLi ,xi1 + εLi ] (5)

with Lipschitz constant Li(xi1).

A simple extension of this assumption is the case in which the local Lipschitz
constant can only be obtained approximately, e.g., due to errors in the calculation
of derivatives.

Assumption 4. We have an oracle that evaluates fi(xi1) for all i ∈ [p] and all fi are
locally Lipschitz continuous with known approximate local Lipschitz constant Li(xi1),
i.e., there exists an unknown εLi > 0 and a known δLi ∈ R (independent of xi1) such
that fi is Lipschitz continuous on the interval

Θi(xi1) := [xi1 − εLi ,xi1 + εLi ]

with Lipschitz constant Li(xi1) + δLi .

Depending on which assumption we use, our algorithmic approach differs. For
example, if the global Lipschitz constant is known, then given two points on the
graph of f , we can easily construct a quadrilateral such that the graph of f between
the two points is contained in the quadrilateral. This allows the construction of sets
Ωk
i ⊇ graph(fi) and, consequently, (M(k)) is a relaxation of (1). See Sect. 4 and

Sect. 4.1 for the algorithms based on Assumption 1 and 2.
In contrast, if the Lipschitz constant, although existent, is not known, then such a

relaxation cannot be constructed. The algorithm corresponding to the Assumptions 3
and 4 is discussed in Sect. 5.

Remark 3.1. Before we start with the detailed discussion of the respective algorithms,
we briefly discuss the rationale behind the assumptions above. Clearly, Assumption 1
is the generic best case, which has previously been discussed in the literature on
global optimization; cf. the references discussed in Sect. 1. In many applications,
however, this assumption is not justified. For instance, if complicated nonlinear
functions, e.g., involving the solution of an ODE or PDE, need to be evaluated
it is unreasonable to assume an exact evaluation to be possible. Nonetheless, in
many such situations error estimates for the desired function value are available,
see, e.g., [1, 4, 17, 66]. A similar situation arises when natural phenomena need
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to be modeled and even an exact evaluation of the model does not give an exact
prediction of the real phenomenon. This motivates Assumption 2 in which we
assume that an upper bound εfi for the error in the computed function value f̂i is
available. A second difficulty lies in the fact that in many applications the Lipschitz
constant of the function is not available. In many such cases an evaluation of the
derivative of fi can provide an estimate for the Lipschitz constant. Indeed, if f ′i is
continuous then by the mean-value theorem of differential calculus 2|f ′i(x)|+ 1 is
a Lipschitz constant for the function fi near x—however, with the drawback that
without further knowledge of fi it is not precisely clear which points are “near”;
giving the setting of Assumption 3. The final Assumption 4 deals with the case
when the derivative of fi cannot be evaluated exactly. This again is the case if, e.g.,
fi involves the solution of an ODE or PDE.

Remark 3.2. In order to illustrate the possible range of applications that we can
tackle using the proposed methods, we present the relation to bilevel optimization
problems. To this end, we consider the bilevel problem

min
x,y

c>x+ d>y (6a)

s.t. Ax+By ≥ a, (6b)

¯
x ≤ x ≤ x̄, x ∈ Rn × {0, 1}m, (6c)

y ∈ arg min{g(x, y) : h(x, y) ≤ 0, y ∈ R`}, (6d)

where x are the upper level variables that are decided in the leader’s problem

min
x,y

c>x+ d>y s.t. Ax+By ≥ a,
¯
x ≤ x ≤ x̄, x ∈ Rn × {0, 1}m

and y are the lower level variables that are optimized in the follower’s problem

min
y

g(x, y) s.t. h(x, y) ≤ 0, y ∈ R`. (7)

The latter problem can be seen as a parameterized optimization problem, where
the parameters are the given upper level decisions x. We denote the optimal value
function of the lower level by

ϕ(x) = min
y
{g(x, y) : h(x, y) ≤ 0, y ∈ R`}

and the set of solutions is given by the point-to-set mapping

Ψ(x) = arg min
y
{g(x, y) : h(x, y) ≤ 0, y ∈ R`}.

We assume that g(x, ·) and h(x, ·) are convex functions. Then, the lower level problem
is convex. Let us further assume that the feasible set of the lower level is non-empty
and compact and that the Mangasarian–Fromowitz constraint qualification (MFCQ)
holds at all points (x, y) with y ∈ Ψ(x). Then, the optimal value function ϕ is
locally Lipschitz continuous [14, 46]. Depending on the feasible set of the upper
level, ϕ can also be shown to be globally Lipschitz continuous. Moreover, the bilevel
problem (6) can be replaced by

min
x,y,η

c>x+ d>y (8a)

s.t. Ax+By ≥ a, (8b)

¯
x ≤ x ≤ x̄, x ∈ Rn × {0, 1}m, (8c)

h(x, y) ≤ 0, y ∈ Rl, (8d)
g(x, y) ≤ η, η = ϕ(x); (8e)

cf., e.g., [13]. Under the additional assumptions of linear lower level functions
h(x, y) = Cx + Dy − b and g(x, y) = f>x + e>y, this so-called value function
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formulation exactly fits into the framework of Problem (1) if the leader’s decision
variable x is a scalar. This is, e.g., the case for many price setting problems
modeled by bilevel models; cf. [50] for a survey. Many other applications of bilevel
programming can be found in [13].

This framework can also be used to illustrate our hierarchy of assumptions. If the
upper level model yields a compact feasible set for x, the optimal value function ϕ
is globally Lipschitz continuous. In many applications on bilevel programming one
can also prove (i) the uniqueness of the lower level for given upper level decisions,
i.e., Ψ(x) is a singleton, and (ii) the uniqueness of the dual variables of the lower
level; cf., e.g., [32]. In this case, ϕ is even differentiable so that one can compute a
global Lipschitz constant; cf. [22]. In this situation, Assumption 1 applies, and the
evaluation of the subproblem corresponds to solving the lower level problem with
an additional regularization term. Since the solution of the follower’s problem is
usually obtained by a numerical optimization algorithm, this subproblem evaluation
is, in general, not exact. However, the corresponding error is usually bounded due
to tolerances of the used solver. This situation is directly covered by Assumption 2.
The remaining Assumptions 3 and 4 finally correspond to situations, where the
optimal value function is locally Lipschitz but cannot be shown to be global Lipschitz
or where global Lipschitz constants cannot be computed.

In summary, the proposed methods can be used to solve bilevel problems with
mixed-integer linear upper level and convex lower level. However, additional upper
level nonlinearities can also be considered if they fit into the frameworks of the
mentioned assumptions.

Remark 3.3. Before we close this section, we finally give a brief overview about
the available solvers that are able to solve the class of problems that we tackle
with our methods. We give this overview with respect to the modeling language
GAMS and the solvers available with GAMS. Currently, there are five solvers that
are able to solve nonconvex mixed-integer nonlinear problems to global optimality:
ANTIGONE [56], BARON [76, 77], COUENNE [6], LINDOGLOBAL [54], and SCIP [30].
All of them require that the nonlinearities are given explicitly in algebraic form
and are typically restricted to a given set of nonlinear expressions. Only a few of
them allow for nonsmooth expressions (like the absolute function) that are typically
reformulated using standard mixed-integer modeling techniques. The only solver
included in GAMS that we are aware of that only uses Lipschitz continuity and thus
allows for quite general nonsmooth constraints is LGO [63]. However, LGO is not
able to deal with integer variables.

4. The Case of Known Lipschitz Constants

In this section, we first assume that Assumption 1 holds. To construct the
set Ωki within the kth master problem (M(k)), we assume that we have given values
xk,j
i1
∈ R for j ∈ {0} ∪ Jki = {0} ∪ {1, . . . , |Jki |} with

¯
xi1 =: xk,0

i1
< xk,1

i1
< · · · < x

k,|Jk
i |

i1
:= x̄i1 .
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xi1

xi2

xki

x̃ki

Ω̃k
i

fi

dki

¯
xi1 = xk,0i1

xk,1i1
= x̄i1

¯
xi2

x̄i2

xi1

xi2

fiΩk+1
i

¯
xi1 = xk+1,0

i1
xk+1,1
i1

xk+1,2
i1

= x̄i1

¯
xi2

x̄i2

Figure 1. Left: Visualization of the subproblem (S(k)); see also
Problem (11). Right: Feasible set of the master problem in itera-
tion k + 1.

Now, since we know the global Lipschitz constant Li of fi on Ωi = [
¯
xi1 , x̄i1 ] ×

[
¯
xi2 , x̄i2 ] ⊂ R2, we can define the sets Ωki (j) for j ∈ Jki as

Ωki (j) = {(xi1 ,xi2) ∈ R2 :xk,j−1
i1

≤ xi1 ≤ xk,j
i1

,

xi2 ≤ fi(xk,j−1
i1

) + Li(xi1 − xk,j−1
i1

),

xi2 ≥ fi(xk,j−1
i1

)− Li(xi1 − xk,j−1
i1

),

xi2 ≤ fi(xk,j
i1

) + Li(x
k,j
i1
− xi1),

xi2 ≥ fi(xk,j
i1

)− Li(xk,j
i1
− xi1)}.

(9)

The corresponding set Ωk
i =

⋃
j∈Jk

i
Ωk
i (j) is depicted in Figure 1 (right). For

what follows, we abbreviate

X ki :=
{
xk,0
i1

,xk,1
i1

, . . . ,x
k,|Jk

i |
i1

}
,

i.e., X ki is the set of sampling points that is used for the definition of Ωki . In other
words, the set Ωki is uniquely defined by the set X ki . By construction, we have the
following proposition.

Proposition 4.1. We have
⋃

j∈Jk
i

Ωki (j) ⊇ graph(fi)

on [
¯
xi1 , x̄i1 ] for all i ∈ [p] and all k. Thus, the kth master problem (M(k)) is a

relaxation of (1).

The next lemma shows that we can rely on today’s effective and reliable MIP
software for solving the master problems.

Lemma 4.2. The master problem (M(k)) can be modeled as mixed-integer linear
problem.

Proof. The constraints Ax ≥ b,
¯
x ≤ x ≤ x̄, and x ∈ Rn × {0, 1}m are obviously

mixed-integer linear constraints. Thus, it remains to prove that xi ∈ Ωki , i ∈ [p], can
be formulated with mixed-integer linear constraints as well. The sets Ωki are finite
unions of polytopes; cf. (4) and (9). Such unions of polytopes can be modeled using
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big-M constraints, yielding the MIP-formulation

min
x,z

c>x (10a)

s.t. Ax ≥ b,
¯
x ≤ x ≤ x̄, x ∈ Rn × {0, 1}m, (10b)

−M(1− zk,j
i ) + xk,j−1

i1
≤ xi1 ≤ xk,j

i1
+M(1− zk,j

i ), i ∈ [p], j ∈ Jki , (10c)

xi2 ≤ fi(xk,j−1
i1

) + Li(xi1 − xk,j−1
i1

) +M(1− zk,j
i ), i ∈ [p], j ∈ Jki , (10d)

xi2 ≥ fi(xk,j−1
i1

)− Li(xi1 − xk,j−1
i1

)−M(1− zk,j
i ), i ∈ [p], j ∈ Jki , (10e)

xi2 ≤ fi(xk,j
i1

) + Li(x
k,j
i1
− xi1) +M(1− zk,j

i ), i ∈ [p], j ∈ Jki , (10f)

xi2 ≥ fi(xk,j
i1

)− Li(xk,j
i1
− xi1)−M(1− zk,j

i ), i ∈ [p], j ∈ Jki , (10g)
∑

j∈Jk
i

zk,j
i = 1, i ∈ [p], (10h)

zk,j
i ∈ {0, 1}, i ∈ [p], j ∈ Jki . (10i)

for the kth master problem. The additional binary variables z in (10i) (de)activate
polytopes and their corresponding linear constraints (10c)–(10g). SOS-1 con-
straints (10h) ensure that only one polytope is activated. �

We note that a MIP like (M(k)) can be solved in finite time, i.e., a standard
MIP solver can compute a global optimal solution of (M(k)) or prove infeasibility
in finite time. Due to Proposition 4.1, we thus know that either (M(k)) is solved to
global optimality in finite time or the original problem (1) is infeasible.

Given a solution of (M(k)), the subproblem (S(k)) is used to either determine
that the solution found by (M(k)) is close enough to the original feasible set, or
alternatively, to provide a new point on the xi1-axis to be added in the definition
of X k+1

i . To assert that the newly found points do not accumulate at an already
known value the subproblem is solved on a smaller set Ω̃ki (j) ⊂ Ωki (j). For a given
j ∈ Jki this set is defined as

Ω̃ki (j) = Ωki (j) ∩ Ω̂ki (j)

with the subsets

Ω̂ki (j) = {(x1,x2) ∈ R2 |xk,j−1
i1

+ 0.25dk,j
i ≤ xi1 ≤ xk,j

i1
− 0.25dk,j

i },
where dk,j

i = xk,j
i1
− xk,j−1

i1
is the length of the corresponding subinterval, see also

Figure 1 (left) for an illustration. Note that the constant 0.25 can be replaced by
any other constant in (0, 1/2).

Before we formally describe the algorithm, we first show that the subproblems
can all be solved in parallel in every iteration of the algorithm provided that the
index pairs i = (i1, i2) are non-overlapping. This means that i1 6= j1 and i1 6= j2 for
all i 6= j. Note that this property can always be achieved by using additional slack
variables.

Lemma 4.3. Assume that the index pairs i = (i1, i2) are non-overlapping. Then,
the subproblems (S(k)) are completely separable, i.e., we can solve the kth subproblem
by solving p two-dimensional problems

min
x̃i

‖x̃i − xki ‖22 s.t. fi(x̃i1) = x̃i2 , x̃i ∈ Ω̃ki (jki ). (11)

Proof. The constraint set

fi(x̃i1) = x̃i2 , x̃i ∈ Ω̃ki (jki ), i ∈ [p],
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Algorithm 1 Decomposition Method

Require: Problem (1) and ε > 0.
Ensure: Returns an approximate globally optimal and ε-feasible point for Prob-

lem (1) or indication of infeasibility.

1: Set k ← 1 and initialize X ki = {
¯
xi1 , x̄i1} for all i ∈ [p].

2: while true do
3: Solve the master problem (M(k)) to global optimality.
4: if (M(k)) is infeasible then
5: return “Problem (1) is infeasible”.
6: end if
7: Let xk denote the optimal solution of (M(k)).
8: if |fi(xki1)− xki2 | ≤ ε for all i ∈ [p] then
9: return xk.

10: end if
11: Determine the polytopes jki ∈ Jki for all i ∈ [p].
12: Solve the subproblems (S(k)), respectively (11), for all i ∈ [p] with |fi(xki1)−

xki2 | > ε and let x̃ki denote the optimal solutions.
13: for i ∈ [p] do
14: if |fi(xki1)− xki2 | > ε then
15: Set X k+1

i ← X ki ∪ {x̃ki1}.
16: else
17: Set X k+1

i ← X ki .
18: end if
19: end for
20: Increase k ← k + 1.
21: end while

of the subproblem (S(k)) completely decouples along i ∈ [p]. The same holds for
the objective function,

‖x̃− xk‖22 =
∑

i∈[p]

‖x̃i − xki ‖22.

Thus, the subproblem’s solution (xi)i∈[p] ∈ R2p is made up of the solutions xi ∈ R2

of (11) for all i ∈ [p]. �

We are now ready to present the entire algorithm. It is formally given in Alg. 1.
Before we present the convergence analysis of Alg. 1, we first make some explanatory
comments. After the master problem has been solved (Line 3), the algorithm checks
whether we already found an ε-feasible point in Line 8. Note further that the
determination of the indices jki in Line 11 can easily be implemented using the
binary variables zk,j

i of the MIP formulation (10). If an ε-feasible point is not yet
found, there are subproblems with feasibility violation larger than ε. For these
indices i, we then refine the relaxation by adding the corresponding subproblem’s
solution x̃ki1 to the set X ki . Thus, it is immediately clear that |Jki | ≤ k in every
iteration k and all i ∈ [p] and that the growth of the master problem per iteration
in terms of variables and constraints is O(p).

We further remark that we do not have to solve the subproblems to global
optimality. However, we think that a local or even global optimal solutions of the
subproblems yield new sampling points x̃ki1 of better quality that finally lead to faster
convergence of the algorithm. Nevertheless, for the correctness of the algorithm we
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only require the subproblems to return a feasible point, which is always possible
due to the following lemma.

Lemma 4.4. All subproblems (S(k)) are feasible.

Proof. The claim follows immediately by Lipschitz continuity and the definition of
the sets Ω̃ki (jki ). �

We now come to the proof of convergence for Algorithm 1. The proof will be based
on the fact that the volume of the feasible region decreases by at least δ = ε2/(16L)
in each iteration, unless convergence has been achieved. This elementary result
will be provided in the following Lemma 4.5 and yields the, then easy to show,
Theorem 4.6. In addition, the calculated constant immediately provides an upper
bound on the number of iterations needed for convergence. If this information is
not desired, we note that Algorithm 1 under Assumption 1 is a special case of
Assumption 2 and the shorter approach given in Theorem 4.7 can be utilized.

For the next lemma, we introduce some more notation. As already discussed, the
set X ki defines the unions of polytopes Ωk

i . If the former set is updated in Alg. 1,
we have X k+1

i ← X ki ∪ {x̃ki1}. This update corresponds to the refinement of one
quadrilateral in Ωk

i . To be more specific, the quadrilateral jki is replaced by two
smaller ones that we denote by Ωki (jk1 ) and Ωki (jk2 ). Thus, we have

Ωk+1
i = Ωki (jk1 )

⋃
Ωki (jk2 )

⋃

j 6=jki ∈Jk
i

Ωki (j).

Now we can state and prove the key lemma for the convergence theorem following
afterward.

Lemma 4.5. There exists a constant δ > 0 depending on ε and L alone, such that
as long as Alg. 1 does not terminate in Line 5 or 9, there exists δk > δ for every k
such that

Vol(Ωki (jk1 )) + Vol(Ωki (jk2 )) = Vol(Ωki (jki ))− δk
holds.

Proof. A simple calculation shows, that the corners (left, right, bottom, top) of
Ωki (jki ) are given in (xi1 ,xi2)-coordinates as

l = (a, fi(a))>,

r = (b, fi(b))
>,

b =

(
fi(a)− fi(b) + L(a+ b)

2L
,
fi(a) + fi(b) + L(a− b)

2

)>
,

t =

(
fi(b)− fi(a) + L(a+ b)

2L
,
fi(a) + fi(b) + L(b− a)

2

)>
,

where a = x
k,jki −1
i1

and b = x
k,jki
i2

, cf. Figure 2. Consequently, the volume of Ωki (jki )
is given as

Vol(Ωki (jki )) =
∣∣det

(
t− l b− l

)∣∣

=

∣∣∣∣L
(a− b)2

2
− (fi(a)− fi(b))2

2L

∣∣∣∣

= L
(a− b)2

2
− (fi(a)− fi(b))2

2L
.
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xi1

xi2

b

t

l

r fi

a bc

f(a)

f(b)
f(c)

Figure 2. Illustration of the proof of Lemma 4.5.

The last equality holds because of Lipschitz continuity. Further, the vertical distance
between top and bottom corner is

0 ≤ t2 − b2 =
L

2
(2b− 2a) = L(b− a).

Since by construction fi(xi1) and xi2 are between these extreme values it holds

|fi(xi1)− xi2 | ≤ L(b− a).

By assumption, Alg. 1 does not terminate in Line 9 and consequently,

ε/L < |fi(xi1)− xi2 |/L ≤ |a− b|.
Since Ωki (jki ) is either a line, and then f(xi1) = xi2 , or a proper quadrilateral, the
bound ε/L < |fi(xi1)−xi2 |/L implies that Ωki (jki ) is a proper quadrilateral and thus
Vol(Ωki (jki )) > 0, i.e., |fi(a)− fi(b)| < L|a− b|. Moreover, the maximal x2-distance
over Ωki (jki ) is attained over the point b (or below t) and is given as

−|fi(a)− fi(b)|+ L(b− a) > ε,

where the last inequality is due to the fact that the condition for entering Line 9 of
the algorithm is not satisfied. Thus, we obtain

|fi(a)− fi(b)| < L|a− b| − ε. (12)

Let now d = b− a, then the new intersection point c = x̃ki1 satisfies

c ∈ [a+ 0.25d, b− 0.25d].

Analogous calculations give the volumes of the new quadrilaterals as

Vol(Ωki (jk1 )) = L
(a− c)2

2
− (fi(a)− fi(c))2

2L
,

Vol(Ωki (jk2 )) = L
(c− b)2

2
− (fi(c)− fi(b))2

2L
.
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A straightforward calculation gives

Vol(Ωki (jki )) = L
(a− c+ c− b)2

2
− (fi(a)− fi(c) + fi(c)− fi(b))2

2L

= L
(a− c)2 + 2(a− c)(c− b) + (c− b)2

2

− (fi(a)− fi(c))2 + 2(fi(a)− fi(c))(fi(c)− fi(b)) + (fi(c)− fi(b)2

2L

= Vol(Ωki (jk1 )) + Vol(Ωki (jk2 ))

+ L(a− c)(c− b)− 1

L
(fi(a)− fi(c))(fi(c)− fi(b)).

Consequently, the definition

δk := L(a− c)(c− b)− 1

L
(fi(a)− fi(c))(fi(c)− fi(b))

is given by the statement of the Lemma. It remains to show δk ≥ δ > 0.
First, assume that (fi(a) − fi(c))(fi(c) − fi(b)) ≤ 0. Then by our previous

considerations

δk ≥ L(a− c)(c− b) ≥ L

16
d2 =

L

16
|a− b|2 > ε2

16L
=: δ > 0.

holds true.
Second, otherwise the two factors fi(a)− fi(c) and fi(c)− fi(b) have equal sign

and are not zero. Thus, either fi(a) < fi(c) < fi(b) or fi(a) > fi(c) > fi(b) holds.
We assume that the first is the case, i.e., fi(a) < fi(c) < fi(b). The other case can
be treated analogously. Now, since

|fi(a)−fi(c)| = fi(c)−fi(a) ≤ L(c−a) and |fi(b)−fi(c)| = fi(b)−fi(c) ≤ L(b−c),
we can deduce from (12) that at least one of the inequalities

fi(c)− fi(a) ≤ L(c− a)− ε

2
or |fi(b)− fi(c)| = fi(b)− fi(c) ≤ L(b− c)− ε

2
is true. We assume that

|fi(b)− fi(c)| = fi(b)− fi(c) ≤ L(b− c)− ε

2
(13)

holds. (The other case can again be treated analogously.) We can now estimate the
term δk. First, by Lipschitz continuity, we obtain

− 1

L
(fi(a)− fi(c)) =

1

L
(fi(c)− fi(a)) ≤ c− a.

Then, noting that fi(c)− fi(b) < 0, we assert

δk ≥ L(a− c)(c− b) + (c− a)(fi(c)− fi(b))
= (c− a) (L(b− c) + fi(c)− fi(b)) .

By the sharpened estimate (13), the second factor is bounded from below by ε/2
and the first factor by d/4, and we conclude

δk ≥ dε

8
>

ε2

8L
>

ε2

16L
= δ > 0. �

We are now ready to prove the main convergence theorem for Alg. 1.

Theorem 4.6. There exists a K <∞ such that Alg. 1 either terminates with an
approximate globally optimal point xk or with the indication of infeasibility in an
iteration k ≤ K.
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xi1

xi2

f̂

f̂ f̂
fi

Ωk
i

¯
xi1 = xk,0i1

xk,1i1
xk,2i1

= x̄i1

¯
xi2

x̄i2

εfi

Figure 3. Visualization of the feasible set of the master problem
for a single i ∈ [p] with |Jki | = 2 and inexact function evaluation.

Proof. Assume that the algorithm does not terminate after a finite number of
iterations. Then, there exists a sequence (xk)k such that all master problems (M(k))
are feasible and such that there exists at least one i ∈ [p] with |fi(xki1)− xki2 | > ε
for all k. Since there are only finitely many possible values in [p] there is at
least one i ∈ [p] for which |fi(xki1)− xki2 | > ε infinitely many times. We denote
the corresponding subsequence by ki. By Lemma 4.5, we know that Vol(Ωki

i ) =

Vol(Ωki−1
i )− δki with δki > δ for some δ > 0. As a consequence for the selected i it

is
0 ≤ Vol(Ωkii )→ −∞

contradicting our assumption that there are infinitely many iterations. �

Note that, in contrast to many other approaches for global mixed-integer nonlinear
optimization, our algorithm does not rely on cutting off the visited ε-infeasible
points from the feasible set for all subsequent iterations. Moreover, Lemma 4.5 also
allows, in principle, for an analysis of the speed of convergence of Alg. 1.

4.1. Inexact Evaluation of Nonlinear Functions. In case of Assumption 2,
in which only inexact evaluations of f are available, it is easy to modify the
decomposition method of Alg. 1. In order to modify the algorithm, we need to
assert Ωki ⊇ graph fi. Given that εfi (xi1) is known this can be done by the following
modification of the set Ωki (j):

Ωki (j) = {(xi1 ,xi2) ∈ R2 :xk,j−1
i1

≤ xi1 ≤ xk,j
i1

,

xi2 ≤ f̂i(xk,j−1
i1

) + εfi (xk,j−1
i1

) + Li(xi1 − xk,j−1
i1

),

xi2 ≥ f̂i(xk,j−1
i1

)− εfi (xk,j−1
i1

)− Li(xi1 − xk,j−1
i1

),

xi2 ≤ f̂i(xk,j
i1

) + εfi (xk,j
i1

) + Li(x
k,j
i1
− xi1),

xi2 ≥ f̂i(xk,j
i1

)− εfi (xk,j
i1

)− Li(xk,j
i1
− xi1)};

(14)

see Figure 3. Moreover, we have to replace the exact function evaluation fi(xi1)

by its approximation f̂i(xi1) in Line 8, 12, and 14 of Alg. 1. Finally, the ε-checks
“|fi(xki1)− xki2 | ≤ ε” in the same lines have to be replaced by “|f̂i(xki1)−xki2 | ≤ ε−ε

f
i ”;

of course assuming that ε− εfi > 0.
With these minor changes, Alg. 1 can also be applied in case of Assumption 2.

However, the analysis is not identical. This is due to the fact that a volume reduction
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as in Lemma 4.5 no longer needs to happen because each of the domains Ωk
i (j)

contain the quadrilaterals

conv{(xk,j−1
i1

, fi(x
k,j−1
i1

)± εfi (xk,j−1
i1

)), (xk,j
i1

, fi(x
k,j
i1

)± εfi (xk,j
i1

))}.
The volume of these quadrilaterals is not reduced by subdivisions, if the two volumes
of the resulting quadrilaterals are summed. As a consequence, we cannot rely on
a volume reduction for the convergence proof. Nonetheless, convergence of the
algorithm is still true provided that ε is chosen large enough compared to εfi .

Theorem 4.7. Suppose that Assumption 2 holds and that Alg. 1 is applied with the
modified sets Ωki defined in (14) and

ε > εf := 2 max
i∈[p]

sup
x∈[

¯
xi1 ,x̄i1 ]

εfi (x).

Then there exists a K <∞ such that Alg. 1 either terminates with an approximate
globally optimal point xk or with the indication of infeasibility in an iteration k ≤ K.

Proof. It is clear, that by Line 15 of Alg. 1 a refined interval is split into two new
subintervals. By construction of x̃k each of these subintervals has a length of at
most 3/4 of the original interval.

On the other hand, the maximal vertical difference on an interval (xk,j−1
i1

,xk,j
i1

),
for any j = 1, . . . , |Jki | and i ∈ [p], is bounded by

εf + Lid
k,j
i ≥ 2 max{εfi (xk,j−1

i1
), εfi (xk,j

i1
)}+ Li(x

k,j
i1
− xk,j−1

i1
).

As a consequence, if dk,j
i ≤ (ε− εf )/Li it necessarily holds

|fi(xki1)− xki2 | ≤ εf + Lid
k,j
i ≤ ε

and thus an interval with dk,j
i ≤ (ε− εf )/Li will never be refined. Since there are

only finitely many iterations possible before all dk,j
i are smaller than this bound the

algorithm terminates after K <∞ iterations. �

5. The Case of Unknown Lipschitz Constants

We now consider the more realistic case in which the functions are globally
Lipschitz, but knowledge of the global Lipschitz constant is not available. In order
to proceed algorithmically, we assume that Assumption 3 is satisfied, i.e., for a given
point xi1 , we can obtain a local Lipschitz constant Li(xi1) of the corresponding
interval, i.e., fi is Lipschitz continuous on

Θi(xi1) = [xi1 − εLi ,xi1 + εLi ]

with constant Li(xi1), but we do not know εLi . This assumption is indeed meaningful.
For instance, if fi ∈ C2 and f ′i can be evaluated at a given point xi1 , then

Li(xi1) = 2|f ′i(xi1)|+ 1 (15)

is a correct local Lipschitz estimate for which we used the factor 2 to overestimate
the local change rate of the function and where the offset 1 is used to handle the
situation f ′i(xi1) = 0. We proceed, similarly to Sect. 4, by successively creating a
subdivision of Ωki using the sampling points

X ki =
{
xk,0
i1

,xk,1
i1

, . . . ,x
k,|Jk

i |
i1

}

with

¯
xi1 =: xk,0

i1
< xk,1

i1
< · · · < x

k,|Jk
i |

i1
:= x̄i1

and abbreviate
hki := max

j=1,...,|Jk
i |

{
xk,j
i1
− xk,j−1

i1

}
.
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For this subdivision, we can compute an estimate for the global Lipschitz constant
via

L̃i = max

{
max

j=0,...,|Jk
i |
Li(x

k,j
i1

), max
j=1,...,|Jk

i |

|fi(xk,j
i1

)− fi(xk,j−1
i1

)|
xk,j
i1
− xk,j−1

i1

}
. (16)

With this, we now define the sets Ωki for the kth master problem (M(k)) in analogy
to (9) by

Ωki (j) = {(xi1 ,xi2) ∈ R2 :xk,j−1
i1

≤ xi1 ≤ xk,j
i1

,

xi2 ≤ fi(xk,j−1
i1

) + L̃i(xi1 − xk,j−1
i1

),

xi2 ≥ fi(xk,j−1
i1

)− L̃i(xi1 − xk,j−1
i1

),

xi2 ≤ fi(xk,j
i1

) + L̃i(x
k,j
i1
− xi1),

xi2 ≥ fi(xk,j
i1

)− L̃i(xk,j
i1
− xi1)}

and set, as before,
Ωki =

⋃

j∈Jk
i

Ωki (j).

Although the construction is analogous to (9) the sets Ωk
i (j) constructed here

no longer give an outer approximation of the graph of fi, i.e., the analogue of
Proposition 4.1 is no longer true. However, clearly, Lemma 4.2 remains valid. For
the definition of the subproblems w.r.t. a given j ∈ Jki , we define the sets

Ω̃ki (j) = Ω̂ki (j)

with the subsets

Ω̂ki (j) = {(x1,x2) ∈ R2 : xk,j−1
i1

+ 0.25dk,j
i ≤ xi1 ≤ xk,j

i1
− 0.25dk,j

i }. (17)

Notice that, in contrast to Sect. 4, we do not include the bounds on the xi2 -variable
in the latter definition, i.e., we do not consider the intersection with Ωk

i . This is
due to the fact that since L̃i is not necessarily the true Lipschitz constant, it can
happen that graph(fi) ∩ Ω̂ki (j) ∩ Ωki (j) = ∅ for some j ∈ Jki and, consequently, the
subproblems (S(k)) on the subdomain Ω̂ki (j) ∩ Ωki (j) could be infeasible.

For the same reason, graph(fi) 6⊆ Ωk
i , it can happen that the master prob-

lem (M(k)) is infeasible if the estimate L̃i is not good enough, although (1) has
feasible points. Thus, infeasibility of (M(k)) can be due to two reasons, either L̃i is
too small, or because (1) is truly infeasible. In order to obtain a better estimate
for L̃i, it is useful to add additional points to the decomposition X ki at which L̃i
is sampled. Unfortunately, just continuously refining X ki does not terminate if (1)
is infeasible. Since we cannot decide whether this is the case, we must stop if
a maximal fineness of the sampling has been reached indicating that either the
Lipschitz constant is varying very rapidly or that (1) is indeed infeasible. If this
situation is encountered, we call the problem potentially infeasible in the following.

The extended method for only approximately known Lipschitz constants is stated
in Alg. 2. For the above depicted refinement of X ki in case of infeasibility of the
master problem, we add a minimal refinement that yields finite termination of the
algorithm; cf. Line 5. However, since solving (M(k)) can potentially be expensive,
more aggressive strategies, e.g., refinement of all subintervals exceeding length µ
may be advantageous from a computational point of view.

Theorem 5.1. Let Assumption 3 be given, then Alg. 2 terminates after finitely
many iterations.
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Algorithm 2 Infeasible Decomposition Method

Require: Problem (1) and ε,µ > 0.
Ensure: Returns an ε-feasible point for Problem (1), or an indication of potential

infeasibility.

1: Set k ← 1
2: while true do
3: Solve the master problem (M(k)) to global optimality.
4: if (M(k)) is infeasible then
5: if maxi∈[p] h

k
i > µ then

6: Choose an arbitrary i′ ∈ arg maxi∈[p] h
k
i and compute X k+1

i′ by refining
the largest subinterval in the set X ki′ (via bisection).

7: Update the Lipschitz constant estimate by (16).
8: else
9: return “Problem (1) is potentially infeasible”.

10: end if
11: else
12: Let xk denote the optimal solution of (M(k)).
13: if |fi(xki1)− xki2 | ≤ ε for all i ∈ [p] then
14: return xk.
15: end if
16: Determine the polytopes jki ∈ Jki for all i ∈ [p].
17: Solve the subproblems (S(k)), (11) respectively, with Ω̃ki (j) as defined in (17)

for all i ∈ [p] with |fi(xki1)−xki2 | > ε and let x̃ki denote the optimal solutions.

18: for i ∈ [p] do
19: if |fi(xki1)− xki2 | > ε and x̃ki 6∈ Ωki then
20: Set X k+1

i ← X ki ∪ {x̃ki1}.
21: Update the Lipschitz constant estimate by (16).
22: else if |fi(xki1)− xki2 | > ε and x̃ki ∈ Ωki then
23: Set X k+1

i ← X ki ∪ {x̃ki1}.
24: else
25: Set X k+1

i ← X ki .
26: end if
27: end for
28: end if
29: Increase k ← k + 1.
30: end while

Proof. By construction, if the master problem is infeasible, we either terminate or
the largest subinterval is halved in size. Since all variables are bounded below and
above, the latter can occur only finitely many times. As this needs one subinterval
to be larger than µ, infeasibility of (M(k)) can only occur finitely many times before
termination.

In the other case, we solve the subproblems. However, the Lipschitz constant
is only updated if the subproblem solution x̃ki 6∈ Ωk

i and thereby proves that our
Lipschitz constant estimate was wrong. This can happen only if the corresponding
subinterval is larger than the assumed lower bound on the size of Θi(x̃i1); cf. (5). If
such a subinterval is selected its length is reduced, at least, by a factor 3/4. Hence
such an update can happen only finitely many times until the length of the subinterval
reaches the (unknown) lower bound; and thus the estimate of the Lipschitz constant
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coincides with the Lipschitz constant. If no updates to the Lipschitz constant
are made the algorithm coincides with Alg. 1 and thus Theorem 4.6 shows the
assertion. �

Next, we briefly discuss the meaning of the results of Alg. 2 and potential
computational improvements. First, we consider the case that Alg. 2 terminates in
Line 9 returning the indication that the problem is potentially infeasible.

Corollary 5.2. Suppose that Alg. 2 terminates with an indication that the problem
is potentially infeasible. If µ < εLi for all i ∈ [p], then Problem (1) is infeasible.

Proof. By definition of the if/else decision the only case when Algorithm 2 terminates
with the result “potentially infeasible” is when all subintervals have length less than µ.
By definition, the Lipschitz estimates L̃i are valid on an interval of diameter 2εLi
around the evaluation points. Thus, Li ≤ L̃i and graph fi ⊂ Ωki . �

Remark 5.3. Finally, we would like to note that the difficulty in the above approach
is that an unknown Lipschitz constant hampers the possibility to obtain an outer
approximation of graph(fi) and that updates of L̃i, in particular due to infeasibility
of (M(k)), are quite costly. Hence it might be useful to consider a preparatory phase
in which Li is sampled over [

¯
xi1 , x̄i1 ] to get a good initial guess. This is in particular

true as sampling is much cheaper than solving (M(k)). Since, the Lipschitz estimate
still might be proven wrong in the course of the algorithm it is still necessary to
consider Alg. 2 and not Alg. 1. Note that these sampling points need not be included
in the set X 0

i as long as Line 7 and 21 assert that L̃i is monotone non-decreasing.

Remark 5.4. To verify potential infeasibility or even infeasibility with Corollary 5.2,
possibly many additional refinements are necessary until the maximum of all hki
is equal or smaller than µ. This is to be expected as it is shown in [57, 79] that
optimizing a single Lipschitz continuous function over the unit cube needs (L/2ε)n

function evaluations in the worst case.

Remark 5.5. The case of Assumption 4 is easily addressed. We can simply modify
Ωki (j) in a similar way as in Sect. 4.1 and consider

L̃i = max
j=0,...,|Jk

i |

{
L(xki1) + δLi

}

for computing the Lipschitz constant estimates. The convergence analysis of Theo-
rem 5.1 remains the same with the obvious changes as in Theorem 4.7.

6. Computational Study

In this section, we present and discuss computational results for Algorithm 1 and
Algorithm 2. First, we discuss Algorithm 1 for a detailed mixed-integer nonlinear
model of steady-state gas flow in Sect. 6.1. Afterward, we show the applicability of
Algorithm 2 on the basis of an exemplary case study in Sect. 6.2.

6.1. Algorithm 1: Stationary Gas Flow in Networks. The optimization of
gas transport networks is currently a highly active field of research of applied
optimization. For an overview of the literature see the recent book [47] and the
survey article [67], the references therein, and, e.g., the recent papers [27, 28, 58].
Most parts of the presentation of the model in this section is motivated by the
model studied in [36].

One of the main tasks in gas transport is to transport a so-called nomination—
prescribed supply and discharge flows together with additional restrictions like
bounds for gas pressures etc.—at minimum costs. Gas mainly flows from higher to
lower pressures. Thus, in order to transport gas over large distances through pipeline
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systems it is required to increase the gas pressure. This is done by compressors that
can be, among other network devices, controlled by the dispatcher and thus add
discrete aspects to the problem. In combination with nonlinear gas physics, entire
gas transport models are mixed-integer nonlinear problems governed by differential
equations for modeling gas physics on a graph.

Here, we consider the stationary case, present a mixed-integer model with ODEs,
and show how it can be tackled with the algorithm presented above. We model a
gas network as a directed graph G = (V ,A) with node set V and arc set A. The set
of nodes is partitioned into the set of entry nodes V+, where gas is supplied, the set
of exit nodes V−, where gas is discharged from the network, and the set of inner
nodes V0. The set of arcs consist of pipes Api, control valves Acv, and compressor
machines Acm, which all are described in detail below.

Stationary gas flow in networks is mainly described by mass flow q and the three
gas state quantities pressure p, temperature T , and density ρ. These state quantities
are coupled by an equation of state. We choose the thermodynamical standard
equation for real gases ρRsz(p)T = p, where Rs is the specific gas constant and z
is the compressibility factor that we model using the formula z(p) = 1 + αp of the
American Gas Association [48]. We further assume isothermal gas flow, i.e., the
gas temperature T is fixed at a suitable constant value. We associate positive gas
flow on arcs a = (u, v) with flow in arc direction, i.e., qa > 0 if gas flows from u to
v and qa < 0 if gas flows from v to u. The sets δin(u) := {a ∈ A : a = (v,u)} and
δout(u) := {a ∈ A : a = (u, v)} are the sets of in- and outgoing arcs for node u ∈ V .

For each node u ∈ V , we assume lower and upper values
¯
pu and p̄u to be given

that restrict the corresponding pressure variable pu, i.e.,

pu ∈ [
¯
pu, p̄u] for all u ∈ V . (18)

In addition, we model mass conservation by

∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa = qu





≥ 0, u ∈ V+,

≤ 0, u ∈ V−,

= 0, u ∈ V0,

for all u ∈ V . (19)

For every arc a ∈ A there is a mass flow variable qa that is bounded from below
and above, i.e.,

qa ∈ [
¯
qa, q̄a] for all a ∈ A. (20)

The remaining model of an arc depends on the specific type of the arc.
Pipes a ∈ Api are used to transport the gas through the network. They typically

outnumber all other network elements. A pipe is specified by its length La, its
diameter Da, and its friction factor λa, which we model using the empirical formula
of Prandtl–Colebrook; see, e.g., [11] or [69, Chap. 9]. We assume each pipe to be
cylindrically shaped and horizontal. In this situation, isothermal gas flow through a
pipe is described by a system of partial differential equations—the Euler equations
for compressible fluids [19]—consisting of the continuity and the momentum equation
that form a quasilinear system of hyperbolic balance laws. In what follows, we
only consider the stationary case in which the continuity equation asserts constant
mass flow for every pipe, justifying the choice for a single flow variable qa for all
arcs a ∈ A. Thus, we are left with the stationary variant

∂x

(
pa +

q̃2
a

ρa

)
= −1

2
θa
q̃a|q̃a|
ρa

, q̃a = qa/Aa, θa =
λa
Da

, a ∈ Api, (21)

of the momentum equation, coupling density ρa = ρa(x) and pressure pa = pa(x)
with mass flow qa along the arc, i.e., x ∈ [0,La]. The momentum equation (21)
describes the pressure loss in a pipe due to ram pressure and frictional forces. Note
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that the density ρ in (21) can be eliminated using the equation of state. The coupling
of the pressure solution of (21) with node pressure variables of (18) is given by

pu = pa(0), pv = pa(La) for all a = (u, v) ∈ Api. (22)

Control valves a ∈ Acv are used to decrease gas pressure. This is mainly required
at transition points between large transport pipelines and regional substructures
that are not able to handle high pressure levels. These elements involve discrete
aspects since they can be operated in different modes: They can be active, in bypass
mode, or closed. Closed control valves simply block the gas flow (qa = 0) and thus
decouple the in- and outflow pressure. If they are open, control valves can operate in
bypass mode, yielding equal pressures pu = pv. Finally, if activated, control valves
are able to decrease the inflow pressure by a controllable amount ∆a ∈ [

¯
∆a, ∆̄a]. In

summary, the complete description reads
a is active =⇒ pv = pu −∆a, ∆a ∈ [

¯
∆a, ∆̄a],

a is in bypass mode =⇒ pv = pu,

a is closed =⇒ qa = 0.

(23)

More detailed information about control valves and specific MIP models can be
found in [24].

Finally, we describe our model of compressor machines a ∈ Acm. They are
used to increase the inflow gas pressure to a higher outflow pressure in order to
transport gas over large distances. In general, a compressor machine can be in the
same three modes as control valves, cf. (23). However, the active state is much
more complicated. We only consider so-called turbo compressors that are typically
modeled by characteristic diagrams; cf., e.g., [70, 72] for a detailed description
of turbo compressor models. It turns out that the model of a turbo compressor
is highly nonlinear and nonconvex. Since our focus here does not lie on detailed
compressor modeling, we use known mixed-integer linear outer approximations

ca(pu, pv, qa,Pa, ya) ≥ 0 for all a = (u, v) ∈ Acm (24)

of the operating ranges. In (24), Pa stands for the power required for compression
and the variables ya are additional auxiliary variables required to formulate the
specific outer approximation model; see [24] for the details.

We now collect all component models and obtain the entire optimization problem

min
∑

a∈Acm

Pa

s.t. pressure and flow bounds: (18), (20);
mass conservation: (19);
pipe model: (21), (22);
control valve model: (23);
compressor model: (24).

This model is a nonconvex mixed-integer optimization problem that contains the
ODE (21) for every pipe. Typically, the ODE is discretized or replaced by an
approximation of its solution in order to obtain a finite-dimensional problem; cf. [70–
72] and the references therein. We, however, follow a different approach motivated
by [36] and show that the model can be written as an optimization problem of
type (1) with nonlinearities fi that arise due to the ODE solutions on the pipes of
the network. In our setting, the functions fi correspond to the relation between in-
and outflow pressures of the pipes. Under the assumption of subsonic flow, i.e., for
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the squared mach number η satisfying

ηa(x) :=
q̃2
aT̂

pa(x)
2 < 1, x ∈ [0,La], T̂ := RsT , (25)

and a positive compressibility factor

z(pa(x)) > 0 for all x ∈ [0,La],

it is shown in [36] that the pressure loss along pipe a = (u, v) ∈ Api for given inflow
pressure pu = pa(0) and mass flow q̃a reads

pa(x; pu, q̃a) = F−1
a

(
Fa(pu)− 1

2
T̂ q̃a|q̃a|θax

)
, x ∈ [0,La], (26)

where
Fa(pa) :=

1

α
pa +

(
q̃2
aT̂ −

1

α2

)
ln(|1 + αpa|)− q̃2

aT̂ ln(pa)

holds; cf. [35] for the case of real gas and [34] for the case of ideal gas. Finally note
that (26) is a function of type (1c) if the flow q̃a is known.

6.1.1. Results. Our real-world test instance is the Greek natural gas transport
network that is made up of 134 nodes (3 entries, 45 exits, 86 inner nodes) and
133 arcs (86 pipes, 45 short pipes1, 1 control valve, 1 compressor). We note that the
network is a tree. Hence, all gas flows are known a-priorily and (26) fits into our
framework. The Greek natural gas transmission system operator DESFA provides
nomination data on its website [15]. After discarding imbalanced nominations, the
data set ranging from 11/01/2011 to 02/17/2016 yields daily instances for 1234
days. We manually double all nominated flows to increase the overall nonlinearity
and hardness of the instances. We remark that all network and nomination data of
this instance are publicly available as the GasLib-134 instance; see [73]. Detailed
information about the Greek compressor are not publicly available. Hence we use the
data of the compressor compressor_1 of the publicly available instance GasLib-135.

Algorithms 1 and 2 iteratively solve a MIP and multiple NLP models. We
implemented the algorithms using the C++ software framework LaMaTTO++ [51]
and solve the MIPs with Gurobi 6.5.0 [33] and the NLPs with Ipopt 24.1.3 [82].
All computations have been performed on an Intel c© CoreTMi5-3360M CPU with
4 cores of 2.8 GHz each and 4 GB RAM. We choose ε = 1× 10−2 (scaled to denote
error in bar for the pressure loss on pipes) as the tolerance of both Alg. 1 and 2.
Moreover, we test εf = 0 (yielding Assumption 1) and εf = 1× 10−3 as well as
εf = 2× 10−3 (both yielding Assumption 2). Obviously, larger εf or smaller ε
increase the expected number of required iterations. Before we discuss the numerical
results let us finally note that we, for the ease of implementation, did not implement
that all subproblems are solved in parallel.

First, Table 1 gives a basic overview of the results in terms of average numbers.
All instances have been solved by our algorithm: In dependence of the parameter εf ,
approximately 48 % to 49 % of the instances are proven to be infeasible (“inf.”).
On the other hand, ∼12 % to 13 % of the instances are solved to global optimality
with deactivated compressor (“opt.”) and ∼39 % with activated compressor (“opt.
(compr.)”). It can be seen that infeasibility is detected with significantly less
iterations than global optimality is proven. In particular, many infeasible instances
are shown to be infeasible by the master problem of the first iteration, which
indicates that the reason for infeasibility is solely located in the linear part of the
model. The iteration numbers for computing global optimal solutions in case of
feasibility differ depending on whether the compressor is activated or deactivated

1Short pipes are pipes with very short length such that the pressure loss is negligible.
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Table 1. Overview of the results of Alg. 1 grouped by infea-
sible instances (“inf.”), optimal instances with deactivated com-
pressor (“opt.”), and optimal instances with activated compressor
(“opt. (compr.)”). Number of instances (“#”) and averages of itera-
tions (“∅ k”), total runtimes (“∅ Total”), master problem runtimes
(“∅ Master”), subproblem runtimes (“∅ Sub”), and subproblem
runtimes in case of parallelization (“∅ Sub (Id.)”). All runtimes are
given in seconds.

εf Status # ∅ k ∅ Total ∅ Master ∅ Sub ∅ Sub (Id.)

0

inf. 603 1.60 0.38 0.01 0.36 0.05
opt. 151 9.30 2.14 0.40 1.74 0.31

opt. (compr.) 480 17.75 4.13 1.10 3.02 0.62

0
.0

01

inf. 597 1.61 0.37 0.01 0.35 0.04
opt. 155 10.66 2.54 0.56 1.98 0.43

opt. (compr.) 482 19.60 4.79 1.43 3.36 0.69

0.
00

2 inf. 593 1.61 0.38 0.01 0.36 0.04
opt. 159 13.26 3.22 0.91 2.31 0.53

opt. (compr.) 482 23.06 7.41 3.35 4.07 0.96
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Figure 4. Boxplot of iterations (top) and total runtime (bottom)
without outliers for Alg. 1 grouped as in Table 1 with εf = 0 (left),
εf = 1× 10−3 (middle), and εf = 2× 10−3 (right).

(∼9 to 13 vs. ∼18 to 23 iterations respectively). Iteration numbers directly translate
to runtimes that are also given in Table 1. “∅ Total” denotes the overall runtime
of the algorithm and “∅ Master” and “∅ Sub” denote the average runtimes of the
master and subproblems. Lastly, “∅ Sub (Id.)” stands for the artificial runtimes for
the subproblems if they would have been solved in parallel for every iteration. For a
more detailed illustration we insert standard boxplots without outliers for iteration
numbers and total runtimes in Figure 4.
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Figure 5. Top: Average runtimes (left) and simplex iterations
(right) required to solve the master problem MIPs for Alg. 1. The
average is only taken for iterations (x-axis) for which data of
more than 100 instances exist. Bottom: Average number of solved
subproblems (left) and maximal master problem error w.r.t. the
nonlinearities for Alg. 1. Again, the average is only taken for
iterations (x-axis) for which data of more than 100 instances exist.

Next, we discuss the complexity of the method, which is determined by the
complexity of the master and subproblems. The amount of subproblem NLPs that
have to be solved in every iteration is bounded above by the number of pipes in
the network. The size of these NLPs in terms of variables and constraints stays
constant over the course of the iterations. Since all subproblems can be solved in
parallel (cf. Lemma 4.3), the computational effort for solving all subproblems in
every iteration of the overall algorithm is, in principle, given by a single subproblem
NLP. The change of complexity of the MIPs of the master problem over the course
of the iterations is different. As additional linearization points yield additional
binary variables and constraints, the size of the MIPs grows linearly over the course
of the iterations. Consequently, the growing master problem runtimes and required
simplex iterations grow as it can be seen in Figure 5 (top). The linear growth in
MIP model size translates into a worst-case exponential growth of runtimes, which
cannot be avoided when using state-of-the-art MIP solver technology for the master
problems. Fortunately, Figure 5 (top) shows a more linear than an exponential
behavior, which is most probably explained by the overall small number of required
iterations. However, exponential behavior is expected for instances that require
more iterations.

The number of subproblems that have to be solved and thus the related additional
linearization points decrease over the course of the iterations as it can be seen in
Figure 5 (bottom left). The same holds for the maximal error

ek := max
i∈[p]

|fi(xki1)− xki2 |
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Figure 6. Graphical visualization of Alg. 2 solving (27) with
quadrilaterals (gray), optimization direction (blue), master problem
solution (red), subproblem solution (black).

of the master problem’s solutions with respect to the nonlinearities fi; see Figure 5
(bottom right) for an illustration.

Finally, we discuss the effects of different values for the bound of function
evaluation inexactness εf . Note that εf = 0 corresponds to Assumption 1, whereas
εf > 0 corresponds to Assumption 2. Table 1 shows that the larger εf , the less
infeasible instances we detect. This is to be expected since the feasible set grows
with larger εf ; see Figure 3. Moreover, larger εf yield more added linearization
points; see Figure 5 (bottom left)—especially from iteration 5 to 10. As already
discussed and illustrated in Figure 5 (top), these linearization points yield larger
master problem MIPs. Accordingly, the corresponding instances are harder to solve
in general as it can be seen in Table 1 and Figure 4 again.

Summing up, the observed computational behavior of Alg. 1 is as expected. The
algorithm is particularly strong for instances that can be solved within a small
number of iterations in which the exponential growth of MIP complexity does not
become apparent.

Although nonconvex mixed-integer nonlinear optimization problems from gas
transport are known to be hard to solve, Alg. 1 (both in the case of Assumption 1
and 2) solves all instances on a real-world network in less than 10 s on average on a
desktop computer, which shows the applicability of our approach.

6.2. Algorithm 2: Exemplary Case Study. In this section, we study the be-
havior of Alg. 2 in the case of Assumption 3. To this end, we consider the academic
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problem

min
x1,x2

x1 − 2x2 s.t. x2 = sin(kx2
1), x1 ∈

[
0,
√
π 11/10

]
, (27)

cf. Figure 6 (top left) for the case of k = 5. The initial sampling points are the
bounds of x1. We choose ε = 1× 10−2, the choice of µ is irrelevant because the
problem is feasible. Algorithm 2 applied to (27) terminates after 23 iterations with
the global optimal solution. In Figure 6, we study the first 8 iterations in detail.
Note that the goal of Alg. 2 is to compute an ε-feasible solution, which is a master
problem’s solution that satisfies the constraints of (27) with an ε-relaxation in the
nonlinear constraints.

The quadrilateral in iteration 1 is determined by the initial sampling points
¯
x1 and

x̄1. The derivatives at
¯
x1 and x̄1 are zero with the result that the initial Lipschitz

constant estimates are L̃ = 1; see (15). Thus, the first quadrilateral does not contain
graph(fi) as L̃ is too small. In iteration 2, L̃ is updated such that the quadrilaterals
are amplified. From iteration 3 to 5 the solutions of the master problem stay in
a similar region, while additional sampling points tighten the approximation of
graph(fi) in this region. This tightening is crucial for the result of iteration 6 in
which an important step is made towards ε-feasibility obtaining a master problem’s
solution close to feasibility. From iteration 7 on, the master problem’s solutions
finally take the last small steps to ε-feasibility.

Summing up, the decisive steps are made in iteration 2 and 6. The former
significantly improves the Lipschitz constant estimate, while the latter provides
a solution close to ε-feasibility. Finally, it can be clearly seen that the algorithm
adaptively corrects and refines the approximation of graph(fi) in a reasonable way:
Only the region around the solution is considered, whereas areas far away from the
solution are not refined; and even in latter iterations no outer approximation to
graph(fi) is obtained.

Due to the reasons given in Remark 3.3, we refrain from presenting a numerical
comparison on large test sets with general-purpose solvers. However, we compare
our method with a standard approach for globally solving nonconvex mixed-integer
nonlinear problems. To this end, we choose the piecewise linear relaxation approach
of [25]. The reasons why we choose this method for our comparison are the following.
First, the general idea of using piecewise linear approximations for nonlinear functions
is standard. Second, the extension to piecewise linear relaxation given in [25] is
comparable to our method, since it also uses relaxations of the nonlinearity. In
the following we compare the complexity of the obtained models in terms of the
number of binary variables. To this end, we compare the number of binary variables
in our final master problem with the number of binaries in the piecewise linear
relaxation model, where we computed linearization points in advance so that the
same accuracy is guaranteed a-priorily as for our algorithm. The results are plotted
in Figure 7 for Problem (27) for different parameters k (x-axis), which controls the
oscillations of the constraint.

It can be seen that for stronger oscillations, the piecewise linear relaxation
approach requires more binaries and that the number of binaries linearly corresponds
to the increase of k. In contrast, the number of binaries in the last master problem
that we solve in our algorithm stays almost constant (and approximately below 25).
Hence, especially for strong oscillations, our method seems to work well in this
particular example. To obtain a fair comparison, we need to highlight two more
points. First, 25 binary variables in the final master problem also corresponds
to 24 master problems with ` = 1, 2, . . . , 24 binaries before we obtain the final
master problem. This means that the overall effort of our algorithm is not only
given by the final master problem. Nevertheless, the amount of MIPs to solve
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Figure 7. Number of binary variables in the final master problem
of Alg. 2 (dashed) and a piecewise linear relaxation with an a-priori
error bound (solid) for Problem (27) with different k (x-axis).

stays almost constant, whereas the complexity of the piecewise linear relaxation
models linearly increases. On the other hand, there is also some effort to set up the
piecewise linear relaxation model that a-priorily satisfies the claimed approximation
accuracy. Second, the constant complexity of our approach is mainly explained by its
adaptivity. Only the region around the solution is refined. The same adaptivity can
also be exploited for the piecewise linear relaxation approach; cf. [10, 23]. However,
a more detailed numerical comparison is out of scope of this paper but will be part
of our future research.

7. Conclusion

In this paper, we developed algorithms for MINLPs with Lipschitz continuous
nonlinearities as they arise, e.g., in the context of mixed-integer optimization
problems that are constrained by ordinary or partial differential equations as well
as in the context of bilevel optimization problems. The concrete specification of
our methods depend on the specific assumptions made on the (in)exactness of
constraint function evaluations and on the knowledge about the Lipschitz constants.
Under our strongest assumptions, i.e., the case of known Lipschitz constants and
exact function evaluations, we can show that our algorithm finitely terminates at
approximate globally optimal points or proves infeasibility. The same holds true,
with some more technical assumptions, for the case of inexact function evaluations
with a-priorily bounded evaluation errors. The more complicated case of unknown
Lipschitz constants only allows for proving finite termination. Moreover, we show
which additional assumptions are necessary to detect infeasibility of the original
problem.

Despite these results, there are still open questions to answer. One example is
the case of inexact function evaluations without a-priorily known error bounds—a
situation that frequently arises, e.g., in mixed-integer optimal control with partial
differential equations. Finally, the extension of our methods (i) to the case of only
implicitly stated constraints (like c(x) = 0) instead of the explicit case (fi(xi1) = xi2)
discussed in this paper and (ii) to higher dimensions is part of our future work.
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