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Abstract

To deliver to consumers in densely populated urban areas, companies often employ a
two-echelon logistics system. In a two-echelon logistics system, the entry point for goods
to be delivered in the urban area is a city distribution center (CDC). From a CDC the
goods are transported to an intermediate facility, from where the goods are delivered to the
consumers. By restricting the set of potential vehicle routes employed in one or both of
the echelons, it is possible to significantly reduce the complexity of the delivery operations,
which is a common practice in real-life environments. We study the impact on delivery costs
of such strategies and demonstrate that when the number of orders to be delivered is large
and the location density of delivery addresses is high, such strategies can have near-optimal
performance. To more easily accommodate delivery volume growth and to more effectively
handle daily delivery volume variations, we introduce a simple aggregation concept, which
leads to further quality improvements. We provide further insight by means of a worst-case
analysis for a specific geographic topology.

Keywords: megacities, business-to-consumer e-commerce, city logistics, two-echelon
vehicle routing

1. Introduction

In the United Nations report “World Urbanization Prospects — The 2014 Revision”
(https://esa.un.org/unpd/wup/), it is observed that, at the time of the writing of the
report, 54% of the world’s population is living in urban areas and that that proportion will
continue to increase. The authors of the report also predict a continuing growth in the
number of megacities, i.e., cities with a population of more than 10 million, from 28 in 2014
to 41 in 2030. See Figure 1 for urbanization and megacities trends — reproduced from the
report.

At the same time, business-to-consumer e-commerce is booming worldwide. For example,
in Beijing, a daily average of 327.2 items per square kilometer were delivered to consumers in
2016 (source: State Post Bureau of P.R. China, http://www.spb.gov.cn/xw/dtxx_15079/
201701/t20170114_959038.html, in Chinese, last accessed on 9 May, 2017). It is therefore
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Figure 1: Urbanization and megacities trends.

critical that industry and government find sustainable and cost-effective ways to accommo-
date the continuing urbanization and the growth of business-to-consumer e-commerce, and
to limit any negative impact on the environment and the quality of life of those who live in
urban areas.

To efficiently deliver to consumers living in densely populated urban areas, companies
often employ a two-echelon logistics system. In a two-echelon logistics system, the entry point
for goods to be delivered in the urban area is a city distribution center (CDC). From there
the goods are transported to an intermediate facility, from where the goods are delivered to
the consumers. Typically, large vehicles are used for the transportation of goods from a CDC
to an intermediate facility, and small vehicles are used for the transportation of goods from
an intermediate facility to a consumer. More and more, the vehicles used to make last-mile
deliveries are environmentally friendly, such as electric cars or electric tricycles. Such two-
echelon logistics systems control inventory holding costs through pooling and transportation
costs through consolidation (in the first echelon).

The academic community as well has started to study two-echelon delivery systems, which
has resulted in a growing, but at the moment still small, body of literature on the so-called
two-echelon vehicle routing problem (2E-VRP), e.g., Crainic et al. (2009) and Hemmelmayr
et al. (2012), with a focus on developing effective and efficient algorithms. Unfortunately,
the size of the instances that can be handled by these algorithms is orders of magnitudes
smaller than the sizes encountered in real-life settings (in terms of the number of orders that
needs to be delivered and the location density of the delivery addresses).

Our focus is somewhat different. We seek to assess the impact on delivery costs of



employing a two-echelon logistics system in which a restricted set of vehicle routes is used
in the second echelon. Our study is inspired by the two-echelon logistics system employed
by companies providing home delivery services in Beijing (e.g., Amazon China, JD.com, SF
Express). More specifically, the two-echelon logistics system investigated has a single CDC,
divides the coverage area into regions, each with an intermediate facility, and divides each
region into cells, each served by a single driver. The drivers themselves decide the (single)
route that they will use to deliver the orders in their cell. Note that once the regions and the
cells have been defined, managing the delivery system is straightforward. All that needs to be
done is determining how to supply the intermediate facilities, which corresponds to solving
a small — since the number of intermediate facilities is usually small — split delivery vehicle
routing problem; once the goods to be delivered arrive at an intermediate facility, they are
simply handed to the driver responsible for the cells containing the delivery locations. We
conjecture that when the number of orders that needs to be delivered is large and the location
density of the delivery addresses is high, then this type of two-echelon logistics system has
near-optimal performance (as long as the individual drivers use a reasonable route to deliver
their assigned orders). The research presented in this paper supports that conjecture.

To more easily accommodate growth, i.e., an increase in the number of daily deliveries,
and to more effectively handle daily variations, i.e., day-to-day differences in the number of
deliveries in a cell, we propose a delivery strategy using blocks. A block is an aggregation
of cells to be served by a small number of drivers (up to three). The introduction of blocks
adds very little operational complexity as all that needs to be done is dividing the deliveries
in a block over the drivers assigned to the block, which can be done, for example, by a simple
sweep-like procedure that balances the workload of the drivers assigned to the block.

In summary, our research contributes to the existing literature in the following ways:

e We analyze the performance of urban delivery systems designed for operational sim-
plicity, empirically and analytically, in order to demonstrate that such systems are
not only practical, but also highly effective and therefore an excellent choice for home
delivery in (mega)cities.

e We conduct an extensive computational study that demonstrates that urban delivery
systems designed for operational simplicity have near-optimal performance when the
number of orders that needs to be delivered is sufficiently large and the location density
of the delivery addresses is sufficiently high.

e We show that the introduction of blocks leads to a significantly more robust urban deliv-
ery system capable of accommodating (moderate) growth and cost-effectively handling
day-to-day differences in delivery volumes.

e We deliver further insight by providing a worst-case analysis for a specific two-echelon
geographic topology.

The remainder of the paper is organized as follows. We review relevant literature in Sec-
tion 2. We formally define the two-echelon logistics system being studied and the strategies



for operating such a system in Section 3. We introduce and investigate the block design
(sub)problem in Section 4. We present the results of an extensive computational study
comparing different strategies for operating a two-echelon logistics system in Section 5. We
present analytical results, in the form of a worst-case analysis, in Section 6. We conclude
with final remarks in Section 7.

2. Literature review

We review relevant literature in this section, namely the two-echelon vehicle routing
problem (2E-VRP), the territory-based vehicle routing problem, and the territory design
problem. Interested readers may refer to Cuda et al. (2015) for a comprehensive review of
2E-VRPs. Note that the territory-based vehicle routing problem and the territory design
problem in the literature consider single-echelon logistics systems (with one depot or multiple
depots) and have not yet explored multi-echelon logistics systems.

The majority of 2E-VRP studies focus on the algorithmic design. Various integer pro-
gramming solution techniques are applied to develop exact methods. Baldacci et al. (2013)
propose a new formulation for the 2E-VRP. They develop an exact method via decomposing
the problem into a limited set of multi-depot vehicle routing problems with side constraints.
Jepsen et al. (2013) implement a branch-and-cut algorithm to solve the symmetric 2E-VRP
with a special branching scheme, which is able to solve 47 out of a set of 93 instances to
optimality. Santos et al. (2015) propose a branch-and-cut-and-price method based on a
strengthened reformulation overcoming symmetry issues. Among these exact algorithms,
the largest instances solved consist of 100 consumers (Baldacci et al., 2013).

On the heuristic and metaheuristic side, Perboli et al. (2011) propose math-based heuris-
tics to decide the assignment between consumers and intermediate facilities based on the
information obtained by solving the linear relaxation of a flow-based model. Hemmelmayr
et al. (2012) develop an adaptive large neighborhood search (ALNS) algorithm with a variety
of repair and destroy operators. Based on extensive numerical experiments, they show that
the ALNS algorithm outperforms other existing algorithms in instances of the 2E-VRP and
location-routing problem. Wang et al. (2015) propose a hybrid metaheuristic to decide the
assignment between consumers and intermediate facilities. Breunig et al. (2016) propose a
hybrid metaheuristic, combining local search with destroy-and-repair principles and tailored
operators of selecting intermediate facilities. Among the heuristics and metaheuristics, the
largest instances solved consist of 200 consumers (Hemmelmayr et al., 2012; Breunig et al.,
2016).

Crainic et al. (2010) explicitly consider the impact of important instance parameters
on the cost of 2E-VRP, e.g., consumer distribution, CDC location, number of intermediate
facilities. They also compare the 2E-VRP to the (single-echelon) capacitated VRP and
conclude that 2E-VRP outperforms the capacitated VRP in most cases, in particular when
the CDC is located externally to the coverage area and the intermediate facilities are located
between the CDC and the consumers.

There are a few emerging papers considering more practical variants of 2E-VRPs, which
are summarized in Table 1. Crainic et al. (2009) comprehensively analyze the city logistics
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practice and model the city logistics as a time-dependent 2E-VRP with satellite synchroniza-
tion and time windows. Soysal et al. (2015) take the fuel consumption and time-dependency
in the second echelon into consideration and study a practical 2E-VRP inspired by a su-
permarket chain in the Netherlands. Grangier et al. (2016) consider the multi-trip 2E-VRP
with satellite synchronization and time windows. Song et al. (2016) consider a variant of
2E-VRP allowing direct deliveries from CDCs to consumers. Dellaert et al. (2016) propose
a branch-and-price method to solve the 2E-VRP with time windows. Li et al. (2016a,b)
both consider the 2E-VRPs in linehaul delivery systems, where Li et al. (2016a) further con-
sider the carbon emission in the objective function. Liu et al. (2017) consider the 2E-VRP
with stochastic demands and propose a simulation-based tabu search method. Among the
above studies, only Li et al. (2016a,b) assume predefined assignments between consumers
and intermediate facilities, which is similar to the setting of regional division in this paper.

Table 1: Characteristics of papers studying 2E-VRP variants.

™™ T™W MWT SS MT FC DD SD
v v v
v v

v v

Crainic et al. ( )
Soysal et al. ( )
Grangier et al. (2016)
Song et al. (2016)
Dellaert et al. (2016)
Li et al. (2016a)

Li et al. (2016b)

Liu et al. (2017) v

TD: Time-dependency. MWT: Maximum working time. TW: Time windows. SS: Satellite synchronization.
MT: Multi-trip. FC: Fuel consumption. DD: Directly delivery. SD: Stochastic demands.
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The routing based on fixed area is called the territory-based VRP in the literature, usually
in a single-depot setting. Wong and Beasley (1984) consider to partition the service area into
subareas, each assigned with one vehicle. They propose a heuristic algorithm based on first
constructing an initial customer allocation and then improving it via interchange operations.
Zhong et al. (2007) consider a different problem. Territories are classified to the core area,
which is served by the same driver every day, and the flex zone, where the customers can be
reassigned daily. Additionally, they consider the learning curve of each driver to characterize
drivers’ familiarities of each area. They use a tabu search method to strategically design the
territory. Following the setting of core areas and flex zones in Zhong et al. (2007), Schneider
et al. (2015) incorporate the time window and propose a modular territory routing approach.

There is another stream of literature focusing on the territory design, which tactically
decides service regions for multiple depots, usually based on the measure of the expected
routing distance. The expected routing distance is approximated in order to avoid solving
complex optimization problems, where readers may refer to Langevin et al. (1996) for a review
of approximation methods in freight transportation. Carlsson (2012) consider the territory
planning for the vehicle routing problem with stochastic customer demand. Carlsson and
Delage (2013) consider the robust territory partition to balance the workload of vehicles
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among the regions. Lei et al. (2015) consider a joint dynamic districting and multiple
traveling salesmen problem with multi-periods. The studies above approximate the expected
routing distance via Beardwood-Halton-Hammersley Theorem (Beardwood et al., 1959).
Alternatively, there are papers approximating the expected routing distance via Continuous
Approximation (Daganzo, 1984). Ouyang (2007) proposes a method that partitions an area
into vehicle routing zones based on continuous approximation. Franceschetti et al. (2017)
consider the region partition and fleet planning simultaneously for city logistics. Qi et al.
(2016) design the service regions of a shared mobility system for last-mile delivery.

3. A two-echelon city logistics system

The two-echelon city logistics system considered serves consumers in an urban area and
can be defined on a directed graph G = (N, A), where N is the set of nodes and A is the
set of directed arcs. The node set N consists of three subsets: the (single-node) set Ny
representing a city distribution center (CDC) located at the boundary of the urban area, set
Ng representing a set of intermediate facilities strategically located in the urban area, and
set N¢ representing a set of consumers that have to be served and whose home locations are
scattered across the urban area. Each consumer ¢ € N requires a delivery of size ¢;. The
arc set A consists of two subsets: the first-echelon arc set A; = {(No U Ng) x (No U Ng)}
representing links connecting the CDC with the intermediate facilities and connecting the
intermediate facilities themselves, and the second-echelon arc set Ay = {(Ng U N¢) x (Ng U
N¢)} representing the links connecting the intermediate facilities with the consumers and
connecting the consumers themselves. Each arc (i,j) € A has an associated distance d;;.
Note that direct delivery from the CDC to a consumer is not an option.

The logistics company that operates the two-echelon city logistics system has a fleet of
K, homogeneous vehicles to serve the first echelon, each with capacity ()1, and a fleet of
K5 homogeneous vehicles to serve the second echelon, each with capacity ()2 < Q). Note
that deliveries from the CDC to the intermediate facilities can be split, i.e., an intermediate
facility may receive deliveries from multiple vehicles. The objective of the company is to
minimize the total delivery cost, which is a function of the total distance traveled. We let
¢; denote the unit cost of travel in the first echelon and let ¢y denote the unit cost of travel
in the second echelon.

Note that the setting introduced above assumes known deterministic demand. This is
representative of situations where a logistics company operates a delivery policy, in which
orders placed in a specific period are guaranteed to be delivered in a specific later period.
The simplest such policy guarantees that all orders placed today will be delivered tomorrow.
A more sophisticated policy may guarantee that all orders placed during an 8-hour window
will be delivered during the subsequent 8-hour window. The logistics company can employ
different strategies to serve the demand: an unconstrained delivery strategy, in which there
is complete flexibility in constructing the delivery routes for the vehicles in both echelons,
and a constrained delivery strategy, in which there is limited flexibility in constructing the
delivery routes in one or both of the echelons.



3.1. The unconstrained delivery strategy

The unconstrained delivery strategy does not impose any restrictions on the delivery
routes in the two echelons. That is, no restrictions are placed on which intermediate facility
serves a particular consumer (which implies that it is possible not to use an intermediate
facility at all). When the unconstrained delivery strategy is employed, a delivery plan mini-
mizing the total cost is obtained by solving a two-echelon vehicle routing problem.

The two-echelon vehicle routing problem can be viewed as a combination of a split delivery
vehicle routing problem (SDVRP) in the first echelon and a multi-depot vehicle routing
problem in the second echelon. However, these two problems are coupled because the demand
of an intermediate facility is the sum of the consumer demands served from that intermediate
facility, which makes the two-echelon vehicle routing problem computationally challenging.

We denote the cost of a delivery plan constructed under the unconstrained delivery
strategy as ZY.

3.2. A constrained delivery strategy

In practice, to avoid the computational challenges associated with the unconstrained
delivery strategy and to reduce the complexity of the delivery operation itself, many logistics
companies employ a constrained delivery strategy, in which the urban area is partitioned into
a set of regions R, each containing one of the intermediate facilities. A constrained delivery
strategy using regions imposes that consumers in a region are served from the intermediate
facility in that region. We denote the cost of a delivery plan constructed under a constrained
delivery strategy using regions as Z%. Clearly, we have Z% > ZY.

Note that when employing a constrained delivery strategy, the delivery problem is decom-
posed into a SDVRP in the first echelon, and several capacitated vehicle routing problems
(CVRPs), one for each region, in the second echelon. Note too that the SDVRP and CVRPs
are decoupled due to the predefined assignment of consumers to intermediate facilities, which
makes obtaining a minimum cost delivery plan much easier.

To reduce the complexity of the delivery operation even further, each region r € R
is partitioned in a set of cells C,. All consumers in a cell ¢ € C. are served by one driver,
starting the delivery route from the intermediate facility in the region. Note that this implies
that rather than solving a CVRP, a number of traveling salesman problems (TSPs) have to
be solved. In practice, rather than solving a TSP for the consumers assigned to a driver, the
driver is allowed to serve his assigned consumers in the order that he believes is the best,
based on his intimate knowledge of the small area of the city he is responsible for.

We denote the cost of a delivery plan constructed under a constrained delivery strategy
using cells as Z¢. Clearly, we have Z¢ > ZF > 7V,

3.3. Blocks

Rather than using cells, we propose to use blocks, where a block is an aggregation of cells.
That is, each region r € R is first partitioned into a set of cells C)., where a cell represents a
geographical area that, on average, can be served by a single driver, and then a block b € B,
is defined as the union of one or more cells ¢ € C.., where blocks satisfy a “connectivity”



condition, e.g., for each cell in a block with more than one cell, there is at least one adjacent
cell in the block.

Introducing blocks creates flexibility to deal with growth in demand as well as with
variability in demand. When the average demand in a cell is less than the capacity of a
vehicle, assigning a vehicle to multiple cells may result in a cost reduction. Similarly, when
the average demand in a cell is more than the capacity of a vehicle, assigning a few cells
to a small number of vehicles (fewer cells than vehicles) may avoid infeasibility and may
result in a cost reduction. This flexibility is especially important when new markets (new
geographical areas) are opened and there may be rapid growth, and when demand shows
significant day-to-day variability.

We denote the cost of a delivery plan constructed under a constrained delivery strategy
using blocks as ZZ. Clearly, we have Z¢ > Z8 > Z7F > 7V,

On a day-to-day basis, the consumers in a block have to be partitioned among the drivers.
For the remainder, we assume that a simple sweep heuristic is used to assign consumers to
drivers in a block. That is, we set the intermediate facility of the region as the origin. We
sort the consumers in a block in a non-descending order of their angles (i.e., locations are
represented in a polar coordinate system). Starting with the consumer with the smallest
angle, we assign consumers to a vehicle until the capacity is reached, and repeat.

4. The block design problem

We call two cells ¢ and j adjacent if they share a common boundary segment, not just a
point (Brun, 2002). With each region r € R, we associate a graph G, = {N,, E,.} with node
set N, representing each cell ¢ € C, and arc set E, representing pairs of cells ¢, ¢ € C, that
are adjacent. Let @ be the target block capacity. The block design problem for a region
r € R seeks to minimize the number of blocks required to cover the total demand in region r
such that the total demand in a block does not exceed the target block capacity and a block
consists of a set of pairwise adjacent cells. Introducing the following decision variables

| 1, if cell b represents block b,
% = 0, otherwise,

S if cell 7 belongs to block b,
®7 70, otherwise,



the generic block design problem can be formulated as follows:

min Z Ub (1a)

ZibyYb bEN,
st Y diwy < Quy, Wb E N, (1b)
i€Ny
Y g =1 VieN, (1c)
bEN,
Tpp = Up, Vb e NT, (1d)
xip = 1 = cell ¢ and cell b are connected, (le)

y, € {0,1}, Vb € N,,
xyp € {0,1}, Vi,b € N,.

This is a generalized assignment problem with additional connectivity constraints (1e). Con-
straints (1b) ensure that the total demand of a block does not exceed the target block capacity
Q. Constraints (1c) guarantee that each cell belongs to a block and constraints (1d) enforce
that the cell chosen to represent block b belongs to block b. Constraints (le) are to model
the connectivity requirements and will be discussed in detail below. The objective function
(1a) is to minimize the number of blocks.

We consider two formulations of the connectivity constraints (1e), both inspired by multi-
commodity flow concepts.

The first formulation requires that for each cell ¢ assigned to block b there is a unit flow in
G, from cell b to cell i, where b is the cell representing block b. Therefore, we introduce the
flow variables of ;,’; representing a flow from cell b to cell i (i # b), for any arc (j, k) € E,.
Then, constraints (1le) can be formulated as follows:

Lib, ] = b7
Soofm= Y fb =9 —aa, j=1i, Vj,i,b e N,,i#b, (2a)
(G.k)EE;, (k,j)EE, 0, otherwise,
< T, Y(j, k) € E.,Vi,b€ N,,i #b, (2b)
0 < Y(j, k) € E.,Vi,b€ N,,i #b, (2c)
< T, Y(j, k) € E.,Vi,b€ N,,i #b, (2d)
0 >0, V(j,k) € E.,Vi,be N,,i#b.

Constraints (2a) ensure flow conservation. Constraints (2b)—(2d) enforce that a flow only
traverses cells in the same block.

Because enforcing connectivity in this way introduces a huge number of additional con-
tinuous variables (|E,| - |N,|?), we introduce the following variation. Consider a block b and
all the cells that belong to block b, we will enforce that there is a flow from cell b to all
other cells and that each of these other cells “absorbs” a unit flow. In this case, the con-
nectivity is also guaranteed. Therefore, we introduce the flow variables of ka representing
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the flow in block b, for any arc (j, k) € E,. Notice that we have f;’k = D icCy.ith f;,ﬁ Then,
constraints (le) can be formulated as follows:

i#b Lib, j - b7 .

(];E kaeE fk’ { —Tjp, otherwise. Vb€ N, (3a)
fo < (IN.| = D, V(j,k) € E,., b€ N,, (3b)
bk S (|Nr’ - 1>xkb, V(j, k) € Eru b € Nra (SC)

[ >0, Y(j,k) € E,, b€ N,.

Constraints (3a)—(3c) are similar to constraints (2a)—(2d). The major difference is that
flows are aggregated; the outflow at the source (cell b) is the size of block minus 1 (cell b itself
is excluded), and the inflow at each other cell of the block is 1. Notice that we can further
improve the big-M value (currently set to |N,|—1) in constraints (3b) and (3c), which is equal
to the largest possible number of cells in a block, i.e., M = max{|C|: C C C\, >, .. di < Q}.
In Figure 2, we illustrate how the two network flow formulations model connectivity.

+1 +3 -1
b
Flow =1
Flow =1 Flow = 2
-1
Flow =1 Flow =1
i
-1 -1
(a) ;2 (b) jl‘)k

Figure 2: Tllustration of the two network flow formulations to model connectivity (orange nodes are source
nodes and gray nodes are sink nodes).

Because it is likely that there are many optimal solutions to formulation (1), we employ
a hierarchical optimization approach, where we first minimize the number of blocks and
subsequently minimize a function of the distance from the intermediate facility (denoted as
S;) to the cell representing a block and the distance from the cells of a block to the cell
representing the block in order to induce a “desirable” shape of a block, i.e.,

min Z ds,vyp + Z dipTip- (4)

Tib,Yb
! beCy i,beCy

Note that this secondary objective (4) can be viewed as an approximation of the distance
required by the vehicles serving the block.
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5. A computational study

Our computational study seeks to generate insights into the creation and use of block
designs as well as into the effects of restricting route choices in the second echelon in order to
simplify the delivery operations. We start, however, by describing our experimental setup.

5.1. Ezxperimental setup

We use the urban area of Beijing as the basis of our investigation. Specifically, we use
the publicly available information from the Beijing Bureau of Urban Planning to define four
regions and 87 cells, see regions 01-04 in Figure 3. We assume that the intermediate facility
in a region is located at the region’s centroid. Each cell is approximated by a simple polygon.
The city distribution center (CDC) is located at the southwest corner of the coverage area.
We also assume that capacity can simply be measured in terms of the number of orders, i.e.,

Figure 3: Network structure based on a part of Beijing urban area

deliveries corresponding to small packages. The capacity of first-echelon vehicles is 1000 and
the capacity of tricycles used in the second echelon is 40. Furthermore, we assume that the
unit cost ¢; = ¢ = 1, i.e., the objective is to minimize the total distance traveled (measured
by the Euclidean distance) in the two-echelon system.

To produce a specific instance, i.e., a realization of demand, we generate n, = [pA.]
consumers uniformly in each cell ¢, where p is a density parameter and A, is the area of
cell c. We use an “accept-reject” method to generated consumer location. Specifically, we
construct a rectangle enclosing the cell and uniformly generate a point in the rectangle. If
the point is in cell ¢, we accept it as a consumer location; otherwise the point is rejected. We
terminate the process when n. consumer locations have been accepted. To decide whether
a point is in the cell we have to solve a “point in polygon” problem, which we do using the
ray casting algorithm (Huang and Shih, 1997). We generate five instances for each density
p=2,4,...,14 consumers per square kilometer.
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To obtain a delivery plan for an instance when the unconstrained delivery strategy is
employed, we use the Adaptive Large Neighborhood Search (ALNS) algorithm for solving
instances of the 2E-VRP developed by Hemmelmayr et al. (2012). To obtain a delivery plan
for an instance when a constrained delivery strategy is employed, we use the branch-and-cut
algorithm developed by Archetti et al. (2014) for solving instances of the SDVRP (i.e., to
get a delivery plan for the first echelon), and the record-by-record algorithm developed by
(Groér et al., 2010) for solving instances of the CVRP (i.e., to get a delivery plan for the
second echelon). We implement the instance generation and the block design formulations
via Python 2.7.8 calling commercial solver Gurobi 6.5.0.

Due to the complexity of the 2E-VRP, we solve the 2E-VRP instances on a server with
a processor E5-2650 at 2.3 GHz and 256 GB memory. The rest experiments are run on a
laptop with a processor i5 at 2.2 GHz and 4 GB memory.

5.2. Computational experiments

The main focus of our computational study is analyzing the impact of restricting route
choices in order to simplify delivery operations, but we start our computational study with
an investigation of the block design problem.

5.2.1. The block design problem

We first compare the two block design formulations, i.e., the disaggregated flow formu-
lation (2) and the aggregated flow formulation (3). Somewhat surprisingly, the aggregated
flow formulation consistently ourperforms the disaggregated flow formulation. To illustrate
the difference in performance of the two formulations, we choose one instance and summarize
the Gurobi logs for the solution of the two block design formulations in Table 2.

Table 2: Gurobi logs of the two block design formulations (Region 1, p = 2/km?).
Disaggregated flow Aggregated flow

# continuous var. 269.89 x 10° 6.43 x 10°
# binary var. 1806 1806
Presolve time (s) 20.03 0.45

Root solve time (s) 628.77 1.14
Total time (s) 1124.65 2.94

Root simplex iter. 172.50 x 103 2.58 x 10°
Total simplex iter. 262.51 x 10? 2.58 x 103
Obj. of solution(s) found 34 34 and 3
by root node heuristics

# nodes explored 0 0

# cutting planes 64 0

We observe that the difference in the number of continuous variables has a significant im-
pact. Presolving the model and solving the root relaxation take significantly longer with the
disaggregated flow formulation. Maybe more importantly, the root node heuristics embedded
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in Gurobi are more effective with the aggregated flow formulation. These results are repre-
sentative for the behavior of the two formulations. Therefore, in the following experiments,
we use the aggregated flow formulation for the block design problems.

To gain insight into the benefits of using a hierarchical optimization approach to solving
instances of the block design problem and into the impact of the different ways to model the
connectivity requirement, we conduct the following experiments.

Let M; denote the variant in which we do not use hierarchical optimization and simply
minimize the number of blocks, i.e., use objective (la), and let My denote the variant in
which we do use hierarchical optimization and first minimize the number of blocks and then
minimize the distance from the intermediate facility to the cells representing the blocks, i.e.,
use objective (4). For comparison purposes, we also introduce variants M; and M3, in which
the secondary objective consists of only the first term of (4) and only the second term of (4),
respectively.
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Figure 4: Block designs produced by model variants (density = 10/km?, target block capacity = 2Q2).

Figure 4 illustrates a few of the block designs obtained for Region 1. As expected, in the
block design produced by M.}, each block has a cell representing the block that is adjacent
or close to the intermediate facility, whereas in the design produced by M2, the cells in a
block are more “clustered”. Although the objective of M? combines those of M} and M2,
the design produced by M, is more similar to that of M23.

In Table 3, we report the maximum time required to solve an instance in Region 1 for
the different model variants. Note that all variants of the hierarchical optimization approach
require solving M, first. To highlight the time required to solve the second-level problem,
we only show the time of solving the second level for the M, variants with a plus sign “+”
to indicate that this represents the additional solution time (on top of the time required to
solve M;). Somewhat surprisingly, M.} seems to be much harder to solve than M, or M3,

Next, we compare the second-echelon distance of the associated delivery plans (produced
by solving the TSPs for each block using the record-to-record algorithm — the TSPs that
result when the orders in the block are divided over the drivers using the sweep heuristic).
The results can be found in Table 4, where the reported distance is the average over the
five instances and the best average distance is highlighted in bold font. As expected, the
performance of the hierarchical optimization variants is better than the performance of M,

13



Table 3: Solution time (in seconds) in Region 1 (Q = 2Q)2).

Density M,y M, M, M3
2 0.84 +4.35 +229 +6.38

4 080 +5.14 +1.98 +4.07

6 099 + 546 +10.52 + 3.24

8 19.00 + 291 +383.15 + 2.64

10 154.11 + 12.01 + 142.34 + 21.92

12 102.50  + 3.43 + 3600.00*  + 9.50

14 | 3600.00*  + 2.72 4 3237.63  + 8.18

*Time limit reached.

and among the hierarchical optimization variants M2 slightly outperforms the others, but

not by much.
Table 4: Second-echelon distance (Q = 2Q>).
Region 1 Region 2

DGHSity M1 M2 M21 M22 M1 M2 M21 M22
2| 77.02 76.86 82.08 76.86 | 51.10 51.10 51.10 51.10
41113.30 112.03 115.19 112.03 | 78.09 80.03 78.29 80.03

6 | 156.33 152.77 155.57 153.37 | 106.10 105.78 101.63 102.34

8 1198.98 19545 195.00 195.45 | 125.96 124.42 129.10 125.33

10 | 223.64 219.63 212.56 214.03 | 144.76 140.78 148.77 140.78

12 ] 256.06 250.39 255.12 255.65 | 171.99 172.53 177.53 169.14

14 1 296.83  288.89 287.67 289.11 | 195.14 191.12 191.12 191.12

Region 3 Region 4

DGHSity M1 M2 M21 M22 M1 M2 M21 M22
21 43.04 43.04 43.04 43.04 | 38.93 38.93 38.93 38.93

4| 66.19 65.37 68.17 65.37 | 60.48 53.66 52.89 53.66

6| 91.90 83.78 84.97 83.78 | 75.31 72.71 73.02 73.62

8| 108.10 107.36 103.57 105.91 | &89.93 84.19 91.35 84.19

10 | 121.21 120.15 120.64 121.21 | 100.21 99.82 99.82 99.82

12 | 148.74 147.05 147.47 147.10 | 115.76 115.71 115.71 115.71

14 | 172.18 170.05 170.05 171.27 | 145.12 144.21 144.33 142.23

As mentioned in Section 4, the introduction of blocks creates flexibility to handle growth
In the following experiments, we seek to better

in demand and variability in demand.
understand the impact of the target block capacity.

In Figure 5, we show the number of cells assigned to a block for increasing consumer
density (i.e., growing demand) and for varying target block capacities, i.e., Q = Q2, Q = 2Q-,
and Q = 3Q,. As expected, we see that the number of cells assigned to a block decreases
as the consumer density increases, that fewer cells are assigned to a block when the target
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Figure 5: Number of cells per block.

block size is smaller, and that when the consumer density is larger than eight, the number of
orders in a cell exceeds the vehicle capacity and setting the target block size to the vehicle
capacity results in infeasibility.

More interestingly, in Figure 6, we compare the performance of M; and M, for varying
target block capacities, i.e., Q = Q2,Q = 2Q5, and Q = 3Q,. We report the ratio of the
second-echelon distance obtained when employing a constrained delivery strategy with a spe-
cific choice of target block size and the second-echelon distance obtained when employing the
unconstrained delivery strategy. Again, as expected, we observe that introducing flexibility,

1.20 l 1.20
1.15 1.15 D
D
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£ 110 *ML2Q2  §110 - — & -©-M2, 2Q2
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Figure 6: Second-echelon distance ratio for various choices of target block size.

i.e., using target block capacities of 2(Q)» and 3(Q),, leads to lower second-echelon distances,
and, again, that the use of hierarchical optimization tends to be beneficial.

Overall, the larger block capacity increases the performance of block design, as vehicles
have more flexibility within a block. Besides, considering the primary and secondary ob-
jective functions is beneficial, especially when the consumer density is small and the block
capacity is small, which results in multiple solutions that minimizes the number of blocks.

5.2.2. Impact of restricting route choices

As mentioned above, we use the ALNS algorithm of Hemmelmayr et al. (2012) to produce
a delivery plan for an instance when we use the unconstrained delivery strategy. Since the
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algorithm incorporates random choices, to obtain a high-quality solution in a given amount
of time, there is a trade-off between the time given to a single solve (i.e., the maximum
number of iterations) and the number of replications (i.e., the number of times an instance
is solved). Our first computational experiment is geared towards identifying good choices
for these parameters. We considered three combinations of maximum number of iterations
and number of replications: 50,000 and 5, 50,000 and 10, and 100,000 and 5. The results for
the five instances with density p = 10 can be found in Table 5. As we are interested in the
best possible delivery plan, we focus on the minimum objective function value among the
solutions for the different replications and highlight those in bold font. We also calculate the
relative difference (column “Diff.”) with respect to the results for 50,000 iterations and 5
replications. (Note that the column “Time” gives the average solution time per replication.)
These results suggest that the benefits of more replications or more iterations is marginal,
and, therefore, in the experiments to be discussed next, we have set the number of iterations
to 50,000 and the number of replications to 5.

We conjectured that when the number of orders that needs to be delivered is large and the
location density of the delivery addresses is high, then a two-echelon logistics system employ-
ing a constrained delivery strategy has near-optimal performance. The next computational
experiment substantiates this conjecture.

In Figure 7, we show the ratio of the total distance of the constrained delivery strategy
using cells and that of the unconstrained delivery strategy, the ratio of the total distance
of the constrained delivery strategy using regions and that of the unconstrained delivery
strategy, as well as the ratio of the total distance of the constrained delivery strategy using
blocks (with target block capacity equal to 3Q);) and that of the unconstrained delivery
strategy, for different consumer densities. Note that, when consumer densities are larger than
8/km?, there exist cells of which the demands are larger than the vehicle capacity. Under
such a situation, additional vehicles are assigned to these cells to ensure the feasibility.

3.50 " 1.20 .
-o-Cell -©-Block
3.00 ‘ 1.15 -
o\ -©-Block : -B-Region
2250 \.\ 2110
& 2.00 g . @D f)"\) 5
1.00 C———a—=0—6—X0 1.00
2 4 6 8 10 12 14 2 4 6 8 10 12 14
Consumer density (#/km?) Consumer density (#/km?)

Figure 7: Total distance ratio (Note that scales of the y-axes are different).

We see that, as conjectured, when the consumer density increases, the ratio of the total
distance of the constrained delivery strategy using cells and that of the unconstrained delivery
strategy decreases. Furthermore, the ratio of the total distance of the delivery strategy using
regions and that of the unconstrained delivery strategy shows a similar trend, but much less
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pronounced. Note too that the latter ratio never exceeds 1.06 (even for very low consumer
densities).

Importantly, using blocks, even with a relatively small target block capacity, improves
the quality of the delivery plans significantly (compared to using cells). In fact, the ra-
tio of the total distance of the constrained delivery strategy using blocks and that of the
unconstrained delivery strategy is small, never more than 1.10 regardless of the consumer
density. Comparing to the constrained delivery strategy using regions (which can be seen as
using a single block of sufficiently large target block capacity), the extra distance traveled
of the constrained delivery strategy using blocks is at most 5.4% (when consumer density is
14/km?).

These results have important practical implications. They demonstrate that employing
delivery strategies aimed at reducing operational complexity, both in terms of planning and
execution, does not have to lead to huge cost increases; employing a constrained delivery
strategy using blocks leads to high-quality, low-cost delivery plans.

To obtain additional insights, we further decompose the total distance into the first-
echelon distance and the second-echelon distance. The results can be found in Figures 8
and 9, respectively. (Note that the scales of the y-axes in Figures 8 and 9 are different.) As
expected, we observe that the difference in first-echelon distance is small for all consumer
densities, and that it is the second-echelon distance that shows differences, especially when
the consumer densities are small.

1.20
-e-Constrained
1.15
o 1.10
T
o 1.05
0.95

2 4 6 8 10 12 14
Consumer density (#/km?)

Figure 8: First-echelon distance ratio.

6. Analytical results

In this section, we provide analytical results in the form of a worst-case analysis of the
ratio between the optimal value of the constrained delivery strategy using regions and the
optimal value of the unconstrained delivery strategy, i.e., Z%/ZY  for specific geographic
topologies. More specifically, we consider geographic topologies in which regions are either
square or rectangular and distances that are either based on the Euclidean metric or the
Manhattan metric.
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Figure 9: Second-echelon distance ratio (Note that scales of y-axes are different).

In this section, we only present the analysis for the case with square regions and Euclidean
distances; the analysis for the other cases can be found in Appendix A. Therefore, we have
a setting with the following characteristics:

1. The CDC is located either on the boundary of the urban area or within the urban area.
The urban area is partitioned into m, x my, regions where m, and my are even numbers.
Each region is a square with unit length sides.

The intermediate facility is located at the center of each region.

Each region has only one cell, i.e., the region itself.

There is at least one consumer in each region.

R

The capacity of the vehicles used in both echelons is such that an optimal solution for
the unconstrained delivery strategy uses a single delivery route in both echelons (i.e.,
the vehicle capacity is sufficiently large).

8. The unit cost of travel in the first echelon, ¢;, and the unit cost of travel in the second
echelon, ¢y, satisfy ¢; > cs.

We define ZP and ZP as the first-echelon and second-echelon delivery cost under deliv-
ery strategy D, where D = R (the constrained delivery strategy using regions) or U (the
unconstrained delivery strategy). We have that the total cost for delivery strategy D, Z7,
satisfies ZP = ZP + ZP for D= R or U.

In the following, we first determine the worst-case ratio of ZI'/Z¥ i.e., the ratio of
the second-echelon cost between the constrained delivery strategy using regions and the
unconstrained delivery strategy. Then, we determine the worst-case ratio of Z%/ZV i.e.,
the ratio of the total cost between the constrained delivery strategy using regions and the
unconstrained delivery strategy.

6.1. Worst-case ratio of the second-echelon cost

We start by analyzing a few specific subnetworks. The results will form the building
blocks for analyzing a general network. We first consider a two-region subnetwork, where
we compare the cost of the constrained routes in these two regions and the unconstrained
path passing through this subnetwork (which forms a segment of the unconstrained route).
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Furthermore, we assume that the unconstrained path enters at a long boundary of the
subnetwork and exits at the opposite long boundary of the subnetwork, as shown in Figure 10.
Let Zg P denote the cost of the unconstrained path. We have the following result.

| Unconstrained path
Region 1 L?’
b
b

slo.é
i

v

Region 2

O S O Intermediate facility
2 ® Consumer

Figure 10: Illustration of the unconstrained path.

Theorem 1. In a two-region subnetwork in which an unconstrained path enters at a long
R

Z.
boundary and exits at the opposite long boundary, we have that ZUQP < 2v/2 + 2 and this
2

bound is tight.

Proof. Define N, as the set of consumers in region r (r = 1 or 2) and define N = Ny |J N,
as the set of all consumers. Given the consumers and their corresponding locations, we can
obtain an optimal unconstrained path PY* = {O, nuj, N - - - 1Ny, D} with minimum cost
ZYP = cyd(PU*), where d(PY*) is the length of path PU* and where O and D represent
points on the entering and exiting boundary, respectively. Using an optimal unconstrained
path, we can construct associated constrained routes as follows:

1. Partition the consumers npj, njg, . . ., nn| to two sets based on the regions they belong
to. Assume the two sets are {njy, ..., njy,} and {nfy, ..., nfy, }-
: : : RAh __ r T r
2. Conitruc; the constrained route in region r as R:“" = {S,, Ny Mgy - - 5 MY, ) S:},
r=1or 2.

Denote the cost of these constrained routes by Zf P (superscript h indicates that this rep-
resents a heuristic solution). We have Z5" = ¢y(d(R™") + d(R}")), where d(RF") is the
length of route RE" (r =1 or 2). Thus we have

28 _ 7P AR+ dRE)

Z0P = ZUP d(PU)

We further decompose the length of the constrained route R, (r = 1 or 2) into two
terms, dy = d(S;,nj;)) + d(njy, ), Sr), the distance from the intermediate facility S, to the
first consumer and from the last consumer back to the intermediate facility S, (highlighted
as pink lines in Figure 11), and dY = ELZE‘_I d(nfi],nﬁ +1]), the distance traveled visiting
consumers in region r (highlighted as red lines in Figure 11). Furthermore, we define the
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constrained path inside region r as PR = {nfl], Nigps -+ -5 1) NTH}' Therefore we have

Zk i +dy  dv+dy 5)
Z;J,P — d('PU’*) d('PU’*)

N2 Region 2

O Intermediate facility
o Consumer

S, .
+ Unconstrained path

> )
*} Constrained route

Figure 11: Illustration of the unconstrained path and the constrained routes.

In the following, we will analyze the two terms in the righthand side of inequality (5)
separately.

The values of dj, d5, and d(PY*) depend on the locations of consumers. We have that
min d(PY*) = 1 which occurs when all consumer nodes are close to the shared boundary of
the two regions. And we have that maxd; = /2 which occurs when the first consumer ”ﬁ]
and the last consumer n{y, are located at the corners of the square region. Therefore, we
have

di +d5  maxd] + maxd;
< = 2V2. 6
d(PU*) =  mind(PY*) v2 (6)
As illustrated in Figure 11, we have d¥ < d(PY*) and d3 < d(PY*) because both con-

strained paths P&" (r = 1 or 2) take short cuts compared to the unconstrained path PY*

(as the triangle inequality holds). Thus, we have
di + dj
— < 2 7
d(PY*) — (7)

Combining expressions (6) and (7), we obtain the bound that

Zy
2o <2v2+2.
Z2’

The following worst-case example shows that the bound is tight. In Figure 12, each
consumer node is close to a corner of the region (¢ away from the two boundaries). Thus,
we have

Z8 2(V2—2v2€) +2(1 — 2e)
zUP 1+ 2€

9

and when € — 0, indicating that the consumer nodes are getting infinitely close to corners,
the ratio of the length of the constrained routes and the length of the unconstrained path
gets infinitely close to 2v/2 + 2, which proves that the bound is tight. [
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Figure 12: A two-region worst-case example that shows the bound is tight.

Next, we consider a subnetwork with 2 x 2 regions. If the unconstrained path enters
and exits at opposite boundaries of the subnetwork, it is a straightforward extension of
Theorem 1, and the worst-case ratio is 22 + 2. Thus, we focus on the situation where
the unconstrained path enters and exits at adjacent boundaries of the subnetwork. Using
techniques similar to those used in the proof of Theorem 1, we are able to show the same
worst-case ratio. A four-region (2 x 2 regions) worst-case example is shown in Figure 13,
where a consumer node located at the corner of neighboring regions corresponds to multiple

O Intermediate facility
| @ Consumer

+ Unconstrained path
-+ Constrained route

Figure 13: A four-region (2 x 2 regions) worst-case example that shows the bound is tight.

consumers in the corners of these regions (and infinitely close to the corner). More formally

Theorem 2. In a subnetwork with 2 X 2 regions in which an unconstrained path enters and

ZR
exits at its boundaries, we have that ZUZP < 2v/2 + 2 and this bound is tight.
2
Proof. Similar to Theorem 1. O

Next, we consider a network with m, x m; regions. Let route RY* be an optimal second-
echelon unconstrained route with minimum length. We denote the length of route RY* by
d(RY*). We start by deriving a lower bound on d(RY*), which will be used in the proof of
the worst-case ratio of Z&/ZY in a network of m, x my regions.

Lemma 3. A lower bound on d(RY*) in a network with m, X my, regions is mamy/2+ (v/10+

V2)/2 - 2.

Proof. Since we have assumed that m, and m,, are even, we can view the network as consisting
of my /2 xmy/2 subnetworks of 2 x 2 regions. To get a lower bound on d(RY*) in the network,
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we assume that the unconstrained route only visits the consumers in the center of each of
the 2 x 2 subnetworks (because we have assumed that each region has at least one consumer,
each region has to be visited and visiting the center of a 2 x 2 subnetwork is the best
possible). Therefore, the unconstrained route visits a grid of m,/2 x m;/2 consumers, where
the length of an arc connecting two nearest consumers (referred to as adjacent consumers
and an adjacent arc) is two. In the following, we discuss two cases based on the parity of
ma/2 and my,/2.

Case 1. Either m,/2 or m,;/2 is even. If we ignore the start and end at an intermediate
facility and consider a route visiting only the m, /2 xmy,/2 consumers, then Thompson (1977)
has shown that if either m,/2 or m;/2 is even, an optimal route R’ only uses adjacent arcs.
As R’ consists of m,my/4 adjacent arcs, its length d(R’) is mgmy/4 X 2 = mgmy/2.

Next, we modify the route R’ so that it includes an intermediate facility. We take
an intermediate facility S and the two adjacent consumers, say n; and ns, that minimize
d(ni,S)+d(S,ns2). Then, we replace the arc (ny,ns) with arcs (ny,.S) and (S, ns), as shown
in Figure 14, where d(ny, S) +d(S,n2) = (v/10++/2)/2 and d(ny,ny) = 2. The length of the
resulting route gives a lower bound on d(RY*), i.e., d(RY*) > mamy/2 + (v/10 +/2)/2 — 2.

Case 2. Both m,/2 and m,;/2 are odd. In this case an optimal route uses at least one
non-adjacent arc (Thompson, 1977). Thus, its length will be greater than or equal to that
of route R’ of Case 1, which completes the proof. n

O Intermediate facility
e Consumer
+ Unconstrained path

Figure 14: Ilustrating the incorporation of an intermediate facility in a second-echelon unconstrained route.

Next, we show that the worst-case ratio of Z&/ZV in a network with m, x m; regions
is 2¢/2 + 2, the same as the worst-case ratio ZQR/Zg 7 for the subnetworks considered in
Theorems 1 and 2.

R

Z
Theorem 4. Consider a network with m, x my regions. We have Z—%] < 2v/2 + 2 and this
2
bound is tight.

Proof. Consider the optimal unconstrained second-echelon route RY* starting and ending at
intermediate facility SU* and visiting all consumers in the sequence {SY*, nyp, - NN S Uy
Using the visiting sequence of consumers in RY*, we construct a constrained route for each
region r, REBh = {S, N0, -« - M, > Sr}> Which visits the consumers in the region in the same

sequence as in RY*, and denote the combined length of these constrained routes as ZQR " We
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define @* = 3% | (d(Sr, niy) +d(njy, ) S )) to be the summation of the first-leg and last-leg

distance of the constrained routes over all regions and d” = Zr L Z‘NT‘ ! d(njy, nj1q)) to be
the summation of the lengths of the paths visiting consumers in the constrained routes over
all regions. Clearly, we have Zi" = ¢,(d* + d°). This implies that we have

5k ozt d° d°

ZV =7 T amve) T ameey

Again, we analyze the terms d*/d(RY*) and d”/d(RY*) separately.

'S
The worst-case ratio of the first term can be derived from Lemma 3. We have ——— <

d(RU+)

S
.maXd < Malsy'2 < 2V2.
min d(RY*) = m,m,/2 + (V10 +v/2)/2 -2 ~

Next, we consider the second term d*/d(RY*). We define two arc sets A* and A* for
the arcs in the constrained routes related to the term d”. For any arc (nfﬂ,n'{i +1]) (1 =
1,...,|N;| — 1) of the constrained route in region r (r = 1,..., R), if it belongs to RY*,
we add arc (nj,nj ) to set A*, otherwise we add arc (nf,nj,,) to set A*. That is,
we partition the arcs in the constrained routes considered in the distance term d”. Define
distance d(A*) and d(A*) as the summation of distance of all arcs in A* and A*, respectively.
Thus we have d” = d(A*) + d(A*). We have d(A*) < d(RY*) as the arcs in A* are a subset
of arcs in RY.

Next, we discuss the bound of d(A*)/d(RY*). It is obvious that, if the inequality d(A*) <
d(RY*) holds, we have d'/d(RY*) < 2 which would complete the proof. Unfortunately, this
inequality does not always hold (see an example in Figure 15). For an arc (i,j) € A* in
region 7, let the corresponding unconstrained path in RY* starting at consumer i and ending
at consumer j be 73 . It is obvious that

d(i, j) < d(P5"), (8)

as the arc (4, 7) is a short cut of the path PU due to the triangle inequality. Furthermore,
when we sum inequality (8) over the arc set A* we obtain

Zdzy ZdPU*

(i,4)€A* (i,j)€A*

< ) dPgY). (9)

(i,§)eA*

Unfortunately, we may not have Z(i,j)e - d(Pg’*) < d(RY*), because some of the uncon-

strained paths can overlap. An example is shown in Figure 15, where path 731 iy and Pg*

overlap (more specifically 73“]1 is a subpath of 735*) In such a situation, the sum on the
right-hand side in inequality (9) counts certain segments of the unconstrained route more
than once and can be larger than d(RY¥*).

In the following, we identify a condition that guarantees - - s d(P;*) < d(RY#).
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Figure 15: Example of d(A*) > d(RY"*)

Condition 4.1. For each arc (i,7) € A* in region r, the corresponding unconstrained path
775* C RY* starting at consumer i and ending at consumer j visits region v and only a
single adjacent region.

An example of when this condition is satisfied is illustrated in Figure 16.

<
:PU Consumer /
Region r’ 1 Region r ; -
O Intermediate facility
S"O Q S o Consumer
(ij)eA” + Unconstrained path
-+ Constrained path
Consumer j

v
Figure 16: Illustration of the condition that guarantees }_; ;e 1. (PU ) < d(RY).

When Condition 4.1 holds, there are no arcs (i/,5') and (i,j) € A* such that their

corresponding unconstrained paths ng and Pg* overlap (which will be proved later). That
is, the paths 735 for (i,7) € A* are disjunct. When the paths 735 for (i,7) € A* are

disjunct, it is easy to obtain 3~ i\ 4- d(Pg*) < d(RY*). Combining inequality (9), we have

< Y d(P;Y) < d(RY).

(i,5)€A*

To see that Condition 4.1 guarantees that the paths Pg* for (i, ) € A* are disjunct, assume,
to the contrary, that there exist (i,7) and (i,5') € A* such that Pgﬁ overlaps with P *. If
PZU]’, is a segment of 77 * (as in Figure 15), then Pg* has to leave and enter region r’, which
violates Condition 4.1. If Pg]’-f is not a segment of 775’*, but the paths have a common arc,
then that violates the optimality of the unconstrained route RY*.

In the following, we show that even if Condition 4.1 is not satisfied, which implies that
the inequality d(A*) < d(RY*) may not hold, the ratio Z5/Z¥ is still no more than 2v/2 +2.
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We do so by investigating five cases based on the number of arcs in A* in a region that
violate Condition 4.1 as well as their position within the region. The cases are listed below:

e Case 1. There exists at most one arc (i,7) € A* in a region violating Condition 4.1
and nodes ¢ and j are in adjacent quadrants of the region.

e Case 2. There exists at most one arc (i,5) € A* in a region violating Condition 4.1
and nodes ¢ and j are in non-adjacent quadrants of the region.

e Case 3. There exist at most two arcs in A* in a region violating Condition 4.1.
e Case 4. There exist at most three arcs in A* in a region violating Condition 4.1.

e Case 5. There exist more than three arcs in A* in a region violating Condition 4.1.

Case 1. There exists at most one arc (i,j) € A* in a region, say region r, violating
Condition 4.1 where consumers ¢ and j are in adjacent quadrants of region r. Let the region
adjacent to the side defined by the two quadrants be region 7’. Because arc (i, ) violates
Condition 4.1, the unconstrained path Pg* visits more than two regions. We can further
consider two situations based on the number of times that the unconstrained path enters
and exits the neighboring region r’. Note that the number of times that the unconstrained
path exits region 7’ equals the number of times it enters region . Because arc (i, j) violates
Condition 4.1, the path enters and exits region r’ at least twice. Therefore, we consider two
subcases: the path enters and exits region " more than twice (Case 1.1.) and exactly twice
(Case 1.2.).

\1; < v
Region r' Region r [O Intermediate facility Region r’ Region r | O Intermediate facility
Consumer o Consumer
, s ° 4
SrO Q* ' -+ Unconstrained path Se O O S + Unconstrained path
(i,j)eA -+ Constrained path in A" (ij)eA” + Constrained path in A"
/V:; b4 ;v "
v
(a) Case 1.1. (b) Case 1.2.

Figure 17: Illustrations of Case 1.

Case 1.1. The unconstrained path enters and exits region r’ more than twice, as il-
lustrated in Figure 17(a). First, assume that these constrained arcs in region 7’ satisfy
Condition 4.1. That is, each corresponding unconstrained path visits region r’ and one
neighboring region. Then, the worst-case example (based on the neighboring regions vis-
ited) is shown in Figure 18(a), where the unconstrained path enters and exits region 7’ four
times. However, we have that

d(R™) 4 9v/2

22 + 2.
QPSS V24

The reason that the ratio is less than 24/2 + 2 is that the unconstrained path takes a detour
around region 7', and the length of the unconstrained route “moves away” from the lower
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| -+ Constrained route + Constrained route
(a) Case 1.1. (b) Case 1.2.

Figure 18: Instances with worst-case ratios of Case 1.

bound derived in Lemma 3. Next, assume that one of the three constrained arcs in region 7’
in Figure 18(a) violates Condition 4.1. Again, the worst-case ratio of d(R%®)/d(PY*) is less
than 2v/2 + 2 as the length of the detours in the unconstrained route increases.

Case 1.2. The unconstrained path enters and exits region ' exactly twice, as illustrated
in Figure 17(b). Similarly, as shown in Figure 18(b), the worst-case ratio in these regions is

d(R") _ 6+6v2

P S <2v2+2.

The reason is similar: the unconstrained path takes a detour and the length of the uncon-
strained route moves away from the lower bound derived in Lemma 3.

Case 2. There exists at most one arc (i, j) € A* in a region, say region r, violating Con-
dition 4.1 where consumers i and j are in non-adjacent quadrants of the region (illustrated
in Figure 19(a)). An instance resulting in the worst-case ratio is shown in Figure 19(b). The
worst-case ratio of Case 2 is

d(R?)
T < 2v2+2.

Case 3. There exist at most two arcs (i1, j1), (ia,j2) € A* in a region, say region r,
violating Condition 4.1, as illustrated in Figure 20(a). Similar to Case 1, the worst-case
ratio of Case 3 is less than 2v/2 + 2.

Case 4. There exist at most three arcs (i1, j1), (i2, j2), (i3, j3) € A* in a region, say region
r, violating Condition 4.1, as illustrated in Figure 20(b). Similar to Case 1, the worst-case
ratio of Case 4 is less than 2v/2 + 2.

Case 5. There exist more than three arcs in A* in a region, say region r, violating
Condition 4.1. Note that there cannot exist a region with four arcs in A* connecting the four
quadrants of region r, because an unconstrained route leading to such a situation cannot be
optimal. Thus, there exist multiple arcs in A* in adjacent quadrants of region r. Therefore,
let us consider a situation in which there are two arcs in A* in adjacent quadrants. Denote
the two arcs as (4,4") and (j', j), respectively.
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Figure 19: Illustration of Case 2 and instance with worst-case ratio of Case 2.
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Figure 20: Ilustration of Cases 3 and 4.
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If the corresponding unconstrained paths 73 2 and 73 only visit region r and an adjacent
region r’; then Condition 4.1 is satisfied. Therefore at least one of the unconstrained paths
visits more than two regions, say path PW . There are two possibilities: (1) a segment of

—

\<-< i
[ ,4— I . . . k' l it Region r | O Intermediate facility
K \k’_’ o Region r | O Intermediate facility ' . O s o Consumer
J " + Unconstrained path
J

e Consumer Se O <
S O i O S + Unconstrained path _ Region r' L ’
Region ' i -+ Constrained path in A"

-+ Constrained path in A”
J

"k

(a) First possibility of Case 5 (b) Second possibility of Case 5

Figure 21: Illustration of Case 5.

PU* crosses the middle of a region, as illustrated in Figure 21(a), where section (k, k') crosses

the middle of region r/, and (2) all segments of Pg{/* are along the boundary of a region, as
illustrated in Figure 21(b). The first possibility results in a smaller ratio than in Case 1.1
(Figure 17(a)). The second possibility, cannot occur, because an unconstrained route leading
to such a situation cannot be optimal.

A worst-case example demonstrating that the bound is tight can be found in Figure 22,
where the network contains m, x m, regions with m, = oo and m;, = 4. (Note that this
worst-case example “concatenates” the worst-case examples presented for Theorems 1 and

2. More specifically, it contains four (2 x 2)-region subnetworks and an infinite number of
two-region subnetworks. O

O Intermediate facility
o Consumer

% Unconstrained route
+» Constrained route

Figure 22: A worst-case example that shows the bound is tight.

6.2. Worst-case ratio of total cost

Based on the previous results, we are able to obtain the worst-case ratio of the total cost
of the constrained delivery strategy using regions and the unconstrained delivery strategy.
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ZR
Theorem 5. Consider a network with m,xmy, regions. We have that i < 2v/24242¢ /ca,

where ¢y is the first-echelon unit cost and co is second-echelon unit cost, and this bound is
tight.

Proof. We first analyze the first-echelon cost of both delivery strategies. The unconstrained
first-echelon route is a round trip from the CDC to the nearest intermediate facility. We
denote the length of this round-trip by AY(Ny, Ng) = 2d(CDC, Sfy), where S is the nearest
intermediate facility to the CDC. The constrained first-echelon route, which starts and ends
at the CDC, visits the m, x m; intermediate facilities. Because the distance between two
“neighboring” intermediate facilities is 1, the length of an optimal constrained first-echelon
route is

ZlR = mgmy — 1 + AR(NO, Ng),

where A(Ny, Ng) represents the distance from the CDC to the first intermediate facility
visited plus the distance from the last intermediate facility visited to the CDC. We have
A®(Ny, Ng) = d(CDC, 5})) + d(CDC, Spy ), where Sy is the second nearest intermediate
facility to the CDC. Note that S[*l] and S[*Q] are ‘neighboring” intermediate facilities, i.e.,
(S} Sky) = 1. Thus, we have AT(Np, Ng) — 1 < AY(Ny, Ng) due to the triangle inequality.
Next, we decompose the ratio Z%/ZY into terms ZF/ZY and Z£/ZY and analyze them
separately. We have
zit  Zf
Zv  ZV+ 7Y
_c(mamy + AR(Ny, Ng) — 1)
 aAY(Ny, Ng) +Z2Y
c1mamyp + 1 (AF(Ng, Ng) — 1)
<
c1AU(Ny, Ng) + ca(mamy/2 + (V10 +v/2)/2 — 2)
< c1memy + Cl(AR(NO, Ns) — 1) — ClAU(NO, Ns)
o ClAU(No, Ns) + 02(mamb/2 + (\/ 10 + \/5)/2 - 2) - ClAU(N(), Ns)

= ca(memy /2 + (\/(1_0+ V2)/2 —2)
< 2¢1/cs. (12)

Note that inequality (10) is derived from Lemma 3. Note also that inequality (11) is based
on the fact that the righthand side of inequality (10) is greater than 1 (as ¢; > ¢2) and that
7 < a=R for any a, b, and A satisfying a > b > A > 0. Furthermore, we have

b—A
zi 73
Zv  ZV+ 7Y
<z

<2V2+2. (13)
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Combing inequalities (12) and (13) gives

ZR
ﬁ S 2\/5-'-2—’-201/(32.

A worst-case example that demonstrates that the bound is tight can be found in Fig-
ure 23. For clarity, the first-echelon constrained route (i.e., the route visiting the intermediate
facilities) is not shown in the figure. This completes the proof. n

O CDC
O Intermediate facility
o Consumer

-+ 1-E unconstrained route
& 2-E unconstrained route
-+ 2-E constrained route

Figure 23: An instance with the worst-case ratio.

7. Conclusions

To deliver to consumers in densely populated urban areas, companies often employ a
two-echelon logistics system. By restricting the set of potential vehicle routes employed in
one or both of the echelons, it is possible to significantly reduce the complexity of the delivery
operation, which is a common practice in real-life environments. We have shown that when
consumer density is high the impact on delivery cost of such operational complexity reducing
strategies is small. Furthermore, we have shown that simple enhancements, e.g., aggregation
of delivery cells, can more easily accommodate growth and more effectively handle daily
variations. In addition, we have provided related theoretical results in the form of a worst-
case analysis for specific geographic topologies.

The major conclusion of our efforts is that to minimize home delivery costs in megacities
the focus should be on the design of the delivery system rather than on the optimization of
routing and scheduling. This is interesting, because the academic community has focused
(and still focuses) primarily on the routing and scheduling aspects.
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Appendix A. Further analytical results

The worst-case ratios with the Manhattan distance metric and square regions are shown
below. The proofs are omitted as they are similar to those in Section 6.

Theorem 6. Consider a network with m, X my square regions and distances based on the
R

Z
Manhattan metric. We have Z—QU < 6, and this bound 1is tight.
2

Theorem 7. Consider a network with m, X my square regions and distances based on the
R

Z
Manhattan metric. We have 70 < 6+ 2c1/co, where ¢y is the first-echelon unit cost and cy

15 the second-echelon unit cost, and this bound is tight.

We generalize the results above and consider the situation in which each region is a
rectangle with width [, and height [,. Without loss of generality, we assume that [, > [,.

Theorem 8. Consider a network with m, X my rectangular regions. With the Manhattan
R

distance metric, we have Z—%] < A(ly + lp)/la + 2. With the FEuclidean distance metric, we
2

7R
have Z—?J < 2/12+12/l,+ 2. Both bounds are tight.

2

Theorem 9. Consider a network with m, X my rectangular regions. With the Manhattan
ZR
distance metric, we have 70 < A(lo+1p)/la+2+2c1 /co. With the Euclidean distance metric,
ZR
we have U <22+ 12/l,+ 2+ 2¢1/ca. Both bounds are tight.
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