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Abstract We propose a global optimization algorithm for stochastic nonlinear programs that uses a specialized

spatial branch and bound (BB) strategy to exploit the nearly decomposable structure of the problem. In partic-

ular, at each node in the BB scheme, a lower bound is constructed by relaxing the so-called non-anticipativity

constraints and an upper bound is constructed by fixing the first-stage variables to the current candidate so-

lution. A key advantage of this approach is that both lower and upper bounds can be computed by solving

individual scenario subproblems. Another key property of this approach is that we only need to perform

branching on the first-stage variables to guarantee convergence (branching on the second-stage variables is

performed implicitly during the computation of lower and upper bounds). The algorithm is implemented

in SNGO in Julia and is interfaced to the modeling languages JuMP and Plasmo. Our implementation con-

tains typical algorithmic features of global optimization solvers such as convexification, outer approximation,

feasibility-based bound tightening, optimality-based bound tightening, and local search. Numerical experi-

ments are performed using a stochastic optimization formulation for controller tuning, a parameter estimation

formulation for microbial growth models, and a stochastic test set from GLOBALlib. We compare the compu-

tational results against SCIP and demonstrate that the new approach achieves significant speedups.

Keywords Stochastic NLP · Global Optimization · Scalable

1 Introduction

We study algorithms to find global solutions for nonconvex nonlinear programs (NLPs) arising in two-stage

stochastic programming settings. Our work is motivated by the observation that the direct application of spa-

tial branch and bound (BB) techniques (as those implemented in several popular packages such as BARON
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[16], ANTIGONE [14], and SCIP [12]) do not scale well with the number of scenarios because branching is

performed on all variables (which include first and second-stage variables). Several approaches have been

previously proposed to exploit the structure of stochastic programs in order to achieve better scalability. A

class of these methods is based on direct application of generalized Benders decomposition (GBD) [7], which

solves a sequence of lower bounding problems obtained from outer approximation (obtained by solving the

so-called master problem) and upper bounding problems (obtained by solving the second-stage problems at

candidate values for the first-stage variables). The convergence of GBD is not guaranteed for nonconvex prob-

lems because the outer approximation might cut regions of the space and the recourse (second-stage) cost

is not guaranteed to be polyhedral. The work in [11] proposes a nonconvex GBD scheme in which a lower

bound is generated by solving a convexified problem with GBD and an upper bound is generated by fixing

first stage variables and solving the resulting scenario subproblems to global optimality. Finite termination of

this approach can be guaranteed if the first stage variables are all integer. Another class of methods is based

on Lagrangian relaxation (LR) [6]. The convergence of Lagrangian relaxation cannot be guaranteed for non-

convex problems due to the potential presence of a duality gap. Consequently, LR lower bounds are usually

exploited within a BB framework. The approaches reported in [3] and [10] use this approach to solve stochastic

MILPs and stochastic MINLPs, respectively. A limitation of these approaches is that they need to branch on

the entire variable space. The approach proposed in [4] establishes convergence for partly convex stochastic

programming problems (i.e., problems that are convex when the first stage variables are fixed).

In this paper we introduce a specialized BB scheme for two-stage stochastic NLPs. For each node in the

BB scheme, a lower bound is constructed by relaxing the so-called non-anticipativity constraints and an upper

bound is constructed by fixing the first-stage variables to a given candidate solution. A key advantage of this

approach is that both lower bounding and upper bounding problems can be decomposed into scenario sub-

problems that are solved independently to global optimality using off-the-shelf schemes. Another key prop-

erty of this approach is that we only need to perform spatial branching on the first-stage variables to guarantee

convergence. The algorithm also exploits the fact the gap between the upper and lower bounding problems is

the expected value of perfect information, which is typically moderate in actual applications. The algorithm

is implemented in SNGO, which is a Julia-based package that is interfaced to the structured modeling lan-

guage Plasmo. Our implementation contains typical algorithmic features of global optimization solvers such

as convexification, outer approximation, feasibility-based bound tightening (FBBT), optimality-based bound

tightening (OBBT), and local search. SNGO also exploits lower bounds obtained from linear programming (LP)

relaxations.

The paper is organized as follows: Section 2 introduces basic nomenclature and lower/upper bounding

problems. Section 3 introduces the branch and bound algorithm and provides a convergence proof. Section 4

shows the implementation of this algorithm. Section 5 illustrates the numerical performance on a stochastic

optimization formulation for controller tuning, a parameter estimation formulation for microbial community

models, and stochastic versions of GLOBALLib instances. The paper closes with final remarks and directions

of future work in Section 6.
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2 Basic Nomenclature and Setting

We consider the two-stage stochastic program of the form:

z = min
x∈X0

∑
s∈S

Qs(x) (2.1)

Here, S is the scenario set, x ∈ X0 ⊂ Rnx are the first stage variables, X0 := {x|xl ≤ x ≤ xu} is a closed set,

and Qs(x) is the optimal value of the second stage problem:

Qs(x) = min
ys

fs(x, ys) (2.2)

s.t. gs,j(x, ys) ≤ 0 , j = 1, . . . ,ms.

We refer to this problem as Ps(x). Here, ys ∈ Rnys are the second stage variables. The scenario objectives

fs : Rnx×Rnys→R and constraints gs,j : Rnx×Rnys→R are assumed to be twice continuously differentiable and

potentially nonconvex. We define the feasible set for the recourse variables as Ys(x) := {ys|gs,j(x, ys) ≤ 0, j =

1, . . . ,ms}. The recourse function Qs(·) implicitly defines a feasible set of x defined as Ks := {x | ∃ys ∈ Ys(x)}.

If 6 ∃ys ∈ Ys(x) for some x, we set Qs(x) =∞.

The feasible set defined by all second stage problems is denoted as K =
⋂
s∈S

Ks. Consequently, the feasible

region of the first-stage variables x is X0 ∩K. We make the following blanket assumptions:

Assumption 1 The set K is compact and X0 ∩K is nonempty.

Assumption 2 The feasible sets Ys(x) are compact for all x ∈ X0 and s ∈ S.

Assumption 2 implies that Qs(x) is lower semicontinuous in x for all s ∈ S (see [2]). This also implies that the

function Q(x) :=
∑
s∈S

Qs(x) is lower semicontinuous in x. Assumption 1 ensures that problem (2.1) attains its

minimum according to the generalized Weierstrass theorem.

At each node in a branch and bound algorithm we solve the following problem with respect to the partition

set X ⊆ X0:

z(X) = min
x∈X

∑
s∈S

Qs(x) (2.3)

We refer to this problem as the primal node problem. This problem can be written in the extensive form:

min
x∈X,ys

∑
s∈S

fs(x, ys) (2.4a)

s.t. gs,j(x, ys) ≤ 0, j = 1, . . . ,ms, s ∈ S. (2.4b)

We can lift the node problem (2.3) by replicating the first stage variables across scenarios and then force them

to be the same with the non-anticipativity constraints. This gives the lifted problem:

min
xs∈X

∑
s∈S

Qs(xs) (2.5a)

s.t. xs = xs+1, s = 1, . . . , S − 1. (2.5b)

It is easy to verify that problems (2.3), (2.4), (2.5) are equivalent.
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2.1 Lower Bounding Problem

If the nonanticipativity constraints of (2.5) are removed, we obtain the lower bounding problem for the stochas-

tic program of the form:

β(X) := min
xs∈X

∑
s∈S

Qs(xs). (2.6)

Clearly, this lower bounding problem can be decomposed into S subproblems of the form:

βs(X) := min
xs∈X

Qs(xs), (2.7)

or equivalently:

βs(X) = min
xs∈X,ys

fs(x, ys) (2.8)

s.t. gs,j(x, ys) ≤ 0 , j = 1, . . . ,ms,

with β(X) =
∑
s∈S

βs(X). It is also obvious that β(X) ≤ z(X) because the feasible region of (2.5) is a subset of

the feasible region of (2.6). Moreover, we have that β(X1) ≥ β(X2) for X1 ⊂ X2. The lower bounding problem

is also called wait and see problem and the gap between the primal problem (2.3) and the lower bounding

problem (2.6) is called the expected value of perfect information (EVPI). We highlight that βs(X) is obtained

by solving the scenario subproblems to global optimality. We also note that, if βs(X) = ∞ for some s ∈ S, then

z(X) =∞. In other words, if the subproblem is infeasible, the primal node problem is infeasible.

2.2 Upper Bounding Problem

An upper bound for the stochastic program can be obtained by fixing the first stage variable at a candidate

solution x̂ ∈ X . The upper bound is denoted as α(X) :=
∑
s∈S Qs(x̂) and we note that the upper bound can

be computed by solving S subproblems with optimal values αs(X) = Qs(x̂), with α(X) =
∑
s∈S

αs(X). These

subproblems are also solved to global optimality. It is easy to see that z(X) ≤ α(X) holds for any x̂ ∈ X . We

highlight that, a classic branch and bound scheme obtains an upper bound by solving the extensive form (2.4)

only to local optimality. Such a local solution provides an upper bound for α(X).

3 Convergence of Branch and Bound Scheme

This section establishes convergence for a spatial branch and bound (BB) scheme constructed using the pro-

posed lower and upper bounding problems. A key feature of the proposed BB scheme is that it only branches

on the first-stage variables (because the recourse variables at handled implicitly in the evaluation of the re-

course functions). We outline the BB scheme as follows:
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1. Initialization

Initialize the iteration index k ← 0.

Set X ← X0, and tolerance ε > 0.

Compute initial upper and lower bounds αk = α(X0), βk = β(X0).

2. Node Selection

If X = ∅, STOP.

Select and delete from X the set X ∈ X satisfying β(X) = βk.

Update k ← k + 1.

4. Branching

Partition X into subsets X1 and X2 with X1 ∩X2 = ∅ and add each subset to X to create separate child

nodes.

3. Bounding

For each child node Xi, compute β(Xi) and α(Xi).

If βs(Xi) =∞ for some s ∈ S, remove Xi from X .

Let βk ← min{β(X
′
) : X

′ ∈ X} and αk ← min(αk−1, α(X1), α(X2)).

Remove all X
′

from X with β(X
′
) ≥ αk.

If βk − αk ≤ ε, STOP.

Return to Step 2.

Algorithm 1: Branch and Bound Scheme

The BB scheme can be viewed as a rooted tree, where X0 is the root node at level 0 and Xkq denotes a node

at level q explored at iteration kq . An arc connects a node Xkq at level q with one of its children Xkq+1
at level

q + 1. In other words, Xkq+1
is a direction partition of Xkq satisfying Xkq+1

⊂ Xkq . A path in the tree from the

root node corresponds to a sequence {Xkq} of successively refined partition elements.

It is easy to see that the sequence {αk} is monotonically nonincreasing and that {βk} is monotonically

nondecreasing. The BB scheme is said to be convergent if lim
k→∞

αk = lim
k→∞

βk = z. If the scheme is convergent

then it produces a global ε-optimal solution in a finite number of steps. We now proceed to prove convergence;

to do so, we adapt basic results from the seminal work in [8] to our context.

Lemma 1 If a BB procedure is infinite, then it generates at least one infinitely decreasing sequence {Xkq} of successively

refined partition elements, Xkq+1 ⊂ Xkq [8].

We use δ(X) to denote the diameter of set X . In our context, the diameter of the box set {x |xl ≤ x ≤ xu} is

δ(X) = ||xu − xl||∞.

Definition 1 A subdivision is called exhaustive if lim
q→∞

δ(Xkq ) = 0, for all decreasing subsequences Xkq generated by

the subdivision [8].

A subdivision can be guaranteed to be exhaustive if xi with the longest range is selected for partition.
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In a BB scheme, a ”delete by infeasibility” rule is used to delete infeasible partition sets X (i.e., sets X with

X ∩K = ∅). For example, If the lower bounding problem is infeasible, then the node problem is infeasible and

the partition set can be deleted from further consideration.

Definition 2 The ”delete by infeasibility” rule throughout a BB procedure is called certain in the limit if, for every

infinite decreasing sequence Xkq of successively refined partition elements with limit X̄ , we have X̄ ∩K 6= ∅ [8].

Lemma 2 Given an exhaustive subdivision, the ”delete by infeasibility” rule is certain in the limit.

Proof: Under an exhaustive subdivision, Xkq eventually collapses to a single point x̄ and we thus have that

X̄ = x̄. Assume by contradiction that there exists a sequence Xkq converging to an infeasible point x̄. Since

x̄ is infeasible and x̄ ∈ Xkq ⊆ X0, we have that x̄ /∈ K. Consequently, there is at least one set Ki satisfying

x̄ /∈ Ki. By the compactness of Ki, the distance between x̄ and Ki is nonzero and there is a ball around x̄,

denoted as Br(x̄) = {x| ‖ x − x̄ ‖≤ r}, satisfying Br(x̄) ∩ Ki = ∅. Since lim
q→∞

δ(Xkq ) = 0, there is a q0 such

that Xkq ⊂ Br(x̄),∀q ≥ q0. At this iteration, Xkq0
∩Ki = ∅, which implies that βs(Xkq0

) = ∞. Consequently,

the infeasible set will be detected and deleted. Hence, it is impossible that Xkq converges to an infeasible point

without being detected by the ”delete by infeasibility” rule. �

Definition 3 A lower bounding operation is called strongly consistent if, at every iteration, any undeleted partition

set can be further refined and if any infinite decreasing sequence Xkq of successively refined partition elements contains a

sub-sequence Xkq′ satisfying X̄ ∩K 6= ∅, lim
q→∞

β(Xkq′ ) = z(X̄ ∩K), where X̄ =
⋂
q
Mkq . [8].

Lemma 3 Given an exhaustive subdivision on x, Algorithm 1 is strongly consistent.

Proof: From Lemma 2 we have that X̄ ∩ K 6= ∅ holds. With an exhaustive subdivision, Xkq shrinks to a

single point x̄ and we thus have that X̄ = x̄ and X̄ ∩ K = x̄. The result can thus be proven by showing

that lim
q→∞

β(Xkq ) = z(X̄ ∩ K) =
∑
s∈S

Qs(x̄). Take x̃kq,s ∈ argmin{Qs(xs) : xs ∈ Xkq}, since Xkq shrinks to x̄,

lim
q→∞

x̃kq,s = x̄. Since x̄ ⊂ Xkq , it follows thatQs(x̃kq,s) ≤ Qs(x̄). From the lower semicontinuity ofQs, it follows

that Qs(x̄) ≤ lim
q→∞

Qs(x̃kq,s). Therefore, Qs(x̄) = lim
q→∞

Qs(x̃kq,s) = lim
q→∞

βs(Xkq ). Take the sum over s, we obtain

lim
q→∞

β(Xkq ) =
∑
s∈S

Qs(x̄). �

We now proceed to prove convergence of the lower bounds.

Definition 4 A selection operation is said to be bound improving if, after a finite number of steps, at least one partition

element where the actual lower bounding is attained is selected for further partition. [8].

Algorithm 1 is bound improving since, at every step, the partition where the actual lower bounding is attached

is selected for further partition.

Lemma 4 For a BB scheme using a lower bounding operation that is strongly consistent and using a selection operation

that is bound improving, we have that lim
k→∞

βk = z.[8]

Lemma 5 Given an exhaustive subdivision on x, the Algorithm 1 satisfies lim
k→∞

βk = z.
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Proof: This result can be established by combining Lemma 4 and Lemma 3. �

To prove convergence of the upper bounds, we need to make the following assumption.

Assumption 3 The recourse function Q(·) is Lipschitz continuous in a nonempty neighborhood of a solution x∗.

This assumption is satisfied if, for fixed x∗, the Mangasarian-Fromovitz constraint qualification (MFCQ) holds

for the scenario subproblems Ps(x∗), s ∈ S [5].

Lemma 6 Given an exhaustive subdivision on x, Algorithm 1 delivers a sequence {αk} satisfying lim
k→∞

αk = z.

Proof: Because Q(·) is Lipschitz continuous around x∗, there is a ball denoted as Br(x∗) = {x| ‖ x− x∗ ‖≤ r},

satisfying Q(x) − Q(x∗) ≤ K‖x − x∗‖ for all x ∈ Br(x∗) and where K is a Lipschitz constant. Therefore, for

every point x ∈ Br′(x∗), we have that Q(x)−Q(x∗) ≤ ε holds with r′ = min(r, ε/K). Because the subdivision

is exhaustive we have that, after a finite number of iterates k̄, the partition considered satisfies Xk̄ ⊆ Br′(x
∗).

Because any point x ∈ Xk̄ satisfies Q(x)−Q(x∗) ≤ ε, we have that αk̄ ≤ α(Xk̄) ≤ Q(x∗) + ε. Because the value

of ε is arbitrary, we have lim
k→∞

Q(xk) = z. �

Combining Lemma 5 and Lemma 6, we obtain our main result:

Theorem 1 Given an exhaustive subdivision on x, Algorithm 1 is convergent in the sense that:

lim
k→∞

αk = lim
k→∞

βk = z. (3.9)

4 Implementation Details

The software implementation of the proposed algorithm is called SNGO (Structured Nonlinear Global Opti-

mizer). SNGO is implemented in Julia and interfaced with the following tools: Plasmo for modeling stochas-

tic programs; IPOPT for solving an extensive form of the problem to local optimality; SCIP to solve subprob-

lems to global optimality; and Gurobi for solving linear programs (LPs). We leverage the syntax and interfaces

of the algebraic modeling language JuMP in our implementation.

To compute lower bounds, SNGO first creates an LP relaxation (obtained from convexification and outer

approximation) of the form:

zLP (X) = min
x∈X,ys,ws

∑
s∈S

f̄s(x, ys, ws) (4.10a)

s.t. ḡs,j(x, ys, ws) ≤ 0, j = 1, . . . ,ms, s ∈ S. (4.10b)

Where f̄s(·) and ḡs,j(·) are linear underestimators for fs(·) and gs,j(·), respectively; and ws are auxiliary vari-

ables. The LP is also a stochastic programming problem because the underestimators are generated for each

scenario subproblem. Since zLP (X) ≤ z(X) holds by construction, the solution of the LP relaxation can be

used as an alternative lower bound. SNGO also adds αBB cuts [15] and reformulation-linearization technique

(RLT) cuts [13] to the relaxed LP. The cost of generating and solving the relaxed LP is modest compared to the

solution of the nonlinear scenario subproblems in the branch and bound scheme.
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After solving the LP relaxation, SNGO then solves the lower bounding problem, which is decomposed into

S subproblems of the form (2.7). These subproblems are initialized using the solution of the LP relaxation. The

lower bound of the node is set to be the maximum of the lower bounds from the LP relaxation and of the lower

bounding problem.

We consider different strategies to strengthen the tightness of the lower bounds. First, it is easy to see

that the scenario objective is always greater than the optimal value of a subproblem. Consequently, the cut

fs(x, ys) ≥ βs(X) can be added to the node with partition X . Moreover, for all the descendants of this node

X
′ ⊂ X we have that βs(X

′
) ≥ βs(X) holds; consequently, this cut is still valid. SNGO creates an auxiliary

variable denoting the scenario objective and the lower bound of this variable is updated at each node. Second,

we note that if we pick x̃s ∈ argmin{Qs(xs) : xs ∈ X} and assume X is partitioned into two subsets X1 and

X2 with X1 ∩X2 = ∅, then either x̃s ∈ X1 or x̃s ∈ X2 is vaild, or both are vaild. If x̃s ∈ X1, then this implies

that x̃s ∈ argmin{Qs(xs) : xs ∈ X1}. Consequently, the solution of the subproblem in a parent node can be

reused in the children nodes and the associated subproblems do not need to be resolved. The solution of lower

bounding subproblems is thus stored and passed to children nodes.

To compute upper bounds, SNGO first solves the extensive form (2.4) with a local NLP solver. If the local

solver returns a feasible solution, the first stage solution from the local solver can be set as x̂ for the upper

bounding problem. We also note that, when solving the extensive form, removing redundant duplicates of

first stage constraints can aid the local solver. If the local solver fails, then SNGO takes the expected value of

first stage solutions from the lower bounding subproblems to obtain x̂. Having x̂, the upper bounding problem

is solved by solving S seperate subproblems Ps(x̂) to global optimality. Through experiments we have found

that, in many cases, upper bounds reach optimality at an early stage. Consequently, upper bounding problems

are solved at the first Lt levels (default of 3) and then every Le levels (default of 2) .

SNGO also implements bound tightening techniques including feasibility-based bound tightening (FBBT)

and optimality-based bound tightening (OBBT). OBBT is performed by cycling through each component of

first stage variables and solving 2 · nx LPs of the form:

max / min
x∈X,ys,ws

xi (4.11a)

s.t. ḡs,j(x, ys, ws) ≤ 0, j = 1, . . . ,ms, s ∈ S. (4.11b)

In many other global optimization solvers OBBT is not performed in every BB node because the computa-

tional expense of this procedure is high. For SNGO, however, the solution of the nonlinear subproblems is the

main computational bottleneck and the number of first stage variables is usually small. Consequently, OBBT

is performed at every BB node.

SNGO uses strong branching [1] to select branching variables. For each component of first stage variables

xi, we compute the branching point xbi , divide the current partition set X , into two sets X1 = {x|x ∈ X,xi ≤

xbi} and X2 = {x|x ∈ X,xi ≥ xbi}, and compute the lower bounds of the two subsets from LP relaxation

zLP (X1) and zLP (X2). We compare the improvement of zLP (X1) and zLP (X2) over the lower bound of the

current node β(X), and select the first stage variable xi that achieves the largest improvement. When the
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improvement in terms of the lower bounds from the LP relaxation are lower than a threshold, the first stage

variable with the longest width is selected. The branching point is decided according to the expected value of

solutions from the lower bounding problem, that is
∑
s∈S

x̃s/|S|. We also enforce that the branching point keeps

a minimum distance away from the variables bounds to ensure that the overall subdivision is exhaustive. To

avoid excessive partitioning on one variable, a first stage variable with a range below a certain threshold (i.e.,

xui − xli < γ with γ = 10−4) is not considered for further branching.

The SNGO implication involves the following major computational steps: 1) solution of S lower bounding

subproblems to global optimality, 2) solution of S upper bounding subproblems to global optimality, 3) so-

lution of LP relaxation, 4) solution of extensive form to local optimality, 5) solution of 2 · nx LPs for OBBT,

and 6) solution of 2 · nx LPs for branching variable selection. Experiments show that over 90% of the solution

time is spent in steps 1) and 2). Assuming the solution time of a subproblem is constant, the solution time

per node increases linearly with the number of scenarios. With the number of variables to branch on (i.e., the

number of first stage variables) fixed, the number of nodes needed is not expected to explode with the increase

in the number of scenarios. We also note that steps 1) 2) 5) 6) are directly parallelizable and 3) 4) can also be

parallelized by using solvers such as PIPS and like PIPS-NLP. In this paper, however, we use a fully serial

implementation because we aim to compare algorithmic performance with off-the-shelf solvers on an equal

basis. We also highlight that parallelization in our context is challenging because of memory management and

load imbalancing issues.

We use Plasmo1 to express the stochastic NLPs under study. Plasmo is a Julia-based algebraic modeling

framework that facilitates the construction and analysis of large-scale structured optimization models. To do

this, it leverages a hierarchical graph abstraction wherein nodes and edges can be associated with individ-

ual optimization models that are linked together [9]. Given a graph structure with models and connections,

Plasmo can produce either a pure (flattened) optimization model to be solved using off-the-shelf optimization

solvers such as IPOPT and SCIP, or it can communicate graph structures to structure-exploiting solvers such

as SNGO.

The code snippet shown in Figure 1 illustrates how to implement stochastic problems in Plasmo. As can

be seen, the individual scenario models are created and appended to the parent node on-the-fly to create a

two-level graph structure. From the snippet we also how to use Plasmo to create a flattened NLP to be solved

by off-the-shelf solvers like SCIP [12]. This allows the user to compare computational performance.

5 Computational Experiments

We evaluate the performance of SNGOc by using stochastic NPLs arising from applications such as optimal

controller tuning and parameter estimation formulation for microbial community models, and a test set con-

taining stochastic variants of the GLOBALlib set. We compare the computational results against the state-of-

the-art global solver SCIP 4.0.0, which is linked to SoPlex 3.0.0 and IPOPT 3.12.7. Each solver terminates under

1 https://github.com/jalving/Plasmo.jl.git

https://github.com/jalving/Plasmo.jl.git
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Fig. 1 Snippet of a stochastic NLP implementation in Plasmo

1 #call libraries
2 using Plasmo
3 using JuMP
4
5 # create two-stage model
6 stom=graphModel()
7
8 # define first-stage variables in parent node
9 @variable(stom, x[1:nx])
10
11 # create array of scenario models
12 nodes=Array(JuMP.Model,n)
13 for j in 1:S
14 # get scenario model and append to parent node
15 nodes[j] = get_scenario_model(j)
16 @addNode(stom,nodes[j],"s$j")
17 # connect children and parent variables
18 @constraint(stom, Nonanticipativity[i in 1:nx], x[i] == nodes[j][:x][i])
19 end
20 # solve two-stage program with SNGO
21 SNGO(stom)
22
23 # alternatively, create the extensive form and solve with SCIP
24 ex= extensiveModel(stom)
25 ex.solver = SCIPSolver()
26 solve(m)

one of the following conditions: (1) relative optimality gap satisfies αk−βk

|βk| ≤ 1%, (2) absolute optimality gap

satisfies αk − βk ≤ 0.01, or (3) the search reaches a 12-hour time limit. We use a computing server with Intel(R)

Xeon(R) CPU E5-2698 v3 processors running at 2.30GHz to conduct the experiments.

5.1 Optimal Controller Tuning

We consider the identification of optimal PID controller parameters capable of withstanding diverse scenarios

on set-point changes x̄s, model structural uncertainty (τx,s and τu,s), and disturbances ds. The optimal parame-

ters aim to minimize the expected error between the state and the desired set-point. The formulation is given in

(5.12).The first stage variables are the controller parameters (gain K, integral gain Ki, and derivative gain Kd)

of the controller and the second-stage variables are the state time trajectories xs(t) for each scenario s ∈ S. The

state trajectories are discretized using an implicit Euler scheme and we note that the number of state variables

grows linearly with the number of scenarios. The largest problem solved includes 40 scenarios and has a total

of 3203 variables, 3200 constraints, 2323 nonlinear variables, and 3880 nonlinear terms.

Table 1 compares the performance of SNGO, SCIP, IPOPT. We note that, when the number of scenarios is

10 and 40, SNGO can solve problems to a gap of 1% while SCIP cannot solve the problem within 12 hours.

For the problem with 20 scenarios, SCIP can solve the problem but it takes over 7 hours while SNGO solves

the problem in 22 minutes. The key advantage of SNGO over SCIP is that it only needs to branch on the first

three first stage variables while branching over second-stage variables is done implicitly in the solution of the

scenario subproblems. SCIP, on the other hand, needs to branch on both first and second-stage variables (2323

in the 20 scenario case) simultaneously. As a result, the number of nodes visited by SCIP is 22,410 times more

than that those visited by SNGO. On the other hand, since at each node SNGO need to solve subproblems to
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global optimality, the computational cost of SNGO for each BB node is 1,102 times larger than that of SCIP.

Despite of this, the computational benefits are significant. We emphasize that the subproblems solved in SNGO

are solved with SCIP. We have found SCIP to be highly robust in solving small to medium-sized problems

but it is clear that direct branching on all variables is not scalable.

Compared to the local solution found by IPOPT, we see that the solution from SNGO for 10 scenario prob-

lems sees an improvement of 17% in the objective value. Interestingly, as the scenarios are increased, the solu-

tion found by IPOPT is a global solution. IPOPT, however, cannot certify that this is the case.

min
xs(t),Kp,Ki,Kd

∑
s∈S

∫ T

0

es(t)
2dt (5.12a)

s.t.
dxs(t)

dt
= −τx,sxs(t)2 + τu,sus(t) + τd,sds, s ∈ S (5.12b)

es(t) = xs(t)− x̄s, s ∈ S (5.12c)

us(t) = Kpes(t) +Ki

∫ t

0

es(τ) dτ +Kd
des(t)

dt
, s ∈ S (5.12d)

Table 1 Computational performance of SNGO and SCIP on controller tuning problem.

Problem SNGO SCIP 4.0 IPOPT

# S Time(s) Gap # Nodes Time(s) Gap # Nodes Improve

10 942 1% 58 43200 1.29% 2248314 17.1%

20 1330 1% 37 27045 1.00% 829181 0.0%

40 3862 1% 39 43200 2.16% 595294 0.0%

5.2 Estimation for Microbial Growth Models

We now consider the problem of estimating parameters in microbial growth models. This problem is not a

stochastic program but exhibits the same algebraic structure if the time horizon is partitioned into blocks.

We can view each time partition as an scenario and the parameters to be estimated and the variable linking

partitions as first stage (complicating) variables. The problem formulation has the form:

min
xk(t),α,β

∑
k∈K

∫ tk+1

tk

(xk(t)− x̄k)2dt (5.13a)

s.t.
dxk(t)

dt
= αxk(t)2 + βxk(t), t ∈ [tk, tk+1], k ∈ K (5.13b)

xk+1(tk+1) = xk(tk+1), k ∈ K, (5.13c)

where α, β are the parameters to be estimated, K is the set of time partitions, and xk(·) is the state trajectory in

partition k ∈ K.
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We partition the time domain into 47 blocks to obtain a problem with 48 first stage variables, 1082 total

variables, 943 nonlinear variables, 1080 total constraints, and 1411 nonlinear terms. We solved the problem

using 12 different real experimental data sets, corresponding to the growth of different species of bacteria.

Table 2 summarizes the performance of the solvers on these instances. As can be seen, SCIP cannot solve

most problems within 12 hours, while SNGO can solve most of the problems within 20 minutes. The shortest

solution time is 8 minutes and the longest solution time is 2 hours. Interestingly, the solution from SNGO and

IPOPT are the same in all data sets. Again, although we do not see an improvement in the objective value over

IPOPT, SNGO provides a certificate that the solution is globally optimal. From an estimation stand-point this is

important because it indicates that no better set of model parameters can be found.

Table 2 Computational performance of SNGO and SCIP on estimation problems for microbial growth models.

Problem SNGO SCIP IPOPT

Name Time(s) Gap Time(s) Gap Improve

sp.1 7248 1% 43200 592% 0.0%

sp.2 1382 1% 43200 8297% 0.0%

sp.3 1411 1% 43200 14.2% 0.0%

sp.4 2181 1% 1059 0.8% 0.0%

sp.5 591 1% 43200 4052.2% 0.0%

sp.6 1303 1% 43200 1031.6% 0.0%

sp.7 482 1% 321 1.00% 0.0%

sp.8 520 1% 43200 59.37% 0.0%

sp.9 503 1% 43200 25.27% 0.0%

sp.10 1377 1% 43200 113.86% 0.0%

sp.11 730 1% 299 0.29% 0.0%

sp.12 519 1% 43200 280.55% 0.0%

5.3 Stochastic GLOBALLib Instances

We have also tested the algorithm using stochastic variants of the GLOBALLib instances. To construct such

variants, we select 28 problems with 20 to 50 variables, and added random perturbations to the right hand

size of a subset of the constraints. The first 5 variables of the problem are selected as first stage variables.

There are 7 problems (ex5 4 4, ex8 4 2, ex8 6 2, hhfair, launch, maxmin, prolog) also with 20 to 50 variables

not selected because SCIP cannot solve a single scenario problem. The size of the problems depends on the

number of scenarios and is outlined in Table 5. The total number of variables when the number of scenarios is

1,000 ranges from 21,005 to 44,005 (these are large-scale instances).

Table 3 and Table 4 summarize the computational performance when the number of scenarios is 100 and

1000, respectively. We use ”f” to indicate when the solver failed to return any bounds or candidate solution.
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For problems with 100 scenarios, SCIP can only solve 7 problems while SNGO can solve 25 out of 28 problems.

For problems with 1000 scenarios, SCIP can only solve 5 problems while SNGO can solve 14 problems.

By comparing the results of Table 3 and Table 4 we can again see favorable scalability of SNGO. For 13

problems (ex2 1 10, ex8 4 1, hydro, immun, st fp7b, st rv2, st rv3, st rv7, st rv8, harker, pollut, ramsey, srcpm),

the solution time increases by less than 20 times when the number of scenarios increases from 100 to 1000 (a

factor of 10). For 6 problems (abel, ex5 2 5, st fp7a, st fp8, and ex8 4 8, ex8 4 8 bnd), the increase in solution

time is more dramatic. For the rest 9 problems SNGO reaches the time limit but the gap is kept below 20% in

most cases (only two instances have a larger gap). There are a few problems where the improvements over

IPOPT are significant (reaching up to 60,000%). As with the PID controller tuning problem, it is interesting to

observe that the improvements over IPOPT become significantly less prominent as the number of scenarios

increase. This seems to indicate that adding scenarios to the problem helps to better define the problem and

eliminates local minima.

Figure 2 shows the progression of the lower and upper bounds for four problems ex2 1 8, ex5 3 2,

ex8 4 1, chenery. The dots represent iterates under which the bound updates are obtained from lower and

upper bounding problems while the crosses represent iterates under which updates are obtained from convex-

ification and local search (i.e., lower bounds are obtained from the LP relaxation). We use crosses to indicate

when the bounds from lower and upper bounding problems are the same as the bounds from convexifica-

tion and local search. Figure 2 shows that, while the lower and upper bounding problems proposed play a

significant role, the bounds obtained from convexification and local search also help accelerate the solution

process. The gap between the primal problem and the lower bounding problem (the expected value of perfect

information (EVPI), is typically small in applications. This can verified by the observation that the gaps at the

first iteration of SNGO for these four problems are 36.1%, 14.28%, 1.4%, 9.52%; while the initial gaps of SCIP are

101.5%, 62.6%,≥ 10000%, 10.61%. We expect that a parallel version of our implementation can help reduce the

solution times.

6 Conclusions and Future Work

We have proposed and implemented a global optimization algorithm for stochastic nonlinear programs. The

main advantages of the proposed algorithm are that both lower bounding and upper bounding problems can

be decomposed into blocks and that branching needs to be performed only on the first-stage variables. We

provide a proof of convergence and numerical evidence significantly outperforms the state-of-the-art solver

SCIP . As a part of future work, we are interested in extend the work to stochastic mixed integer nonlinear

programs and to develop a parallel implementation.
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Table 3 Computational performance of SNGO and SCIP on stochastic variables of GLOBALLib instance for |S| =100.

Problem SNGO SCIP IPOPT

Name Time(s) Gap Time(s) Gap Improve

abel 496 1% 10 0.0% 0.0%

ex2 1 10 117 1% 3067 0.8% 0.0%

ex2 1 7 43200 1.3% 43200 222.5% 0.0%

ex2 1 8 6429 1% 43200 54.4% 35.0%

ex5 2 5 93 1% 43200 484.74% 0.0%

ex5 3 2 2384 1% 43200 50.88% 0.0%

ex8 4 1 33429 1% 43200 ≥ 10000% 0.0%

hydro 53 1% 7 0.0% 0.0%

immun 3 1% 43200 ≥ 10000% 100.07%

st fp7a 1140 1% 43200 97.5% 55304.6%

st fp7b 1326 1% 43200 55.1% 38.7%

st fp7c 901 1% 43200 80.1% 148.1%

st fp7d 10976 1% 43200 297.1% 4426.3%

st fp7e 18821 1% 43200 247.8% 61037.5%

st fp8 279 1% 43200 7.5% 3.6%

st m1 43200 1.3% 43200 8.1% 0.0%

st m2 43200 5.8% 43200 25.21% 0.0%

st rv2 386 1% 43200 4.3% 956.1%

st rv3 58 1% 43200 7.7% 0.0%

st rv7 92 1% 43200 2.8% 0.0%

st rv8 2133 1% 43200 8.9% 0.6%

chenery 14220 1% 43200 10.6% 0.0%

ex8 4 8 19 1% 43200 ≥ 10000% f

ex8 4 8 bnd 8 1% 43200 ≥ 10000% 0.0%

harker 261 1% 153 0.0% 0.0%

pollut 14 1% 46 0.0% 0.0%

ramsey 7 1% 2 0.0% 0.0%

srcpm 42 1% 2 0.0% 0.0%
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Fig. 2 Evolution of lower and upper bounds for four problem instances.


	Introduction
	Basic Nomenclature and Setting
	Convergence of Branch and Bound Scheme
	Implementation Details
	Computational Experiments
	Conclusions and Future Work

