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Abstract In this survey, we discuss the state-of-the-art of robust combinatorial
optimization under uncertain cost functions. We summarize complexity results
presented in the literature for various underlying problems, with the aim of point-
ing out the connections between the different results and approaches, and with
a special emphasis on the role of the chosen uncertainty sets. Moreover, we give
an overview over exact solution methods for NP-hard cases. While mostly con-
centrating on the classical concept of strict robustness, we also cover more recent
two-stage optimization paradigms.
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1 Introduction

Combinatorial optimization problems arise in many real-world applications, e.g.,
in the fields of economy, industry, or transport logistics. For many such prob-
lems, theoretically (or practically) fast algorithms have been developed under the
assumption that all problem data is known precisely. However, the situation be-
comes more complex when considering uncertainty in the problem parameters.
For example, the travel times for the shortest path problem or the vehicle routing
problem can be subject to uncertainty, since we cannot predict the exact traffic
situation in the future. One successful approach to tackle uncertainty in the input
data is robust optimization: for a given set U containing all relevant scenarios,
i.e., all sufficiently likely realizations of the uncertain parameters, a solution is
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sought that is feasible for every scenario in U and that is worst-case optimal under
this constraint. This idea was first introduced by Soyster in [106]. The approach
received increasing attention in the late 1990s. Kouvelis and Yu studied finite un-
certainty sets U for several combinatorial optimization problems in [80]. Almost
at the same time, Ben-Tal and Nemirovski studied robust convex problems with
conic or ellipsoidal uncertainty sets [22,[23]. Furthermore, El Ghaoui et al. applied
the idea to semi-definite problems and least-squares problems [57.[56]. Later, Bert-
simas and Sim introduced budgeted uncertainty sets to reduce what they call the
Price of Robustness [35]. A survey over robust optimization approaches for dis-
crete and interval uncertainty can be found in [9]. The different uncertainty sets
and their robust counterparts are intensively studied in [85].

Subsequently, new robust optimization paradigms were presented and studied
in the literature, with the main objective of making the approach better applicable
to practical problems. Besides various two-stage approaches [211[863], which we
will discuss in detail in Section EL several other paradigms have been investigated,
e.g., min-max regret robustness [I6L[72,[50,R0LI5LEL6L7] or the light robustness ap-
proach [6159T03]. Surveys studying several of the different approaches can be
found in [9L251[62,[76124.[641[37], they also cover distributional robustness, which
forms a connection between robust and stochastic optimization.

In the present survey, we consider general combinatorial optimization problems
of the form

min ¢z (P)
zeX
where X C {0,1}" describes the certain set of feasible solutions and where only
the cost-vector ¢ € R™ is subject to uncertainty. In particular, we assume that an
uncertainty set U C R"™ is given which contains all possible cost-vectors ¢. The
classical robust counterpart of Problem (]E) is then given by Problem

min max ¢z . (RP)

zeX ceU
In contrast to other surveys on this topic, we aim at pointing out the differences
between several common classes of uncertainty sets, with a focus on ellipsoidal
uncertainty; see Section [2] In Section [3] we will sort and structure the complexity
results for Problem achieved in the literature for several underlying combi-
natorial problems, again with a focus on the role of the chosen class of uncertainty
set. Typical complexity results for Problem are illustrated for the most ele-
mentary case X = {0,1}", including sketches of the main proofs. Furthermore, we
will discuss exact methods to solve Problem for the NP-hard cases, covering
IP-based methods as well as oracle-based algorithms, which can be applied to every
combinatorial problem given by an optimization oracle. Finally, in Section
we will give an overview over various robust two-stage approaches presented in the
literature and point out the connections between them.

2 Common Uncertainty Sets
The choice of the uncertainty set U is crucial in the design of the robust coun-

terpart (RPJ)). On the one hand, this choice should reflect the situation given in
the application and lead to a realistic model of the given uncertainty, including
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the user’s attitude towards risk. On the other hand, the choice of U influences the
tractability of the resulting problem . For this reason, many different types
of uncertainty sets have been investigated in the literature, and are still being
proposed. Roughly, most of these uncertainty sets can be classified as discrete,
polyhedral, or ellipsoidal sets. For a study on the geometric relationship between
the common uncertainty classes see [85].

2.1 Discrete Uncertainty

Discrete (or scenario-based) uncertainty sets are finite sets U = {c1, ..., cm}. They
form the most intuitive case of uncertainty sets. In practice, uncertain problem
data is often given as a finite list of scenarios observed in the past, e.g., the prices
of stocks in portfolio optimization or the shipping volumes in the design of a
transport network.

Unfortunately, in spite of their conceptual simplicity, assuming discrete uncer-
tainty nearly always leads to intractable robust counterparts; see Section In
fact, for many well-studied underlying combinatorial problems, such as the shortest
path problem or the spanning tree problem, the robust counterpart turns out
to be weakly NP-hard if the number m of scenarios is fixed and strongly NP-hard
if m is part of the input.

2.2 Polyhedral Uncertainty

Even if it seems natural in practice to define uncertain costs by a finite list of pos-
sible scenarios, in particular when only finitely many observations from the past
are available, there is no reason to exclude convex combinations of these scenarios:
if two scenarios are likely enough to appear, then why should the convex combi-
nation of them not be a likely scenario? This leads to the concept of polyhedral
(or polytopal) uncertainty, as polytopes are exactly the convex hulls of finite sets.
For most models of robust optimization, including the robust counterpart de-
fined in , it is easy to prove that changing from U to its convex hull does
not change the problem, as the worst case in the inner maximization problem will
be attained in an extreme point anyway. This seems to suggest that discrete and
polytopal uncertainty sets are equivalent. However, this is not true for all robust
two-stage optimization paradigms; see Section @ Moreover, even if the equiva-
lence holds from an abstract point of view, it does not hold from an algorithmic
or complexity-theoretic point of view: the convex hull of m points can have expo-
nentially many facets in m, and, vice versa, the number of vertices of a polytope
can be exponential in the number of its facets. In particular, complexity results do
not necessarily carry over from the discrete to the polyhedral case or vice versa.
In fact, the number of vertices is exponential for one of the most widely used
polyhedral uncertainty set, namely interval uncertainty. Here, every objective func-
tion coefficient can vary independently in an interval [l;, u;], so that U is an axis-

parallel box

U=]Jltiw]={ceR” |[I<c<u}=[,u].

1=1
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Note that the number of vertices is 2" here, so that a reduction to the discrete case
is not efficient. However, using interval uncertainty, the classical robust counterpart
is as easy to solve as the underlying problem, since we can just replace every
uncertain coefficient by u;.

On the other hand, interval uncertainty leads to very conservative solutions,
as it takes into account the possibility that every cost coefficient attains its worst
case value independently. In an effort to mitigate this effect, the concept of budget
uncertainty (also called Gamma-uncertainty) has been introduced [35]. Building
on the interval uncertainty set, the idea is to allow only a fixed number I' of
coefficients to deviate from their mean values. This leads to the uncertainty set

U={ceR"|[I<c<u, ¢;=18uVig I, I C{l,....n}, |I|<T}.

Dealing with a minimization problem and since X C {0,1}", we only need to
consider positive deviations in the coefficients. For the classical robust counterpart
(RP) we can equivalently consider the uncertainty set

U:{Co+i5idi€i| i5i§ﬂ56{0;1}n}; (1)
i=1 i=1

as it was first introduced in [35], where co = % (u+ 1) is the center of the box [I, u]
and d = %(u — 1) are the maximum deviations from the center, and e; denotes
the i-th unit vector. Note that this set U is not a polytope in general, but when
replacing it by its convex hull

conv (U) :{Co + iéldze, ‘ idz <TI,0e [0, l]n}
i=1 =1 . (2)
:{cER”\cogcgco—i—d,zd%(c—co)igf},
=1

assuming I' € N, the problem becomes a special case of polyhedral uncertainty.
Since the original set U is finite here, budget uncertainty could also be considered
a special case of discrete uncertainty; see Section above. However, if I" is not
fixed, the number of scenarios is exponential in n, so that this viewpoint may be
problematic in terms of complexity. Note that all three versions of the budgeted
uncertainty set are equivalent for the classical robust counterpart while in
general all sets differ from each other and can lead to different solutions, e.g. in
the case of two-stage robustness; see Section [

An alternative approach is to bound the absolute deviation of ¢ from the
mean co by I'; see Section [f.I] All these models have in common that, on the
one hand, they cut off the extreme scenarios in the interval uncertainty set and
thus lead to less conservative solutions, and on the other hand, they usually yield
tractable robust counterparts, assuming that the underlying problem is tractable;
see Section B.2.71

Several extensions of budgeted and general polyhedral uncertainty sets have
been devised in the literature. In multi-band uncertainty sets, the single deviation
band is partitioned into multiple sub-bands for which the concept of budgeted
uncertainty is applied independently [431[44][53]. The concept of decision-dependent
uncertainty sets was studied in [96[83]. The authors consider uncertainty sets
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U(z) which depend on the decision z. This concept was also applied to budgeted
uncertainty sets, assuming that the parameter I" is not fixed but a function of the
solution z [99LI05].

In general, for arbitrary polytopes U, the robust counterpart turns out
to be strongly NP-hard, no matter whether U is given by an inner or by an outer
description; see Section [3.1.2

2.3 Ellipsoidal Uncertainty

Both discrete and polytopal uncertainty sets often depend on a collection of ob-
served scenarios. These finitely many scenarios are only an approximation of the
real distribution of the cost coefficients. In particular, when making the reasonable
assumption that the cost coefficents are normally distributed, the confidence sets
turn out to be ellipsoids of the form

U:{ceR" | (c—co)Tzfl(c—co)gﬂ}, (3)

where co € R™ is the expected value of the uncertain objective vector ¢ and X is
the covariance matrix of the entries of ¢ — for sake of simplicity, we assume X' > 0
here. The parameter r describes the level of confidence, i.e., the risk the user is
willing to take — a larger r leads to more conservative solutions. Given the set , it
is easy to see, e.g., using conic duality, that , can be rewritten as a non-linear
optimization problem

min ¢z +7r- Vol Xr. (4)
zeX

The existence of a smooth closed form expression of the objective function distin-
guishes ellipsoidal uncertainty from the uncertainty sets discussed above; it forms
the basis of many solution approaches.

Problems of the form are also known as mean-risk optimization problems
in the literature, as their objective function is a weighted sum of the mean cgw
and the risk VT Xz of the chosen solution z. Often, the risk part is modeled
as z ' Yz, which may lead to different optimal solutions. Mean-risk optimization is
particularly popular in portfolio optimization, where the concept was introduced
already in the 1950s by Henry Markowitz [87]. For a comprehensive overview over
mathematical methods of portfolio optimization, see [54].

Another natural way to derive ellipsoidal uncertainty sets is by considering the
so-called Value-at-Risk model. The objective (in the minimization case) is to find
a feasible solution x € X and a value z € R such that the probability of z having
an objective value worse than z is at most a given ¢ € (0, 1). Under this condition,
the aim is to minimize z. The resulting problem thus reads

min z
st.Pr(c'z>2)<e
reX.

Assuming again that the entries of ¢ are normally distributed, i.e., ¢ ~ N(co, %),
one can show that the constraint Pr(cT:c > z) < e is equivalent to

z>cqr+d H(1—e)Val Xz,
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where @ is the cumulative distribution function of the standard normal distribu-
tion. In summary, the above problem can be recast as with r:= &~ 1(1 —¢).

Usually, full information about the given distribution of ¢ is not available in
practice. However, one may approximate the mean co and the covariance matrix X
by means of a finite set of observations. This is often done in portfolio optimization;
see, e.g., [49]. Arguably, the resulting normal distribution yields a more realistic
model of the inherent uncertainty than the finite set of observations itself.

In general, ellipsoidal uncertainty sets lead to intractable counterparts
again. However, in the special case of uncorrelated cost coefficients — or when
correlations are ignored in the model — the complexity-theoretic situation becomes
more interesting. We then have X' = Diag(o) for some o € R’ and, using binarity,
we can rewrite Problem as

min cjz+ Vol (5)

zeX

Surprisingly, up to our knowledge, it is an open problem whether is tractable for
all X for which the underlying problem is tractable. In particular, no tractable
(certain) combinatorial optimization problem is known for which (5) turns out to
be NP-hard. It is known however that an FPTAS exists as soon as the underlying
problem admits an FPTAS [94]. Furthermore can be solved in polynomial time
if X is a matroid. We further discuss this in Section

2.4 General Norms

Many of the uncertainty sets discussed above can be defined by means of a norm
function [|.||: R™ — R. Indeed, it is a natural approach to assume that the cost
function ¢ can vary within a certain radius around the expected scenario cg, with
respect to a given norm. The resulting uncertainty set is thus of the form

U={ceR"|[lc—coll <7}, (6)

where r again models the risk-averseness of the user. Defining ||c|| := VT X1,
we obtain ellipsoidal uncertainty as a special case, while the oo-norm, after an
approriate scaling, gives rise to interval uncertainty. The convex variants of bud-
geted uncertainty correspond to a combination of the co-norm with the 1-norm;
the two latter norms give rise to polytopal uncertainty sets. In general, a closed
form expression for the robust counterpart for the set in @ is

. T *
min co z +rfz]”,

where ||.||* is the dual norm to ||.||; see also [33].

In analogy to ellpsoidal uncertainty sets corresponding to the 2-norm, one can
consider uncertainty sets based on the p-norm. Many results for the ellipsoidal
case can be easily generalized to p-norms with p € (1,00), e.g., the tractability of
the robust counterpart for uncorrelated costs in the case X = {0,1}" [71].
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2.5 Unbounded Uncertainty Sets

Most uncertainty sets considered in the literature are bounded. Essentially, this can
be assumed without loss of generality. Indeed, if an unbounded direction a of U
exists, it is easy to see that the inner maximization problem yields an implicit
linear constraint a' < 0, since for all 2 € R™ violating this constraint the inner
maximum in is infinite. Adding this constraint explicitly allows to remove the
unbounded direction from U. In other words, allowing unbounded directions in U
means to allow to impose linear constraints on X. Note that if U is convex and
unbounded, there always exists an unbounded direction. If uncertain constants
are taken into account, as discussed in Section below, it is even possible to
model an affine linear constraint of the form o' x < b by adding an unbounded
direction (a,—b) to U.

2.6 Uncertain Constants

For a certain problem of the form , adding a constant in the objective function
does not have any affect on the set of optimal solutions, so that constants are
usually not considered explicitly. However, this changes in the uncertain setting,
as also the constant may be uncertain. Nevertheless, this is usually not covered in
the literature. Clearly, the robust counterpart including a constant,

min max c¢ z+¢é, (RPC)

zcX (c,e)eU
is at least as hard as Problem for most classes of uncertainty sets, as the
case of a certain constant can be modeled as a special case. It can be shown
that also the reverse is true for most classical combinatorial optimization prob-
lems, i.e., including the uncertain constant does not increase the complexity of
the problem [82]. Besides others, this is true for the shortest-path problem, the
spanning-tree problem, the knapsack problem, and the unconstrained binary prob-
lem where X = {0,1}". On the other hand, allowing an uncertain constant often
simplifies NP-hardness proofs, as we will see in the following section.

3 Strictly Robust Optimization

We consider the strictly robust counterpart of the underlying problem (]ED
We are mostly interested in the complexity of , which of course depends
both on the feasible set X and the uncertainty set U. We start by reviewing the
complexity results for general discrete, polyhedral, and ellipsoidal uncertainty sets
in Section [3:1} In Section [3:2} we will focus on uncertainty sets that often lead
to tractable robust counterparts. In Section we will survey possible solution
approaches for NP-hard cases.

3.1 Complexity for General Sets

It turns out that the strictly robust counterpart (RPJ) is often NP-hard for general
discrete, polyhedral, and ellipsoidal uncertainty sets, even in cases where the un-
derlying problem (]ED is tractable. Some of the main hardness results are collected
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in the following subsections, where we distinguish between weakly and strongly
NP-hard variants of and also cover the question whether polynomial time
approximation schemes exist. For the convenience of the reader we will present
proofs for the most elementary case X = {0,1}", which is usually not considered
in the literature.

8.1.1 Discrete Uncertainty

The robust counterpart of many classical combinatorial optimization prob-
lems, including the shortest path and the spanning tree problem, is NP-hard even
if U contains only two scenarios [ROL6L7L19]. We now illustrate this by giving a
short proof of NP-hardness for the most elementary case X = {0,1}". In partic-
ular, this shows that the hardness is not related to any combinatorial structure
of X, but only stems from the integrality constraints.

Theorem 1 The robust counterpart (RP) is NP-hard for X = {0,1}" if the un-
certainty set U contains exactly two scenarios.

Proof By the discussion in Section [2.6] it suffices to show the NP-hardness of
Problem for the case of two scenarios, i.e., U = {(c1,¢1), (c2,¢2)}. We
describe a polynomial reduction of the (weakly) NP-hard Subset Sum problem
to . Given integers s1,..., 8, and S, we have to decide whether there exists
asubset I C {1,...,n} with }°,_; s; = S. We construct a corresponding instance

of (RPC) by setting (c1,¢1) = (s,—S) and (c2,é2) = (—s,S). We then have

min max{c]—x +C,c0x+C}= min |s z—9|.
ze{0,1}" ze{0,1}"
It follows that there exists a set I C {1,...,n} with >, s; = S if and only if the
optimal value of the constructed instance of (RPC]) is zero. O

Nevertheless, for several problems, e.g., the shortest path problem, the spanning-
tree problem, the knapsack problem and the unconstrained binary problem, pseu-
dopolynomial algorithms have been found under the assumption that the num-
ber m of scenarios is fixed [808L[19]. Most of the latter algorithms are based on
dynamic programming. As a simple example, we observe

Theorem 2 For each fixred m, the robust counterpart (RP)) admits a pseudopoly-
nomial algorithm as well as a PTAS for X = {0,1}" if the uncertainty set U
contains exactly m scenarios. It admits an FPTAS if m = 2.

Proof The problem can be reduced to the solution of m multidimensional knapsack
problems with m—1 constraints each [19]: given U = {cu, ..., cm}, the i-th of these
problems reads

T

min ¢;

st. ¢ x> ¢ aforall j € {1,...,m}\ {i}
z e {0,1}".

The latter problems can be solved by pseudopolynomial algorithms and by a PTAS,
if m is fixed, and by an FPTAS if m = 2; see, e.g., [78]. O
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Note however that there exists no FPTAS for the bidimensional knapsack problem
unless P = NP, so that the above construction does not directly yield an FPTAS
for m > 3 scenarios. Nevertheless, it has been shown that the min-max versions of
the shortest-path problem, the spanning-tree problem and the knapsack problem
all admit an FPTAS [5] for a fixed number of scenarios.

Aissi et. al. prove that a pseudopolynomial algorithm for the min-max problem
with a fixed number of scenarios always exists if the underlying search problem
can be solved in polynomial time [8]. Here the underlying search problem is the
problem of finding, for a given objective value and a given cost vector, a solution
which attains the value with respect to the given cost vector, or returns that no
such solution exists.

An interesting problem in its robust version is the min-cut problem. While the
robust min s-t-cut problem is strongly NP-hard even if the number of scenarios is
fixed, the robust min-cut problem can be solved in polynomial time [I1[7]. To the
best of our knowledge it is still an open question whether the robust assignment
problem is weakly or strongly NP-hard for a fixed number of scenarios.

When considering an unbounded number of scenarios, all of the mentioned
problems become strongly NP-hard in their robust min-max versions [80,67].
Again, we include a proof for the unconstrained binary problem, as to the best of
our knowledge this result has not been proved in the literature yet.

Theorem 3 The robust counterpart (RP)) is strongly NP-hard for X = {0,1}" if
the uncertainty set U is finite but unbounded.

Proof Again, it suffices to show NP-hardness of Problem containing an
uncertain constant, for a finite set U = {(c1,¢1),...,(¢m,Cm)}. For the reduc-
tion, we use the strongly NP-hard Set Cover problem: for k € N, a given set of
elements I = {1,...,m}, and a set of subsets J C 2!, the problem is to decide
if there exists a set of at most k subsets contained in J, such that each i € I is
contained in at least one of the subsets. We define an instance of the robust uncon-
strained binary problem (with uncertain constant) as follows: we set X = {0, 1}/
and define for each i € I a scenario (¢;,0) € RI7IT! where (¢;); = 1 if element i is
contained in the j-th subset of J and 0 otherwise. Furthermore, we add another
scenario (—M1, Mk + 1), where 1 is the all-one vector and M is big enough. If U
is defined as the set of all constructed scenarios, there exists a solution for the set
cover problem if and only if problem

. T —
max min ¢ r+¢
z€{0,1}IV1 (¢,e)eU

has an optimal value greater or equal to 1. a

An overview over the complexity of min-max problems under discrete uncertainty
sets can be found in [9].

3.1.2 Polyhedral Uncertainty

For general polyhedral uncertainty, Problem is NP-hard for most of the
classical combinatorial problems, since we can easily reduce the two-scenario case
by choosing U as the convex hull of the two scenarios. Note however that this
does not settle the question whether the problem is weakly or strongly NP-hard.
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Even if the case of discrete uncertainty with unbounded number m of scenarios is
strongly NP-hard, this does not imply strong NP-hardness for the general polyhe-
dral uncertainty case, since the number of facets of the convex hull of the given m
scenarios might be exponential in m. In other words, we cannot construct an outer
description of U in an efficient way. Furthermore, considering polyhedra U with a
fixed number of facets is not reasonable in general, since this implies unbounded-
ness of U for n > m; see Section [2.5] However, for an unbounded number of facets,
the problem turns out to be strongly NP-hard for X = {0,1}". To the best of our
knowledge, this result has not been proved in the literature yet.

Theorem 4 The robust counterpart (RP) is strongly NP-hard for X = {0,1}"
and a polytope U (given by an outer description).

Proof For the reduction, we use the strongly NP-hard Bin Packing problem. Given
positive integers a1, ...,a: and C, the problem can be formulated as

t
min sz
j=1
t
s.t. Zaixi_j <zj-Cforall j=1,...,t
i=1
t
inj >1foralli=1,...,t
j=1
xi; € {0,1} forall4,j =1,...,¢t
zj €{0,1} forall j=1,...,¢t.
In short, this problem can be written as
min dTy
st. Ay >0b (7)
y €{0,1}",
where n:=t2+t,d € {0,1}", A € Z™*" and b € Z™ with m := 2t. Now consider
the polytope
U:={(d,0)} + (n+1)conv ({0} U {(—ai,b;) |i=1,...m}) ,

where a; denotes the i-th row of A. One can easily verify that the vectors (—a;, b;)
are linearly independent. This implies that an outer description of U can be com-
puted efficiently. Moreover, for each fixed y € {0,1}", we have

max

T _[=dTy<n if Ay>b
(c,e)eU ¢ ¢

>n+1 otherwise.
In summary, Problem reduces to

. T _
min max ¢ y-+c,
ye{0,1}™ (c,e)elU

which is of the form (RPC])). Finally, the uncertain constant can again be elimi-
nated, as discussed in Section O
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In this case, the hardness essentially comes from the fact that we can use the
polytope U to model linear constraints on X; see also the discussion in Section [2.5
However, the crucial step is to move from an inner to an outer description of U,
which in general is not efficient.

On the other hand, if U is originally given by an inner description, i.e., U is
the convex hull of a set of vectors U = conv ({c1,...,¢m}), then we can easily
reduce the robust min-max problem with unbounded number of scenarios, again
by choosing U as the convex hull of the scenarios. Therefore, also in this case
Problem is strongly NP-hard for most of the classical problems.

3.1.83 FEllipsoidal Uncertainty

For general ellipsoidal uncertainty, Problem is NP-hard as well for most of
the classical problems. This can again be proved by reducing the two-scenario
problem, by choosing U as the convex hull of the two scenarios [105]. Note that
the resulting ellipsoid is only one-dimensional, but also a reduction from the two-
scenario problem to the min-max problem with full-dimensional ellipsoidal uncer-
tainty, as defined in Section is possible [71]. In [I9] it has been proved that
the unconstrained binary min-max problem with ellipsoidal uncertainty is strongly
NP-hard. For convenience of the reader, we sketch the proof here.

Theorem 5 The robust counterpart (RP) is strongly NP-hard for X = {0,1}"
and an ellipsoid U (given by the covariance matriz X and the mean vector co).

Proof We describe a polynomial reduction from Binary Quadratic Programming,
which is a strongly NP-hard problem (equivalent to the Maximum-Cut Problem).
We are thus given a problem of the form

o1 o7 T
- L 8
:rGr{nOl,I}}" 237 Q‘T + T ( )

where Q € Z"*" is any symmetric matrix and L € Z". Using the binary of x, we
may assume that @ is positive definite, so that also

_(QL
A= (LT c)

is positive definite for ¢ := LTL+1€Z. Now (8) can be reduced to

min /yT Ay
s.t. Yynt1 =1
y € {o,13" .

For M := 73", [Asij| + 1 € Z, we can in turn rewrite this as

M + min (—M)yn41 + Vy " Ay
st. y e {0, 1},

The latter problem is of the form . a
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3.2 Tractable Uncertainty Sets

As discussed in the previous sections, Problem is NP-hard for most classical
combinatorial optimization problems even if U only contains two scenarios or is
a general polytope or ellipsoid. Therefore, in order to obtain positive complexity
results, it is generally necessary to restrict oneself to more specific uncertainty
sets. In particular, one may expect tractable robust counterparts in the case of
interval or budgeted uncertainty, see Section [3.2.1} or for uncorrelated ellipsoidal
uncertainty, see Section [3.2.2]

8.2.1 Interval and Budgeted Uncertainty

As already mentioned before, using interval uncertainty leads to robust counter-
parts as easy as the underlying problem: it can be easily verified that Problem
with U = [l, u] is equivalent to Problem (]ED with objective vector u. This approach
often leads to very conservative solutions, since all uncertain parameters are al-
lowed to attain their worst case values at the same time. To tackle this problem,
Bertsimas and Sim introduced budgeted uncertainty sets [35]. They propose to
add a budget constraint to the interval uncertainty set, which limits the number
of variables which may differ from their mean value at the same time; see .
They prove that the corresponding robust counterpart can be reduced to
solving n + 1 deterministic problems [34]. Therefore, the problem can be solved in
polynomial time as soon as the underlying problem can be solved in polynomial
time. In a similar way, one can prove that can be reduced to the solution of
only two deterministic problems when considering

U:{co+i5iei| zn:éigﬂ&-e[o,di]} (9)

=1 1=1

i.e. the variant where the absolute deviation is bounded by I'. Furthermore, Bert-
simas and Sim prove that, if an (1 + ¢)-approximation algorithm for the determin-
istic problem exists, then we can approximate the robust min-max version with
budgeted uncertainty set with the same accuracy by solving n + 1 deterministic
problems by the approximation algorithm [34]. The results in [34] were later im-
proved in [I0,07]. In [84] the authors prove that it is sufficient to solve [25L] + 1
deterministic problems to calculate an optimal solution of with budgeted
uncertainty.

Similar results as in [34] hold for variable budgeted uncertainty, introduced
in [99,[T05]. Here, instead of a fixed parameter I", we are given a functiony : X — N
and define the uncertainty set as

Ulz) = {cO +3 Sidies | S 80 < (), € [0, 1]} ,
=1 =1

which requires to extend the definition of the robust counterpart due to the
dependence of U from z. In [99], the author proves that the resulting problem can
be solved by solving at most n(n + 1) deterministic problems if we assume that -
is an affine function in z. Furthermore, given a dynamic programming algorithm
for a combinatorial problem that satisfies certain assumptions, the author derives
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a dynamic programming algorithm for Problem with budgeted and variable
budgeted uncertainty. Besides other problems, the latter construction is applicable
for the shortest path problem, the traveling salesman problem, and the scheduling
problem under budgeted uncertainty sets.

An extension to uncertainty sets modeled by multiple knapsack constraints was
studied in [I00]. Here the author extends the results in [34] to derive exact and
approximation algorithms for the robust counterpart. Furthermore besides other
results the NP-hardness of the robust counterpart is proved for the case that the
number of knapsack constraints is part of the input.

3.2.2 Uncorrelated Ellipsoidal Uncertainty

Another subclass which may lead to tractable robust counterparts is the class of
uncorrelated ellipsoidal uncertainty sets, i.e., we have that U is an axis-parallel
ellipsoid. In this case the correlation matrix X' in is a diagonal matrix and the
corresponding robust counterpart is given by Problem (5. It has been shown that
the latter problem can be solved in polynomial time if X is a matroid [95[94]. In
particular, it can be solved efficiently if X = {0,1}" or if X models the feasible
set of the spanning-tree problem. This essentially follows from the submodularity
of the objective function in .

The latter result can also be derived by interpreting Problem as a bicri-
teria problem with objective functions (c(—)r:z:, aTm). Nikolova [94] proved that any
optimal solution of Problem is an extreme efficient solution of the bicriteria
problem, i.e., it is an extreme point of the pareto frontier. Therefore, all optimal
solutions can be obtained by solving the linear problem

min (1—A)cgz+ Ao z

zeX
for appropriate A € [0, 1]. For matroids, an optimal solution of the latter problem
depends only on the ordering of the coefficients in the objective function, so that
we only have to consider the values of A for which the ordering changes. However,
for a given pair of variables the order can change at most once, which shows that
the robust problem can be solved by reduction to at most (g) certain problems.

For most classical combinatorial optimization problems, it is not known whether
Problem is tractable or NP-hard. However, again by considering extreme points
of the Pareto frontier, Nikolova proves that if the underlying problem admits an
FPTAS — which applies in particular if it can be solved in polynomial time — then
also Problem (j5) admits an FPTAS.

A further oracle based result is proved by Bertsimas and Sim [36]. By replacing
the concave square-root function by its subgradients and solving the corresponding
linear deterministic problem over z for each value in {0 'z | z € {0,1}"}, they
obtain an exact algorithm for .

In [89] the authors show that the constrained shortest path problem under
uncorrelated ellipsoidal uncertainty can be solved in pseudopolynomial time.

3.3 Solution Approaches for NP-hard Cases

As discussed in Section the robust counterpart (RP|) is NP-hard for many

uncertainty sets U even if the underlying problem (P) is tractable. This implies
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that, unless P=NP, there is no efficient way of reducing (RP) to (]ED in general,
i.e., no algorithm for solving by solving a polynomial number of problems of
type (P]) — as it was the case for interval or budgeted uncertainty; see Section
However, in spite of the NP-hardness, an exact solution of such problems is desir-
able. Though most of the literature in robust combinatorial optimization concen-
trates on theoretical complexity issues or the design of new robust optimization
paradigms, some papers also discuss exact methods for NP-hard cases. In this
section, we describe some approaches that are applicable to general problems of
type . These can be divided into two main groups: algorithms relying on
an optimization oracle for the underlying problem and those using integer
programming (IP) formulations.

3.3.1 IP-based Approaches

Assuming that a compact integer formulation X = {z € {0,1}" | Az < b} is given,
we obtain a natural relaxation
min max c'z (10)
Az<b ceU
of Problem (RP)). A basic, but important observation is that is a convex
optimization problem. In fact, the objective function
max ¢ x (11)
ceU
is convex, whatever uncertainty set U is considered. This observation gives rise to
a straightforward exact solution approach to solve Problem (RP): the solution of
the relaxation yields a lower bound for (RPJ), which can be embedded into a
branch-and-bound approach for solving Problem (RP)) to optimality.
Even if the convexity of Problem does not depend on the structure of U,
different classes of uncertainty sets lead to (practically) more or less efficient algo-

rithms for computing the lower bounds. In case of a discrete set U = {c1,...,cm},
Problem simply reduces to the linear program (LP)

min z
s.t. Az < b (12)

T .
cgr<zVi=1,...,m.

For polyhedral U (given by an outer description), we can dualize the linear pro-
gram and again obtain a compact LP formulation for . Finally, the ellip-
soidal case leads to a second-order cone problem (SOCP) of the form

/{ni<nb cox+VeTX-lz. (13)
T

Both LPs and SOCPs can be solved efficiently in theory, e.g., by interior point
methods. Moreover, modern IP solvers such as CPLEX [55] or Gurobi [66] can
often handle SOCP constraints, so that Problem can be directly addressed
for all mentioned classes of uncertainty sets. These solvers often also allow to
include separation algorithms, for cases in which a compact formulation of
does not exist, e.g., for the spanning tree problem.
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Several authors propose methods to improve the performance of IP-based ap-
proaches, either by presenting cutting planes to enforce the model and the resulting
dual bounds or by developing alternative formulations. Atamtiirk [I2] presents ex-
tended formulations for mixed-integer 0-1 programs under generalized budgeted
uncertainty. Cutting planes exploiting submodularity in the case of uncorrelated
ellipsoidal uncertainty are devised in [I3]. The authors in [90] develop a dynamic
programming algorithm for the robust knapsack problem under budgeted uncer-
tainty and compare it besides others to a compact formulation and the branch-
and-cut algorithm developed in [60].

A different approach for convex uncertainty sets is based on scenario genera-
tion; see, e.g., [91] for the general setting and a convergence analysis. The basic idea
is to produce scenarios ci, ..., cn iteratively and to solve the LP-relaxation
in every iteration, yielding an optimal solution (z*,z*). Next, a worst case sce-
nario ¢m+1 for * is computed, which in our situation can be done by maximizing
the linear function (z*)" ¢ over ¢ € U. Now if c,Tn_H:c* < 2%, then z* is an optimal
solution for the relaxation , otherwise c¢p,+1 is added to the set of scenarios
and Problem is solved again. This approach is compared experimentally to
the standard reformulation approach in [60] for budgeted uncertainty and in [32]
for budgeted and ellipsoidal uncertainty. The authors of the latter paper discuss
many variants and implementation details and conclude that none of the two
approaches dominates the other. In [98] telecommunication network design prob-
lems under two sources of uncertainty with quadratic dependencies are considered.
Besides other results a scenario generation approach is developed and tested for
polyhedral and ellipsoidal uncertainty.

Finally, various approaches based on Benders decomposition have been devised
for robust mixed-integer programming; see, e.g., [I02] for the ellipsoidal uncer-
tainty case or [92] for a problem-specific approach that however allows to address
very general uncertainty sets.

3.8.2 Oracle-based Approaches

In many situations, it is preferable to have an algorithm for Problem (RP)) that is
purely based on an optimization oracle for the underlying problem (Pf). This may
be the case because the underlying problem is well-studied, so that fast solution
algorithms exist, or because the underlying problem is so complex that it is not
desirable to re-investigate it from a robust optimization point of view. Moreover,
there may not be any compact IP formulation at hand.

In the case of interval or budgeted uncertainty, the robust counterpart can
be reduced to the solution of at most linearly many instances of the underlying
problem, as discussed in Section [3.2.1] For uncorrelated ellipsoidal uncertainty
sets, the basic idea of the FPTAS mentioned in Section can be extended to
obtain an exact oracle-based algorithm for ; see [95[94]. The number of oracle
calls in the latter approach is exponential in general, however, it is linear in the
number of breakpoints of the bicriteria optimization problem minmeX(COTac, O'T{I?)
derived from the reformulated problem .

Few approaches have been presented in the literature that can be applied, in
principle, to general sets U. An algorithm based on Lagrangian decomposition has
been presented in [I8] for the case of uncorrelated ellipsoidal uncertainty. The ap-
proach decouples the non-linear objective function from the underlying linear prob-
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lem; it requires optimization oracles for both the underlying linear problem (]ED
and for the unconstrained non-linear problem

: T
min max ¢ x. (14)
z€{0,1}™ ceU

The Lagrangian bound can be computed by a subgradient method and then be
integrated into a branch-and-bound-scheme. In the uncorrelated ellipsoidal uncer-
tainty case, Problem can be solved in O(nlogn) time [18]. However, for most
other types of uncertainty, Problem remains NP-hard; see Theorems
and Nevertheless, it can be solved in pseudopolynomial time for a fixed fi-
nite number of scenarios; see Theorem [2} Moreover, within a branch-and-bound-
scheme, it is enough to compute lower bounds for . Such bounds can be ob-
tained by relaxing {0,1}" to [0,1]", leading to a convex problem again, or by
considering underestimators in the ellipsoidal case [71].

Lower bounds in a branch-and-bound-scheme can also be obtained by solving
the relaxed problem

min _ max ¢'z. (15)
z€conv(X) ceU

In case no compact description of conv (X) as in is given, several approaches
have been studied which make use of a linear optimization oracle for X. One
general approach to solve Problem (|15)), originally proposed to solve min-max-min-
robust counterparts (see Section Ses column generation to produce new worst
case scenarios iteratively. It can be considered a dual approach to the iterative
scenario generation method described above, based on the problem

. T
max min cC T
ceU ze€conv(X)

which is equivalent to . More precisely, the algorithm starts with a set of
feasible solutions X9 C X and then alternates between computing a worst-case
scenario ¢* for Problem over conv (Xp) and computing an optimal solution
for (]E) with objective ¢*, to be added to Xo. The algorithm stops when no feasible
solution exists that can improve the worst-case solution. In the former step, the
problem reduces to a linear optimization problem over U, with additional linear
constraints. In the discrete and polyhedral case, one again obtains an LP, while the
ellipsoidal case leads to a quadratic problem. In both cases, the subproblem can
thus be solved efficiently. In the latter step, one can use the optimization oracle to
check whether a new feasible solution has to be added to Xo. For details see [41].

A related approach to Problem using a Frank-Wolfe type strategy has been
devised in [39], where it is applied to general ellipsoidal uncertainty. The algorithm
is again of an iterative nature. In each iteration, a set X’ of feasible solutions is
considered, as well as a point z’ in their convex hull. Then the gradient of the
objective function in 2’ is computed and minimized over the set X, using the
linear optimization oracle. An exact line search is performed between z’ and the
resulting linear minimizer, and the set X’ is updated. A Frank-Wolfe-approach for
the case of uncorrelated ellipsoidal uncertainty has been presented in [36].
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4 Robust Two-Stage Problems

A general robust two-stage problem can be formulated as

i i 2SRP
mip max min  fe(z,y) ( )
(z,y)€Z¢

where z € X are the first-stage decisions which have to be taken before the scenario
is known. After the scenario £ € U materializes, we choose the best possible second
stage decisions y € Y, such that the pair (z,y) is feasible for the actual scenario,
ie., (z,y) € Z¢. As common in robust optimization, we optimize the worst case
objective value of fe(x,y) over all scenarios £ € U. As before, we will concentrate
on combinatorial optimization under cost uncertainty and thus assume in the
following that X C {0,1}"* and f¢(z,y) = £7(x,y). For the second-stage we
assume the general case Y C R™2 and Z; C R™T72 and study the cases of real
and integer recourse separately in the following sections. Moreover, we focus on
the case where Z¢ does not depend on &.

The two-stage approach is tailored for problems for which a subset of the
decisions can be implemented after the scenario is known. Applications occur,
e.g., in the field of network design problems where in the first stage a capacity on
an edge must be bought such that, after the real costs on each edge are known,
a minimum cost flow is sent from a source to a sink [30]. Further applications
can be problem formulations involving slack variables or, more generally, auxiliary
variables depending on the real decision variables and the realized scenario. In a
strictly robust setting, such variables must be determined independently of the
scenario, which is not possible in general (and not necessary in practice).

Clearly, one can generalize this approach to more than two stages. A multi-
stage approach is applicable when the decisions are made in several steps, assuming
that the uncertainty vanishes gradually.

4.1 Adjustable Robustness

Adjustable robustness was first introduced in [21] and can be seen as the beginning
of two-stage models in robust optimization. In fact, this approach is often just
called Two-Stage Robustness. While the adjustable robust approach was originally
introduced for general linear formulations with uncertainty in the constraints, later
the approach was applied to combinatorial problems. Considering combinatorial
problems with uncertainty only occuring in the cost function, the general linear
adjustable robust counterpart is of the form

min max min ¢ z4+d'y (ARP)
z€X (c,d)eU yeyY
(w,y)eZ

for feasible sets X C {0,1}™,Y C R™2, and Z C R™ "2, A recent survey on this
topic can be found in [109].

Formally, by setting n2 = 0, the classical robust min-max problem is a special
case of ((ARP) and therefore all NP-hardness results from Section |3| carry over to
Problem (ARP)). Furthermore for interval uncertainty U = [l, u], as for the classical
min-max problem, it can be easily verified that Problem is equivalent to
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the deterministic problem with objective vector u if Y C RT. However, for a
closer investigation of complexity and solution approaches, an important question
is whether we assume Y (or Z) to be a discrete set or not, i.e., whether we consider
real or integer recourse.

4.1.1 Real Recourse

We first discuss the case where no additional integrality constraints occur in the
second stage, which has been investigated intensively in the literature.

The adjustable robust counterpart was originally introduced for problems with
uncertain constraints and certain objective. In our setting, we can use a straight-
forward level set transformation to shift the uncertainty from the objective func-
tion into the constraints, and hence also apply methods designed for problems
with uncertain constraints. Even if the feasible sets Y and Z are given by linear
uncertain constraints, the adjustable robust counterpart is NP-hard [88]. Ben-Tal
et al. [21I] propose to approximate the problem by assuming that the optimal values
of the wait and see variables y are affine functions of the uncertainty parameters &,
ie., y =yo+ WE for a vector yo and a matrix W of appropriate size. The second-
stage decisions y are then replaced by the choice of yo and W. The authors in [21]
prove that in the case of fixed recourse, i.e., if the constraint parameters of the
second-stage decisions are not uncertain, the problem is equivalent to a classical
min-max problem with uncertainty in the constraints and therefore computation-
ally tractable if we have a separation oracle for U. Note that in the case of these
so-called affine recourse decisions U can be replaced by its convex hull if Y and Z
can be described by inequalities given by quasiconvex functions in £. Affine re-
course decisions and related and extended ideas have been studied intensively in
the literature [14,201[48.[63129]52}28][69,811104.[108]. Moreover, it has been proved
that under certain assumptions affine decision rules are optimal for the adjustable
robust counterpart [3IL[70].

However, if we consider the general Problem with real recourse for the
combinatorial version with cost-uncertainty, we obtain a classical robust min-max
problem if U and the feasible sets Y and Z are convex. Indeed applying a classical
minimax theorem to the inner problem

. T T

max min c¢ xz+d v,
(c,d)€U y€eY
(z,y)€Z

we can swap the maximum and the minimum. Therefore in this case (ARP) is
equivalent to the classical min-max problem

. T T
min max c¢ z+d y
(c,d)eU

st.xe X,yeY,(x,y) € Z.

Note that the latter result even holds without assuming affine decision rules.
For the case of real but not necessarily affine recourse, decomposition methods
have been proposed for budget [38] and polyhedral [I7] uncertainty.
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4.1.2 Integer Recourse

We now focus on the case of integer recourse i.e. Y C Z™2, which so far has been
investigated much less intensively in the literature. Kasperski and Zielinski [77]
consider combinatorial problems, where a subset of the variables of the solution
are determined in the second stage. They prove that Problem is NP-hard
for the shortest-path problem, the minimum s-t-cut problem and the minimum
assignment problem, even if U contains only two scenarios and ni,n2 > 1. They
prove for the same underlying problems that the adjustable counterpart is even
strongly NP-hard if the number of scenarios is unbounded. Furthermore it has
been proved that Problem is NP-hard for the selection problem even if U
only contains two scenarios and that it is strongly NP-hard for the spanning-tree
problem and the selection problem with unbounded number of scenarios [74l[75].

However, the positive complexity results of the min-max problem for budgeted
uncertainty are not transferable to the adjustable robust counterpart: considering
budgeted uncertainty for adjustable robustness, note that in general the variants
of Problem with budgeted uncertainty sets and are not equivalent,
different from the classical min-max problem.

In [77], the authors prove that Problem is NP-hard for the shortest-
path problem and the spanning-tree problem with budgeted uncertainty defined as
in if the budget parameter I is part of the input. It is an open question whether
the problem remains NP-hard for a constant parameter I'. In [51], besides other
problems, the adjustable robust counterpart of the selection problem is studied
under budgeted uncertainty. The authors derive a mixed-integer formulation for
the budgeted uncertainty sets and @D and prove that the problem can be solved
in polynomial time for the latter variant.

Approximation algorithms have been developed for the two-stage variant of
uncertain network problems and general LP-formulations for an exponential num-
ber of scenarios [58l[79]. Furthermore, an exact column-and-constraint generation
algorithm has been devised in [I10].

More recently, general approaches for solving Problem in the case of
integer recourse, at least approximately, have been developed. They use non-linear
decision rules [28/29] or partitionings of the uncertainty sets [27,I0TLI07I67].

4.2 Recoverable Robustness

Recoverable robust optimization problems have been introduced in [86]. The main
idea is to calculate a solution which works well in an average scenario and then,
after the upcoming scenario is known, can be turned into a feasible solution which is
optimal for the given costs in the scenario. As an application example, the approach
has been studied for timetabling problems in [86]. Here, we aim at computing a
good timetable for the case where no disturbances occur. If a disturbance occurs,
we want to slightly change the pre-calculated solution to make it feasible and
tractable for the actual situation. Formally, the main idea behind this approach is
that a set A of recovery algorithms is given such that each of them can be applied
to a solution x and a scenario £ to construct a feasible solution for the scenario.
When applied to problems with uncertainty only in the costs, the recoverable
robust approach can be interpreted as follows: we aim at computing a solution x,
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such that the best feasible solution we can compute from x by one of our algo-
rithms is worst-case optimal. A special case of this variant is the so-called robust
optimization with incremental recourse, introduced in [93]. Here, instead of arbi-
trary algorithms in the second stage, we allow to change the solution = up to a
certain distance. In the combinatorial setting, this leads to the problem

min ¢'z+max min d'y (IRRP)
reX deU yeX
5(z,y)<k

where § is the given distance measure and k € N. Typical distance measures
investigated in the literature are d1(z,y) = |y \ x| or d2(x,y) = |z \ y| or the
symmetric difference.

In the following, we list results for the distance measure d;. An overview about
further results for different measures can be found in [76]. For discrete uncer-
tainty sets it has been proven that Problem is NP-hard for the minimum
spanning-tree problem and the selection problem even if U only contains two sce-
narios and that both problems are strongly NP-hard if the number of scenarios
is unbounded [75l[73]. The recoverable robust counterpart is strongly NP-hard
for the shortest-path problem even for two scenarios. The recoverable knapsack
problem is weakly NP-hard for a fixed number of scenarios and strongly NP-hard
for an unbounded number of scenarios [46]. For interval uncertainty, the selection
problem and the spanning-tree problem are solvable in polynomial time [751[68].
The shortest path problem is strongly NP-hard in this case [42]. For budgeted
uncertainty, in [45] a linear integer formulation of quadratic size is derived for the
recoverable knapsack problem. For the budgeted uncertainty variants and @D
the recoverable shortest path problem is strongly NP-hard [93]. Further results on
recoverable robustness for combinatorial problems can be found in [47].

4.3 Bulk Robustness

The concept of Bulk Robustness was presented in [3] and studied for the shortest
path problem and the minimum matroid basis problem. In contrast to the previ-
ous models, this approach considers a set of failure scenarios, where each failure
scenario is a set of edges which can break down simultaneously. The aim is to cal-
culate a set of edges such that, if we remove the edges of any failure scenario from
this set, it still contains the edge set of a feasible solution of the combinatorial
problem. In particular, a solution of a bulk robust counterpart is a superset of a
feasible solution, but not a feasible solution itself in general.

As an application, consider a railway system for which a shortest path has to
be calculated. Because of possible constructions or accidents it can happen that
a section of the railway system is not passable anymore. In this case we can use
the bulk robust idea to calculate a set of sections which always contain a feasible
path no matter which of the failure scenarios occurs.

The bulk-robust approach is studied for several combinatorial optimization
problems in [3l[IL2]. An extension, which is at the same time related to the recov-
erable robust idea, was presented in [4] for the shortest-path problem: in a second
stage, after the failure scenario is known, it is allowed to add r edges to the pre-
calculated edge-set to connect the given nodes s and t. Note that both approaches
consider only constraint uncertainty given by the failure scenarios.
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A natural way to adapt the bulk-robust concept to problems with only cost-
uncertainty is to ask for a set of edges such that the best solution contained in the
set is worst-case optimal. However, this approach is only reasonable if the vector x
is either restricted or penalized by the objective function, as otherwise the optimal
solution is always 1. We thus obtain the two problem variants

T

. . T
min  max min ¢ x+d y

z€{0,1}" ceU y<z
yeX
and
. . T
min  max min d y .
z€{0,1}" ceU y<zx
lz|<k yeX
A generalization of the former model was mentioned in [77], but to the best of our
knowledge, no complexity results have been devised for this problem. Note however
that both variants are at least as hard as the original bulk-robust problem: the
failure scenarios can be modeled by large enough costs in the corresponding sce-
narios. This implies that both variants are NP-hard for the shortest path problem
and the assignment problem [3l[].

4.4 K-Adaptability

As mentioned in Section Problem in general is NP-hard. Besides using
affine decision rules, another way to approximate Problem is to limit the
number of second-stage solutions by a given parameter K and calculate these
solutions in the first stage. This idea, called K-adaptability, has been introduced
in [26] and has been applied to robust two-stage problems in [67]. For the case that
only the objective function is uncertain, the authors of [67] show that this problem
is equivalent to the exact problem for large enough K. Furthermore, by
dualizing the inner max-min problem, the authors provide a mixed-integer linear
programming formulation of polynomial size, which they evaluated for the shortest
path problem, besides others. For the general case of constraint uncertainty the
authors prove that even evaluating the objective function is NP-hard.

As a special case of K-adaptability in two-stage robust optimization, in [41]
the authors study problems of the form

min max min ¢z (KAP)
zW) . x®eX ceU i=1,..,k

where again X C {0,1}" and U C R"™. Problem is an extension of the
classical min-max problem and yields better solutions in general if k& > 1.
The idea is to calculate k solutions by solving problem once and to quickly
choose the best of them after the scenario is known.

It is shown in [41] that Problem with an additional uncertain constant
is NP-hard for X = {0,1}" and any fixed k even if U is a polyhedron given by an
inner description. Furthermore, it is shown that Problem is equivalent to

. T
min max ¢ I
z€conv(X) ceU

for K > n + 1, which is a continuous convex problem. By using results on the
equivalence of optimization and separation for convex problems proved in [65],
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the authors show that for general bounded convex uncertainty sets over which a
linear function can be optimized efficiently, Problem for K > n+ 1 can be
solved in polynomial time as soon as the underlying deterministic problem can
be solved in polynomial time. Furthermore, the authors provide an exact oracle-
based algorithm to solve the problem for & > n + 1, see Section [3.3.2] as well as a
heuristic approach for k < n. For discrete uncertainty sets, the problem is analyzed
n [40]. The authors show that the complexity of Problem (KAP) coincides with
the complexity of the corresponding min-max problem many classical
combinatorial optimization problems.

5 Conclusion

Considering all classical types of uncertainty sets discussed above, the main divid-
ing line between hard and easy cases seems to be the inclusion of correlations: in
the case of interval uncertainty, where all cost coefficients can vary independently,
the robust counterpart inherits the complexity of the underlying problem. In the
case of uncorrelated ellipsoidal uncertainty, it is not known yet whether the same
is true, but positive general results exist. On the other hand, uncertainty sets al-
lowing to model correlations, i.e., general discrete, polyhedral, and ellipsoidal sets,
usually lead to NP-hard counterparts. The budgeted uncertainty case is on the
borderline, as it takes correlations into account in a rudimentary way, without
increasing the complexity.

Apart from many interesting open complexity theoretic questions, we think
that there is a lot of potential for improving exact methods for general classes
of uncertainty sets. By a more extensive use of techniques from mathematical
programming and non-linear (robust) optimization, we believe that such meth-
ods can become more powerful even in the combinatorial optimization setting. In
particular, such non-linear methods are relevant when dealing with non-finite and
non-polyhedral uncertainty sets. Such sets often yield a more realistic description
of the given uncertainty, while at the same time not necessarily leading to harder
robust counterparts.
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