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In this paper, we investigate optimal policies of distributionally robust (risk averse) inventory models. We

demonstrate that if the respective risk measures are not strictly monotone, then there may exist infinitely

many optimal policies which are not base-stock and not time consistent. This is in a sharp contrast with

the risk neutral formulation of the inventory model where all optimal policies are time consistent. This also

extends previous studies of time inconsistency in the robust setting.
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1. Introduction

Consider the following classical inventory model:

min
xt≥yt

E
[∑T

t=1 ct(xt− yt) + bt[Dt−xt]+ +ht[xt−Dt]+

]
s.t. yt+1 = xt−Dt, t= 1, ..., T − 1,

(1)

where x+ := max{x,0}, D1, ...,DT is a (random) demand process, ct, bt, ht are the ordering, backo-

rder penalty and holding costs per unit, respectively, yt is the inventory level and xt−yt is the order

quantity at time t. The decisions xt are viewed as control variables and yt as state variables, where

the initial inventory level y1 is given. We use capital letter for Dt viewed as a random variable

and dt for its particular realization through the paper. Assume that bt > ct ≥ 0, ht > 0, t= 1, ..., T .
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Assuming further that the demand process is stagewise independent1, it is well known that the

base-stock policy is optimal for Problem (1) (e.g., Zipkin 2000). These base-stock policies are time

consistent in the sense that the optimal policy computed at the initial period of the decision process,

before any realization of the demand process became available, remains optimal at the later periods.

Recently considerable attention was attracted to risk averse and distributionally robust formu-

lations of stochastic programs, e.g., Delage and Ye (2010), Wiesemann, Kuhn and Rustem (2013),

Wiesemann, Kuhn and Sim (2014), de Ruiter, Brekelmans and den Hertog (2016), Jiang and Guan

(2016), Esfahani and Kuhn (2018), and references therein. In the distributionally robust approach it

is argued that the “true” distribution of the data process is never known exactly and this motivates

us to consider the worst-distribution approach for a specified family of probability distributions

(probability measures). In the risk averse approach the expectation operator is replaced by a risk

functional (risk measure) defined on an appropriate space of random variables. In the influential

paper by Artzner et al. (1999), it was suggested that a “good” risk measure should satisfy certain

natural conditions (axioms) and such risk measures were called coherent. By duality arguments

distributionally robust and risk averse approaches, with coherent risk measures, in a sense are

equivalent to each other (e.g., Section 6.3 of Shapiro, Dentcheva and Ruszczyński 2014).

In a pioneering paper, Scarf (1958) gave an elegant solution for the worst-distribution formulation

in case of the static inventory model with T = 1, when only first and second order moments of the

demand distribution are specified. An extension of such distributionally robust approach to the

multi-period setting, when T > 1, is delicate.

When the employed risk functional has a nested form, an optimal policy is time consistent if and

only if (iff) it satisfies the respective dynamic programming equations. Therefore time consistent

policies always exist provided the dynamic programming equations have solutions. If an optimal

policy is not time consistent, then it is inferior to the time consistent policies in the sense that

for some realizations of the random data process it is strictly worse than the corresponding time
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consistent policy although both policies have the same optimal value from the first stage point of

view (e.g., Section 5.2 of Shapiro 2018). In the risk neutral setting this does not happen since the

expectation operator is strictly monotone. On the other hand, in distributionally robust multistage

settings it could happen that there are many optimal solutions which do not satisfy the dynamic

programming equations and are not time consistent.

In the framework of a robust objective, i.e. when using the max-type risk functional, analysis of

the inventory model was presented in the pioneering paper by Ben-Tal, Goryashko, Guslitzer and

Nemirovski (2004), where it was suggested to use affine policies. It was shown in Bertsimas, Iancu

and Parrilo (2010) that in certain settings affine policies (decision rules) are optimal, but do not

satisfy the dynamic programming equations and are not time consistent. Such a phenomenon of

time inconsistency is claimed to be “by no means an exception, but rather a general fact, intrinsic

in any robust multi-stage decision model” (e.g., Delage and Iancu 2015). Time inconsistent policies

were also explicitly constructed in an inventory setting in Delage and Iancu (2015). In the robust

setting2 a concept essentially equivalent to the time consistency was referred to as Pareto Efficiency

in Iancu and Trichakis (2014).

In this paper, we extend the previous study of time inconsistency to risk averse (distributionally

robust) models and further show that time inconsistency is not unique to robust multistage decision

making, but may happen for a large class of risk averse/distributionally robust settings. It is

somewhat surprising since time inconsistency can happen in seemingly natural formulations already

in the two period (i.e., T = 2) setting. This could happen when the associated risk functionals are

not strictly monotone. This was mentioned in Section 6.8.5 of Shapiro, Dentcheva and Ruszczyński

(2014) and investigated further in Shapiro (2017). Note that the discussion in Shapiro (2017) is

generic, while in this paper we present a detail investigation of this phenomenon in a setting of the

inventory model. In addition, in Shapiro (2017) the focus is on the discussion of risk functionals

instead of the associated optimization problems. This paper takes a further step and investigates
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risk averse optimization problems associated with non-strictly monotone risk measures, which are

more complex to study. For example, it is possible that such optimization problems still have only

time consistent optimal policies (see Corollary 3 below). This paper aims to demonstrate existence

of an infinite number of time inconsistent optimal policies in the setting of distributionally robust

inventory models defined by the first n moment constraints (Section 3.1) and risk averse inventory

models associated with spectral risk measure functionals (Section 3.2), which are widely accepted

models of ambiguity. This is in a sharp contrast with the risk neutral formulation of the inventory

model where all optimal policies are time consistent. This also extends previous studies of time

inconsistency in the robust setting.

This paper focuses on distributionally robust and risk averse models involving nested risk func-

tionals, where time consistent optimal policies always exist. More precisely, in our inventory setting,

there always exists an optimal time consistent base-stock policy. In addition, all time consistent

policies are of base-stock form. The goal of the paper is to understand conditions when time

inconsistent optimal policies may also exist and shed light on what distributionally robust models

generate such time inconsistencies. We aim at pointing to possible existence of such inconsistent

policies rather than telling to the decision maker how to use this.

We also note that there is no unique way to define a multi-period distributionally robust inventory

model. For example, a different version of distributionally robust inventory model, defined by the

first and second order moment constraints, was studied in Xin and Goldberg (2013). The key

difference from our setting in Section 3.1 is that our risk function R to be defined in Section 2,

is represented in a nested form such that there always exists an optimal base-stock policy that is

time consistent. By contrast, the risk functional defined in Xin and Goldberg (2013) may not have

a nested form. As a consequence, the problem may have no optimal policy of base-stock form and

may have no time consistent optimal policy.

The rest of the paper is organized as follows. In Section 2, we give a general discussion of risk

averse (distributionally robust) inventory models. Section 3 is devoted to specific constructions of
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such time inconsistent optimal policies. We provide concluding remarks in Section 4 and defer all

the proofs to the technical appendix in Section 5.

2. Distributionally robust inventory model

In this section, we provide a general discussion of risk averse (distributionally robust) inventory

models of the form

min
xt≥yt

R
[∑T

t=1 ct(xt− yt) + bt[Dt−xt]+ +ht[xt−Dt]+

]
s.t. yt+1 = xt−Dt, t= 1, ..., T − 1.

(2)

Here R(·) is a real valued functional defined on a space of random variables. If R is the expectation

operator, i.e., R := E, then (2) becomes the risk neutral formulation (1). Optimization in (2)

is performed over policies xt = xt(d[t−1]), t = 1, ..., T , which are nonanticipative functions of the

demand process3.

Assuming that the functional R can be represented in a nested form (see equation (6) below),

it is possible to write the following dynamic programming equations for problem (2). At each time

period t= T, ...,2, the cost-to-go function Vt(yt) is given by the optimal value of problem

min
xt≥yt

{
ct(xt− yt) + ρt [ψt(xt,Dt) +Vt+1(xt−Dt)]

}
, (3)

with VT+1(·)≡ 0 and

ψt(xt, dt) := bt[dt−xt]+ +ht[xt− dt]+. (4)

For t = 1, Problem (3) represents the first period optimization problem and its optimal value

coincides with the optimal value of Problem (2). Consider intervals [αt, βt]⊂R+, t= 1, ..., T , and

denote by Pt the set of all (Borel) probability measures on [αt, βt]. The functionals ρt are assumed

to be of the form

ρt(Z) := sup
Pt∈Mt

EPt [Z], t= 1, ..., T, (5)

where Mt is a nonempty subset of Pt.
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We consider two basic ways for constructing sets Mt. In one approach we assume existence

of a reference probability measure and the set Mt consisting of probability measures absolutely

continuous with respect to the reference measure. In another approach the sets Mt are defined by

moment constraints. In that case there is no reference measure. For the rest of the paper, by writing

that a property holds for every realization of a considered random variable we mean that it holds

with probability one, or almost everywhere, with respect to the reference probability measure in

the first setting, while in the second setting it supposed to hold for all possible realizations. In

particular by writing that Z ≥ Z ′, for random variables Z,Z ′, we mean that this inequality holds

with probability one in the first setting, while in the second setting it supposed to hold for all

possible realizations.

The risk functional R of Problem (2), associated with the dynamic equations (5), has the nested

form

R(·) = ρ1

(
ρ2|D1

(
· · ·ρT |D[T−1]

(·)
))
, (6)

where EPt|D[t−1]
denotes the conditional expectation with respect to the distribution Pt conditional

on D[t−1] and

ρt|D[t−1]
(·) := sup

Pt∈Mt

EPt|D[t−1]
[ · ], t= 2, ..., T.

Such nested risk averse formulations of multistage programs are well discussed in the literature in,

e.g., Ruszczyński and Shapiro (2006), Ruszczyński (2010), Shapiro, Dentcheva and Ruszczyński

(2014), Iancu, Petrik and Subramanian (2015), and for inventory models in, e.g., Ahmed, Cakmak

and Shapiro (2007). In view of the nested form (6) of the considered risk functional, it is natural

here to consider conditional optimality criteria of the nested form

Rt|D[t−1]
(·) := ρt|D[t−1]

(
· · ·ρT |D[T−1]

(·)
)
, t= 2, ..., T.

This leads to the following notion of time consistency of an optimal policy.
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Definition 1. Let π̃ = {x̃1, ..., x̃T (d[T−1])} be an optimal solution (optimal policy) of Problem

(2). It is said that policy π̃ is time consistent if for every time period t = 2, ..., T , the remaining

policy {x̃t(d[t−1]), ..., x̃T (d[T−1])} is optimal for the problem

min
xτ≥yτ

Rt|D[t−1]

[∑T

τ=t cτ (xτ − yτ ) + bτ [Dτ −xτ ]+ +hτ [xτ −Dτ ]+

]
s.t. yτ+1 = xτ −Dτ , τ = t, ..., T − 1,

conditional on the observed realization D[t−1] = d[t−1] of the demand process.

Time consistency is naturally related to the respective dynamic programming equations.

Definition 2. It is said that policy π̃= {x̃1, ..., x̃T (d[T−1])} satisfies the dynamic programming

equations if for t= 1, ..., T ,

x̃t ∈ arg min
xt≥yt

{
ct(xt− yt) + ρt [ψt(xt,Dt) +Vt+1(xt−Dt)]

}
,

conditional on D[t−1] = d[T−1] for every realization of the demand process.

That is, at time t= 2, ..., T we observed the realization of the demand process, up to this time,

and made decision x̃t−1 according to the considered policy π̃. Time consistency of π̃ means that,

looking into the future, conditional on the demand realization and our decision, policy π̃ remains

optimal with respect to the nested tail Rt|D[t−1]
of our optimization criterion. Note that this tail

optimization criterion is conditional on the observed realization of the demand process. In the risk

neutral case when R=E, the corresponding tail risk measure is given by the respective conditional

expectation. We refer to Section 6.8.5 of Shapiro, Dentcheva and Ruszczyński (2014) for a further

discussion of these concepts in risk averse settings. A natural question, which we address here, is

to understand what risk averse models generate time inconsistency.

2.1. Strict monotonicity

Note that each functional ρt, defined in (5), is convex, positively homogeneous, translation equiv-

ariant and monotone. Monotonicity means that if Z ≥ Z ′, then ρt(Z) ≥ ρt(Z ′). We will need a

stronger notion of monotonicity.
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Definition 3. We say that functional ρt, of the form (5), is strictly monotone if Z ≥ Z ′ and

Z 6=Z ′ imply ρt(Z)>ρ(Z ′).

For convex functionals, necessary and sufficient conditions for strict monotonicity are given in

Shapiro (2017) in terms of the respective subdifferentials. In particular, if the set Mt is defined

by a finite number of moment constraints (in particular if Mt = Pt), and the interval [αt, βt] is

non-degenerate (i.e., αt < βt), then the corresponding functional is not strictly monotone. Also, a

popular coherent risk measure, the Average Value-at-Risk (AV@R), is not strictly monotone.

Any policy satisfying the dynamic programming equations is time consistent (in the sense of

Definition 1); and conversely if an optimal policy is time consistent, then it satisfies the dynamic

programming equations4. Assuming that the considered risk functionals are monotone, it is shown

in Proposition 6.80 in Shapiro, Dentcheva and Ruszczyński (2014) that if the considered multi-

stage problem has a unique optimal solution (optimal policy), then this policy is time consistent

and satisfies the respective dynamic programming equations. If the employed risk functionals are

strictly monotone, then every optimal policy is time consistent and satisfies the respective dynamic

programming equations. On the other hand, as it was discussed in Shapiro (2017), if the risk

functionals are not strictly monotone, then there may exist optimal policies which are not time

consistent and do not satisfy the dynamic programming equations. In the robust setting, when

Mt =Pt, this was pointed out earlier in Bertsimas, Iancu and Parrilo (2010) and such an example

was explicitly constructed in Delage and Iancu (2015). In the next section, we are going to demon-

strate in the setting of distributionally robust inventory models that time inconsistent optimal

policies, which are no longer of base-stock form, exist already in the two period case, in a general

framework of moment constraints (Section 3.1) and spectral risk measures (Section 3.2).

3. Examples of time inconsistent optimal policies

In this section, we investigate existence of time inconsistent optimal policies in the case of two-

period inventory model when T = 2. We assume that the considered distributions of the demand
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vector (D1,D2) are of the form P1×P2 with P1 ∈M1 and P2 ∈M2 being marginal distributions of

D1 and D2 on intervals [α1, β1] and [α2, β2] respectively. We consider two settings for defining the

set M1 and functional R. In Section 3.2, we assume existence of a reference probability measure on

the interval [α1, β1]. As it was already mentioned in the previous section, in that case probabilistic

statements are made with respect to the reference probability measure and the constraints in

Problem (7) below are understood to hold for almost every D1. In Section 3.1, we assume that the

set M1 consists of all probability measures on [α1, β1] satisfying the specified moment constraints.

In that section the constraints should be satisfied for all D1 ∈ [α1, β1]. In both cases the set M2

does not play an essential role and can be arbitrary.

Before stating our main results, let us discuss the setup of our two-period risk averse (distri-

butionally robust) inventory model. For T = 2 the corresponding Problem (2) becomes (up to the

constant −c1y1)

min
x1,x2(·)

(c1− c2)x1 +R [ψ1(x1,D1) + c2(x2(D1) +D1) +ψ2(x2(D1),D2)]

s.t. x1 ≥ y1, x2(D1)≥ x1−D1.

(7)

Since R(·) = ρ1(ρ2|D1
(·)) with functionals ρ1 and ρ2 of the form (5), the objective function in (7)

can be written as

(c1− c2)x1 + sup
P1∈M1

EP1

[
ψ1(x1,D1) + c2(x2(D1) +D1) + sup

P2∈M2

EP2|D1

[
ψ2(x2(D1),D2)

]]
.

The second stage cost-to-go function V2(x1, d1) here is given by the optimal value of the problem

min
x2

{
c2x2 + sup

P2∈M2

EP2
[ψ2(x2,D2)]

}
s.t. x2 ≥ x1− d1, (8)

and the first stage problem is

min
x1≥y1

(c1− c2)x1 + sup
P1∈M1

EP1
[c2D1 +ψ1(x1,D1) +V2(x1,D1)] . (9)

Let ϑ∗ be its optimal cost, x̄1 be an optimal solution of the first stage optimization problem,

and x∗2 be an optimal solution of the unconstrained version (i.e., after removing the feasibility
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constraint x2 ≥ x1− d1) of Problem (8). If the unconstrained version of Problem (8) has multiple

optimal solutions, we assume that x∗2 is the largest one when constructing time inconsistent policies.

Then x̄2(d1) := max{x∗2, x̄1 − d1} is an optimal solution of the second stage problem, which is a

base-stock policy. Therefore, there always exists a time consistent optimal policy. Note that every

time consistent policy is of base-stock form. In addition, the time consistent policy is unique if

the first stage optimal solution x̄1 is unique and the unconstrained version of Problem (8) has a

unique optimal solution. Any time inconsistent optimal policy (if it exists) is inferior to the time

consistent solutions in the sense that for some realizations of the demand D1 the corresponding

second stage cost is strictly worse than the one of time consistent policy. There does not exist a time

inconsistent optimal policy if the functional ρ1 is strictly monotone. Without strict monotonicity,

we are going to demonstrate in Sections 3.1 and 3.2 that there may exist many time inconsistent

optimal policies.

Consider function

Ψ(x2, d1) :=ψ1(x̄1, d1) + c2d1 + c2x2 + sup
P2∈M2

EP2

[
ψ2(x2,D2)],

where ψt(·, ·) are defined in (4). Then an optimal policy of the respective problem (7) (x̄1, x̂2(d1))

is time consistent iff x̂2(d1) is an optimal solution of the problem

min
x2≥x̄1−d1

Ψ(x2, d1) (10)

for any realization d1 ∈ [α1, β1]. Note that base-stock policy x̄2(d1) = max{x∗2, x̄1−d1} is the optimal

solution of (10) for any d1 ∈ [α1, β1] and

ϑ∗ =R
[

min
x2≥x̄1−D1

Ψ(x2,D1)

]
=R[Ψ(x̄2(D1),D1)],

where R(Z) = supP∈M1
EP [Z]. Hence in order to show that a policy (x̄1, x̂2(d1)) is optimal time

inconsistent, we need to prove that ϑ∗ =R[Ψ(x̂2(D1),D1)] and x̂2(·) is not optimal to Problem (10)

for some realization. We additionally define

ϕ̄(d1) := min
x2≥x̄1−d1

Ψ(x2, d1) = Ψ(x̄2(d1), d1) =ψ1(x̄1, d1) + c2d1 +φ(d1), (11)
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where

φ(d1) := min
x2≥x̄1−d1

{
c2x2 + sup

P2∈M2

EP2

[
ψ2(x2,D2)]

}
.

It is possible to show that if there exists one optimal time inconsistent policy, then there is an infinite

number of such time inconsistent policies. In the rest of the section, we demonstrate existence of

time inconsistent optimal policies for some examples of non-strictly monotone functional R. Again

M2 can be arbitrary and we will focus on the discussion of M1.

3.1. Moment constraints

In this section we discuss existence of time inconsistent policies when the set M1 of probability

measures is defined by the first n moment constraints for any n≥ 0. Consider function ϕ̄(·), defined

in (11), and the following problem of moments

max
P∈S

EP [ϕ̄(D)] subject toEP [Dk] = µk, k= 0, ..., n, (12)

where S denotes the set of measures on the interval [α1, β1]. Let Cn+1 be the set of points

(µ0, ..., µn)∈Rn+1 for which there exists at least one measure P ∈S satisfying constraints of prob-

lem (12). Note that Cn+1 includes the null vector corresponding to the zero measure and is a

convex closed cone, and for µ0 = 1 the corresponding measure becomes a probability measure. We

assume that the considered ~µ := (µ0, µ1, . . . , µn) ∈ Rn+1 with µ0 = 1, is an interior point of Cn+1.

This assumption essentially requires that Problem (12) has a feasible solution, i.e., ~µ ∈ Cn+1, and

~µ is not degenerate, i.e., not a boundary point of Cn+1. We refer the reader to the Appendix for a

further (self-contained) discussion of the set Cn+1.

Problem (12) has a dual that can be written as the following semi-infinite programming problem

(e.g., Section 6.6 of Shapiro, Dentcheva and Ruszczyński 2014):

min
z∈Rn+1

z0 +µ1z1 + ...+µnzn

s.t. ϕ̄(t)≤ z0 + tz1 + ...+ tnzn, t∈ [α1, β1].

(13)
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Since the interval [α1, β1] is a compact set, there is no duality gap between the primal problem

(12) and its dual problem (13). Moreover, the set of optimal solutions of the dual problem (13) is

nonempty and bounded iff ~µ is an interior point of Cn+1 (e.g., Proposition 3.4 in Shapiro 2001).

For a feasible point z of Problem (13), consider the index set of active constraints:

∆(z) := {t∈ [α1, β1] : ϕ̄(t) = z0 + tz1 + ...+ tnzn}. (14)

Now we state our first main result of the paper, which provides a necessary and sufficient condition

for the existence of time inconsistent optimal policies in the moment setting.

Theorem 1. Suppose that ~µ is an interior point of Cn+1. Then there exists an infinite number

of optimal time inconsistent policies if and only if the dual problem (13) has an optimal solution z̄

such that

∆(z̄) 6= [α1, β1]. (15)

We would like to point out that the duality argument in the proof of Theorem 1 is quite general

and does not rely on the specific inventory setting.

Note that if ∆(z̄) = [α1, β1], then the function ϕ̄(·) defined in (11), is a polynomial with a degree

of no more than n on the interval [α1, β1]. Condition (15) ensures that this does not happen.

Condition (15) could be violated only in rather specific cases. The intuition behind this condition is

as follows. Suppose that condition (15) holds. It follows that there exist ε > 0 and d0 ∈ [α1, β1] such

that ϕ̄(d0) + ε < z̄0 +d0z̄1 + ...+dn0 z̄n. Then we can construct another policy π0 that is identical to

the optimal time consistent base-stock policy (x̄1, x̄2(·)) except π0 ordering an additional ε amount

of inventory in period 2 when demand is realized as d0 in period 1. In that case, π0 is also optimal

by the duality, but is no longer time consistent. Note that the above procedure provides a way to

derive optimal inconsistent policies by using the optimal solution z̄ to problem (13) for the moment

setting.
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In the robust setting, which can be viewed as n = 0, problem (13) becomes the problem of

minimization of z0 subject to z0 ≥ ϕ̄(t), t ∈ [α1, β1]. Since function ϕ̄(·) is not constant on the

interval [α1, β1] condition (15) always holds, and hence in the robust setting there always exists an

infinite number of time inconsistent policies (cf., Delage and Iancu 2015).

Corollary 1. In the robust setting (i.e., n= 0), there exists an infinite number of time incon-

sistent policies.

Suppose now that n ≥ 1. By verifying (15), the following corollary states that optimal time

inconsistent policies always exist if the first stage problem solution x̄1 belongs to (α1, β1).

Corollary 2. Suppose that n ≥ 1 and the first stage problem (9) has an optimal solution x̄1

such that α1 < x̄1 <β1. Then there exists an infinite number of optimal time inconsistent policies.

Theorem 1 and Corollary 2 together suggest that only when x̄1 is equal to one of the edge points

of the interval [α1, β1] or falls outside of the interval, it could happen that the problem does not

have time inconsistent policies. We demonstrate this point through the following result. This shows

a difference from the robust setting in which optimal time inconsistent policies always exist.

Corollary 3. Suppose that n≥ 1 and β1 ≤ x̄1 ≤ x∗2. Then there are no optimal time inconsistent

policies.

The intuition behind the assumptions in Corollary 3 is as follows. If x̄1 is sufficiently high (e.g.,

higher than β1, the upper bound of the support) possibly due to high initial inventory level or high

ordering cost in period 2, then there will be leftover inventory in the end of period 1 almost surely

no matter which P1 is chosen from M1. Hence the expected cost incurred in period 1 is the same

for all P1 as they have the same mean. Therefore, any policy whose inventory level after ordering

deviates from the optimal base-stock level x∗2 in period 2 for some d1 ∈ [α1, β1], is no longer optimal.

It follows that all optimal policies must be time consistent.
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3.2. Spectral risk measures

In this section we discuss existence of time inconsistent policies when the functional R is a spectral

risk measure. We assume existence of a reference probability measure P, associated with demand

D1, and that the support of P is the interval [α1, β1], i.e., P([α1, β1]) = 1 and for any nonempty open

set A⊂ [α1, β1] it follows that P(A)> 0.

The spectral risk measure functional is defined as

R(Z) :=

∫ 1

0

σ(t)F−1
Z (t)dt, (16)

where FZ(z) = P(Z ≤ z) is the cumulative distribution function (cdf) of Z (with respect to the

reference measure P), F−1
Z (t) = inf{z : FZ(z)≥ t} is the respective quantile, and σ : [0,1)→ R+ is

a monotonically nondecreasing, right side continuous function such that
∫ 1

0
σ(t)dt= 1. For exam-

ple5, for σ(·) := (1− γ)−11[γ,1](·) with γ ∈ [0,1), this becomes the so-called Average Value-at-Risk

measure AV@Rγ , which is defined as AV@Rγ(Z) := inft∈R

{
t+ (1− γ)

−1 E [(Z − t)+]
}

. It is known

that spectral risk measure (16) is strictly monotone iff the corresponding spectral function σ(t) is

strictly positive for all t ∈ (0,1) (e.g., Shapiro, Dentcheva and Ruszczyński 2014). In other words,

spectral risk measure (16) is not strictly monotone iff there exists γ ∈ (0,1) such that σ(γ) = 0. In

particular, the AV@Rγ risk measure is not strictly monotone for any γ ∈ (0,1).

Now we state our second main result of the paper, which provides general sufficient conditions

for time inconsistency when the spectral risk measure functional is not strictly monotone. Recall

that function ϕ̄(·), defined in (11), is convex and continuous. We make the following assumption.

Assumption 1. The function ϕ̄(·) is not constant on any subinterval of the interval [α1, β1].

Theorem 2. Consider spectral risk measure (16). Suppose that σ(γ) = 0 for some γ ∈ (0,1),

and Assumption 1 holds. Then there exists an infinite number of optimal time inconsistent policies.

Assumption 1 is a mild condition and it could be violated in rather specific cases. For example,

this assumption holds if c2 = 0 and the first stage problem (9) has an optimal solution x̄1 such
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that x̄1 ≥ α1. Indeed, under these conditions, one can check that ϕ̄(d1) = h1(x̄1 − d1)+ + b1(d1 −

x̄1)+ +φ(d1), where φ(d1) is non-increasing and φ(d1) = φ(x̄1) for all d1 ≥ x̄1. Hence Assumption 1

is satisfied. This assumption also holds if x̄1 ≤ x∗2 and h1 > c2. Indeed, under these conditions, one

can check that ϕ̄(d1) = h1(x̄1− d1)+ + b1(d1− x̄1)+ + c2d1 +φ(0), which satisfies Assumption 1.

Let us use AV@Rγ as an example to explain the intuition behind the result in Theorem 2.

Note that the optimal cost AV@Rγ (ϕ̄(D1)) can be interpreted as the average cost on the worst

(1− γ) fraction of the possible outcomes ϕ̄(·) under the optimal time consistent base-stock policy

(x̄1, x̄2(·)). Similar to the intuition behind Theorem 1, starting from this optimal base-stock policy,

we can construct another policy π0 by ordering an additional ε amount of inventory in period 2

for some demand realization that falls in the best γ fraction of the possible outcomes ϕ̄(·). In this

case, the worst (1− γ) fraction of the possible outcomes remains the same such that π0 is also

optimal. Note that the above procedure provides a way to derive optimal inconsistent policies for

the spectral risk measure setting. Moreover, the above explanation can be possibly extended to

any spectral risk measure that is not strictly monotone.

4. Conclusion

In this paper, we investigated optimal policies of distributionally robust (risk averse) inventory

models. We demonstrated through several examples that if the respective risk measures are not

strictly monotone, then there may exist infinitely many optimal policies which are not base-stock

and not time consistent. This is in a sharp contrast with the risk neutral formulation of the

inventory model where all optimal policies are time consistent. This extends previous studies of

time inconsistency in the robust setting.

5. Appendix
5.1. Proofs

In this section, we provide all the proofs to the results in the main body of the paper. We first

prove the following auxiliary result about the set ∆(z) defined in (14).
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Lemma 1. If ∆(z̄) = [α1, β1] for some optimal solution z̄ of Problem (13), then any P ∈M1 is

an optimal solution of Problem (12).

Proof of Lemma 1. Suppose that ∆(z̄) = [α1, β1] for some optimal solution z̄. Then for any

P ∈M1 we have that

EP [ϕ̄(D)] =EP [z̄0 + z̄1D+ ...+ z̄nD
n] = z̄0 + z̄1µ1 + ...+ z̄nµn.

That is, EP [ϕ̄(D)] is the same for every P ∈M1, and hence every P ∈M1 is an optimal solution of

Problem (12). �

We now proceed and present all the proofs.

Proof of Theorem 1. Let ~µ be an interior point of the cone Cn+1, and hence the dual prob-

lem (13) possesses an optimal solution z̄. Suppose that condition (15) holds. Note that since the

objective function of the dual problem is linear, the corresponding set ∆(z̄) of active constraints

is nonempty. By the first order optimality conditions we have that a feasible point z̄ of Problem

(13) is optimal iff there exist points ti ∈∆(z̄), and λi ≥ 0, i= 1, ..., k, with k≤ n+ 1, such that

~µ−
k∑
i=1

λigi = 0,

where gi := (1, ti, ..., t
n
i ) ∈ Rn+1. Let us note that the set ∆(z̄) is closed, and by the assumption

(15) we can choose z̄ such that ∆(z̄) 6= [α,β]. So we can choose a nonempty closed interval I ⊂

[α,β] \∆(z̄).

Consider a policy x̃2(·) such that x̃2(d1) := x̄2(d1) for all d1 ∈ [α1, β1]\ I, and x̃2(d1) := x̄2(d1) + ε

for d1 ∈ I and some ε > 0. Clearly this policy is feasible and hence the value

sup
P∈M1

EP [Ψ(x̃2(D1),D1)] (17)

is not less than ϑ∗. Let us show that for ε > 0 small enough actually the value of (17) is ϑ∗, and

hence the policy with x̄2(·) replaced by x̃2(·) is also optimal.
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Consider function ϕ̃(d1) := Ψ(x̃2(d1), d1) and the dual semi-infinite program of Problem (17). We

have that ϕ̃(d1) = ϕ̄(d1) for d1 ∈ [α1, β1] \ I, and supd1∈I |ϕ̃(d1)− ϕ̄(d1)| can be made arbitrarily

small for sufficiently small ε > 0. Since ϕ̄(t)< z̄0 + tz̄1 + ...+ tnz̄n for all t∈ I, we can choose ε > 0

small enough such that ϕ̃(t)< z̄0 + tz̄1 + ...+ tnz̄n for all t∈ I, and hence ϕ̃(t)≤ z̄0 + tz̄1 + ...+ tnz̄n

for all t∈ [α1, β1]. It follows that z̄ is a feasible point of the dual semi-infinite program of Problem

(17). Moreover, the corresponding set of active constraints, which is obtained by replacing ϕ̄ in (14)

with ϕ̃, does not change. By the first order optimality conditions the optimal solution z̄ of Problem

(13) is also an optimal solution of the dual of Problem (17), and hence these two semi-infinite

programs have the same optimal value ϑ∗. It follows that the optimal value of Problem (17) is also

ϑ∗. This shows existence of an optimal solution different from x̄2(·).

Conversely suppose that condition (15) does not hold, which implies that ∆(z̄) = [α1, β1] for

some dual optimal solution z̄. Then by Lemma 1, any P ∈M1 is optimal for Problem (12). We

argue now by a contradiction. Suppose that there is an optimal time inconsistent policy (x̄1, x̃2(·)).

It follows that there exists d0 ∈ [α1, β1] such that x̄2(d0) 6= x̃2(d0) and Ψ(x̄2(d0), d0)<Ψ(x̃2(d0), d0).

Also by optimality of x̄2(·) we have that Ψ(x̄2(d), d)≤Ψ(x̃2(d), d) for all d∈ [α1, β1]. Moreover, by

Theorem 3(iv), there exists P0 ∈M1 that has a positive mass at the point d0. Hence

ϑ∗ = EP0
[Ψ(x̄2(D1),D1)]< EP0

[Ψ(x̃2(D1),D1)]≤ sup
P∈M1

EP [Ψ(x̃2(D1),D1)] .

This implies that the policy (x̄1, x̃2(·)) is not optimal, giving the desired contradiction. �

Proof of Corollary 2. The subdifferential of the function ψ1(x̄1, ·) is not a singleton at d1 = x̄1.

By (11) it follows that ϕ̄(d1) is not differentiable at d1 = x̄1. Since x̄1 is an interior point of the

interval [α1, β1], it follows that ϕ̄(·) cannot coincide with a polynomial on the interval [α1, β1]. The

proof can be concluded by applying Theorem 1. �

Proof of Corollary 3. Under the conditions, we have

ϕ̄(d1) = h1(x̄1− d1) + c2d1 +φ(0), (18)
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which is linear in d1. Hence there exists an optimal solution of Problem (13) that exactly coincides

ϕ̄(d1). Therefore, Assumption (15) is violated. �

Proof of Theorem 2. Let F̄ (z) := P(ϕ̄(D1)≤ z) be the cdf of random variable ϕ̄(D1). Consider

z∗ := F̄−1(γ). We have that P(ϕ̄(D1)≤ z∗)≥ γ and P(ϕ̄(D1)< z∗)≤ γ. Since ϕ̄(·) is not constant

on the interval {d1 ∈ [α1, β1] : ϕ̄(d1) ≤ z∗}, it follows that the set {d1 ∈ [α1, β1] : ϕ̄(d1) < z∗} is

nonempty. Since the function ϕ̄ is convex continuous, this set is an open interval. Let A be a

non-degenerate closed subinterval of {d1 ∈ [α1, β1] : ϕ̄(d1)< z∗}. Since [α1, β1] is the support of P,

it follows that P(A)> 0.

We have then that there exists (measurable) function x̃2 : [α1, β1]→R such that x̃2(d1) = x̄2(d1)

for all d1 ∈ [α1, β1] \ A, and x̃2(d1) > x̄2(d2) and Ψ(x̃2(d1), d1) < z∗ for all d1 ∈ A. Consider the

cdf F̃ (·) of the random variable Ψ(x̃2(D1),D1), i.e., F̃ (z) := P(Ψ(x̃2(D1),D1)≤ z). We have then

that F̃−1(t) = F̄−1(t) for all t ∈ [γ,1]. Combining with the monotonicity of σ(t), it follows that

R(Z̄) = R(Z̃), where Z̄ := ϕ̄(D1) and Z̃ := Ψ(x̃2(D1),D1). Thus the policy (x̄1, x̃2(d1)) has the

same value as the policy (x̄1, x̄2(d1)), and hence is also optimal. �

5.2. The problem of moments

In this section, we review some classical results for the problem of moments. In order to simplify

notation, we drop the subscripts and write [α,β] for the first stage interval. We address the question

for what points ~µ := (µ0, µ1, . . . , µn)∈Rn+1 there exists a measure P on the interval [α,β] satisfying

the moment constraints ∫ β1

α1

tkdP (t) = µk, k= 0, ..., n. (19)

If such a (nonnegative) measure P exists we say that it is a representing measure. By the Richter

- Rogosinski Theorem (e.g., Theorem 7.37 in Shapiro, Dentcheva and Ruszczyński 2014), we have

that if such representing measure exists, then there exists a representing measure P having support

of no more than n+ 1 points, i.e., P =
∑`

i=1 piδti for some6 ti ∈ [α,β] and `≤ n+ 1. Note that µ0
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is the normalization constant. That is, if P is a positive representing measure, then µ0 > 0 and

Q := µ−1
0 P is a probability measure satisfying the moment constraints EQ[Dk] = µk/µ0, k= 1, ..., n.

By Cn+1 we denote the set of points ~µ ∈ Rn+1 for which there exists at least one representing

measure. Note that Cn+1 includes the null vector corresponding to the zero measure and is a convex

closed cone. For ~µ ∈ Rn+1 consider the following so-called Hankel matrices. For an even n = 2m

consider matrices defined as

H2m(~µ) = [µi+j]
m
i,j=0 and H2m(~µ) = [(α+β)µi+j+1−µi+j+2−αβµi+j]m−1

i,j=0 ,

and for an odd n= 2m+ 1 consider matrices defined as

H2m+1(~µ) = [µi+j+1−αµi+j]mi,j=0 and H2m+1(~µ) = [βµi+j −µi+j+1]mi,j=0 .

Note that matrices H2m(~µ) and H2m(~µ) are of the respective orders (m+ 1)× (m+ 1) and m×m;

and matrices H2m+1(~µ) and H2m+1(~µ) are of order (m+ 1)× (m+ 1).

The following theorem summarizes classical results relevant to our problem, and we refer to

Chapter 10 of Schmüdgen (2017) for a further discussion. Recall that the boundary of the convex

closed cone Cn+1 is the set Cn+1 \ int(Cn+1), where int(Cn+1) denotes the interior of Cn+1.

Theorem 3. (i) Point ~µ∈Rn+1 belongs to the cone Cn+1 iff the matrices Hn(~µ) and Hn(~µ) are

positive semidefinite. (ii) Point ~µ∈Rn+1 belongs to the interior of Cn+1 iff the matrices Hn(~µ) and

Hn(~µ) are positive definite. (iii) If ~µ ∈ Rn+1 is a boundary point of Cn+1, then the corresponding

representing measure is unique. (iv) If ~µ is an interior point of Cn+1, then for any d∈ [α,β] there

exists a representing measure P having a positive mass at the point d.

For example consider n= 1. Then Hankel matrices are 1× 1 matrices [µ1−αµ0] and [βµ0−µ1].

Hence the corresponding cone C2 = {(µ0, µ1) : µ1 − αµ0 ≥ 0, βµ0 − µ1 ≥ 0}, which implies that

µ0 ≥ 0. For µ0 = 1 the corresponding representing set of probability measures is nonempty iff
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µ1 ∈ [α,β]. The interior of C2 is defined by the constraints µ1−αµ0 > 0 and βµ0−µ1 > 0, and the

boundary is attained when either µ1−αµ0 = 0 or βµ0−µ1 = 0.

For n= 2 the corresponding Hankel matrices are

H2(~µ) =

µ0 µ1

µ1 µ2

 and H2(~µ) = [(α+β)µ1−µ2−αβµ0]

and hence

C3 = {(µ0, µ1, µ2) : µ0 ≥ 0, µ0µ2−µ2
1 ≥ 0, (α+β)µ1−µ2−αβµ0 ≥ 0}.

For µ0 = 1, in terms of the variance σ2 := µ2 − µ2
1, the corresponding set of feasible solutions is

defined by the inequalities σ2 ≥ 0 and σ2 ≤ (β−µ1)(µ1−α). Boundary solutions happen if µ1 ∈ [α,β]

and σ2 = 0 or σ2 = (β−µ1)(µ1−α).

Endnotes

1. It is said that the demand process is stagewise independent ifDt+1 is independent of (D1, ...,Dt),

t= 1, ..., T − 1.

2. By “robust setting” we mean the worst case setting, i.e., the max-type objective functional is

used.

3. We denote by d[t] := (d1, ..., dt) history of the demand process up to time t.

4. By saying that policy is optimal we mean that it is an optimal solution of the corresponding

multistage problem.

5. By 1A we denote the indicator function of set A.

6. By δt we denote measure of mass one at point t.
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