
Noname manuscript No.
(will be inserted by the editor)

Robust PageRank: Stationary Distribution on a Growing
Network Structure

Anna Timonina-Farkas

Received: date / Accepted: date

Abstract PageRank (PR) is a challenging and important network ranking algorithm,
which plays a crucial role in information technologies and numerical analysis due to
its huge dimension and wide range of possible applications. The traditional approach
to PR goes back to the pioneering paper of S. Brin and L. Page [5], who developed
the initial method in order to rank websites in the search engine results.
Recently, A. Juditsky and B. Polyak in the work [13] proposed a robust formulation
of the PageRank model for the case, when links in the network structure may vary,
i.e. some links may appear or disappear influencing the transportation matrix defined
by the network structure. In this article, we make a further step forward, allowing the
network to vary not only in links, but also in the number of nodes. We focus on grow-
ing network structures (e.g. Internet) and we propose a new robust formulation of the
PageRank problem for uncertain networks with fixed growth rate (i.e. the expected
number of pages which appear in the future is fixed). Further, we compare our results
with the ranks estimated by the method of A. Juditsky and B. Polyak [13], as well as
with the true ranks of tested network structures.
We formulate the robust PageRank in terms of non-convex optimization problems
and we bound these formulations from above by convex but non-smooth optimiza-
tion problems. In the numerical part of the article, we propose some smoothening
techniques, which allow to obtain the solution accurately and efficiently in case of
middle-size networks by the use of the well-known subgradient algorithm avoid-
ing all non-smooth points. Furthermore, we address high-dimensional algorithms by
modelling PageRank via the use of the multinomial distribution.
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1 Introduction

PageRank (PR) is an automated information retrieval algorithm, which is designed by
S. Brin and L. Page [5,21] during the rise of the World Wide Web in order to improve
the quality of at the moment existing search engines. The algorithm relies not only on
keyword matching but also on additional structure present in the hypertext providing
higher quality search results.
Mathematically speaking, the rank of some page i, ∀i = 1, ...,N is the probability for
a random user to be on this page. We denote the rank of the page i by xi, ∀i = 1, ...,N.
Let Li be the set of all web-pages, which refer to the page i. The probability, that a
random user sitting on a page j ∈Li clicks on the link to the page i is equal to Pi j
(Figure 1).

Web-site i

Web-site k ∈Li Web-site j ∈Li

Pi jPik

Set Li

Fig. 1: Links outgoing from the web-site j.

The idea of the PageRank algorithm is, therefore, based on the interchange of ranks
between pages, which is formulated in line with probability theory rules:

xi = ∑
j∈Li

Pi jx j, ∀i = 1, ...,N. (1)

Intuitively, the equation (1) can be seen in the following way: the page j gives a part
of its rank (or score) to the page i, if there is a direct link from the page j to the page
i. The amount of the transferred score is proportional to the probability for a random
user to click on the link to the page i sitting on the page j.
In the initial PageRank formulation [6,8,15,21], the probability Pi j is assumed to be
an inverse of the total number of links outgoing from the page j denoted by n j, i.e.
Pi j =

1
n j

. This assumption lacks realism, as it assigns equal probabilities for a random
user to move to the page i from the page j. In reality, these probabilities are rank-
dependent: the user is more likely to move to the page with a higher rank, than to the
page with a lower rank.
If one denotes by P the transportation (or transition) matrix with entries {Pi j}, ∀i, j =
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1, ...,N, the PageRank problem can be formulated as the problem of finding the prin-
cipal eigenvector x̄ = (x̄1, ..., x̄N)

T of this matrix, which exists due to the well-known
Perron-Frobenius theorem [10] for non-negative matrices:

Px̄ = x̄.

As the principal eigenvector corresponding the eigenvalue λ = 1 is not necessarily
unique for non-negative stochastic matrices [10], the original PageRank problem is
replaced with finding the principal eigenvector of the following modified matrix [5,
8,21] (known as the Google matrix):

G = αP+(1−α)S,

where α ∈ (0, 1) is the damping factor [5] and S is the doubly stochastic matrix of
the form: S =

{ 1
N

}
i j, ∀i, j = 1, ...,N.

In the pioneering paper of S. Brin and L. Page [5], the following intuitive justification
is given to the matrix G: ”We assume there is a ”random surfer” who is given a web
page at random and keeps clicking on links, never hitting ”back” but eventually gets
bored and starts on another random page. The probability that the random surfer vis-
its a page is its PageRank. And, the α damping factor is the probability at each page
the ”random surfer” will get bored and request another random page.”
The principal eigenvector ȳ = (ȳ1, ..., ȳN) of the matrix G is unique according to
the Perron-Frobenius theorem for positive matrices [10]. Moreover, the well-known
power method y(k+1) =Gy(k) [22] converges to ȳ for each starting value y(0) satisfying
simplex constraints, which allows to work with high-dimensional cases. However, in
the work of B. Polyak and A. Timonina (see [25]), it is shown that the solution ȳ of the
modified problem Gȳ = ȳ can be far enough from the original x̄ of the system Px̄ = x̄.
Moreover, for specific network structures it may happen that the eigenvector of the
matrix G stops distinguishing between high-ranked pages [25], that build the core of
search engine results: if a large amount of high-ranked pages obtains the same score,
the ranking becomes ineffective, making the difference between ”high-ranked” and
”low-ranked” pages to be almost binary. Therefore, the approach with the perturbed
matrix G works well only in the presence of a small number of high-ranked pages,
which has been true when the initial algorithm [5] has been developed but which cur-
rently needs reconsideration as the amount of information on the web continues to
grow and the number of experienced users in the art of web research is increasing.
In the work of B. Polyak and A. Timonina (see [25]), the authors propose an l1-
regularization method which avoids low-ranked pages:

min
x∈ΣN

{
||Px− x||22 + ε||x||1

}
, (2)

where parameter ε regulates the number of high-ranked pages one would like to
consider and where ΣN denotes the standard simplex on RN , i.e. ΣN = {ν ∈ RN :
∑

N
i=1 νi, νi ≥ 0}. This optimization problem can be solved via the coordinate descent

method analogous to the Gauss-Seidel algorithm for solving linear equations [6,15,
22,25,27], which allows to enhance efficiency of numerical ranking and to improve
accuracy by differentiating between high-importance pages.
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However, the optimization problem (2) has a drawback: it is not robust to variations in
the Internet structure, while the World Wide Web is, clearly, changing over time: the
amount of information on the web is growing, new pages appear, some web-sites (old
or spam ones) disappear. This is particularly important due to the fact, that PageRank
computation takes such a significant amount of time (Google re-evaluation of PageR-
ank takes a month), that around 1-3% of new web-pages opens during this time with
new links influencing the transportation matrix P.
In the work of A. Juditsky and B. Polyak [13], the robust reformulation of the PageR-
ank model is proposed for the case, when links in the network structure may vary, i.e.
some links may appear or disappear influencing the transition matrix P:

min
x∈ΣN

{
max
ξ∈P
||(P+ξ )x− x||(∗)

}
, (3)

where || · ||(∗) is l1− or l2− norm, P is a set of allowed perturbations, such that
the matrix P+ ξ stays column-stochastic, ΣN is the standard simplex on RN . The
optimization problem (3) can be bounded from above by a convex non-smooth opti-
mization problem of the following type (see [2,3,13]):

min
x∈ΣN

{
||Px− x||(∗)+ ε||x||(∗)

}
, (4)

where ε is a parameter dependent on the perturbation set P .
However, the formulation (3) lacks some realism: though the matrix P+ξ is uncertain
in this case, the dimension of the matrix stays the same, meaning that no pages may
appear or disappear. In reality though, (i) the number of web-pages in the Internet
grows and (ii) one does not explicitly know, how the structure of the Internet changes.
In this article, we allow the network to vary not only in links, but also in the number
of nodes, considering, therefore, growing network structures with transition matrix
Q(P):

min
x∈ΣN

{
max

Q(P)∈Ξ

||Q(P)x− x||(∗)
}
, (5)

where Q(P) depends on the matrix P. Further, Ξ is the perturbation set adjusted for
the network growth so that the matrix Q stays column-stochastic.
In Section 2 we propose l1−, l2− and Frobenius-norm robust reformulations for
PageRank of the uncertain network with fixed growth rate (i.e. the expected number
of pages which appear in the future is fixed) and we bound these reformulations from
above by convex but non-smooth optimization problems. In Section 3 we demonstrate
that formultations robust to network growth impose upper bounds on the formulations
robust to perturbations in links, i.e. on the formulations proposed by A. Juditsky and
B. Polyak in the work [13]. In Section 4 we study properties of the chosen perturba-
tion set, which helps to shed some light on the parameter ε of problems (2) and (4). In
Section 5 we consider smoothening techniques for the subgradient method in order
to solve formulated optimization problems in middle-dimensional cases. Further in
the article, we address high-dimensional algorithms by modelling PageRank via the
use of the multinomial distribution and, afterwards, we conclude, as well as we state
directions for future research.
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2 Problem Formulation

Consider a column-stochastic non-negative transportation matrix P ∈ RN×N , which
satisfies Pi j ≥ 0, ∀i, j = 1, ...,N and ∑

N
i=1 Pi j = 1, ∀ j = 1, ...,N by definition. The well-

known Perron-Frobenius theorem [10] states that there exists dominant (or principal)
eigenvector x̄ ∈ ΣN , where we denote by ΣN = {v ∈ RN : ∑

N
i=1 vi = 1, vi ≥ 0} the

standard simplex on RN :

Px̄ = x̄. (6)

For each column j of the matrix P, the entry Pi j,∀i = 1, ...,N corresponds to the tran-
sition probability from the node j to the node i of the network (i.e. the probability to
move from the web-page j to the web-page i in the Internet). In general, matrix P is
huge-dimensional and very sparse, as the number of links outgoing from every node
is much smaller than the total number of nodes in the network: the average number
of links outgoing from a web-page in the Internet is equal to 20 for the whole web
(see [13]), while the total number of pages in the Internet is ca. 109. The dominant
vector x̄ describes the stationary distribution on the network structure: each element
of the vector x̄ denotes the rank of the corresponding node. For the Internet, the ranks
can be seen as the time which an average user spends on the particular web-site.
The dominant vector x̄ is not robust and may be highly vulnerable to small changes
in matrix P. A. Juditsky and B. Polyak in their work [13] reformulated the problem
in the robust optimization form, allowing matrix P to vary according to the law P+ξ

under some conditions on ξ . For this matrix, they found the stationary distribution
x̃ robust to variations in links and, therefore, stable with respect to small changes of
P. However, in their work, the size of matrix ξ was assumed to be the same as of
matrix P, i.e. N×N, meaning that growing in the number of nodes was not consid-
ered in the network (further, this formulation is referred to as a fixed-size model). In
reality, though, changes of matrix P happen not only in links, but also in the num-
ber of nodes. The number of domains being registered per minute corresponds to the
1-3% growth of the Internet per month (http://www.internetlivestats.com/
total-number-of-websites/). That is why, in this article we consider the follow-
ing changes of matrix P:

Q =

(
P+ξ ζ

ψ χ

)
, (7)

where P is the column-stochastic transportation matrix describing the current state of
the network with N pages; ξ is the matrix describing variations in links of the initial
network; ζ , ψ and χ are matrices describing links to and from M new pages, which
may appear in the future (ξ is of the size N×N, ψ is of the size M×N, ζ is of the
size N×M and χ is of the size M×M). In reality, M ≈ 0.03N per month.
As matrices P and Q must be column-stochastic, ξ , ζ , ψ and χ must satisfy the
following properties: 

ξi j ≥−Pi j, ∀i, j = 1, ...,N;
ψi j ≥ 0, ∀i = 1, ...,M, j = 1, ...,N;
ζi j ≥ 0, ∀i = 1, ...,N, j = 1, ...,M;
χi j ≥ 0, ∀i, j = 1, ...,M,

(8)

http://www.internetlivestats.com/total-number-of-websites/
http://www.internetlivestats.com/total-number-of-websites/
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saying that all elements of the matrix Q are non-negative, as well as the following
properties must hold:{

∑
N
i=1(Pi j +ξi j)+∑

M
i=1 ψi j = 1, ∀ j = 1, ...,N

∑
N
i=1 ζi j +∑

M
i=1 χi j = 1, ∀ j = 1, ...,M

⇔

⇔
{

∑
N
i=1 ξi j +∑

M
i=1 ψi j = 0, ∀ j = 1, ...,N

∑
N
i=1 ζi j +∑

M
i=1 χi j = 1, ∀ j = 1, ...,M,

(9)

saying that every column of the matrix Q sums up to 1 (notice, that here we use the
fact that P is also column-stochastic and ∑

N
i=1 Pi j = 1, ∀ j = 1, ...,N).

Similar to the work of A. Juditsky and B. Polyak [13], the function max
Q∈Ξ
||Qx− x||(∗),

where ‖ · ‖(∗) is some norm, can be seen as a measure of ”goodness” of a vector x
as a common dominant eigenvector of the family Ξ , where Ξ stands for the set of
perturbed stochastic matrices of the form (7) under conditions (8) and (9).

Further, let us denote by x =

(
x(1)

x(2)

)
a feasible point, which is a candidate for the

common dominant eigenvector of the family Ξ . Let x(1) be of the size N×1 and x(2)

be of the size M× 1. Hence, x is of the size (N +M)× 1. Notice, that the vector x
must belong to the standard simplex ΣN+M = {v∈RN+M : ∑

N+M
i=1 vi = 1, vi ≥ 0}, that

means x(1)i ≥ 0, ∀i= 1, ...,N, x(2)j ≥ 0, ∀ j = 1, ...,M and ∑
N
i=1 x(1)i +∑

M
j=1 x(2)j = 1 (i.e.

||x(1)||1 + ||x(2)||1 = 1).
We say that the vector x̂ is a robust solution of the eigenvector problem on Ξ if

x̂ ∈ Argmin
x∈ΣN+M

{
max
Q∈Ξ
||Qx− x||(∗)

}
, (10)

where ‖·‖(∗) is some norm (further, we consider l1−, l2− and Frobenius-norm robust
formulations).
The reasonable choice of the uncertainty set Ξ would impose some bounds on the
column-wise norms of matrices ξ , ζ , ψ and χ , meaning that the perturbation in links
of the current and future states of the network would be bounded: i.e. ||[ξ ] j|| ≤ ε

(ξ )
j ,

||[ψ] j|| ≤ ε
(ψ)
j , ||[ζ ] j|| ≤ ε

(ζ )
j and ||[χ] j|| ≤ ε

(χ)
j , where [·] j denotes the j-th column

of a matrix. Moreover, the total uncertainty budget for matrices ξ , ζ , ψ and χ could
be fixed (see [13]): this would imply constraints on the overall possible perturbations
of the transportation matrix P.
By solving the optimization problem (10), one would protect the rank vector x̂ against
high fluctuation in case of link or node perturbations influencing the transportation
matrix P. Currently, the Google scores vector is being updated once per month with-
out accounting for the 1-3% growth rate during this month. By solving the optimiza-
tion problem of the type (10) one could decrease the number of updates of the score
vector and, therefore, reduce the underlying personnel and machinery costs.
In the following sections, we formulate robust optimization problems for finding
the stationary distribution of the extended network Q for the case of l1−, l2− and
Frobenius-norms, and we bound these problems from above by convex but non-
smooth optimization problems.
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2.1 l1-norm formulation

Let us consider ‖ ·‖(∗) = ‖ ·‖1. We say that the vector x̂(l1) is the l1-robust solution of
the eigenvector problem on the set of perturbed matrices Ξ (l1), if

x̂(l1) ∈ Argmin
x∈ΣN+M

{
max

Q
||Qx− x||1 :

Q is column-stochastic,

||[ξ ] j||1 ≤ ε
(ξ )
j , ∀ j = 1, ...,N, and ∑

i, j
|ξi j| ≤ ε

(ξ ),

||[ψ] j||1 ≤ ε
(ψ)
j , ∀ j = 1, ...,N, and ∑

i, j
|ψi j| ≤ ε

(ψ), (11)

||[ζ ] j||1 ≤ ε
(ζ )
j , ∀ j = 1, ...,M, and ∑

i, j
|ζi j| ≤ ε

(ζ ),

||[χ] j||1 ≤ ε
(χ)
j , ∀ j = 1, ...,M, and ∑

i, j
|χi j| ≤ ε

(χ)

}
,

where we have l1-norm constraints on each column [·] j, ∀ j of matrices ξ , ζ , ψ and
χ , as well as we bound the sum of absolute values of all elements of these matrices.
These constraints bound the perturbation in links of the current and future states of
the network. At the same time, the total uncertainty budget for matrices ξ , ζ , ψ and
χ is fixed. Notice, that the problem (11) is not convex-concave, meaning that the
function

φ1(x) = max
Q∈Ξ

(l1)
‖Qx− x‖1

cannot be computed efficiently.
Importantly, the formulation (11) does not discourage sparsity in transition probabil-
ities. Consider, for example, the uncertainty matrix ψ , which describes links from N
existing pages to M new ones. All elements of the matrix ψ are non-negative. If we
reduce one positive element from j-th column of this matrix by a small enough δ ,
the norm ||[ψ] j||1 and the sum ∑i, j |ψi j| decrease by this δ , regardless of the value of
the element we decrease. This means, that l1-norm formulation (11) does not make
a preference which transition probabilities to decrease in order to satisfy the con-
straints. By this, a lot of transition probabilities of the matrix Q can result in being
zeros. In contrast, for l2- and Frobenius-norm formulations, which we consider in
the next sections, the reduction of larger terms of the matrix ψ by δ results in a
much greater reduction in norms than doing so with smaller terms. Therefore, l2- and
Frobenius-norm formulations discourage sparsity by yielding diminishing reductions
for elements closer to zero.

Proposition 1 Optimal value φ1(x̂(l1)) of the non-convex optimization problem (11)
can be bounded from above by the optimal value of the following convex optimization
problem with ε1 = ε(ξ )+ ε(ψ) and ε

(l1)
2 = ε(ζ )+ ε(χ)+M:

φ1(x̂(l1))≤ min
x∈ΣN+M

{
||Px(1)− x(1)||1 + ε1‖x(1)‖(a)+ ε

(l1)
2 ‖x(2)||(b)

}
, (12)
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where ‖x(1)‖(a) = min
λ+µ=x(1)

{
‖λ‖∞ +∑

N
j=1

ε
(ξ )
j +ε

(ψ)
j

ε(ξ )+ε(ψ) |µ j|
}

,

‖x(2)‖(b) = min
λ+µ=x(2)

{
‖λ‖∞ +∑

M
j=1

ε
(ζ )
j +ε

(χ)
j +1

ε(ζ )+ε(χ)+M
|µ j|
}

.

Proof See the Appendix 9.1 for the proof.

Notice, that ‖x(2)‖(b) = 0 if there are no new pages in the network (i.e. if M =
0). In this case, the optimization problem (12) completely coincides with the l1-
reformulation proposed by A. Juditsky and B. Polyak in the work [13].

2.2 l2-norm formulation

Let us consider ‖ ·‖(∗) = ‖ ·‖2. We say that the vector x̂(l2) is the l2-robust solution of
the eigenvector problem on the set of perturbed matrices Ξ (l2), if

x̂(l2) ∈ Argmin
x∈ΣN+M

{
max

Q
||Qx− x||2 :

Q is column-stochastic,

||[ξ ] j||1 ≤ ε
(ξ )
j , ∀ j = 1, ...,N, and ||ξ ||F ≤ ε

(ξ ),

||[ψ] j||1 ≤ ε
(ψ)
j , ∀ j = 1, ...,N, and ||ψ||F ≤ ε

(ψ), (13)

||[ζ ] j||1 ≤ ε
(ζ )
j , ∀ j = 1, ...,M, and ||ζ ||F ≤ ε

(ζ ),

||[χ] j||1 ≤ ε
(χ)
j , ∀ j = 1, ...,M, and ||χ||F ≤ ε

(χ)

}
,

where we have constraints on j-th column [·] j of matrices ξ , ζ , ψ and χ , as well as
we have second-order constraints on matrices themselves. Notice, that the problem
(13) is not convex-concave, meaning that the function

φ2(x) = max
Q∈Ξ

(l2)
‖Qx− x‖2

cannot be computed efficiently.

Proposition 2 Optimal value φ2(x̂(l2)) of the non-convex optimization problem (13)
can be bounded from above by the optimal value of the following convex optimization
problem with ε1 = ε(ξ )+ ε(ψ) and ε

(l2)
2 = ε(ζ )+ ε(χ)+1:

φ2(x̂(l2))≤ min
x∈ΣN+M

{
||Px(1)− x(1)||2 + ε1‖x(1)‖(c)+ ε

(l2)
2 ||x(2)||(d)

}
, (14)

where ‖x(1)‖(c) = min
λ+µ=x(1)

{
‖λ‖2 +∑

N
j=1

ε
(ξ )
j +ε

(ψ)
j

ε(ξ )+ε(ψ) |µ j|
}

,

‖x(2)‖(d) = min
λ+µ=x(2)

{
‖λ‖2 +∑

M
j=1

ε
(ζ )
j +ε

(χ)
j +1

ε(ζ )+ε(χ)+1
|µ j|
}

.

Proof See the Appendix 9.2 for the proof.
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2.3 Frobenius-norm formulation

Let us further consider ‖·‖(∗) = ‖·‖2. We say that the vector x̂(F) is the robust solution
of the eigenvector problem on the set of perturbed matrices Ξ (F), if

x̂(F) ∈ Argmin
x∈ΣN+M

{
max

Q
||Qx− x||2 :

Q is column-stochastic,
||ξ ||F ≤ ε

(ξ ), ||ψ||F ≤ ε
(ψ), (15)

||ζ ||F ≤ ε
(ζ ), ||χ||F ≤ ε

(χ)

}
,

where ‖ · ‖F is the Frobenius norm. Notice, that the problem (15) is not convex-
concave, meaning that the function

φ3(x) = max
Q∈Ξ (F)

‖Qx− x‖2

cannot be computed efficiently. Notice also, that the formulation (15) is an upper
bound for the l2−formulation (13).

Proposition 3 Optimal value φ3(x̂(F)) of the non-convex optimization problem (15)
can be bounded from above by the optimal value of the following convex optimization
problem:

φ3(x̂(F))≤ min
x∈ΣN+M

{
‖Px(1)− x(1)‖2 + ε1‖x(1)‖2 + ε

(F)
2 ‖x

(2)‖2

}
, (16)

where ε1 = ε(ξ )+ ε(ψ) and ε
(F)
2 = ε(ζ )+ ε(χ)+1.

Proof See the Appendix 9.3 for the proof.

Notice, that the parameter ε1 is equal to (ε(ξ ) + ε(ψ)) and does not depend on the
problem formulation. This parameter describes the total uncertainty in links of cur-
rent N pages, implied by the change in already existing links (i.e. P + ξ ) and by
the uncertainty ψ corresponding to newly appeared links from N existing to M new
pages. However, parameters ε

(l1)
2 and ε

(l2)
2 = ε

(F)
2 depend on the problem formulation.

For the l1-norm formulation the parameter ε
(l1)
2 is equal to (ε(ζ )+ ε(χ)+M) and de-

notes the total uncertainty in links between M new pages, as well as from them. This
parameter is clearly dependent on the number of new pages M, giving more weight to
their ranks as the number grows. Differently, for the l2- and Frobenius-norm formu-
lations, parameters ε

(l2)
2 = ε

(F)
2 are equal to (ε(ζ )+ε(χ)+1) and do not show explicit

dependency on the number of new pages M.
Let us denote by ε2 the following parameter:

ε2 =

[
ε(ζ )+ ε(χ)+M, for l1−norm formulation;
ε(ζ )+ ε(χ)+1, for l2− and Frobenius-norm formulations.
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In this case, optimization problems (12), (14) and (16) can be written in the following
general form:

x̃ ∈ Argmin
x∈ΣN+M

{
‖Px(1)− x(1)‖(∗)+ ε1‖x(1)‖(1)+ ε2‖x(2)‖(2)

}
, (17)

where ‖·‖(∗), ‖·‖(1) and ‖·‖(2) correspond to the norms from the formulations above.
For the l1-norm formulation (12), ‖·‖(∗) defines the l1-norm, ‖·‖(1) is equal to ‖·‖(a)
and ‖ ·‖(2) is equal to ‖ ·‖(b). For the l2-norm formulation (14), ‖ ·‖(∗) defines the l2-
norm, ‖ ·‖(1) is equal to ‖ ·‖(c) and ‖ ·‖(2) is equal to ‖ ·‖(d). For the Frobenius-norm
formulation (16), ‖ · ‖(∗), ‖ · ‖(1) and ‖ · ‖(2) denote l2-norms.
We refer to the vector x̃ as to the (computable) robust dominant eigenvector of the
corresponding family of perturbed matrices Ξ (l1), Ξ (l2) or Ξ (F).
Further in the article and before we proceed with the numerical solution of the prob-
lem (17), we show that the formulation (17) provides the upper bound on the formu-
lation of A. Juditsky and B. Polyak in the work [13]. Moreover, we discuss the choice
of the perturbation set defined by parameters ε(ξ ), ε(ψ), ε(ζ ) and ε(χ).

3 Comparison to the model with fixed-size network

Optimization problems (11), (13) and (15) account for uncertainties in links between
current and future (not yet existing) pages: these uncertainties are incorporated via
matrices ξ , ψ , ζ and χ , which worst-case realization gives us the opportunity to
compute the robust PageRank. These optimization problems differ from robust for-
mulations corresponding to the fixed-size network model proposed by A. Juditsky
and B. Polyak in the work [13], who studied uncertainties implied by the matrix
P+ξ , describing variations in links of existing pages with constant network size. In
this section, we study the relationship between the fixed-size and the growing net-
work model. For this, we compute the lower bound of the norm max

Q∈Ξ
||Qx−x|| for the

case of l1-, l2- and Frobenius-norm and we prove that the growing network model
imposes the upper bound for the fixed-size network model.

Theorem 1 (Upper Bounds) Optimization problems (11), (13) and (15) under con-
ditions (8) and (9) impose upper bounds on the fixed-size network model in the fol-
lowing sense:

φ1(x) = max
Q∈Ξ

(l1)
||Qx− x||1 ≥ max

1
T
N [ξ ] j=0

‖[ξ ] j‖1≤ε
(ξ )
j

∑i, j |ξi j |≤ε(ξ )

‖(P+ξ )x(1)− x(1)‖1, (18)

φ2(x) = max
Q∈Ξ

(l2)
||Qx− x||2 ≥ max

1
T
N [ξ ] j=0

‖[ξ ] j‖1≤ε
(ξ )
j

‖ξ‖F≤ε(ξ )

‖(P+ξ )x(1)− x(1)‖2, (19)

φ3(x) = max
Q∈Ξ (F)

||Qx− x||2 ≥ max
1

T
N [ξ ] j=0
‖ξ‖F≤ε(ξ )

‖(P+ξ )x(1)− x(1)‖2. (20)
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Proof Let u =

(
u1
u2

)
, where u1 is a vector of the length N and u2 is a vector of the

length M.
For the case of l1-norm, the following equality holds

||Qx− x||1 =

∥∥∥∥(P+ξ ζ

ψ χ

)(
x(1)

x(2)

)
−
(

x(1)

x(2)

)∥∥∥∥
1
=

∥∥∥∥((P+ξ − IN)x(1)+ζ x(2)

ψx(1)+(χ− IM)x(2)

)∥∥∥∥
1
=

= ‖(P+ξ − IN)x(1)+ζ x(2)‖1 +‖ψx(1)+(χ− IM)x(2)‖1,

where IN and IM are identity matrices of the size N×N and M×M correspondingly.
Using the norm duality, i.e.

‖(P+ξ − IN)x(1)+ζ x(2)‖1 = max
u1∈RN

‖u1‖∞≤1

uT
1

(
(P+ξ − IN)x(1)+ζ x(2)

)
‖ψx(1)+(χ− IM)x(2)‖1 = max

u2∈RM

‖u2‖∞≤1

uT
2

(
ψx(1)+(χ− IM)x(2)

)
,

we choose such feasible u1 = u∗1, that ‖(P+ξ )x(1)−x(1)‖1 =(u∗1)
T (P+ξ−IN)x(1), u∗1 ∈

RN and ‖u∗1‖∞ ≤ 1 and we fix u2 = 1M , where 1M is the M×1 vector of all-ones.
By this, we compute the lower bound for the norm ||Qx− x||1:

||Qx− x||1 ≥ (u∗1)
T
(
(P+ξ − IN)x(1)+ζ x(2)

)
+1

T
M

(
ψx(1)+(χ− IM)x(2)

)
=

= ‖(P+ξ )x(1)− x(1)‖1 +(u∗1)
T

ζ x(2)+1
T
Mψx(1)+1

T
Mχx(2)−1T

Mx(2) =

= ‖(P+ξ )x(1)− x(1)‖1 +1
T
Mψx(1)+(u∗1−1N)

T
ζ x(2),

where the final equation holds due to equalities (21) and (22) with 1T
Mψx(1) ≥ 0 and

(u∗1−1N)
T ζ x(2) ≤ 0:

1
T
Mψ =−1T

Nξ ; (21)
1

T
Mχ = 1

T
M−1T

Nζ . (22)

Notice, that equalities (21) and (22) hold due to the column-stochasticity of the matrix
Q (i.e. due to conditions (8) and (9)).
Therefore, we compute the lower bound for the function φ1(x), i.e.

φ1(x) ≥ ‖(P+ξ )x(1)− x(1)‖1 +1
T
Mψx(1)+(u∗1−1N)

T
ζ x(2), ∀ξ ,ψ,ζ ∈ Ξ

(l1)

As soon as this bound holds for all ξ ,ψ,ζ in the perturbation set, we can set ζ = 0
and ψ = 0 without any loss of generality. Moreover, by setting ψ = 0 we guarantee
that conditions of A. Juditsky and B. Polyak in the work [13] are satisfied, i.e. that
the matrix P+ξ is column-stochastic.
Therefore, we guarantee that the l1-norm formulation of A. Juditsky and B. Polyak
in the work [13] is a lower bound for our optimization problem, i.e. the bound (18)
follows.
Analogically, one can show, that the same type of bound holds for the case of l2- and
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Frobenius-norm robust formulations.
Notice, that the following equality holds due to the duality of the second norm:

||Qx− x||2 =
∥∥∥∥(P+ξ ζ

ψ χ

)(
x(1)

x(2)

)
−
(

x(1)

x(2)

)∥∥∥∥
2
=

∥∥∥∥((P+ξ − I)x(1)+ζ x(2)

ψx(1)+(χ− I)x(2)

)∥∥∥∥
2
=

= max
u∈RN+M

||u||2≤1

(
u1
u2

)T (
(P+ξ − IN)x(1)+ζ x(2)

ψx(1)+(χ− IM)x(2)

)
.

To compute the lower bound for the norm ||Qx− x||2, we choose such feasible u1 =
u∗1, that ‖(P+ ξ )x(1)− x(1)‖2 = (u∗1)

T (P+ ξ − I)x(1), u∗1 ∈ RN , ‖u∗1‖2 ≤ 1 (which
exists due to the duality of the norm) and we fix u2 = 0M (i.e. zero-vector of the
length M). In this case, we can write the following:

||Qx− x||2 ≥ (u∗1)
T
(
(P+ξ − IN)x(1)+ζ x(2)

)
= ‖(P+ξ )x(1)− x(1)‖2 +(u∗1)

T
ζ x(2),

which leads to the following bounds for l2- and Frobenius-norm formulations corre-
spondingly:

max
Q∈Ξ

(l2)
||Qx− x||2 ≥ ‖(P+ξ )x(1)− x(1)‖2 +(u∗1)

T
ζ x(2), ∀ ξ and ζ ∈ Ξ

(l2),

max
Q∈Ξ (F)

||Qx− x||2 ≥ ‖(P+ξ )x(1)− x(1)‖2 +(u∗1)
T

ζ x(2), ∀ ξ and ζ ∈ Ξ
(F).

Analogically to the l1-norm formulation, we can set ζ = 0 without any loss of gen-
erality, as the bounds hold for all ξ ,ζ in the perturbation set. Therefore, one can
guarantee that the l2- and the Frobenius-norm formulations of A. Juditsky and B.
Polyak in the work [13] impose lower bounds for our optimization problems, i.e.
bounds (19) and (20) hold.

�

Now, consider robust reformulations (12), (14) and (16). In case M = 0 (i.e. if there
is no growth in the network), these reformulations fully coincide with upper bounds
proposed by A. Juditsky and B. Polyak in the work [13]. In general, for M > 0,
robust reformulations (12), (14) and (16) differ from the bounds imposed by the fixed-
size network. However, if there are no links from old to new web-pages, the current
links are perturbed only by ξ , as ψ = 0. Therefore, Q is reducible and the difference
between the fixed-size and the growing network models is fully imposed by the links
from new pages.
If a random user starting from some new page (among i = N + 1, ...,N +M) keeps
clicking on links, he eventually results in one of pages i = 1, ...,N as ζ 6= 0. However,
he is not able to get back to the starting page by clicking links as ψ = 0. Therefore,
ranks x(2) should a priori be lower than x(1). Moreover, one cannot say which of
pages i = N + 1, ...,N +M have higher ranks and which have lower ones, as links
are actually unknown to the search engine before the Internet structure is updated.
Therefore, without loss of generality, the ranks x(2) could be assumed to be zeros and
the problem could be solved numerically using algorithms proposed in [13].
Therefore, further we focus on the case of irreducible transition matrices Q, which
imply ε(ψ) > 0, ε(ζ ) > 0, ε(χ) > 0.
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4 Bounds on the perturbation set Ξ

Consider optimization problems (12), (14) and (16) in the general form (17):

x̃ ∈ Argmin
x∈ΣN+M

{
‖Px(1)− x(1)‖(∗)+ ε1‖x(1)‖(1)+ ε2‖x(2)‖(2)

}
.

Notice, that (ε(ξ ) + ε(ψ)) is denoted by ε1, while ε2 is equal to (ε(ζ ) + ε(χ) +M)
for the l1-norm robust formulation (12) and to (ε(ζ ) + ε(χ) + 1) for both l2- and
Frobenius-norm formulations (14) and (16).
The size of the optimization problem (17) can be reduced, as the problem can be
subdivided into two separate smaller-size optimization problems.

Lemma 1 Let ỹ(1) and ỹ(2) be solutions of optimization problems (23) and (24):

ỹ(1) ∈ Argmin
y(1)∈ΣN

{
‖Py(1)− y(1)‖(∗)+ ε1‖y(1)‖(1)

}
, (23)

ỹ(2) ∈ Argmin
y(2)∈ΣM

{
ε2‖y(2)‖(2)

}
, (24)

where ΣN = {ν ∈ RN : ∑
N
i=1 νi, νi ≥ 0} and ΣM = {ν ∈ RM : ∑

M
i=1 νi, νi ≥ 0}.

Then the following holds:

1. If ‖Pỹ(1)− ỹ(1)‖(∗) + ε1‖ỹ(1)‖(1) < ε2‖ỹ(2)‖(2), then the optimal solution to the

problem (17) is x̃ =
(

x̃(1)

x̃(2)

)
with x̃(1) = ỹ(1) and x̃(2) = 0;

2. If ‖Pỹ(1)− ỹ(1)‖(∗) + ε1‖ỹ(1)‖(1) > ε2‖ỹ(2)‖(2), then the optimal solution to the

problem (17) is x̃ =
(

x̃(1)

x̃(2)

)
with x̃(1) = 0 and x̃(2) = ỹ(2);

3. If ‖Pỹ(1)− ỹ(1)‖(∗)+ ε1‖ỹ(1)‖(1) = ε2‖ỹ(2)‖(2), then there are infinitely many op-
timal solutions to the problem (17).

Proof Consider the optimization problem (17). Based on the fact, that ‖x(1)‖1 +
‖x(2)‖1 = 1 and x(1) ≥ 0, x(2) ≥ 0, let us make the following change of variables
with s ∈ [0, 1]:

x(1) = sy(1),
x(2) = (1− s)y(2),

(25)

where ‖y(1)‖1 = 1, ‖y(2)‖1 = 1 and y(1)≥ 0, y(2)≥ 0. Further, ‖x(1)‖1 = s and ‖x(2)‖1 =

1− s, ∀s ∈ [0, 1]. Hence, simplex constraints on x =
(

x(1)

x(2)

)
are satisfied.

Therefore, the optimization problem (17) can be rewritten as:

ỹ ∈ Argmin
y(1)∈ΣN
y(2)∈ΣM
s∈[0, 1]

{
s
(
‖Py(1)− y(1)‖(∗)+ ε1‖y(1)‖(1)

)
+(1− s)

(
ε2‖y(2)‖(2)

)}
, (26)
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where ỹ =

(
ỹ(1)

ỹ(2)

)
and s∗ denote the optimal solution of the optimization problem

(26). Furthermore, ỹ(1) and ỹ(2) are independent of each other.
At optimality of the problem (26), s∗ = 1 if ‖Pỹ(1)− ỹ(1)‖∗+ε1‖ỹ(1)‖(1) < ε2‖ỹ(2)‖(2)
and s∗ = 0 if ‖Pỹ(1)− ỹ(1)‖∗+ ε1‖ỹ(1)‖(1) > ε2‖ỹ(2)‖(2). In case ‖Pỹ(1)− ỹ(1)‖∗+
ε1‖ỹ(1)‖(1) = ε2‖ỹ(2)‖(2), s∗ can take any value in the interval [0, 1].
Hence, the statement of the Lemma 1 follows. By comparing optimal values of prob-
lems (23) and (24), one can conclude the optimal solution s∗ and, therefore, one can
get the optimal solution of the problem (17) by the system (25).

�

In general, one would like to avoid the optimal solution x̃(1) = 0, x̃(2) > 0, as it would
mean that the uncertainty about current pages is larger than the uncertainty about fu-
ture (not yet existent) pages. For this, one needs to guarantee that the optimal value
of the problem (23) is not greater than the optimal value of the problem (24) (i.e.
one would like to avoid point 2 of the Lemma 1). Further, we consider l1−, l2− and
Frobenius-norm formulations (12), (14) and (16) and we explicitly solve the opti-
mization problem (24) for each of these norms. Moreover, we state conditions on
parameters ε(ξ ), ε(ψ), ε(ζ ) and ε(χ), which guarantee that points 1 or 3 of the Lemma
1 are sufficiently satisfied.

Statement 1 Consider the robust reformulation (12) and apply the proposed change

of variables (25). In this case, ‖y(2)‖(2) = min
λ+µ=y(2)

{
‖λ‖∞ +∑

M
j=1

ε
(ζ )
j +ε

(χ)
j +1

ε(ζ )+ε(χ)+M
|µ j|
}

and the following holds:

min
y(2)∈ΣM

‖y(2)‖(2) =

 1
M , if

ε
(ζ )
j +ε

(χ)
j +1

ε(ζ )+ε(χ)+M
≥ 1

M , ∀ j = 1, ...,M

min j

{
ε
(ζ )
j +ε

(χ)
j +1

ε(ζ )+ε(χ)+M

}
, if min j

{
ε
(ζ )
j +ε

(χ)
j +1

ε(ζ )+ε(χ)+M

}
< 1

M .
(27)

Proof See the Appendix 9.4 for the proof.

Statement 2 Consider the robust reformulation (14) and apply the proposed change

of variables (25). In this case, ‖y(2)‖(2) = min
λ+µ=y(2)

{
‖λ‖2 +∑

M
j=1

ε
(ζ )
j +ε

(χ)
j +1

ε(ζ )+ε(χ)+1
|µ j|
}

and the following holds:

min
y(2)∈ΣM

‖y(2)‖(2) =

 1√
M
, if

ε
(ζ )
j +ε

(χ)
j +1

ε(ζ )+ε(χ)+1
≥ 1√

M
, ∀ j = 1, ...,M

min j

{
ε
(ζ )
j +ε

(χ)
j +1

ε(ζ )+ε(χ)+1

}
, if min j

{
ε
(ζ )
j +ε

(χ)
j +1

ε(ζ )+ε(χ)+1

}
< 1√

M
.

(28)

Proof See the Appendix 9.5 for the proof.

Statement 3 Consider the robust reformulation (16) and apply the proposed change
of variables (25). In this case, ‖y(2)‖(2) = ‖y(2)‖2 and the following holds:

min
y(2)∈ΣM

‖y(2)‖(2) =
1√
M
. (29)
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Proof The proof obviously follows from the direct minimization of the l2-norm.

Statements 1, 2 and 3 impose conditions on the optimal value of the problem (23),
under which points 1 or 3 of the Lemma 1 are satisfied. These conditions vary for
l1−, l2− and Frobenius-norm formulations and can be stated in the following way:

For the l1-case:
min

y(1)∈ΣN

{
‖Py(1)− y(1)‖1 + ε1‖y(1)‖(a)

}
≤ ε(ζ )+ε(χ)+M

M ,

min
y(1)∈ΣN

{
‖Py(1)− y(1)‖1 + ε1‖y(1)‖(a)

}
≤min j

{
ε
(ζ )
j + ε

(χ)
j +1

}
.

(30)

For the l2-case:
min

y(1)∈ΣN

{
‖Py(1)− y(1)‖2 + ε1‖y(1)‖(c)

}
≤ ε(ζ )+ε(χ)+1√

M
,

min
y(1)∈ΣN

{
‖Py(1)− y(1)‖2 + ε1‖y(1)‖(c)

}
≤min j

{
ε
(ζ )
j + ε

(χ)
j +1

}
.

(31)

For the Frobenius-norm:

min
y(1)∈ΣN

{
‖Py(1)− y(1)‖2 + ε1‖y(1)‖2

}
≤ ε(ζ )+ ε(χ)+1√

M
. (32)

Notice, that ε1 = ε(ξ )+ ε(ψ).

Theorem 2 (Sufficient Conditions) Consider statements (30), (31) and (32).

1. Condition (30) is sufficiently satisfied, if ε(ξ )+ ε(ψ) ≤ 1.

2. Condition (31) is sufficiently satisfied, if
{

ε(ξ )+ ε(ψ) ≤ 1,
ε(ζ )+ ε(χ) ≥

√
M−1.

3. Condition (32) is sufficiently satisfied, if ε(ζ )+ ε(χ) ≥ (ε(ξ )+ ε(ψ))
√

M−1.

Proof Consider l1-norm and let ȳ(1) be such a vector, that ȳ(1) = Pȳ(1) and ȳ(1) ∈ ΣN
(notice, that it exists due to the Perron-Frobenius theorem). In this case,

min
y(1)∈ΣN

{
‖Py(1)− y(1)‖1 + ε1‖y(1)‖(a)

}
≤ ε1‖ȳ(1)‖(a) ≤ ε1 = ε

(ξ )+ ε
(ψ),

where the last inequality holds due to the definition of the norm ‖ · ‖(a).
Therefore, condition (30) is satisfied, if ε(ξ )+ ε(ψ) ≤ 1+ ε(ζ )+ε(χ)

M ,

ε(ξ )+ ε(ψ) ≤ 1+min j

{
ε
(ζ )
j + ε

(χ)
j

}
.

It is, therefore, sufficient that ε(ξ )+ε(ψ) ≤ 1 in the absence of information about new
pages ambiguity parameters (i.e. about ε

(ζ )
j and ε

(χ)
j ). Hence, the statement 1 of the

Theorem 2 follows.
Analogically, we obtain the sufficient conditions for l2- and Frobenius-norm refor-
mulations, i.e. statements 2 and 3 of the Theorem 2.

�
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Condition 1 of the Theorem 2 depends neither on the number M of new pages in the
network nor on the uncertainty levels ε(ζ ) and ε(χ), which makes the l1− formula-
tion convenient for the analysis. For the case of l2− robust reformulation, condition
2 of the Theorem 2 states that the uncertainty about future pages ε(ζ )+ ε(χ) should
grow faster than (

√
M− 1) as the number M of new pages increases. For the case

M = 0 and M = 1, this condition is automatically satisfied. For higher dimensions
(i.e. M > 1), this condition can be statistically tested from real-world data. Similarly,
for the Frobenius-norm formulation (16), condition 3 of the Theorem 2 requires that
the uncertainty about future pages ε(ζ )+ε(χ) grows faster than (ε(ξ )+ε(ψ))

√
M−1

as the number M of new pages increases.
Notice, that in the work of A. Juditsky and B. Polyak [13] small perturbations ε1 =
0.01 were considered in order to avoid complete ”equalization” of the scores. More-
over, M = 0 in the work [13]. Thus, conditions 1, 2 and 3 of the Theorem 2 were
satisfied in the work of A. Juditsky and B. Polyak [13].
Further, let us assume that conditions of the Theorem 2 are satisfied. In this case,
we focus on the numerical solution of the problem (23), which we formulate in the
following general form:

min
x∈ΣN

{
‖Px− x‖(∗)+ ε‖x‖(1)

}
, (33)

where we, with some abuse of notations, denote ỹ(1) by x and ε1 by ε and where
norms ‖ · ‖(∗) and ‖ · ‖(1) correspond to the norms in l1−, l2− and Frobenius-norm
formulations (12), (14) and (16).
In the following section, we study numerical techniques for the solution of the opti-
mization problem (33).

5 Numerical algorithms

Consider optimization problems (12), (14) and (16). As it is demonstrated in the pre-
vious section for each of these problems, it is sufficient to solve the optimization
problem of the type (33) if conditions (30), (31) or (32) are correspondingly satisfied.
In medium- to large-dimensional cases (i.e. N = 1.e3 – 1.e6), convex non-smooth
optimization problem (33) can be solved numerically using available optimization
techniques, including interior-point methods, mirror-descent algorithms [14,19] and
randomized techniques [11,12,18]. In huge-dimensional cases (i.e. N = 1.e6 – 1.e9),
one can employ randomized subgradient algorithms, which are specifically designed
for sparse matrices by Y. Nesterov [20]. Moreover, one can use less accurate but ex-
tremely fast numerical methods proposed in [13,17,25].
In this section, we do not consider these algorithms, but we propose some techniques,
which allow to smoothen optimization problems (12), (14), (16) and to solve them
numerically via approximation.
Further, we consider the optimization problem (33) with ‖ ·‖(∗) = ‖ ·‖2 and ‖ ·‖(1) =
‖ · ‖2, i.e. we focus on the Frobenius-norm formulation (16) under conditions of the
Theorem 2. We choose this formulation, as it imposes the upper bound on the l2− for-
mulation (14) and as it is a non-smooth non-separable optimization problem, which



Robust PageRank 17

implies additional difficulty.
Differently, one could use the following upper bound for the approximate solution of
the optimization problem (14):

min
x∈ΣN

λ+µ=x

{
‖Px− x‖2 + ε‖λ‖2 +

N

∑
j=1

ε j|µ j|
}
≤ min

x∈ΣN

{
‖Px− x‖2 +

N

∑
j=1

ε jx j

}
,

which we do not consider in this article but which can be approached analogically to
the Frobenius-norm formulation.
We also do not consider numerical algorithms for the solution of l1− norm formula-
tion (12), as this problem can be bounded by the optimization problem with a sep-
arable non-smooth part and, therefore, it can be solved approximately via the well-
known projected coordinate descent algorithm (see, for example, [25]).
Therefore, let us consider the optimization problem (16). Its reformulation (23) under
condition (32) implies the following optimization problem:

x̃ ∈ Argmin
x∈ΣN

{
‖Px− x‖2 + ε‖x‖2

}
, (34)

where ε = ε(ξ )+ ε(ψ).
We solve the optimization problem (34) using the following steps:

Step 1: Apply a nonstandard normalization instead of simplex constraints x ∈ ΣN .
This would allow us to simplify the constraints of the optimization problem (34);

Step 2: Bound the feasible set of the problem (34) so, that it does not include any of
non-smooth points;

Step 3: Solve the optimization problem (34) via projected subgradient method on
the feasible set.

Further, we consider each of these steps in more details.

Nonstandard normalization: Assume that one page (page N) is known to have the
highest rank (see [25]) and, therefore, let us use the nonstandard normalization xN = 1
instead of ∑

N
i=1 xi = 1. By this, we introduce the following optimization problem:

z ∈ Argmin
x∈X

f (x), f (x) = ‖Px− x‖2 + ε‖x‖2, (35)

where X = {x ∈ RN , xN = 1, x≥ 0}.
Notice, that the optimal value and the optimal solution of the problem (34) are related
to those of the problem (35) in the following way:{

f (x̃) = x̃N f (z),
x̃ = x̃Nz,

where z =


x̃1
x̃N
x̃2
x̃N
...
1

. This leads to the statement x̃N = 1
∑

N
i=1 zi

.
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Non-smooth points: The optimization problem (35) is non-smooth at least at one
point Px̄ = x̄, which is a possible optimal solution corresponding to the dominant (or
principal) eigenvector of the non-perturbed matrix P. Therefore, we first of all check
if the optimal solution of the problem (35) is always the point x̄: Px̄ = x̄. For this,
we solve the optimization problem (35) in small-dimensional cases with randomly
chosen non-negative column-stochastic matrix P. We can see that the following two
cases are possible:

1. Optimal solution of the problem (35) is the point x̄ : Px̄ = x̄ (Figure 2 (a)), in
which case the function f (x) is non-smooth at optimality;

2. Optimal solution of the problem (35) is a point x : Px 6= x (Figure 2 (b)), in which
case the function f (x) is smooth at optimality.

(a) Non-smooth optimality. (b) Smooth at optimality.

Fig. 2: Function f (x) for randomly chosen P in small-dimensional cases.

The optimal solution of the problem (35) is not necessarily the principal eigenvector
of the matrix P. Therefore, there may exist at least one not optimal point, where the
function is non-smooth.
Further, notice that the optimization problem (35) is non-smooth ∀x̄ such that Px̄ = x̄.
As soon as the matrix P is non-negative and column-stochastic, its maximal eigen-
value (λ = 1) is not necessarily a simple root of the characteristic polynomial ac-
cording to the Perron-Frobenius theorem [10]. Therefore, there may exist multiple
number of points x̄ : Px̄ = x̄. If the matrix P would be irreducible, the maximal eigen-
value (λ = 1) would be the simple root of the characteristic polynomial. However,
there still could exist multiple complex eigenvalues with absolute value 1, which
would strongly influence convergence of numerical algorithms (for example, the
well-known power method would not converge).
We propose a technique, which guarantees that at each iteration k the objective func-
tion is smooth at the point x(k).
Notice, that the subgradient of the function f (x) at any point x : Px 6= x is unique and
is equal to:

∂ f (x) =
(P− I)T (P− I)x
||Px− x||2

+ ε
x
‖x‖2

, where Px 6= x. (36)
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Notice also, that ||x||2 > 0 for all points in the feasible set of the problem (35), as
xN = 1.
Now, consider a perturbed Google matrix G = αP+(1−α)S, where S is the doubly
stochastic matrix with entries equal to 1

N and where α = 0.85 is the damping factor
[9,16]. This matrix was initially proposed by S. Brin and L. Page [5] and was used
by Google in the well-known PageRank algorithm y(k+1) = Gy(k). For the matrix G
one can guarantee the uniqueness of the maximal (in absolute value) eigenvalue (i.e.
|λ |= 1) and, therefore, the uniqueness of the eigenvector ȳ corresponding to it [25].
Moreover, one can guarantee the convergence of the power method y(k+1) = Gy(k) to
ȳ : Gȳ = ȳ due to the Perron-Frobenius theorem for positive matrices.
Further, consider the following convex function and its corresponding subgradient:

g(x) = ||Gx− x||2 + ε||x||2,

∂g(x) =
(G− I)T (G− I)x
||Gx− x||2

+ ε
x
||x||2

.

Notice, that the function g(x) has a unique non-smooth point ȳ, which corresponds to
Gȳ = ȳ and which, in general, may differ from x̄ : Px̄ = x̄.
The Perron-Frobenius theorem for positive matrices implies that the principal eigen-
vector of the matrix G has only positive entries. Hence, one can guarantee that Gx 6= x
for each chosen x by setting ranks of some spam pages to zero (i.e. xi = 0 for some
i). By this, one guarantees the uniqueness of the subgradient at each feasible point.
Therefore, we solve the following optimization problem numerically:

min
x∈X̄

g(x), g(x) = ‖Gx− x‖2 + ε‖x‖2, (37)

where X̄ = {x ∈ RN , x1 = 0, xN = 1, x≥ 0}, where x1 corresponds to the spam page.

Subgradient method: We solve the optimization problem (37) by the projected sub-
gradient algorithm, where we do not iterate over elements x1 and xN :

x(k+1)
i = max

{
x(k)i − tk

(
([G]i− ei,Gx− x)
||Gx− x||2

+ ε
xi

||x||2

)
, 0
}
, ∀i = 2,N−1, (38)

where [G]i is the i-th column of the matrix G, ei is the i-th column of the matrix IN
and tk is the chosen step size. In the method (38), the subgradient is unique at each
feasible point of the problem (37).
In general, subgradient methods are not necessarily the descent methods. There-
fore, one keeps track of the best function value at every iteration k. i.e. gbest =

min
i∈{1,2,...,k}

g(x(i)). In this article, we test the stopping rule g(x(k+1)) > g(x(k)) instead

of keeping track of the best function value, as well as we do not iterate over pages
with zero-ranks. This allows to enhance efficiency of the algorithm.

5.1 Numerical results

Consider the following two ranking models (Figure 3 (a) and (b)), which are also dis-
cussed in the works [13,25,28]. For both models, nodes (e.g. web-pages) are shown
as circles, while references (e.g. web-links) are denoted by arrows.
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(a) Model 1.
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(b) Model 2.

Fig. 3: Network models for testing purposes.

Model 1: Let us start by considering Model 1 (Figure 3 (a)). In this model, node (n,n)
represents a dangling vertex, which makes the transition matrix P reducible, leading
to non-uniqueness of the eigenvector corresponding to the eigenvalue λ = 1. To avoid
reducibility of the matrix P, we need to guarantee that the number of outgoing links
is non-zero for each page. For this, we assume the ability of equally probable transi-
tions from the node (n,n) to any node in the Model 1 similarly to the approach used
by search engines. The transition matrix P corresponding to the Model 1 with equally
probable transitions from the vertex (n,n) becomes irreducible and aperiodic, which
guarantees the uniqueness of the eigenvector corresponding to the eigenvalue λ = 1,
as well as the convergence of the well-known power method x(k+1) = Px(k) [13,25,
28].
Figure 4 demonstrates the sparsity of the matrix P corresponding to the Model 1 for
networks with N = n2 = 9 and N = n2 = 100 nodes: zero elements of the matrix P
are shown with light blue color. The matrix P is, clearly, highly sparse.

(a) N=9. (b) N=100.

Fig. 4: Non-zero elements of the transition matrix P corresponding to the Model 1.
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We are interested in finding ranks xi, j of each node of the network.
Taking arbitrary value of xn,n, say xn,n = n2, we obtain the system of equations de-
scribing ranks of the Model 1 [25]:

x1,1 =
1
n2 xn,n = 1,

xi,1 = x1,i =
1
2 xi−1,1 +1, i = 2, ...,n,

xi, j =
1
2 xi−1, j +

1
2 xi, j−1 +1, j, i = 2, ...,n−1,

xn, j = x j,n = xn, j−1 +
1
2 xn−1, j +1, j = 2, ...,n−1,

xn,n = xn−1,n + xn,n−1 +1 = n2.

(39)

The system of equations (39) has a closed form solution and, therefore, it can be
solved explicitly for each xi, j [25,28]. This allows us to test the performance of the
subgradient algorithm (38) in comparison with the true ranks of the Model 1.

Model 2: The second model (i.e. Model 2 in the Figure 3 (b)) differs from the Model
1, as it has only one link from the node (n,n). As the transition matrix corresponding
to the Model 2 is periodic, the power method x(k+1) = Px(k) does not converge for it
[25,28].
Taking arbitrary value of x1,1, we obtain the system of equations describing ranks of
the Model 2 [25]:

xi,1 = x1,i =
1
2 xi−1,1, i = 2, ...,n, x1,1 = 1,

xi, j =
1
2 xi−1, j +

1
2 xi, j−1, j, i = 2, ...,n−1,

xn, j = x jn = xn, j−1 +
1
2 xn−1, j, j = 2, ...,n−1,

xn,n = xn−1,n + xn,n−1.

(40)

Analogically to the Model 1, the system of equations (40) can be solved explicitly.
Further, we proceed to standard normalization and get the normalized ranks as x∗i, j =

xi, j
∑i, j xi, j

for both Model 1 and Model 2 (see Figure 5). Notice, that these ranks corre-
spond to the dominant eigenvector of the matrix P. However, they are not necessarily
the optimal solution of optimization problems (34) or (37).

(a) Model 1.
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(b) Model 2.

Fig. 5: Explicit ranks of (a) Model 1 and (b) Model 2 (N = 50002 and N = 502

correspondingly).
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For N = 10.000 we (i) compute exact ranks of the described models (i.e. Model 1 and
Model 2) via systems (39) and (40). Afterwards, we (ii) solve the reformulation (37)
by the algorithm (38) described in the Section 5. Further, we test different possible
step sizes tk in the algorithm (38).
For Model 1 and Model 2 correspondingly, Figure 6 demonstrates the optimal value
convergence of the problem (37) obtained by the algorithm (38) with the diminishing
step size (i.e. limk→∞ tk = 0, ∑

∞
k=1 tk =∞) and with the starting point x= (0, 1, ...,1)T .
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Fig. 6: Optimal value convergence for the problem (37) obtained by the algorithm
(38) with diminishing step size tk = 1

(k+1)d , ∀k with ε = 1 and d ∈ (0,1).

As the subgradient method is not necessarily the descent method, one should, in gen-
eral, keep track of the best function value at every iteration k: gbest = min

i∈{1,2,...,k}
g(x(i)).

We, however, test the performance of the stopping rule g(x(k+1))> g(x(k)) instead of
keeping track of the best function value. This allows to enhance efficiency of the al-
gorithm (Figure 6). In the Figure 6, one can see that larger step sizes lead to the earlier
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break of iterations under the stopping rule g(x(k+1))> g(x(k)).

Figure 7 compares ranks estimated via algorithm (38) with the dominant eigenvector
of the matrix P.
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Fig. 7: Model 1: Estimated ranks v.s the dominant eigenvector.

In the example of Figure 7 we use ε = 1 as the parameter of the optimization problem
(37). For larger values of ε , the robust eigenvector stops distinguishing ranks of high-
importance pages. This is in line with conditions (30), (31) and (32) and the Theorem
2, which claim that the uncertainty about future pages becomes dominant if the value
of ε1 = ε gets too high, which makes ranks of current pages indistinguishable from
each other. Therefore, increasing the value of ε even further would lead to the solu-
tion, where one cannot differ between ranks of pages x2,...,xN−1 at all (notice, that
x1 = 0 and xN = 1 are fixed in the optimization problem (37)).
For small values of ε (e.g. ε << 1), the optimal solution of the problem (34) should
approach the dominant eigenvector of the unperturbed transition matrix P. As we
solve the optimization problem (37) instead of the problem (34) for numerical pur-
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poses, our optimal solution approaches the unique dominant eigenvector of the Google
matrix G = αP+(1−α)S, with S being the doubly stochastic matrix with elements
1
N and the damping factor α = 0.85.
Figure 8 (a) demonstrates values xi, j, ∀i, j = 1, ...,n of the dominant eigenvector of
the matrix G with α = 0.99 for Model 1. Large amount of high-importance pages
have the same rank already for α = 0.99, which can be also observed in the Figure
8 (b) (view from above) [25,28]. Even more pages become indistinguishable if we
decrease the damping factor α .

(a) Ranks xi, j, ∀i, j = 1, ...,n. (b) View from above.

Fig. 8: Eigenvector of the Google matrix G = αP+(1−α)S with α = 0.99 corre-
sponding to the Model 1.

By this, one could claim that the dominant eigenvector of the matrix G should be
viewed as the robust eigenvector of the perturbed family of matrices Q defined by
(7), (8) and (9). This, however, would not provide the methodology to rank high-
importance pages, which are the core of all search engine results. For small- and
medium-size problems, the optimal solution of the optimization problem (37) with
ε ≤ 1 provides better results in terms of ranking of high-importance pages than the
direct use of the transition matrix G.
Further, we provide the results for the subgradient method (38) for the following step
sizes for Model 2 with N = 10.000:

Constant step length: tk = h
||∂g(x(k))||2

, ∀k;

Polyak’s step size: tk =
g(x(k))−g∗

||∂g(x(k))||22
, where g∗ is the (unknown) optimal value for the

problem (34):

tk =
g(x(k))−g∗

||∂g(x(k))||22
≈

g(x(k))− min
i∈{1,2,...,k}

g(x(i))+ 1
k

||∂g(x(k))||22
, (41)

tk =
g(x(k))−g∗

||∂g(x(k))||22
≈

g(x(k))− min
i∈{1,2,...,k}

g(x(i))+ 1√
k

||∂g(x(k))||22
. (42)
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Notice, that one can use tk = 1
k||∂g(x(k))||22

and tk = 1√
k||∂g(x(k))||22

instead of correspond-

ing step sizes (41) and (42) in case one applies the stopping rule g(x(k+1))> g(x(k)).
This follows from the fact, that g(x(k)) = gbest = mini∈{1,2,...,k} g(x(i)) if the stopping
rule is implemented. Otherwise, one needs to use step sizes (41) and (42) directly.
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Fig. 9: Model 2: Optimal solution of the problem (37) obtained by the algorithm (38)
with ε = 1 and the stopping rule g(x(k+1))> g(x(k)).
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Fig. 10: Model 2: Estimated ranks v.s the dominant eigenvector.
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Similarly to the Figure 7, in Figures 9 and 10 we use ε = 1 as the parameter of the
optimization problem (37). For larger values of ε , the robust eigenvector does not dis-
tinguish ranks of high-importance pages according to conditions (30), (31) and (32)
and the Theorem 2.
Finally, we compare results obtained by the use of the stopping rule g(x(k+1)) >
g(x(k)) and the results implied by the standard for subgradient algorithms choice of
the function value: gbest = min

i∈{1,2,...,k}
g(x(i)). From Figures 11 and 12, one can see that

there is no sufficient gain in estimation accuracy in case one keeps track of the best
function value till the iteration k: the function value decreases monotonically till the
iteration number k ≈ 100 (see Figures 11 and 12), after which the step size is being
reduced but no additional accuracy is being achieved.
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Fig. 11: Model 1: Optimal solution of the problem (37) obtained by the algorithm
(38) without stopping rule.
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Fig. 12: Model 1: Optimal solution of the problem (35) obtained by the algorithm
(38) with the standard for subgradient algorithms choice of the function value gbest .

In the next section, we discuss the Google matrix G and corresponding power meth-
ods designed for high-dimensional cases.
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6 Meaning of α in the Google matrix G = αP+(1−α)S

Let L be the number of users currently sitting on the web-site j. Suppose, there are
r links from this site. The users can follow the links independently from each other.
Suppose also, that there are two additional possibilities for the users: (i) they can
leave the site j and go to some random web-site known to the search engine and (ii)
they can leave the Internet completely (this possibility includes leaving to some site
which is not yet ranked by the search engine, i.e. to a very recently appeared web-
site). Notice, that one can consider possibilities (i) and (ii) as additional links from
the site.
Let us denote by Ei the event when a user sitting on the web-site j chooses a link
i, ∀i = 1, ...,r + 2, where ”links” r + 1 and r + 2 correspond to the observed pos-
sibilities (i) and (ii). If the random variable Li indicates the number of times link
number i is observed over L trials, the vector (L1, ...,Lr+2) follows a multinomial
distribution with parameters L and p, where p = (p1, ..., pr+2) is the vector of proba-
bilities corresponding to events Ei, ∀i = 1, ...,r+ 2 with ∑

r+2
i=1 pi = 1. In our setting,

the users make their decisions independently of each other and links are supposed
to be available at all times. Hence, we can now state the probability mass function
P(L1 = l1, ...,Lr+2 = lr+2) that the decision Ei occurs exactly li times ∀i = 1, ...,r+2
with ∑

r+2
i=1 li = L:

P(L1 = l1, ...,Lr+2 = lr+2) =
L!

l1!l2!...lr+2!
p1

l1 p2
l2 ...(pr+2)

lr+2 . (43)

For the fixed observation (l1, ..., lr+2), the maximum likelihood estimator of the prob-
ability, that a random user chooses the link i is equal to p̂i =

li
L (Figure 13).

Web-site j

Web-site i = 1 Web-site i = r

(ii) i = r+2(i) i = r+1

p̂1 = l1
L p̂r = lr

L

p̂r+1 =
lr+1

L p̂r+2 =
lr+2

L

Existing links

Fig. 13: Links outgoing from the web-site j.

By the Law of Large Numbers, ∀i = 1, ...,r+2 and ε > 0, P
(
|p̂i− pi| > ε

)
→ 0, as
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L→∞. Therefore, the distribution of the fraction p̂i =
li
L is increasingly concentrated

near the expected value of the fraction, which we denote by pi =
l̄i
L with a small abuse

of notations. This means, that the probability P(L1 = l̄1, ...,Lr+2 = l̄r+2) converges to
1 as L→ ∞.
Asymptotically, we can use the Stirling’s approximation l̄i! ≈

√
2π l̄i (k̄i)

l̄ie−l̄i in or-
der to receive the statement

l̄1 l̄2...l̄r+2 ≈
(L!)2e2L

(2π)r+2L2L ,

where we set P(L1 = l̄1, ...,Lr+2 = l̄r+2)≈ 1 for large enough L.
This especially holds true for high-ranked web-sites with high probabilities to enter.
These web-sites are the core of all search engine results and are, therefore, of primal
interest to us.
Further, it is not difficult to obtain the following system of equations:{

∏
r+2
i=1 pi ≈ 1

(2πL)r+1

∑
r+2
i=1 pi = 1,

which can be written as {
pr+1 pr+2 ≈ 1

(2πL)r+1
∏

r
i=1 pi

pr+1 + pr+2 = 1−∑
r
i=1 pi.

(44)

Notice, that the probability ∑
r
i=1 pi describes the average ratio of users who follow

the existing links on a web-site j, i.e. links i, ∀i = 1, ...,r. This probability, in general,
can be estimated for any web-site by setting a counter of users who follow the links.
Let us suppose for a moment, that this probability is known for the site j and let
us denote it by p̄, i.e. p̄ = ∑

r
i=1 pi. Further, let us notice that ∏

r
i=1 pi > 0 and let us

denote by q̄ the function 1
(2πL)r+1

∏
r
i=1 pi

, which depends on the number of users on the

web-site and on the product of probabilities ∏
r
i=1 pi.

We can now solve the system (44) with respect to pr+1 and pr+2 in order to estimate
the probabilities of options (i) and (ii):{

pr+1 ≈ 0.5(1− p̄)
(

1±
√

1− 4q̄
(1−p̄)2

)
pr+2 = 1− p̄− pr+1,

(45)

where p̄ = ∑
r
i=1 pi and q̄ = 1

(2πL)r+1
∏

r
i=1 pi

.

Importantly, one can always set the number of users L on the web-site to be so high,
that 1− 4q̄

(1−p̄)2 > 0 is satisfied.
Further, we assume that the probability pr+2 to leave the Internet or to go to some
recently appeared web-site to be small enough. This leads to the probability choice
pr+1 = 0.5(1− p̄)

(
1+
√

1− 4q̄
(1−p̄)2

)
. Otherwise, the assumption would be opposite:

high probability to leave the Internet and small probability to choose randomly among
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ranked web-sites.
Using Taylor approximation in the system (45) w.r.t. q̄∼ 1

Lr+1 , we claim{
pr+1 ≈ (1− p̄)

(
1− q̄

(1−p̄)2

)
pr+2 ≈ (1− p̄) q̄

(1−p̄)2 .

Further, if we suppose that
Assumption 1: the probability pr+1 is equally distributed through all N web-sites in
the network;
Assumption 2: probabilities pi are equal ∀i = 1, ...,r;
Assumption 3: the term q̄

(1−p̄)2 is small enough to be neglected,

we can write the following transiting matrix P̄ for current N pages:

P̄≈ p̄P+(1− p̄)S, (46)

where S is the doubly stochastic matrix with entries 1
N and P is the initial transition

matrix with r non-zero entries 1
r in the column j, ∀ j = 1, ...,N (notice, that number r

of ougoing links is web-site dependent).
Therefore, the matrix (46) coincides with the Google matrix G = αP+ (1−α)S,
where α = p̄ is the probability to follow links provided on a web-site. Google uses
α = 0.85 for the computations. It means, that 15% of users do not follow the links
provided on web-sites.
Differently, one could change the Assumption 1 and claim the following:
Assumption 1 (new): the probability pr+1 is equally distributed among all web-sites
except those which are provided as links on the current web-site j.
In this case, one would use another stochastic matrix S̃ with zero entry (i, j), if there
is a direct link from j to i, ∀i, j = 1, ...,N. The transition matrix P̃ would, therefore,
become

P̃≈ p̄P+(1− p̄)S̃, (47)

where S̃ is a stochastic matrix with the entry S̃i j =
1

N−r if there is no direct link from
j to i, ∀i, j = 1, ...,N.
Importantly, transition matrices P̄ and P̃ have only positive entries. Therefore, their
eigenvectors, corresponding to the eigenvalue λ = 1 are unique and, moreover, power
methods x(k+1) = P̄x(k) and x(k+1) = P̃x(k) converge correspondingly to their domi-
nant eigenvectors according to the Perron-Frobenius theorem for positive matrices
for all starting points x(0) satisfying simplex constraints.

High-dimensional algorithms for robust PageRank: Numerically, it is convenient to
use the power method x(k+1) = P̄x(k) used by Google, as it can be written as

x(k+1) = p̄Px(k)+
1− p̄

N
1N , (48)

where 1N is the vector of all-ones of the length N arising from 1
N1N = Sx(k).

However, under the Assumption 1 (new), the following power method is to be used:

x(k+1) = p̄Px(k)+(1− p̄)S̃x(k), (49)
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where S̃ is the column-stochastic matrix with (i, j) being zero if there is a direct link
from the site j to the site i.
Power iterations (48) and (49) both work in case of huge dimensionality and converge
linearly with the rate λ1

λ2
= 1

λ2
, where λ2 is the second eigenvalue of the correspond-

ing transition matrix (either P̄ or P̃). They converge to PageRank estimates, which
are biased with respect to the dominant eigenvector of the matrix P.
We compare dominant eigenvectors of matrices P̄ and P̃ with the dominant eigenvec-
tor of the matrix P for Model 2 described in the Section 5.1. The number of nodes in
the network is N = n2 = 40.000 (Figures 14, 15, 16, 17).
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Fig. 14: Model 2: Part of xi, j elements computed via algorithms (48) and (49).
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Fig. 15: Model 2: Diagonal elements computed via algorithms (48) and (49).

In general, the dominant eigenvector of the matrix P̄ may differ from the dominant
eigenvector of the matrix P̃. Both of these vectors can approximate PageRank, which
is robust in terms of perturbations in links. However, as the probability pr+2 to leave
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the Internet or to go to a newly appeared web-site has been neglected (as it is propor-
tional to 1

Lr+1 ), dominant eigenvectors of P̄ and P̃ cannot be considered as approxima-
tions for the PageRank robust to the long-term perturbations in the number of nodes.
In order to take these perturbations into account, one would need to account for the
probability pr+2 avoiding neglect of terms in the system (45).
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Fig. 16: Model 2: Antidiagonal elements computed via algorithms (48) and (49).
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Fig. 17: Model 2: Last row elements computed via algorithms (48) and (49).

In the Figures 14, 15, 16, 17 one can see, that the difference between principal eigen-
vectors of matrices P̄ and P̃ is negligible for Model 2. Algorithm (48) is, however,
more efficient numerically.
In order to recover the dominant eigenvector of the unperturbed transition matrix P
in huge dimensional cases, one could implement fast iterative algorithms of the type
x(k+1) = P̄kx(k) with transition matrix P̄k adapted iteratively so, that it converges to the
matrix P. Such algorithms are discussed in details in the works of A. Juditsky and B.
Polyak [13], B. Polyak and A. Timonina [25], A. Timonina [28]. Furthermore, these
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iterative regularization schemes remind methods for solving variational inequalities
discussed in the work of A. Bakushinskij and B. Polyak [1].

7 Direction for future research

The PageRank problem is one of the most challenging problems in information tech-
nologies and numerical analysis due to its huge dimension and wide range of possible
applications.
First realizable application of the PageRank problem lies in the field of scientomet-
rics, i.e. the study for analyzing science and innovation by measuring impact of arti-
cles, journals and institutes via their scientific citations. The main difference between
the PageRank formulation (1) and the formulation suitable for scientometrics is incor-
porated in transition probabilities Pi j: journals may refer to each other multiple times
via one publication, while in the Internet multiple references from the web-page i to
the web-page j are considered as a single reference.
Furthermore, there is a potential application of the research to the area of finance:
the study on robust PageRank can be extended to the robust ranking measurement
technique of systemic risk in the financial sector. To realize this application, one
could consider the financial system as a complex network of financial institutions,
where financial dependencies represent existing links between these institutions, and
one would define the systemic risk as the probability of default of a large portion of
financial institutions in the network [26]. The robust approach is especially useful
for the systemic risk application, as the dependence structure of financial institutions
varies very fast, being subject to changes in loans, book and market values of accred-
ited firms, etc.
In our future research, we plan to study statistical methods to estimate the probability
for a random user in the Internet to leave to some web-page which is not yet ranked
by the search engine. In this article, this probability is considered to be small enough
(e.g. the probability pr+2 in the system (45)). However, explicit incorporation of this
probability in the analysis would lead to a better estimate for the robust PageRank.
Further, we plan to focus on different types of structured perturbations [13] and ran-
domized techniques for the computation of the robust stationary distribution in high-
dimensional cases [18,23,24]. We would also like to test the proposed approach on a
large-scale real-life data available for the World Wide Web [4].
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9 Appendix

Lemma 2 Conic optimization problem

f (x) = max
z∈RN

||z||1≤ε

|z j |≤ε j

zT x (50)

is equivalent to the following minimization problem:

f (x) = min
λ+µ=x

{
ε‖λ‖∞ +

N

∑
j=1

ε j|µ j|

}
. (51)

Proof Let us dualize the optimization problem (50). First of all, notice that

max
z∈RN

||z||1≤ε

|z j |≤ε j

zT x ⇐⇒ max
z∈RN , t∈RN

{0,+}
∑

N
i=1 ti≤ε

z j≤t j
−z j≤t j
z j≤ε j
−z j≤ε j

zT x.

Therefore, the Lagrangian L can be written in the following form for dual variables
α,β ,γ,η ,ν , where α ∈ R{0,+} and β ,γ,η ,ν ∈ RN

{0,+}:

L = zT x−α

(
N

∑
i=1

ti− ε

)
−

N

∑
j=1

(
β j (z j− t j)+ γ j (−z j− t j)

)
−

−
N

∑
j=1

(
η j (z j− ε j)+ν j (−z j− ε j)

)
= αε +

N

∑
j=1

(η j +ν j)ε j +

+
N

∑
j=1

z j
(
x j−β j + γ j−η j +ν j

)
+

N

∑
j=1

t j
(
β j + γ j−α

)
.

By strong duality, the following holds

max
z∈RN

||z||1≤ε

|z j |≤ε j

zT x = max
z∈RN

t∈RN
{0,+}

min
β ,γ,η ,ν∈RN

{0,+}
α∈R{0,+}

L = min
β ,γ,η ,ν∈RN

{0,+}
α∈R{0,+}

max
z∈RN

t∈RN
{0,+}

L ,

where the following is true at the point of maximum over z, t:

x j−β j + γ j−η j +ν j = 0, ∀ j = 1, ...,N.

β j + γ j−α ≤ 0, ∀ j = 1, ...,N.

Substituting these equations into the Lagrangian and maximizing over z and t, we get

L = αε +
N

∑
j=1

(η j +ν j)ε j. (52)



Robust PageRank 35

Now, let us make the following change of variables:

λ j = β j− γ j, ∀ j = 1, ...,N,

µ j = η j−ν j ∀ j = 1, ...,N.

Notice, that x j = λ j + µ j, ∀ j = 1, ...,N. At the point of minimum over α, η , ν the
term η j +ν j behaves as |µ j|. This happens, because at optimality µ j = η j, ν j = 0 if
µ j ≥ 0 and µ j = −ν j, η j = 0 if µ j ≤ 0. Similarly, β j + γ j, ∀ j = 1, ...,N behaves as
|λ j|, ∀ j = 1, ...,N at optimality, which leads to α = ‖λ‖∞.
Hence, equation (52) under the proposed change of variables applies the statement of
the Lemma 2.

Lemma 3 Conic optimization problem

f (x) = max
z∈RN

||z||2≤ε

|z j |≤ε j

zT x (53)

is equivalent to the following minimization problem:

f (x) = min
λ+µ=x

{
ε‖λ‖2 +

N

∑
j=1

ε j|µ j|

}
. (54)

Proof Let us dualize the optimization problem (53). First of all, notice that

max
z∈RN

||z||2≤ε

|z j |≤ε j

zT x ⇐⇒ max
z∈RN√

∑
N
i=1 z2

i ≤ε

z j≤ε j
−z j≤ε j

zT x.

Therefore, the Lagrangian L can be written in the following form for dual variables
α,β ,γ , where α ∈ R{0,+} and β ,γ ∈ RN

{0,+}:

L = zT x−α

(√
N

∑
i=1

z2
i − ε

)
−

N

∑
j=1

β j (z j− ε j)−
N

∑
j=1

γ j (−z j− ε j) .

By strong duality, the following holds

max
z∈RN

||z||2≤ε

|z j |≤ε j

zT x = max
z∈RN

min
α∈R{0,+}

β ,γ∈RN
{0,+}

L = min
α∈R{0,+}

β ,γ∈RN
{0,+}

max
z∈RN

L ,

where the following must be true at the point of maximum over z:

∂L(z,α,β ,γ)

∂ z j
= x j−β j + γ j−α

z j

‖z‖2
= 0, ∀ j = 1, ...,N.

Substituting this equation into the Lagrangian, we get

L (z,α,β ,γ) = αε +
N

∑
j=1

(β j + γ j)ε j. (55)
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Now, let us make the following change of variables:

λ j = α
z j

‖z‖2
, ∀ j = 1, ...,N,

µ j = β j− γ j, ∀ j = 1, ...,N.

Notice, that α = ‖λ‖2 and that at the point of minimum over α, β , γ the term β j +γ j
behaves as |µ j|. This happens, because at optimality β j = µ j, γ j = 0 if µ j ≥ 0 and
β j = 0, γ j =−µ j if µ j ≤ 0.
Hence, equation (55) applies the statement of the Lemma 3 under the proposed
change of variables.

Lemma 4 (see Theorem 3.1 in [7]) For ai ∈ Rni , ∀i = 0, ...,N, ξ j ∈ Rn0×n j , j =
1, ...,N the following holds:

max
‖ξ1‖F≤ε

(ξ1)

‖ξ2‖F≤ε
(ξ2)

...
‖ξN‖F≤ε(ξN )

∥∥a0 +
N

∑
i=1

ξiai
∥∥

2 = ‖a0‖2 +
N

∑
i=1

ε
(ξi)‖ai‖2.

Proof

‖a0 +
N

∑
i=1

ξiai‖2
2 =

(
a0 +

N

∑
i=1

ξiai

)T (
a0 +

N

∑
i=1

ξiai

)
=

= ‖a0‖2
2 +

N

∑
i=1
‖ξiai‖2

2 +2
N

∑
j=1
‖aT

0 ξ ja j‖2 +2
N

∑
i=1

N

∑
j=i+1

‖aT
i ξ

T
i ξ ja j‖2 ≤

≤ ‖a0‖2
2 +

N

∑
i=1

(
ε
(ξi)
)2
‖ai‖2

2 +2‖a0‖2

N

∑
j=1

ε
(ξ j)‖a j‖2 +

+2
N

∑
i=1

N

∑
j=i+1

ε
(ξi)ε

(ξ j)‖ai‖2‖a j‖2 =
(
‖a0‖2 +

N

∑
i=1

ε
(ξi)‖ai‖2

)2
.

Hence,

‖a0 +
N

∑
i=1

ξiai‖2 ≤ ‖a0‖2 +
N

∑
i=1

ε
(ξi)‖ai‖2.

Equality holds if ξi = ξ ∗i =
ε(ξi)a0aT

i
‖a0‖2‖ai‖2

for a0 6= 0 (for a0 = 0 one can take arbitrary
a0 : ‖a0‖2 = 1).
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9.1 Proof of the Proposition 1

Proof Let u =

(
u1
u2

)
, where u1 is a vector of the length N and u2 is a vector of the

length M. Notice, that the following equality holds due to the duality of the l1-norm:

||Qx− x||1 =
∥∥∥∥(P+ξ ζ

ψ χ

)(
x(1)

x(2)

)
−
(

x(1)

x(2)

)∥∥∥∥
1
=

∥∥∥∥((P+ξ − IN)x(1)+ζ x(2)

ψx(1)+(χ− IM)x(2)

)∥∥∥∥
1
=

= max
u∈RN+M

||u||∞≤1

(
u1
u2

)T (
(P+ξ − IN)x(1)+ζ x(2)

ψx(1)+(χ− IM)x(2)

)
=

= max
u∈RN+M

||u||∞≤1

(
uT

1 (P− IN)x(1)+
(
uT

1 ξ +uT
2 ψ
)
x(1)+

(
uT

1 ζ +uT
2 (χ− IM)

)
x(2)
)
,

where IN and IM are identity matrices of sizes N×N and M×M correspondingly.
Further, the function ||Qx− x||1 can be bounded from above in line with the triangle
inequality and norm duality:

||Qx− x||1 ≤ ‖Px(1)− x(1)‖1 + max
u∈RN+M

||u||∞≤1

(
uT

1 ξ +uT
2 ψ
)
x(1)+

+ max
u∈RN+M

||u||∞≤1

(
uT

1 ζ +uT
2 (χ− IM)

)
x(2).

This leads to the statement:

max
Q∈Ξ

(l1)
||Qx− x||1 ≤ ‖Px(1)− x(1)‖1 + max

‖[ξ ] j‖1≤ε
(ξ )
j

∑i, j |ξi j |≤ε(ξ )

‖[ψ] j‖1≤ε
(ψ)
j

∑i, j |ψi j |≤ε(ψ)

max
u∈RN+M

||u||∞≤1

(
uT

1 ξ +uT
2 ψ
)
x(1)+

+ max
‖[ζ ] j‖1≤ε

(ζ )
j

∑i, j |ζi j |≤ε(ζ )

‖[χ] j‖1≤ε
(χ)
j

∑i, j |χi j |≤ε(χ)

max
u∈RN+M

||u||∞≤1

(
uT

1 ζ +uT
2 (χ− IM)

)
x(2). (56)

Now, consider the following subproblem:

g1(x) = max
‖[ξ ] j‖1≤ε

(ξ )
j

∑i, j |ξi j |≤ε(ξ )

‖[ψ] j‖1≤ε
(ψ)
j

∑i, j |ψi j |≤ε(ψ)

max
u∈RN+M

||u||∞≤1

(
uT

1 ξ +uT
2 ψ
)
x(1).
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Let z = ξ T u1 +ψT u2. Based on the conditions of the problem (12), we can write

|z j|=
∣∣∣∣ N

∑
i=1

ξi ju1i +
M

∑
i=1

ψi ju2i

∣∣∣∣≤ N

∑
i=1

∣∣ξi j
∣∣+ M

∑
i=1

∣∣ψi j
∣∣≤ ε

(ξ )
j + ε

(ψ)
j ,

‖z‖1 =
N

∑
j=1

∣∣∣∣ N

∑
i=1

ξi ju1i +
M

∑
i=1

ψi ju2i

∣∣∣∣≤ N

∑
j=1

N

∑
i=1

∣∣ξi j
∣∣+ N

∑
j=1

M

∑
i=1

∣∣ψi j
∣∣≤ ε

(ξ )+ ε
(ψ),

where u1i, ∀i = 1, ...,N and u2i, ∀i = 1, ...,M are i-th coordinates of vectors u1 and
u2 correspondingly.
Hence,

g1(x) ≤ max
z∈RN

||z||1≤ε(ξ )+ε(ψ)

|z j |≤ε
(ξ )
j +ε

(ψ)
j

zT x(1) = (ε(ξ )+ ε
(ψ)) max

z∈RN

||z||1≤1

|z j |≤
ε
(ξ )
j +ε

(ψ)
j

ε(ξ )+ε(ψ)

zT x(1),

which is a strictly feasible conic optimization problem. Dualizing the constraints we
come to

g1(x) ≤
(
ε
(ξ )+ ε

(ψ)
)

min
λ+µ=x(1)

‖λ‖∞ +
N

∑
j=1

ε
(ξ )
j + ε

(ψ)
j

ε(ξ )+ ε(ψ)
|µ j|

=

=
(
ε
(ξ )+ ε

(ψ)
)
‖x(1)‖(a), (57)

where we denote the underlying norm by ‖x(1)‖(a).
Analogically, consider the other subproblem:

g2(x) = max
‖[ζ ] j‖1≤ε

(ζ )
j

∑i, j |ζi j |≤ε(ζ )

‖[χ] j‖1≤ε
(χ)
j

∑i, j |χi j |≤ε(χ)

max
u∈RN+M

||u||∞≤1

(
uT

1 ζ +uT
2 (χ− IM)

)
x(2).

Let z = ζ T u1 +(χT − IM)u2. Based on the conditions of the problem (12), we can
write

|z j|=
∣∣∣∣ N

∑
i=1

ζi ju1i +
M

∑
i=1

χi ju2i−u2 j

∣∣∣∣≤ N

∑
i=1

∣∣ζi j
∣∣+ M

∑
i=1

∣∣χi j
∣∣+1≤ ε

(ζ )
j + ε

(χ)
j +1,

‖z‖1 =
M

∑
j=1

∣∣∣∣ N

∑
i=1

ζi ju1i +
M

∑
i=1

χi ju2i−u2 j

∣∣∣∣≤ M

∑
j=1

N

∑
i=1

∣∣ζi j
∣∣+ M

∑
j=1

M

∑
i=1

∣∣χi j
∣∣+M ≤

≤ ε
(ζ )+ ε

(χ)+M.

Hence,

g2(x)≤ max
z∈RM

||z||1≤ε(ζ )+ε(χ)+M

|z j |≤ε
(ζ )
j +ε

(χ)
j +1

zT x(2) = (ε(ζ )+ ε
(χ)+M) max

z∈RM

||z||1≤1

|z j |≤
ε
(ζ )
j +ε

(χ)
j +1

ε(ζ )+ε(χ)+M

zT x(2),
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which is a strictly feasible conic optimization problem. Dualizing the constraints we
come to

g2(x) ≤
(
ε
(ζ )+ ε

(χ)+M
)

min
λ+µ=x(2)

‖λ‖∞ +
N

∑
j=1

ε
(ζ )
j + ε

(χ)
j +1

ε(ζ )+ ε(χ)+M
|µ j|


=
(
ε
(ζ )+ ε

(χ)+M
)
‖x(2)‖(b), (58)

where we denote the underlying norm by ‖x(2)‖(b).
Therefore, the statement of the Proposition 1 follows from equations (56), (57) and
(58).

9.2 Proof of the Proposition 2

Proof Let u =

(
u1
u2

)
, where u1 is a vector of the length N and u2 is a vector of the

length M. Notice, that the following equality holds due to the duality of the second
norm:

||Qx− x||2 =
∥∥∥∥(P+ξ ζ

ψ χ

)(
x(1)

x(2)

)
−
(

x(1)

x(2)

)∥∥∥∥
2
=

∥∥∥∥((P+ξ − IN)x(1)+ζ x(2)

ψx(1)+(χ− IM)x(2)

)∥∥∥∥
2
=

= max
u∈RN+M

||u||2≤1

(
u1
u2

)T (
(P+ξ − IN)x(1)+ζ x(2)

ψx(1)+(χ− IM)x(2)

)
=

= max
u∈RN+M

||u||2≤1

(
uT

1 (P− IN)x(1)+
(
uT

1 ξ +uT
2 ψ
)
x(1)+

(
uT

1 ζ +uT
2 (χ− IM)

)
x(2)
)
,

where IN and IM are identity matrices of sizes N×N and M×M correspondingly.
Furthermore, one can bound the norm ||Qx− x||2 from above based on the triangle
inequality and norm duality:

||Qx− x||2 ≤
≤ ‖Px(1)− x(1)‖2 + max

u∈RN+M

||u||2≤1

(
uT

1 ξ +uT
2 ψ
)
x(1)+ max

u∈RN+M

||u||2≤1

(
uT

1 ζ +uT
2 (χ− IM)

)
x(2),

which would lead to the upper bound for the value maxQ∈Ξ
(l2) ‖Qx− x‖2 (analogous

to the case of l1-norm).

max
Q∈Ξ

(l2)
||Qx− x||2 ≤ ‖Px(1)− x(1)‖2 +

+ max
‖[ξ ] j‖1≤ε

(ξ )
j

‖ξ‖F≤ε(ξ )

‖[ψ] j‖1≤ε
(ψ)
j

‖ψ‖F≤ε(ψ)

max
u∈RN+M

||u||2≤1

(
uT

1 ξ +uT
2 ψ
)
x(1)+ max

‖[ζ ] j‖1≤ε
(ζ )
j

‖ζ‖F≤ε(ζ )

‖[χ] j‖1≤ε
(χ)
j

‖χ‖F≤ε(χ)

max
u∈RN+M

||u||2≤1

(
uT

1 ζ +uT
2 (χ− IM)

)
x(2).
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Considering the following subproblem

g3(x) = max
‖[ξ ] j‖1≤ε

(ξ )
j

‖ξ‖F≤ε(ξ )

‖[ψ] j‖1≤ε
(ψ)
j

‖ψ‖F≤ε(ψ)

max
u∈RN+M

||u||2≤1

(
uT

1 ξ +uT
2 ψ
)
x(1)

and denoting z = ξ T u1 + ψT u2, we reformulate it based on the conditions of the
problem (14):

|z j|=
∣∣ N

∑
i=1

ξi ju1i +
M

∑
i=1

ψi ju2i
∣∣≤ N

∑
i=1

∣∣ξi j
∣∣+ M

∑
i=1

∣∣ψi j
∣∣≤ ε

(ξ )
j + ε

(ψ)
j ,

‖z‖2 ≤ ‖ξ‖F‖u1‖2 +‖ψ‖F‖u2‖2 ≤ ε
(ξ )+ ε

(ψ),

where u1i, ∀i = 1, ...,N and u2i, ∀i = 1, ...,M are i-th coordinates of vectors u1 and
u2 correspondingly.
Therefore,

g3(x)≤ max
z∈RN

||z||2≤ε(ξ )+ε(ψ)

|z j |≤ε
(ξ )
j +ε

(ψ)
j

zT x(1) =
(
ε
(ξ )+ ε

(ψ)
)

max
z∈RN

||z||2≤1

|z j |≤
ε
(ξ )
j +ε

(ψ)
j

ε(ξ )+ε(ψ)

zT x(1),

which is a strictly feasible conic optimization problem. Dualizing the constraints (see
Lemma 3 in the Appendix for details) we obtain:

g3(x)≤
(
ε
(ξ )+ ε

(ψ)
)

min
λ+µ=x(1)

‖λ‖2 +
N

∑
j=1

ε
(ξ )
j + ε

(ψ)
j

ε(ξ )+ ε(ψ)
|µ j|

 . (59)

Note, that g3(x) upper bound is a norm.
Analogically, we can bound the following subproblem by its dualization:

g4(x) = max
‖[ζ ] j‖1≤ε

(ζ )
j

‖ζ‖F≤ε(ζ )

‖[χ] j‖1≤ε
(χ)
j

‖χ‖F≤ε(χ)

max
u∈RN+M

||u||2≤1

(
uT

1 ζ +uT
2 (χ− IM)

)
x(2). (60)

Let z = ζ T u1 +(χT − IM)u2. Based on the conditions of the problem (14), we can
write

|z j|=
∣∣∣∣ N

∑
i=1

ζi ju1i +
M

∑
i=1

χi ju2i−u2 j

∣∣∣∣≤ N

∑
i=1

∣∣ζi j
∣∣+ M

∑
i=1

∣∣χi j
∣∣+1≤ ε

(ζ )
j + ε

(χ)
j +1,

‖z‖2 ≤ ‖ζ‖F‖u1‖2 +‖χ‖F‖u2‖2 +‖u2‖2 ≤ ε
(ζ )+ ε

(χ)+1.
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Therefore,

g4(x)≤ max
z∈RM

||z||2≤ε(ζ )+ε(χ)+1

|z j |≤ε
(ζ )
j +ε

(χ)
j +1

zT x(2) =
(
ε
(ζ )+ ε

(χ)+1
)

max
z∈RM

||z||2≤1

|z j |≤
ε
(ζ )
j +ε

(χ)
j +1

ε(ζ )+ε(χ)+1

zT x(2),

which is a strictly feasible conic optimization problem. Dualizing the constraints (see
Lemma 3 in the Appendix for details) we obtain:

g4(x)≤
(
ε
(ζ )+ ε

(χ)+1
)

min
λ+µ=x(2)

‖λ‖2 +
M

∑
j=1

ε
(ζ )
j + ε

(χ)
j +1

ε(ζ )+ ε(χ)+1
|µ j|

 . (61)

Equations (59), (59) and (61) imply the statement of the Proposition 2.

9.3 Proof of the Proposition 3

Proof The statement of the Proposition 3 directly follows from the Lemma 4, imply-
ing the following upper bound:

max
Q∈Ξ (F)

||Qx− x||2 ≤ max
||ξ ||F≤ε(ξ )

||ψ||F≤ε(ψ)

||ζ ||F≤ε(ζ )

||χ||F≤ε(χ)

∥∥∥∥((P+ξ − IN)x(1)+ζ x(2)

ψx(1)+(χ− IM)x(2)

)∥∥∥∥
2
≤

≤ max
||ξ ||F≤ε(ξ )

||ζ ||F≤ε(ζ )

‖(P+ξ − IN)x(1)+ζ x(2)‖2 + max
||ψ||F≤ε(ψ)

||χ||F≤ε(χ)

‖ψx(1)+(χ− IM)x(2)‖2 =

≤
(
‖Px(1)− x(1)‖2 + ε

(ξ )‖x(1)‖2 + ε
(ζ )‖x(2)‖2

)
+

+
(
‖x(2)‖2 + ε

(ψ)‖x(1)‖2 + ε
(χ)‖x(2)‖2

)
= ‖Px(1)− x(1)‖2 +

+(ε(ξ )+ ε
(ψ))‖x(1)‖2 +(1+ ε

(ζ )+ ε
(χ))‖x(2)‖2,

where IN and IM are identity matrices of sizes N×N and M×M correspondingly.

9.4 Proof of the Statement 1

Proof Consider the optimization problem

min
y(2)∈ΣM

‖y(2)‖(b) = min
y(2)∈ΣM

λ+µ=y(2)

{
‖λ‖∞ +

M

∑
j=1

ε
(ζ )
j + ε

(χ)
j +1

ε(ζ )+ ε(χ)+M
|µ j|
}
.
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One can rewrite it as the following linear optimization problem:

min
y(2)∈ΣM

‖y(2)‖(b) = min
y(2)≥0

∑
M
j=1 y(2)j =1

λ+µ=y(2)
λ j≤u, ∀ j
−λ j≤u, ∀ j
µ j≤v j , ∀ j
−µ j≤v j , ∀ j

{
u+

M

∑
j=1

ε
(ζ )
j + ε

(χ)
j +1

ε(ζ )+ ε(χ)+M
v j

}
. (62)

Let us denote c j =
ε
(ζ )
j +ε

(χ)
j +1

ε(ζ )+ε(χ)+M
and solve the optimization problem (62) by its dual-

ization.
The Lagrangian L for the problem (62) is

L = u+
M

∑
j=1

c jv j +α

( M

∑
j=1

y(2)j −1
)
+

+
M

∑
j=1

(
β j
(
λ j +µ j− y(2)j

)
+ γ j

(
µ j− v j

)
+η j

(
−µ j− v j

))
+

+
M

∑
j=1

(
κ j
(
λ j−u

)
+ν j

(
−λ j−u

))
,

where dual variables are α ∈ R, β ∈ RM , γ,η ,κ,ν ∈ RM
{0,+}.

Differently, one can rewrite the Lagrangian in the following form:

L = u
(

1−
M

∑
j=1

κ j−
M

∑
j=1

ν j

)
+

M

∑
j=1

v j

(
c j− γ j−η j

)
+

M

∑
j=1

y(2)j

(
α−β j

)
+

+
M

∑
j=1

λ j

(
β j +κ j−ν j

)
+

M

∑
j=1

µ j

(
β j + γ j−η j

)
−α.

By strong duality, the following holds

min
y(2)∈ΣM

‖y(2)‖(b) = min
y(2)∈RM

{0,+}
u∈R{0,+}
v∈RM

{0,+}
λ ,µ∈RM

max
α∈R

β∈RM

γ,η ,κ,ν∈RM
{0,+}

L = max
α∈R

β∈RM

γ,η ,κ,ν∈RM
{0,+}

min
y(2)∈RM

{0,+}
u∈R{0,+}
v∈RM

{0,+}
λ ,µ∈RM

L ,

where the following must hold true:
1−∑

M
j=1 κ j−∑

M
j=1 ν j ≥ 0,

c j− γ j−η j ≥ 0, ∀ j = 1, ...,N,
α−β j ≥ 0, ∀ j = 1, ...,N,

β j +κ j−ν j = 0, ∀ j = 1, ...,N,
β j + γ j−η j = 0, ∀ j = 1, ...,N.
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Therefore,

min
y(2)∈ΣM

‖y(2)‖(b) = max
ã∈R

b̃∈RM

γ,η ,κ,ν∈RM
{0,+}

{
ã, subject to

M

∑
j=1

(κ j +ν j)≤ 1,

c j ≥ η j + γ j, ∀ j = 1, ...,N,

ã≤ b̃ j, ∀ j = 1, ...,N,

b̃ j = κ j−ν j, ∀ j = 1, ...,N,

b̃ j = γ j−η j, ∀ j = 1, ...,N
}
,

where we denote ã = −α and b̃ j = −β j. At optimality, ν j = η j = 0 and, therefore,
one can rewrite the optimization problem in the following equivalent form:

min
y(2)∈ΣM

‖y(2)‖(b) = max
ã∈R

b̃∈RM

{
ã, subject to

M

∑
j=1

b̃ j ≤ 1,

ã≤ b̃ j, ∀ j = 1, ...,N,

c j ≥ b̃ j, ∀ j = 1, ...,N
}
.

According to this optimization problem, if ∃ b̃ j >
1
M , then ã < 1

M ∀ j. Hence, the
best possible choice for b̃ j would be 1

M . However, there is an additional constraint
c j ≥ b̃ j, ∀ j = 1, ...,M. Therefore, if min j{c j}< 1

M , then ã = min j{c j}< 1
M .

One can summarize it as follows:

min
y(2)∈ΣM

‖y(2)‖(b) =
[ 1

M , if c j ≥ 1
M , ∀ j = 1, ...,M

min j{c j}, if min j{c j}< 1
M ,

which implies the Statement (1).

9.5 Proof of the Statement 2

Proof Consider the optimization problem

min
y(2)∈ΣM

‖y(2)‖(d) = min
y(2)∈ΣM

λ+µ=y(2)

{
‖λ‖2 +

M

∑
j=1

ε
(ζ )
j + ε

(χ)
j +1

ε(ζ )+ ε(χ)+1
|µ j|
}
,
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which is equivalent to the following convex optimization problem:

min
y(2)∈ΣM

‖y(2)‖(d) = min
y(2)≥0

∑
M
j=1 y(2)j =1

λ+µ=y(2)
µ j≤v j , ∀ j
−µ j≤v j , ∀ j

{
‖λ‖2 +

M

∑
j=1

ε
(ζ )
j + ε

(χ)
j +1

ε(ζ )+ ε(χ)+1
v j

}
. (63)

Let us denote c j =
ε
(ζ )
j +ε

(χ)
j +1

ε(ζ )+ε(χ)+1
and solve the optimization problem (63) by its dual-

ization.
The Lagrangian L for the problem (63) is

L = ‖λ‖2 +
M

∑
j=1

c jv j +α

( M

∑
j=1

y(2)j −1
)
+

+
M

∑
j=1

(
β j
(
λ j +µ j− y(2)j

)
+ γ j

(
µ j− v j

)
+η j

(
−µ j− v j

))
,

where dual variables are α ∈ R, β ∈ RM , γ,η ∈ RM
{0,+}.

Differently, one can rewrite the Lagrangian in the following form:

L =

(
‖λ‖2 +

M

∑
j=1

β jλ j

)
+

M

∑
j=1

v j

(
c j− γ j−η j

)
+

+
M

∑
j=1

y(2)j

(
α−β j

)
+

M

∑
j=1

µ j

(
β j + γ j−η j

)
−α.

By strong duality (guaranteed by the Slater’s conditions), the primal and the dual
problems are equivalent:

min
y(2)∈ΣM

‖y(2)‖(d) = min
y(2)∈RM

{0,+}
v∈RM

{0,+}
λ ,µ∈RM

max
α∈R

β∈RM

γ,η∈RM
{0,+}

L = max
α∈R

β∈RM

γ,η∈RM
{0,+}

min
y(2)∈RM

{0,+}
v∈RM

{0,+}
λ ,µ∈RM

L .

For all j such that β j = 0, we can conclude, that λ j = 0 at optimality. For all j such
that β j 6= 0, optimal λ j must follow the equation:

∂L

∂λ j
=

λ j

‖λ‖2
+β j = 0, ∀ j = 1, ...,N.

From these follows

∑
j: β j 6=0

λ 2
j

‖λ‖2
2
= ∑

j: β j 6=0
β

2
j ≤ 1,

where the last inequality holds due to the fact that ∑
M
j=1

λ 2
j

‖λ‖22
= 1 (i.e. the equality

holds if β j 6= 0, ∀ j = 1, ...,M).



Robust PageRank 45

Hence, the following conditions must be satisfied in order to guarantee feasibility of
the optimization problem:

∑
M
j=1 β 2

j ≤ 1,
β j + γ j−η j = 0, ∀ j = 1, ...,N,
c j− γ j−η j ≥ 0, ∀ j = 1, ...,N,

α−β j ≥ 0, ∀ j = 1, ...,N,

Therefore,

min
y(2)∈ΣM

‖y(2)‖(d) = max
ã∈R

b̃∈RM

γ,η∈RM
{0,+}

{
ã, subject to

M

∑
j=1

b̃2
j ≤ 1,

c j ≥ η j + γ j, ∀ j = 1, ...,N,

ã≤ b̃ j, ∀ j = 1, ...,N,

b̃ j = γ j−η j, ∀ j = 1, ...,N
}
,

where we denoted ã =−α and b̃ j =−β j.
At optimality, η j = 0. Hence, one can rewrite the optimization problem in the follow-
ing equivalent form:

min
y(2)∈ΣM

‖y(2)‖(d) = max
ã∈R

b̃∈RM

{
ã, subject to

M

∑
j=1

b̃2
j ≤ 1,

b̃ j ≤ c j, ∀ j = 1, ...,N,

ã≤ b̃ j, ∀ j = 1, ...,N
}
,

which solution can be summarized as follows:

min
y(2)∈ΣM

‖y(2)‖(d) =

[
1√
M
, if c j ≥ 1√

M
, ∀ j = 1, ...,M

min j{c j}, if min j{c j}< 1√
M
,

which leads to the Statement (2).


	Introduction
	Problem Formulation
	Comparison to the model with fixed-size network
	Bounds on the perturbation set 
	Numerical algorithms
	Meaning of  in the Google matrix G=P+(1-)S
	Direction for future research
	Acknowledgements
	Appendix

