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Abstract

We consider dynamic selection problems, where a decision maker repeatedly selects a set of items
from a larger collection of available items. A classic example is the dynamic assortment problem with
demand learning, where a retailer chooses items to offer for sale subject to a display space constraint.
The retailer may adjust the assortment over time in response to the observed demand. These dynamic
selection problems are naturally formulated as stochastic dynamic programs (DPs) but are difficult to
solve because the optimal selection decisions depend on the states of all items. In this paper, we study
heuristic policies for dynamic selection problems and provide upper bounds on the performance of an
optimal policy that can be used to assess the performance of a heuristic policy. The policies and bounds
that we consider are based on a Lagrangian relaxation of the DP that relaxes the constraint limiting the
number of items that may be selected. We characterize the performance of the Lagrangian index policy
and bound and show that, under mild conditions, these policies and bounds are asymptotically optimal
for problems with many items; mixed policies and tiebreaking play an essential role in the analysis of
these index policies and can have a surprising impact on performance. We demonstrate these policies
and bounds in two large scale examples: a dynamic assortment problem with demand learning and an
applicant screening problem.
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1. Introduction

In this paper, we consider dynamic selection problems, where a decision maker repeatedly selects a set of

items from a larger collection of available items. A classic example is the dynamic assortment problem with

demand learning, where a decision maker (DM) – prototypically a retailer – chooses products to offer for sale,

selecting from many possible products, but is limited by display space. In this problem, product demand

rates are uncertain, and the retailer may want to update the assortment over the course of the selling season

in response to demands observed in previous periods. Similar problems arise in internet advertising (which

ads should be displayed on a news site?), in yield trials for experimental crop varieties (which experimental

varieties should be planted in a trial?), and in hiring or admissions decisions (which applicants should be

interviewed, hired or admitted?).

These dynamic selection problems are naturally formulated as stochastic dynamic programs (DPs) but

are difficult to solve to optimality. Even when the reward processes are independent across items, the

competition for limited resources (e.g., display space) links the selection decisions: the selection decision for

one item will depend on the states of the other available items. In this paper, we study heuristic policies for

dynamic selection problems and provide upper bounds on the performance of an optimal policy. We focus on

problems with a finite horizon, but also consider an extension to an infinite horizon setting with discounting.

Our methods and analysis are based on a Lagrangian relaxation of the DP that relaxes the constraint

limiting the number of items that can be selected. This Lagrangian relaxation decomposes into item-specific

DPs that are not difficult to solve and the value of the Lagrangian provides an upper bound on the value

of an optimal policy. We can solve the Lagrangian dual problem (a convex optimization problem) to find

Lagrange multipliers that give the best possible Lagrangian bound. This optimal Lagrangian can also be

used to generate a heuristic policy that performs well and, if we mix policies and break ties appropriately, is

asymptotically optimal: under mild conditions, as we increase the number of items available and the number

that can be selected, the relative performance of the heuristic approaches the Lagrangian upper bound.

We illustrate these results with two example problems. The first is based on the dynamic assortment

model with demand learning from Caro and Gallien (2007). The second is an applicant screening problem

where a DM must decide which applicants (e.g., for a college or job) should be screened (e.g., reviewed or

interviewed) and which applicants should be admitted or hired.

1.1. Literature Review

Our paper builds on and contributes to two related streams of literature. First, the dynamic selection

problem can be viewed as a special case of a weakly coupled DP. For example, Hawkins (2003), Adelman

and Mersereau (2008) and Bertsimas and Mǐsić (2016) study DPs that are linked through global resource

constraints. The dynamic selection problem can be viewed as a weakly coupled DP where the linking

constraint is a cardinality constraint that limits the number of items that can be selected in a period.

Hawkins (2003), Adelman and Mersereau (2008) and Bertsimas and Mǐsić (2016) all consider Lagrangian
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relaxations of weakly coupled DPs, similar to the Lagrangian relaxation in §3 below. Lagrangian relaxations

of DPs have been used in a number of applications including network revenue management (e.g., Topaloglu

2009) and marketing (e.g., Bertsimas and Mersereau 2007 as well as Caro and Gallien 2007).

The dynamic selection problem can also be viewed as a finite-horizon, non-stationary version of the

restless bandit problem introduced in Whittle (1988). The restless bandit problem is an extension of the

classical multiarmed bandit problem where (i) the DM may select multiple items in any given period and

(ii) items may change states when not selected. Whittle (1988) introduced an index policy where items are

prioritized for selection according to an index that is essentially equivalent to the Gittins index. Whittle

(1988) motivates this policy through a Lagrangian analysis, viewing the index as a breakeven Lagrange

multiplier (see §4.2) and conjectured that in the infinite-horizon average reward setting these policies are

asymptotically optimal for problems with many items. Weber and Weiss (1990) showed that this conjecture

is true under certain conditions but need not be true in general. Caro and Gallien (2007) studied Whittle

indices in the dynamic assortment problem. Bertsimas and Niño-Mora (2000) study restless bandit problems

with discounted rewards over an infinite horizon and develop performance bounds based on a hierarchy

of linear programming (LP) relaxations; they show that the first-order LP relaxation corresponds to the

Lagrangian relaxation studied by Whittle (1988) and they use this relaxation to generate an index policy.

Hodge and Glazebrook (2015) develop and analyze an index policy for an extension of the restless bandit

model where each item can be “activated” at different levels. For a comprehensive discussion of the restless

bandit problem, see Gittins et al. (2011).

1.2. Contributions and Outline

Our main contributions are (i) a detailed analysis of the Lagrangian relaxation of the dynamic selection

problem and, building on this, (ii) the development of an optimal Lagrangian index policy that performs well

in examples and is proven to be asymptotically optimal. Specifically, we consider limits where we increase

both the number of items available (S) and the number of items that may be selected (N) with a growth

condition (for example, N is a fixed fraction of S). We show that the performance gap (the difference between

the Lagrangian bound and the performance of the heuristic policy) grows with the same rate as
√
N for the

optimal Lagrangian index, whereas the gaps for Whittle index policy (Whittle 1988) grows linearly with N .

Mixed policies and tiebreaking play a surprising and important role in the analysis and in the numerical

results. For example, a Lagrangian index policy that breaks ties randomly may also exhibit linear growth in

the performance gap.1

1During the review process for this paper, we became aware of a working paper, Hu and Frazier (2017), that studies the use
of Lagrangian relaxations for finite-horizon restless bandit problems. The model studied in Hu and Frazier (2017) is a special
case of a dynamic selection problem where all items are a priori identical and state transition probabilities and resource
constraints are constant over time. Hu and Frazier (2017) consider an index policy based on varying the Lagrange multiplier
for the current time period, keeping all future Lagrange multipliers fixed. This policy appears to be equivalent to our optimal
Lagrangian index policy where policies are mixed according to Markov policies (see §4.4). Hu and Frazier (2017) provide a
proof of asymptotic optimality of this policy based on the convergence of occupation measures of the index policy to that
of the Lagrangian relaxation. Our proof of asymptotic optimality is based on explicit bounds on the suboptimality of the
Lagrangian index policy. These bounds provide a rate of convergence for the Lagrangian index policies and provide additional
insight into the nature of this convergence that is helpful, for example, when considering the infinite horizon extension of §7.2.
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We begin in §2 by defining the dynamic selection problem and introducing the dynamic assortment

and applicant screening problems. In §3, we describe the Lagrangian relaxation and discuss its theoretical

properties; we describe a cutting-plane method for efficiently solving the Lagrangian dual optimization

problem in Appendix A. In §4, we define a number of heuristic policies including the Whittle index policy

and the optimal Lagrangian index policy. In §5, we characterize the performance of the optimal Lagrangian

index policy and present results on the asymptotic optimality of this policy. In §6, we simulate the heuristic

policies of §4 in the context of the two example problems and evaluate their performance. In §7, we discuss the

applicability of these methods in problems with long time horizons, considering Whittle (1988)’s conjecture on

the asymptotic optimality of the Whittle index policy and the counterexample of Weber and Weiss (1990).

We also present an extension of the asymptotic optimality of the Lagrangian index policy to an infinite

horizon setting with discounting. In Electronic Companion (EC) §E, we describe information relaxation

performance bounds (see, e.g., Brown et al. 2010) based on the Lagrangian relaxation and show how they

improve on the standard Lagrangian bounds; these bounds are illustrated in the numerical examples of §6.

Most proofs and some other detailed discussions are also provided in the EC.

2. The Dynamic Selection Problem

We first describe the general dynamic selection problem and then discuss the dynamic assortment and

applicant screening problems as examples of this general framework.

2.1. General Model

We consider a finite horizon with periods t = 1, . . . , T . In period t, the DM can select a maximum of Nt items

out of S available. The DM’s state of information about item s is summarized by a state variable xs. To

avoid measurability and other technical issues, we will assume that the state variables xs can take on a finite

number of values. We define a binary decision variable us where 1 (0) indicates item s is (is not) selected.

In each period, item s generates a reward rt,s(xs, us) that depends on the state xs, the selection decision

us, and the period t. Between periods, the state variables xs transition to a random new state χ̃t,s(xs, us)

with transitions depending on the current state, the selection decision, and period. We let x = (x1, , . . . , xS)

denote a vector of item states, u = (u1, . . . , uS) a vector of selection decisions, and χ̃t(x,u) = (χ̃t,1(x1, u1),

. . . , χ̃t,S(xS , uS)) the corresponding random vector of next-period item states.

The DM selects items with the goal of maximizing the expected total reward earned over the given

horizon. Though a policy for making these selections can depend on the whole history of states and actions

and could be randomized, standard DP arguments (e.g., Puterman 1994) imply there is an optimal policy

that is deterministic and Markovian i.e., of the form π = (π1, . . . , πT ), where πt(x) specifies a vector of

selection decisions u given state vector x, where u must be in

Ut ≡

{
u ∈ {0, 1}S :

S∑
s=1

us ≤ Nt

}
. (1)
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Taking the terminal value V ∗T+1(x) = 0, we can write the optimal value function for earlier periods as

V ∗t (x) = max
u∈Ut

{
rt(x,u) + E

[
V ∗t+1(χ̃t(x,u))

]}
, (2)

where the total reward for a given period is the sum of item-specific rewards rt(x,u) =
∑S
s=1 rt,s(xs, us).

We will also consider variations of the problem where the DM must select exactly Nt items in period t; i.e.,

where the inequality constraint in (1) is replaced by an equality constraint.

For an arbitrary policy π, we can write the corresponding value function V πt (x) recursively as

V πt (x) = rt(x, πt(x)) + E
[
V πt+1(χ̃t(x, πt(x)))

]
, (3)

where the terminal case is V πT+1(x) = 0 for all x. A policy π is optimal for initial state x if it always satisfies

the linking constraint (1) and V π1 (x) = V ∗1 (x).

As mentioned in the introduction, the dynamic selection problem can be viewed as a nonstationary,

finite-horizon version of the restless bandit problem of Whittle (1988). Whittle mentions a number of

potential applications of restless bandits including clinical trials, aircraft surveillance, and worker scheduling.

Bertsimas and Niño-Mora (2000) mentions applications of restless bandits in controlling drug markets and

in controlling a make-to-stock production facility. We will illustrate our general framework by considering

two specific applications that we describe next.

2.2. Dynamic Assortment Problem with Demand Learning

Following Caro and Gallien (2007, CG for the remainder of this section), in the dynamic assortment problem

with demand learning, we consider a retailer who repeatedly chooses products (items) to display (select)

from a set of S products available, subject to a shelf space constraint that requires the number of products

displayed in a period to be less than or equal to Nt. The demand rate for products is unknown and the DM

updates beliefs about these rates over time using Bayes’ rule. The retailer’s goal is to maximize the expected

total profit earned. As in CG (2007), we assume the demand for product s follows a Poisson distribution with

an unknown product-specific rate γs. The demand rates are assumed to be independent across products and

have a gamma prior with shape parameter ms and inverse scale parameter αs (ms, αs > 0), which implies the

mean and variance of γs are ms/αs and ms/α
2
s. The state variable xs for product s is the vector (ms, αs) of

parameters for its demand rate distribution. If a product is displayed, its reward for that period is assumed

to be proportional to the mean demand ms/αs; if a product is not displayed, its reward is zero.

The assumed distributions are convenient because they lead to nice forms for the demand distribution

and Bayesian updating is easy. If a product is displayed, the observed demand in that period has a negative-

binomial distribution (also known as the gamma-Poisson mixture). Then, after observing demand ds, the

posterior distribution for the demand rate is a gamma distribution with parameters (ms + ds, αs + 1),

representing the new state for the product. If a product is not displayed, its state is unchanged.
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In our numerical examples, we will consider parameters similar to those in CG (2007). We consider

horizons T = 8, 20 and 40. We assume that all products are a priori identical with gamma distribution

parameters (ms, αs) = (1.0, 0.1) (so the mean and standard deviation for the demand rate are both 10) and

rewards are equal to the mean demand ms/αs (i.e., the profit margin is $1 per unit).2 We will vary the

number of products available S and assume that the DM can display 25% of the products available in each

period, i.e., Nt = 0.25S.

CG (2007) considered several extensions of this basic model that also fit within the framework of dynamic

selection problems. One such extension introduced a lag of l periods between the time a display decision is

made and when the products are available for sale. In this extension, the item-specific state variable xs is

augmented to keep track of the display decisions in the previous l periods. CG (2007) also considered an

extension with switching costs, which requires keeping track of whether a product is currently displayed.

Of course, there are many variations on the assortment problem (see Kök et al. 2008 for a review) that do

not fit within the framework of dynamic selection problems. Although CG (2007) modeled aggregate demand

for a retailer over the course of a fixed time period (say, a week), recent work on dynamic assortment problems

have modeled the arrivals of individual customers, e.g., to a web page. For example, Rusmevichientong

et al. (2010) consider a dynamic assortment model with capacity constraints (like (1)) but where demands

are modeled using a multinomial logit choice model with unknown customer preferences. Bernstein et al.

(2015) consider a dynamic assortment problem with demand modeled using a multinomial logit choice model

where products have limited inventories. The multinomial choice model used in these two papers captures

substitution effects and the rewards cannot be decomposed into the sum of item-specific rewards as required

in the dynamic selection model.

2.3. Applicant Screening Problem

In this example, we consider a set of S applicants seeking admission at a competitive college or applying

for a prestigious job. The DM’s goal is to identify and admit (or hire) the best possible set of applicants.

Each applicant has an unknown quality level qs ∈ [0, 1], with uncertainty given by a beta distribution with

parameters xs = (αs, βs) where αs, βs > 0; the mean quality is then equal to αs/(αs + βs).

In the first T − 1 periods, the DM can screen up to Nt applicants. Screening an applicant yields a

signal about the applicant’s quality; the signals are drawn from a binomial distribution with n trials and

probability of success qs on each trial. The number of trials n in the binomial distribution can be interpreted

as a measure of the informativeness of the signals. For example, a binomial signal with n = 5 provides as

much information as 5 signals from a Bernoulli signal (a binomial with n = 1). After screening an applicant

and observing a signal ds, the applicant’s state is updated using Bayes’ rule to (αs + ds, βs +n− ds). In the

Bernoulli case, we can think of the signal as being a “thumbs up” or “thumbs down” indicating whether the

screener thought the applicant should be admitted (or hired) or not. An applicant’s state does not change

2In our numerical examples, we truncate the demand distributions at d̄ = 150 (thereby including 99.9999% of the possible
demand outcomes). In period t, there are

∑t−1
τ=0

(
(τ − 1)d̄+ 1

)
) possible states, representing the values of (m,α) that could

be obtained under some policy.
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when not screened. The rewards are assumed to be zero during the screening periods. In the final period, the

DM can admit up to NT applicants. The reward for admitted applicants is their mean quality (αs/(αs+βs))

and the reward for those not admitted is zero.

In our numerical examples, we will focus on examples with T = 5 and a priori identical applicants with

(αs, βs) = (1, 1). We will vary the number of applicants S and assume 25% of the applicants can be admitted

and 25% can be screened in each of the four screening periods (i.e., Nt = 0.25S). We will also vary the

informativeness of the signals, taking n = 1 or 5 in the binomial distribution for the signal process. We will

also consider an example case with Bernoulli signals (n = 1) and a longer time horizon (T = 51) where a

smaller fraction of applicants can be screened in each period (Nt = 0.02S) and just 2% can be admitted. In

all of these examples, the DM needs to strike a balance between a desire to screen each applicant at least

once (which is feasible) and the desire to identify and admit the best applicants, a process which typically

requires multiple screenings. With the chosen parameters, the DM can screen applicants more than once

only if some other applicants are not screened at all.

3. Lagrangian Relaxations

The DP (2) is difficult to solve because the constraint (1) limiting the number of items selected links decisions

across items: the selection decision for one item depends on the states of the other items. In this section, we

consider Lagrangian relaxations of this problem where we relax this linking constraint and decompose the

value functions into computationally manageable subproblems. This Lagrangian relaxation can then be used

to generate a heuristic selection policy (as described in §4) as well as an upper bound on the performance

of an optimal policy. Propositions 1-3 are fairly standard in the literature on Lagrangian relaxations of DPs

(e.g., Hawkins 2003, Caro and Gallien 2007, and Adelman and Mersereau 2008). Proposition 4 provides a

detailed analysis of the gradient structure of the Lagrangian that is important in later analysis.

3.1. The Lagrangian DP

Though one could in principle consider Lagrange multipliers that are state dependent, to decompose the

DP we focus on Lagrange multipliers λ = (λ1, . . . , λT ) ≥ 0 that depend on time but not states. As we will

see in Proposition 4 below, the assumption that the Lagrange multipliers are constant across states means

that an optimal set of Lagrange multipliers requires the linking constraint (1) to hold “on average” (or in

expectation) rather than in each state. Taking LλT+1(x) = 0, the Lagrangian (dual) DP has period-t value

function that is given recursively as

Lλt (x) = max
u∈{0,1}S

{
rt(x,u) + E

[
Lλt+1(χ̃t(x,u))

]
+ λt

(
Nt −

S∑
s=1

us

)}
. (4)

Compared to the DP (2), we have made two changes. First, we have incorporated the linking constraint into

the objective by adding λt(Nt −
∑S
s=1 us); with λt ≥ 0, this term is nonnegative for all policies satisfying

the linking constraint. Second, we have relaxed the linking constraint, allowing the DM to select as many
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items as desired (we require u ∈ {0, 1}S rather than u ∈ Ut). Both of these changes can only increase the

optimal value so the Lagrangian value function provides an upper bound on the true value function.

Proposition 1 (Weak duality). For all x, t, and λ ≥ 0, V ∗t (x) ≤ Lλt (x).

Thus, for any λ ≥ 0, Lλt (x) can be used as a performance bound to assess the quality of a feasible policy.

The advantage of the Lagrangian relaxation is that, for any fixed λ, we can decompose the Lagrangian

dual function into a sum of item-specific problems that can be solved independently.

Proposition 2 (Decomposition). For all x, t, and λ ≥ 0,

Lλt (x) =

T∑
τ=t

λτNτ +

S∑
s=1

V λt,s(xs) (5)

where V λt,s(xs) is the value function for an item-specific DP: V λT+1,s(xs) = 0 and

V λt,s(xs) = max

{
rt,s(xs, 1)− λt + E

[
V λt+1,s(χ̃t,s(xs, 1))

]
, rt,s(xs, 0) + E

[
V λt+1,s(χ̃t,s(xs, 0))

]}
. (6)

The first term in the maximization of (6) is the value if the item is selected and the second term is the value

if the item is not selected. Intuitively, the period-t Lagrange multiplier λt can be interpreted as a charge

for using the constrained resource in period t. We will let ψ denote an optimal deterministic (Markovian)

policy for the Lagrangian relaxation (4) and ψs denote an optimal deterministic policy for the item-specific

problem (6); we reserve π for policies that respect the linking constraints (1).

3.2. The Lagrangian Dual Problem

As discussed after Proposition 1, the Lagrangian DP can be used as an upper bound to assess the performance

of heuristic policies. Although any λ provides a bound, we want to choose λ to provide the best possible

bound. We can write this Lagrangian dual problem as

min
λ≥0

Lλ1 (x) . (7)

To say more about this Lagrangian dual problem (7), we will consider a fixed initial state x and focus on

properties of Lλ1 (x) and V λ1,s(xs) with varying λ. Accordingly, for the remainder of this section, we will let

Vs(λ) = V λ1,s(xs) and L(λ) = Lλ1 (x).

First, we note that the item-specific value functions are convex functions of the Lagrange multipliers so

the Lagrangian dual problem is a convex optimization problem.

Proposition 3 (Convexity). For all x, t, and λ ≥ 0, L(λ) and Vs(λ) are piecewise linear and convex in λ.

Proof. See EC §B.1.
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In (6) we see that the Lagrange multipliers λt appear as costs paid whenever an item is selected; thus

the gradients of Vs(λ) and L(λ) will be related to the probability of selecting items under an optimal policy

for the item-specific DPs (6) for the given λ. These selection probabilities are not difficult to compute when

solving the DP. Since a convex function is differentiable almost everywhere, for “most” λ these gradients

will be unique. However, as piecewise linear functions, there will be places where Vs(λ) and L(λ) are not

differentiable and the optimal solution for the Lagrangian dual (7) will typically be at such a “kink.” These

kinks correspond to values of λ where there are multiple optimal solutions for the item-specific DPs. The

following proposition describes the sets of subgradients for the Lagrangian and their relationships to optimal

policies for the item-specific DPs.

Proposition 4 (Subgradients). Let pt,s(ψs) be the probability of selecting item s in period t when following

a policy ψs for the item-specific DP (6) and let Ψ∗s(λ) be the set of deterministic policies that are optimal

for the item-specific DP (6) in the initial state with Lagrange multipliers λ.

(i) Subgradients for item-specific problems: For any ψs ∈ Ψ∗s(λ),

∇s(ψs) = −(p1,s(ψs), . . . , pT,s(ψs)) (8)

is a subgradient of Vs at λ; that is,

Vs(λ
′) ≥ Vs(λ) +∇s(ψs)ᵀ(λ′ − λ) for all λ′. (9)

The subdifferential (the set of all subgradients) of Vs at λ is

∂Vs(λ) = conv{∇s(ψs) : ψs ∈ Ψ∗s(λ)} (10)

where convA denotes the convex hull of the set A.

(ii) Subgradients for the Lagrangian. The subdifferential of L at λ is

∂L(λ) = N +

S∑
s=1

∂Vs(λ) = N + conv

{
S∑
s=1

∇s(ψs) : ψs ∈ Ψ∗s(λ) ∀s

}
(11)

where the sums are setwise (i.e., Minkowski) sums and N = (N1, . . . , NT ).

(iii) Optimality conditions. λ∗ is an optimal solution for the Lagrangian dual problem (7) if and only if, for

each s, there is a set of policies {ψs,i}nsi=1 with ψs,i ∈ Ψ∗s(λ
∗) (ns ≤ T +1) and mixing weights {γs,i}nsi=1

(with γs,i > 0 and
∑ns
i=1 γs,i = 1) such that

S∑
s=1

ns∑
i=1

γs,i pt,s(ψs,i) = Nt for all t such that λ∗t > 0 and
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S∑
s=1

ns∑
i=1

γs,i pt,s(ψs,i) ≤ Nt for all t such that λ∗t = 0 .

Proof. See EC §B.1.

We can interpret the result of Proposition 4(iii) as saying that the optimal policies for the Lagrangian

DP must satisfy the linking constraints (1) “on average” for a mixed policy ψ̃ = (ψ̃1, . . . , ψ̃S) where the

item-specific mixed policies ψ̃s are independently generated as a mixture of deterministic policies ψs,i with

probabilities given by the mixing weights γs,i. Here, when we say the linking constraints must hold on

average (or in expectation), this average includes the uncertainty in the state evolution when following a

given item-specific policy ψs,i (this determines pt,s(ψs,i)) and the probability γs,i of following policy ψs,i.
3

Although the result of Proposition 4(iii) suggests a mixture of policies where the DM randomly selects a

deterministic policy ψs,i for each item in advance (i.e., before period 1) and follows that policy throughout,

we could use the policies and mixing weights of the proposition to construct item-specific Markov random

policies that randomly decide whether to select an item in each period, with state-dependent selection

probabilities; see EC §B.2. In both representations, we randomize independently across items.

In the special case where all items are a priori identical (i.e., identical item-specific DPs (6) with the

same initial state), the Lagrangian computations simplify because we no longer need to consider distinct

item-specific value functions. In this case, we can drop the subscript s indicating a specific item and the

optimality condition of Proposition 4(iii) reduces to: λ∗ is an optimal solution for the Lagrangian dual

problem (7) if and only if there is a set of policies {ψi}ni=1 with ψi ∈ Ψ∗(λ∗) (n ≤ T + 1) and mixing weights

{γi}ni=1 such that

S

n∑
i=1

γi pt(ψi) = Nt for all t such that λ∗t > 0 and

S

n∑
i=1

γi pt(ψi) ≤ Nt for all t such that λ∗t = 0 .

(12)

Here we can interpret the mixing weights γi as the probability of assigning an item to policy ψi or we can

view it as the fraction of the population of items that are assigned to this policy. Alternatively, as discussed

above, we can assign all items a Markov random policy that selects according to state-contingent selection

probabilities. If some, but not all, items are identical, we get partial simplifications of this form.

Given the piecewise linear, convex nature of the Lagrangian and the fact that subgradients are readily

available, it is natural to use cutting-plane methods (see, e.g., Bertsekas et al. 2003) to solve the Lagrangian

dual problem (7). Alternatively, one could use subgradient methods (as in, e.g., Topaloglu 2009 and Brown

and Smith 2014), a Nelder-Mead method (as in Caro and Gallien 2007), or an LP formulation (as in Hawkins

3If the DM must select exactly Nt items in each period (rather than less than or equal to Nt items), we drop the nonnegativity
constraint on λ in the dual problem (7) and the optimality conditions require the linking constraint to hold with equality in
expectation for all t, regardless of the sign of the optimal λ∗t .
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2003, Adelman and Mersereau 2008, and Bertsimas and Mǐsić 2016); we discuss the LP formulation in more

detail in EC §B.3. In Appendix A, we describe a cutting-plane method that exploits the structure of the

subgradients described in Proposition 4 and exploits the separability (over items and time) in the Lagrangian

dual problem. Unlike the subgradient or Nelder-Mead methods, the cutting-plane method is guaranteed to

terminate in a finite number of iterations with a provably optimal solution. The cutting-plane method also

provides the item-specific value functions (6) as well as the set of optimal policies and mixing weights of

Proposition 4(iii). The LP formulation provides an exact solution to the Lagrangian dual and may be more

efficient in problems with long time horizons and small state spaces (such as the example of Weber and Weiss

1990 in §7.1), but in our dynamic assortment and applicant screening examples, the LP formulation was

typically much less efficient than the cutting plane method. For instance in the dynamic assortment problem

with horizon T = 20, solving the Lagrangian dual as an LP took about 16 hours using a commercial LP solver

(MOSEK) and exploiting the simplifications due to having identical items. In contrast, the cutting-plane

method took less than 2 minutes with this example.

3.3. Applicant Screening Example

To illustrate the Lagrangian DP and the role of mixed policies, we consider the applicant screening problem

described in §2.3 in the case with horizon T and Bernoulli signals. Here the DM can screen 25% of the appli-

cants in each of the first four periods and can admit 25% in the final period. As discussed in §2.3, with these

assumptions the DM must choose between screening each applicant once or screening some applicants more

than once with the hope of identifying better applicants to admit. Using the cutting-plane method to solve

the Lagrangian dual problem (7), we find an optimal solution with λ∗ = (0.0333, 0.0333, 0.0333, 0.0333, 0.60)

and optimal policies ψi with selection probabilities pt(ψi) and mixing weights γi shown in Table 1. This

mixture of policies selects 25% of the applicants in each period in expectation, as required by the optimality

condition (12).

Selection probabilities by period (pt(ψi)) Mixing
Policy (ψi) 1 2 3 4 5 weight (γi)

a: Never screen 0 0 0 0 0 0.300
b: Screen once 0 0 1 0 0.5 0.025
c: Screen once 0 0 0 1 0.5 0.075
d: May screen twice 1 0 0 0.5 0.333 0.250
e: May screen twice 0 1 0.5 0 0.333 0.250
f: May screen twice 0 0 1 0.5 0.333 0.100

Weighted average: 0.25 0.25 0.25 0.25 0.25 1.000

Table 1: Selection probabilities for policies involved in an
optimal mixture for the applicant screening example

Figure 1 depicts the mean field evolution of the screening process with the optimal mixture of policies

shown in Table 1.4 The blue rectangles represent possible applicant states in each period and the flows

4In the mean field limit, the system state evolves deterministically with the fractions of items making a given state transition
matching the transition probability under the selected control policy. As the number of items S increases, the fraction of items
in a given state will converge to the mean field limit; see, e.g., Le Boudec et al. (2007).
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Figure 1: Optimal flows for the Lagrangian relaxation of the applicant screening example

represent state transitions; the widths of the flows represent the number of applicants making the given

transition. The midpoint of each rectangle on the vertical dimension represents the expected quality for

applicants in that state. Initially all applicants are unscreened and have a beta (1,1) prior, which implies an

expected quality of 0.5. In the first period, the 25% of the applicants following policy (d) are screened; in

expectation, half of them receive positive signals and half receive negative signals. The screened applicants

then move to higher or lower states for the next period, with expected qualities equal to 0.666 and 0.333,

respectively. In the second period, the 25% of applicants following policy (e) are screened and are similarly

split into higher and lower states. In the third period, there is a mix of applicants being screened for the

first time (from policies (b) and (f)) and a second time (from policy (e)). The last screening period (t = 4)

also includes a mix of applicants being screened for the first and second time.

In the final period, those applicants who have received two positive signals in two screenings and those

who have received one positive signal in one screening are admitted. All others are rejected. On average,

20% of those admitted have one positive signal in one screening (with expected quality 0.666) and 80% have

two positive signals in two screenings (with expected quality 0.75): the Lagrangian value is 0.20 × 0.666 +

0.8× 0.75 = 0.7333 per admitted applicant. Rejected applicants have an average expected quality of 0.4222.

Though the optimal Lagrange multipliers λ∗ in this example are unique, the optimal policies and mixing

weights in Table 1 are not unique. Other optimal mixtures may, for example, involve policies that schedule

follow-up screenings differently or screen some of those who will be screened once in the first or second period.

Some alternative optimal solutions may induce the same flows shown in Figure 1, but others may induce

different flows. However, in all optimal mixtures, the policies involved must be optimal for the item-specific

DP (6) and the set of policies must be coordinated to ensure that, on average, 25% of the applicants are

selected (i.e., screened or admitted) in each period, as required by the optimality condition (12).
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4. Heuristic Policies

The optimal policies for the Lagrangian DP cannot be implemented because they regularly violate the linking

constraint (1). For instance in the applicant screening problem, the optimal policy for Lagrangian selects Nt

applicants on average, but if more applicants receive positive signals than expected, the Lagrangian policy

will screen or admit more applicants than is allowed. In this section, we consider heuristic policies that

respect the linking constraint in every scenario and hence can be implemented. We analyze the performance

of the optimal Lagrangian index policy (introduced in §4.4) in §5 and evaluate the performance of these

heuristics for the dynamic assortment and applicant screening problems in a simulation study in §6.

4.1. Index Policies

The heuristics we consider can all be viewed as index policies. In an index policy, we calculate a priority

index it,s(xs) that indicates the relative attractiveness of selecting item s in period t when the item is in

state xs. Given priority indices for all items, the policies proceed as follows: (a) if there are more than Nt

items with nonnegative indices, select the Nt items with the largest indices; (b) otherwise, select all items

with nonnegative indices.5 The linking constraints will thus be satisfied and these index policies will be

feasible for the dynamic selection problem (2). We will generally break ties among items with the same

priority index randomly, with the exception of the optimal Lagrangian index policy described in §4.4.

The indices we consider all approximate the value added by selecting item s in period t when the item is

in state xs,

it,s(xs) = (rt,s(xs, 1) + E[Wt+1,s(χ̃t,s(xs, 1)) ])− (rt,s(xs, 0) + E[Wt+1,s(χ̃t,s(xs, 0)) ]) , (13)

using some item-specific approximation Wt+1,s of the next-period value function. We generate different

heuristic policies by considering different approximate value functions. For example, the Lagrangian index

policy for λ takes the approximate value function Wt+1,s(xs) to be the item-specific value function V λt+1,s(xs)

given by (6). The myopic policy simply takes Wt+1,s(xs) = 0.

Though we describe these heuristics as index policies, we can also view these heuristics as being “greedy”

with respect to an approximate value function Wt(x) =
∑S
s=1Wt,s(xs). That is, in each period, the DM

solves an optimization problem that respects the linking constraint and uses this function to approximate

the continuation value:

max
u∈Ut

{
rt(x,u) + E[Wt+1(χ̃t(x,u)) ]

}
. (14)

Ranking items by priority index and selecting Nt items with the largest (nonnegative) indices solves the

optimization problem (14) exactly. In the case of the Lagrangian index policy, the approximate value

function Wt+1(x) differs from the Lagrangian value function Lλt+1(x) by a constant. Thus a Lagrangian

index policy can be viewed as using the Lagrangian as an approximate value function (as in Hawkins 2003

5If the DM must select exactly Nt items, we select the Nt items with the largest indices.
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and Adelman and Mersereau 2008).

4.2. Whittle Index Policy

The Whittle index policy (Whittle 1988) can be seen as a variation of the Lagrangian index policy where

the Lagrange multipliers are assumed to be constant over time (i.e., λt = w for all t or λ = w1 where 1 is a

T -vector of ones) and w is a breakeven Lagrange multiplier for the given period and state. Specifically, the

Whittle index it,s(xs) is the w that makes the DM indifferent between selecting and not selecting an item,

rt,s(xs, 1)− w + E
[
V w1
t+1,s(χ̃t,s(xs, 1))

]
= rt,s(xs, 0) + E

[
V w1
t+1,s(χ̃t,s(xs, 0))

]
or, equivalently, in the form of (13),

w =
(
rt,s(xs, 1) + E

[
V w1
t+1,s(χ̃t,s(xs, 1))

])
−
(
rt,s(xs, 0) + E

[
V w1
t+1,s(χ̃t,s(xs, 0))

])
. (15)

The intuition behind this follows that of the Gittins index for the standard multiarmed bandit problem: the

breakeven Lagrange multiplier represents the most the DM would be willing to pay for use of the constrained

resource and the policy prioritizes by this willingness to pay.

It is important to note that these Whittle indices may not be well defined. For example, Whittle (1988)

describes an example where some items are not “indexable” because there are multiple w satisfying (15).

Even when well defined, these Whittle indices can be very difficult to compute exactly: to find the breakeven

w for a state xs in period t, we must repeatedly solve the item-specific DPs (6) with λ = w1 with varying w

to identify the breakeven w. If we want to calculate indices for all periods and states, we can streamline this

process by using a parametric approach (see EC §C.1 for details), but this still essentially requires solving

item-specific DPs once for each period and state. As mentioned in §1.1, Whittle (1988) conjectured that the

Whittle index policy is asymptotically optimal for restless bandit problems when the items are all indexable;

this conjecture was shown to be false by Weber and Weiss (1990). We will discuss Whittle’s conjecture and

Weber and Weiss’s counterexample in more detail in §7.1.

Caro and Gallien (2007) showed that Whittle indices are well defined in the dynamic assortment problem

(i.e., the model is indexable) and noted that computing the indices is a “complicated task.” Rather than

using these hard-to-compute Whittle indices, Caro and Gallien (2007) proposed an approximate index that

is based on approximating the expected continuation values in (15) with a one-step lookahead value function

and a normal distribution. In our numerical examples for the dynamic assortment problem in §6, we will

focus on exact Whittle indices but will briefly describe some results for Caro and Gallien’s approximation.

In the applicant screening problem, the Whittle indices are also well defined but, perhaps surprisingly,

are not helpful in determining applicants to screen. In period T , the Whittle index for any applicant is

the applicant’s mean quality (i.e., the expected reward for admitting the applicant). In all earlier (i.e.,

screening) periods, however, the Whittle index for every applicant equals zero, regardless of the state xs
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of the applicant. Intuitively, w = 0 is the Whittle index for screening periods because with w = 0 (a) all

applicants would be admitted in the final period and (b) given this, it does not matter whether an applicant

is screened or not in any period because the information provided by screening does not affect the admission

decision or value obtained; thus (15) is satisfied with w = 0. (See Proposition 7 in EC §C.2 for a formal

statement and proof of this claim.)

Although this failure of the Whittle index policy initially surprised us, it perhaps should not have been

surprising: the setting here – with a finite horizon and time-varying rewards – is quite far removed from

the classical multiarmed bandit where these index policies are optimal and also quite different from the

infinite-horizon stationary restless bandits that Whittle (1988) considered.

4.3. Modified Whittle Index Policy

Given a model with time-varying rewards, constraints, and/or state transitions, it seems natural to consider

Lagrange multipliers that are varying over time rather than constant over time, as assumed in the Whittle

index. Accordingly, we define a modified Whittle index of this sort. The indices are calculated recursively.

To find the index mt,s(xs) for period t and state xs, we set all future Lagrange multipliers λτ (for τ > t)

to be equal to the previously calculated period-τ indices, i.e., m = (mt+1,s(xs), . . . ,mT,s(xs)) for this same

state xs. We then take

mt,s(xs) =
(
rt,s(xs, 1) + E

[
V m

t+1,s(χ̃t,s(xs, 1))
])
−
(
rt,s(xs, 0) + E

[
V m

t+1,s(χ̃t,s(xs, 0))
])
. (16)

The vector (m1,s(xs), . . . ,mT,s(xs)) of modified Whittle indices for a given state xs can thus be calculated

using a recursive procedure that is similar to solving one item-specific DP (6).

These modified Whittle indices are thus much easier to calculate than the standard Whittle index. The

modified Whittle indices require effort on the order of solving one item-specific DP per state, whereas the

standard Whittle indices require solving one DP per state, per period. Moreover, indexability is not an issue

with the modified Whittle indices because the period-t index is uniquely defined by (16).6

In our dynamic assortment examples, the modified Whittle index policies appear to outperform the

Whittle index policies in problems with short time horizons; the two policies tend to perform similarly with

longer time horizons. In the applicant screening examples, with our specific numerical assumptions, the

modified Whittle index policy prioritizes screening unscreened applicants, so it recommends screening every

applicant once; this is true for both Bernoulli (n = 1) and binomial (n = 5) signal processes. However,

with other prior distributions or constraints, the modified Whittle index policy may give higher priority to

applicants who have been previously screened than those who have not yet been screened.

6Note that the definition of the modified Whittle indices implicitly assumes that the state space for the items is constant or
growing over time: when calculating the index mt,s(xs), we reference indices (mt+1,s(xs), . . . ,mT,s(xs)) for future periods for
this same state xs. This assumption is true in all of the examples that we consider.
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4.4. The Optimal Lagrangian Index Policy

Although we can define a Lagrangian index policy for any λ, intuitively, we might expect Lagrange multipliers

λ that lead to better performance bounds would lead to better approximate value functions and tend to

generate better heuristics. We will show that the Lagrange multipliers λ∗ that solve the Lagrangian dual

problem (7), do in fact generate an index policy that is asymptotically optimal (in a sense to be made precise

in §5), but we need to take care when breaking ties if there are items with equal priority indices. Recall

that, in the Lagrangian relaxation, optimal policies are typically mixed policies where the mixing coordinates

actions across items to ensure that Nt items are selected on average in each period (assuming λ∗t > 0; see

Proposition 4(iii)). Our proposed tiebreaking scheme for the Lagrangian index policy mimics this mixing to

coordinate actions in the heuristic.

To illustrate the importance of tiebreaking, consider implementing the Lagrangian index policy for λ∗ in

the applicant screening example discussed in §3.3. In the first period, all applicants are in the same state and

have the same priority index. In this first period, it does not matter which applicants are screened so long as

Nt are selected. In later screening periods, some applicants will have been screened before and the priority

indices are equal for (i) those applicants who have been screened once and had a positive signal and (ii) those

who have not been screened before. In both states, the priority indices are equal to the Lagrange multiplier

(λt = 0.0333) because screening and not screening are both optimal actions in these states in the Lagrangian

DP. Here, tiebreaking is important. If we consistently break ties in favor of screening unscreened applicants,

all applicants will be screened once and in the final period the DM will choose applicants to admit from the

many applicants with a single positive signal. Consistently breaking ties in favor of rescreening applicants

with a positive signal is also not ideal.

In this applicant screening example, the ties are a result of there being multiple optimal policies for the

Lagrangian DP. As discussed in §3.2, the optimal Lagrange multipliers λ∗ will typically lead to multiple opti-

mal policies for the relaxed DP (4). Whenever there are multiple optimal policies, there must be indifference

states – like those in the applicant screening example – where selecting and not selecting are both optimal

and the selection index is equal to that period’s Lagrange multiplier λt. If there are two such indifference

states in the same period, then items in these two states will be tied. It is difficult to predict how many

indifference states there will be, how these indifference states will be allocated over time, and how likely ties

will be. In the applicant screening example with T = 5 and Bernoulli signals, ties are common and, as we will

see in our numerical experiments, tiebreaking is important; in the Bernoulli case with T = 51, tiebreaking

is even more important. In the applicant screening example with T = 5 and binomial signals (with n = 5),

applicants wind up being more spread out over the state space and ties occur but less frequently than with

Bernoulli signals (n = 1); tiebreaking plays a role but is less important than in the Bernoulli case. In the

dynamic assortment examples, there are many indifference states but they tend to be spread out over time

and tiebreaking makes little or no difference.

Given an index policy π defined by priority indices it,s(xs), we can define a new index policy π′ that uses
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a policy ψ = (ψ1, . . . , ψS) as a tiebreaker by defining a new index

i′t,s(xs) = it,s(xs)− ε · (1− ψt,s(xs)) , (17)

for a small ε > 0. Here ε is chosen to be small enough (e.g., smaller than the smallest difference between

unique values of the original indices it,s(xs)) so the tiebreaker does not change the rankings of items that

do not have the same index value. With this modified index, ties will be broken to match the choice with

policy ψs: items not selected by ψs in a given period/state are penalized slightly, so they will “lose” on this

tiebreaker. Also note that items with an original priority index it,s(xs) equal to zero will not be selected

with this new index policy if ψs does not select the item. We break any remaining ties randomly.

We define an optimal Lagrangian index policy π̃ as a Lagrangian index policy for λ∗ that uses an optimal

mixed policy ψ̃ for the Lagrangian dual problem (7) as a tiebreaker. Note that with the optimal Lagrangian

index policy, the only states where tiebreaking is relevant are the indifference states where the selection

indices it,s(xs) are equal to the λ∗t . If it,s(xs) > (<) λ∗t , then all optimal policies for the Lagrangian

relaxation (6) will select (not select) the item and all tied items will have the same index value i′t,s(xs), after

taking into account the tiebreaker as in (17).

We can generate a mixed policy ψ̃ for tiebreaking using any of the three methods discussed after Propo-

sition 4:

� Simple random mixing: independently randomly assign each item s a policy ψs according to the mixing

weights of Proposition 4(iii) in each scenario.

� Markov random mixing: ψt,s(xs) in (17) is randomly selected from {0, 1} with state-dependent prob-

abilities given in EC §B.2.

� Proportional assignment: if some or all of the items are identical, we can sometimes construct a non-

random tiebreaking policy ψ where items are assigned different policies with proportions reflecting the

desired mixing weights.

In our numerical examples, we will generate tiebreaking policies ψs using proportional assignments, using

simple random mixing to allocate non-integer remainders when necessary. For instance in the applicant

screening problem with the optimal policy mixture in Table 1, if S=1000, we assign (300, 25, 75, 250, 250,

200) applicants to the 6 policies listed in Table 1. If S=100, the desired proportions are not integers, so we

randomize, assigning (30, 3, 7, 25, 25, 20) or (30, 2, 8, 25, 25, 20) items to these 6 policies, each 50% of the

time. In §6, we use proportional assignments because it reduces the uncertainty in the model and seems to

lead to slightly better performance (see §6.4).

5. Analysis of the Optimal Lagrangian Index Policy

In this section, we characterize the performance of the optimal Lagrangian index policy and study asymptotic

properties as we grow the size of the problem. The main result is the following proposition that relates the

performance of the optimal Lagrangian index policy to the Lagrangian bound. Here we let r̄ and
¯
r denote
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upper and lower bounds on the rewards (across all items, states, periods, and actions) and let N = maxt{Nt}.

Proposition 5. Let λ∗ denote an optimal solution for the Lagrangian dual problem (7) with initial state

x. Let ψ̃ denote an optimal mixed policy for this Lagrangian and π̃ an optimal Lagrangian index policy that

uses ψ̃ as a tiebreaker. Then

Lλ
∗

1 (x)− V π̃1 (x) ≤ (r̄ −
¯
r)

T∑
t=1

βt

√
N̄t(1− N̄t/S)︸ ︷︷ ︸

≡ ∆ψ̃(x)

≤ (r̄ −
¯
r)

T∑
t=1

βt
√
N, (18)

where N̄t is the expected number of items selected by ψ̃ in period t (N̄t = Nt if λ∗t > 0 and N̄t ≤ Nt if

λ∗t = 0), and the βt are nonnegative constants that depend only on t and T .

Proof. See EC §D.1.

The proof of Proposition 5 considers the states x̃t visited using the policy ψ̃ that is optimal for the La-

grangian relaxation and characterizes the differences in rewards generated by ψ̃ and those generated by the

corresponding optimal Lagrangian index policy π̃. The key observations in the proof are:

� The selection decisions made by the heuristic π̃ are based on priority indices that are aligned with the

decisions made by ψ̃. Let nt denote the number of items selected by the relaxed policy ψ̃ in period t in

a particular state; this may be larger or smaller than Nt. From (6) and (13) and taking into account

the tiebreaking rule (17), we see that items with priority indices i′t,s(xs) ≥ (<) λt will (will not) be

selected by ψ̃. If nt < Nt items are selected by ψ̃, then these nt items will be among the Nt items with

the largest selection indices and will also be selected by π̃. If nt ≥ Nt items are selected by ψ̃, then π̃

will select a subset of size Nt of those selected by ψ̃. In both cases, the number of items with different

decisions is bounded by
∣∣nt −Nt ∣∣. Note that the tiebreaker is essential in ensuring alignment when

there are ties in the original indices.

� Let ñt represent the random number of items selected when using the relaxed policy ψ̃. With an optimal

policy ψ̃ for the Lagrangian and λ∗t > 0, the difference ñt −Nt has zero mean (by Proposition 4(iii))

and the expectation of
∣∣ñt −Nt ∣∣ is bounded by a standard deviation term of the form

√
Nt(1−Nt/S).

The assumptions that the state transitions and the mixing of policies are independent across items

ensure that the standard deviations grow with
√
N .

� The βt terms in (18) reflect the maximum possible number of changes in item states caused by the

selection decision of π̃ deviating from ψ̃ for a single item in period t. These βt terms grow with the

number of periods remaining as a change in decision in period t can have downstream implications

on decisions and state transitions for other items in later periods. Specifically, with an index policy,

changing the state (hence the index) of one item may affect the selection decisions for two items, as the

changed item may become one of the top Nt items and be selected, thereby forcing another item out

of the top Nt (or vice versa). In the worst case, this doubling of changed states can cascade through
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all remaining periods and thus

βt = 1 + 2 + 22 + . . .+ 2T−t = 2T−t+1 − 1 . (19)

This implies that the
∑T
t=1 βt term in (18) is equal to 2(2T − 1)− T .

� Finally, the (r̄ −
¯
r) terms provide an upper bound on the possible loss in value caused by the state of

a single item under π̃ deviating from the state under ψ̃ in single period t. This upper bound reflects

the possibility that the DM may earn the minimum reward
¯
r rather than the maximum reward r̄ as a

result of the change in state.

This bound may seem quite conservative, but we will see that in the applicant screening examples, the gap

Lλ
∗

1 (x) − V π̃1 (x) appears to grow with
√
N . Moreover, we have developed simple analytic examples where

the gap between the Lagrangian and optimal Lagrangian policies asymptotically grows with
√
N ; see EC

§D.2. Thus
√
N is the best possible growth rate for these performance gaps for general dynamic selection

problems.7

We can use Proposition 5 to relate the performance of the optimal Lagrangian value function, the rewards

generated by the corresponding optimal Lagrangian index policy, and the optimal value function V ∗1 (x).

Theorem 1 (Performance guarantees). In the setting of Proposition 5,

V ∗1 (x)−∆ψ̃(x) ≤ Lλ
∗

1 (x)−∆ψ̃(x) ≤ V π̃1 (x) ≤ V ∗1 (x) ≤ Lλ
∗

1 (x) . (20)

Proof. The second inequality was established in Proposition 5. Proposition 1 implies the first and last
inequalities. The remaining inequality (the third one) follows from the fact that π̃ is feasible for the DP (2),
i.e., it satisfies the linking constraint (1).

Since ∆ψ̃(x) is bounded by a term that grows with
√
N , Proposition 5 and Theorem 1 provide insight

into the asymptotic performance of the optimal Lagrangian index policy and bound for large problems. In

our numerical experiments in §6, we consider problems where the items are all identical and we increase S

and Nt in proportion. The next result establishes asymptotic optimality for large problems in a more general

setting. Specifically, we consider a sequence of dynamic selection problems where we expand the set of items

available (indexing these sets by their cardinality S) and simultaneously increase the number of items Nt(S)

that may be selected in period t, while holding the time horizon T constant.

Corollary 1 (Asymptotic optimality). Consider a growing sequence of dynamic selection problems (indexed

by S) and let V ∗t (x;S), Lλ
∗

t (x;S) and V π̃t (x;S) denote the corresponding optimal value functions, values for

the optimal Lagrangian, and value for the corresponding optimal Lagrangian index policy π̃. If the V ∗1 (x;S)

are positive and satisfy

lim
S→∞

V ∗1 (x;S)√
N(S)

=∞, (21)

7The result of Proposition 5 also applies in the case where the DM must select exactly Nt items, but we take N̄t = Nt regardless
of the sign of λ∗t . Theorem 2 and Corollary 1 below follow with no additional changes.
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then

lim
S→∞

Lλ
∗

1 (x;S)− V π̃1 (x;S)

V ∗1 (x;S)
= 0 . (22)

Since V π̃1 (x) ≤ V ∗1 (x) ≤ Lλ∗1 (x), (22) implies

lim
S→∞

V ∗1 (x;S)− V π̃1 (x;S)

V ∗1 (x;S)
= 0 and lim

S→∞

Lλ
∗

1 (x;S)− V ∗1 (x;S)

V ∗1 (x;S)
= 0 .

Proof. See EC §D.1.

This corollary implies that, when the growth condition (21) is satisfied, the gaps between V ∗1 (x;S), Lλ
∗

1 (x;S)

and V π̃1 (x;S), when normalized by V ∗1 (x;S), all converge to zero. Therefore, we can view both the optimal

Lagrangian index policy and the Lagrangian bound as being asymptotically optimal in this sense. The

growth condition (21) is mild. For example, if the expected reward associated with selecting an item is

bounded away from zero and limS→∞Nt(S) =∞, then (21) will be satisfied. We could normalize the ratios

in Corollary 1 by the Lagrangian Lλ
∗

1 (x;S) rather than V ∗1 (x;S) (because V ∗1 (x;S) ≤ Lλ
∗

1 (x;S)) and find

these ratios also converge to zero. Finally, if we are adding identical items and increasing S and Nt in

proportion (as we will in §6.2), the Lagrangian increases in proportion to S and Nt and we can normalize

by S or Nt and again find the ratios converge to zero.

6. Numerical Examples

In this section, we evaluate the performance of the heuristic policies considered in §4 in the context of the

dynamic assortment and applicant screening problems. Specifically we consider: (i) the myopic policy, (ii) the

Whittle index policy, (iii) the modified Whittle index policy, (iv) the Lagrangian index policy for an optimal

solution λ∗ to the Lagrangian dual (7) which randomly breaks ties among items with the same priority index,

and (v) an optimal Lagrangian index policy, which breaks ties as discussed in §4.4. As discussed in §2.2-2.3,

we consider three versions of the dynamic assortment problem (with horizon T equal to 8, 20 and 40) and

three versions of the applicant screening problem (with T = 5 and binomial signal with n = 1 and 5 as well

as a case with T = 51 and n = 1). We will vary the number of items considered (S) in all cases.

6.1. Run Times

To implement the Whittle, modified Whittle and Lagrangian index policies, we must first calculate their

respective indices; Table 2 reports the times required to calculate these indices for all states for each example.

All calculations were performed using Matlab on a personal computer.8 In these examples, the items are

identical so we need only calculate indices for a single item, regardless of the number of items S considered.

In these index calculations, the run times are dominated by the time required to solve the item-specific

DPs (6). The time to required to solve these DPs is primarily determined by the number of states that

8Detailed specifications for the computer: 64-bit Intel Xeon E5-2697 v4 (2.30 GHz) CPU; 64.0 GB of RAM; running Windows
10 Enterprise, Matlab R2016b. We used MOSEK (Version 7.1.0.60) within Matlab to solve the LP (33) in the cutting-plane
method when calculating Lagrangian indices.
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Dynamic Assortment Applicant Screening
n = 1 n = 5 n = 1

T = 8 T = 20 T = 40 T = 5 T = 5 T = 51

Run times (seconds)
Whittle 24.0 7,039 904,989 0.0073 0.0171 85.7
Modified Whittle 8.8 982 47,387 0.0024 0.0100 0.71
Lagrangian 0.9 126 2,716 0.0157 0.0179 3.79

States in item-specific DP 12,636 199,710 1,599,820 35 115 23,426
Cutting plane iterations 70 530 826 14 16 540

Table 2: Run times, problem sizes, and related statistics for index calculations

must be considered (also shown in Table 2). In problems with a fixed state space (such as Weber and Weiss

1990’s example discussed in §7.1), the time required to solve the item-specific DPs will grow linearly with T .

In the dynamic assortment and the applicant screening problem, the possible state space in period t grows

quadratically in t (e.g., in the dynamic assortment problem, the number of possible αs values grows linearly,

as does the number of possible ms values), so the computational effort in the item-specific DPs scales with

T 3. The time required to compute the Whittle indices grows with T 6 (one must solve an item-specific DP

with ∼T 3 states for each of ∼T 3 states). The cutting plane method used in the Lagrangian index calculation

requires repeatedly solving these DPs, once in each iteration of the algorithm: the number of iterations

required to find an optimal solution is hard to predict but typically increases with the the horizon T , which

corresponds to the dimension of the Lagrange multiplier vector λ that is being optimized.

In the dynamic assortment examples, we find that with T = 20, the Whittle indices require about 2 hours

to compute, the modified Whittle indices require about 16 minutes, and the Lagrangian indices require about

two minutes. The differences are more pronounced in the T = 40 case: the Whittle indices require 10.5 days

to compute whereas the Lagrangian indices require about 45 minutes. In the applicant screening examples,

the item-specific DPs are much simpler and the calculations take much less time.

6.2. Simulation Results

Figures 2-5 describe the performance of the heuristic policies with the number of items S (products or

applicants) equal to 4, 8, 16, . . . , 16,384 (= 214). In all cases, we scale Nt (the number of products displayed

or applicants screened/admitted) with S, taking Nt to be a fixed proportion of S. Note the horizontal axes

in the figures showing S are plotted on a log scale. The heuristics are evaluated using simulation, with a

sample of 1000 trials. The samples are common across heuristics: for any given S, the products have the

same randomly generated demands (and applicants have the same signals) for all policies. The expected

total rewards V π1 (x) for the policies are estimated from these simulations and adjusted using a control variate

based on the Lagrangian; see (56) in EC §E. The error bars in the figures represent 95% confidence intervals

for these estimated values. The Lagrangian bounds Lλ
∗

1 (x) are calculated exactly.

The (a) panels of Figures 2-5 show the relative performance of the heuristics, normalizing the total reward

by dividing by the total number of products displayed in the assortment examples and by the number of

applicants admitted in the screening examples. The Lagrangian bound scales linearly with S and, hence, is
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Figure 2: Results for the dynamic assortment examples with horizon T=8

constant when normalized. The (b) panels of these figures show estimates of the performance gap for the

index policies, Lλ
∗

1 (x)− V π1 (x), where the estimates of these gaps are plotted on a log scale.

Dynamic Assortment Examples. In the dynamic assortment examples with T = 8, in Figure 2(a)

we see that the myopic policy is the worst of the heuristics considered. Intuitively, the myopic policy fails

to explore enough to find the best products to display. The other heuristics – the two versions of the

Whittle index policies and the two versions of the Lagrangian index policy – all perform similarly for small

S. For large S, the Whittle index policies are significantly below the Lagrangian bound whereas the two

Lagrangian bounds and the modified Whittle index appear to approach the Lagrangian bound. If we look

at the performance gaps in Figure 2(b) in absolute terms rather than relative terms, we see that the gaps

for both Whittle index policies grow linearly in S (linear growth corresponds to a slope of one in the log-log

plot). In contrast, the performance gaps for the Lagrangian index policies grow sublinearly. This implies that

in Figure 2(a), the modified Whittle index policy approaches an asymptote below the Lagrangian bound,

whereas the two Lagrangian index policies truly approach the Lagrangian bound. In this example, there is

no difference between the two Lagrangian index policies because there are no scenarios where products in

different states have the same priority indices, so the tiebreaking rules do not matter.

Note that the optimal Lagrangian index policies perform very well for large S. For example with

S=16,384, the total reward for the optimal Lagrangian policy is approximately $579,348 (with a mean

standard error of $0.18) and the Lagrangian bound is $579,354; this implies the optimal Lagrangian index

policy is within $6 of the optimal value!

Figures 3(a) and (b) are like Figures 2(a) and (b), but consider horizon T = 20 rather than T = 8. The

results are similar, but the Whittle index policy fares somewhat better: the Whittle index policy outperforms

the modified Whittle index policy for large S, but again both exhibit linear growth in the performance gap.
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Figure 3: Results for the dynamic assortment examples with horizon T=20

The performance gaps for the Lagrangian index policies again grow sublinearly. With S = 16, 384, the total

reward for the optimal Lagrangian index policy is approximately $1,736,761 (with a mean standard error of

$4) and the Lagrangian bound is $1,736,858, so the optimal Lagrangian index policy is within $97 of the

optimal value. The results for the case with T = 40 are similar and are provided in EC §F.

Finally, although we do not show these results in Figures 2 and 3, we also simulated the one-period

look-ahead/normal approximation of the Whittle index developed by Caro and Gallien (2007) (see §4.2) on

these assortment planning examples. The performance was similar to that of the Whittle index: on the

assortment planning examples with T = 8, we found that Caro and Gallien’s approximate Whittle index

policy performs approximately 0.2% worse on average than the Whittle index policy, ranging from 0.17%

to 0.21% for the different values of S. For the assortment planning examples with T = 20 and T = 40, we

found little difference in performance for the exact and approximate Whittle indices.

Applicant Screening Examples. The performance of the heuristics is more varied in the applicant

screening problem. We first consider the case with T = 5 and Bernoulli signals (n = 1). In Figure 4(a), we

see that all of the heuristic policies other than the optimal Lagrangian index policy approach an asymptote

below the Lagrangian bound. As discussed in §4.2, the modified Whittle index policy here reduces to

screening every applicant once, which typically leaves the DM choosing applicants to admit from those

who receive a positive signal when screened; for large S, this has an expected value of 0.666 per applicant

admitted. (With small S, there is some chance that fewer than 25% of the applicants will receive a positive

signal so the expected value is less than 0.666 per applicant admitted.) As discussed in §4.2, the Whittle

indices during the screening stages are all zero, so the Whittle index policy reduces to randomly selecting

applicants to screen. Since the rewards are zero during the screening periods, the myopic policy also reduces

to random screening. This random screening policy outperforms “screen all applicants” (as suggested by
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Figure 4: Results for the applicant screening examples with T = 5 and Bernoulli signals (n=1)

the modified Whittle index policy) because it generates some applicants with two or more positive signals

who will be preferred to those with a single positive signal. The difference between the Lagrangian index

policies with optimal and random tiebreaking highlights the importance of tiebreaking, as discussed in §4.4.

In Figure 4(b), we see that the performance gaps grow linearly in S for all of the heuristics other than the

optimal Lagrangian index policy, as we would expect given the results in Figure 4(a). The performance gap

for the optimal Lagrangian index policy appears to grow with
√
S (the line has slope 0.5 in the log-log plot)

which is consistent with our theoretical analysis in §5.

Figures 5(a) and (b) show the same results for the case with T = 5 and binomial signals where n = 5. Here

the results are similar but the policy that screens all applicants (as suggested by the modified Whittle index

policy) outperforms random screening (as suggested by the standard Whittle index policy). With n = 5, the

signals are much more informative and screening all applicants gives the DM more information about the

applicants than in the Bernoulli case. For large S, “screen all applicants” is still worse than the Lagrangian

index policies. The difference between the two tiebreaking methods in the Lagrangian index policy is also

smaller here, as ties are less common with the more informative signals. However the performance gap for

the random tiebreaking Lagrangian index policy still grows linearly for large S.

The results for the case with T = 51 and Bernoulli signals are similar to those with T = 5 and Bernoulli

signals and are provided in Figure 8 of EC §F. In this case, proper tiebreaking makes a big difference.

6.3. Information Relaxation Bounds

In these numerical examples, the gaps between the optimal Lagrangian index policy and Lagrangian bound

are very small (in relative terms) for large S, but are more substantial for small S. One might wonder

whether these gaps are due to the policies being suboptimal or due to slack in the Lagrangian bound. In

EC §E, we consider the use of information relaxations (e.g., Brown et al. 2010) with dynamic selection
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Figure 5: Results for the applicant screening examples with T = 5 and binomial signals (n=5)

problems. These information relaxation bounds (i) relax the nonanticipativity constraints in the DP that

require the DM to make decisions based only information known at the time the decision is made and

(ii) impose a penalty that “punishes” the DM for violating these constraints. In the assortment planning

example, we consider an information relaxation where demands for all products are known in advance. In the

applicant screening example, we consider an information relaxation where all signals are known in advance.

In both cases, we consider penalties based on the Lagrangian approximation of the value function. We show

that these information relaxation bounds are guaranteed to (weakly) improve on the Lagrangian bounds.

Lagrangian relaxations and the cutting plane method of Appendix §A play important roles in the analysis

and computation.

In our numerical examples, these information relaxation bounds are shown in the (a) panels of Figures 2-5.

In these results, we see that the information relaxation bounds improve on the Lagrangian dual, particularly

when S is small. The improvement is greatest in the dynamic assortment example with T = 8 and S = 4. In

this case, the Lagrangian bound ensures that the Lagrangian index policy is within (approximately) $0.88

per product displayed of the value given by an optimal solution. The information relaxation bound tells us

that the Lagrangian index policy is in fact within $0.16 per product displayed of an optimal solution. These

results are discussed in more detail in EC §E.

6.4. Variations on the Heuristics

Figure 6 shows results for several variations on the heuristics discussed above, focusing on the applicant

screening problem. The format of the figure is the same as the (b) panels of Figures 2-5.

First we consider the optimal Lagrangian index policy with reoptimization. That is, in each simulated

scenario, in each period, we solve the Lagrangian dual problem (7) with the current state for all items,

breaking ties as in the optimal Lagrangian index policy. As one might expect, this policy with reoptimiza-
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Figure 6: Results for applicant screening examples with variations on the heuristics

tion appears to outperform the optimal Lagrangian policy without reoptimization, but they both appear

to exhibit
√
S growth in the performance gap. These applicant screening examples are small enough to

allow reoptimization (the run times range from 9 to 46 seconds for the results reported in the figure), but

reoptimization would be very time consuming in the dynamic assortment examples. With reoptimization, we

have to solve the Lagrangian dual problem in every period in every simulated scenario and these problems

become more complex as the items that are initially identical will transition to different states over time

and no longer be identical. The figures also show results for a policy that reoptimizes the Lagrangian, but

breaks ties randomly rather than using an optimal tiebreaking method: for large S the performance of this

policy matches the performance of the Lagrangian policy without reoptimization using random tiebreaking

and the errors grow linearly in S. Thus reoptimization is not a substitute for proper tiebreaking.

We also show results for the three different methods described in §4.4 for generating a mixed policy

for tiebreaking with the optimal Lagrangian index policy, without reoptimization. As discussed in §4.4,

proportional assignment seems to outperform simple random mixing and Markov random mixing, though

the differences are small.

Finally, we show results for a “fluid heuristic” similar to that described in Bertsimas and Mǐsić (2016).

This fluid heuristic is based on reoptimization of the Lagrangian dual problem (7), solving the dual LP

formulation (39) (given in EC §B.3) in each period. The heuristic then selects items to maximize the total

“flow” for the system for a given period and state, where these flows are given by the solution to the dual

LP; see EC §B.3 for a more detailed description. The intuition behind this heuristic is that these flows are

positive for items that would be selected in the Lagrangian relaxation and maximizing the flow would, in

some sense, lead the heuristic to mimic the actions selected by the Lagrangian relaxation. In the example

results in the figure, we see that the fluid heuristic is competitive with the other heuristics for small S, but
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the performance gap grows linearly with S like the other policies that do not use an optimal tiebreaking

method, rather than growing with
√
S like the Lagrangian policies with optimal tiebreaking.

7. Problems with Long Time Horizons

In this section, we first consider Whittle (1988)’s conjecture on the asymptotic optimality of the Whittle

index policy and Weber and Weiss (1990)’s counterexample. We use this example to motivate the extension

of the results of §5 to the infinite horizon case with discounting, which we consider in §7.2.

7.1. Whittle’s Conjecture and Weber and Weiss’s Counterxample

It is interesting to compare the asymptotic optimality result of Corollary 1 to that conjectured in Whittle

(1988). Whittle focused on an infinite-horizon average-reward formulation where the DM had to select exactly

N items in each period and he considered a single Lagrange multiplier. The solution to the Lagrangian dual

problem in this average reward setting yields a Lagrangian relaxed policy that selects N items per period,

in expectation for the long-run average (see Whittle’s Proposition 1). In his asymptotic analysis, Whittle

considered a growing sequence of problems where items may be of different types but the proportion of items

of each type is held constant as the total number of items S increases; the number of items selected N is

assumed to be a constant fraction α of S.

Whittle conjectured that, if the items are indexable, then

lim
S→∞

Lλ
∗

1 (x;S)− V π̃1 (x;S)

S
= 0 , (23)

where π̃ is the Whittle index policy, rather than the Lagrangian index policy. Adapting Whittle (1988, p.

293) to our notation and terminology, the intuition behind his conjecture was as follows.

The Whittle index policy selects exactly theN = αS items of largest index. Under the assumption

of indexability, the optimal policy ψ̃ for the Lagrangian relaxation selects the ñ items of largest

index, where ñ deviates from N only by a term of probable order
√
N or, equivalently, ñ/N

deviates from α only by a term of probable order 1/
√
N .

Whittle’s intuition is closely related to the intuition behind Proposition 5, as discussed following that result:

the key condition that ensures asymptotic convergence is that the heuristic policy and the optimal policy

ψ̃ for the Lagrangian relaxation are aligned so the two policies typically make the same selection decisions,

with the number of different decisions growing at a rate less than
√
N . Whittle’s intuition is consistent

with the logic of Proposition 5 but, in the finite-horizon setting that we consider, the Whittle index policy

need not be aligned with ψ̃, whereas the optimal Lagrangian index policy is, by construction, aligned with

ψ̃. Weber and Weiss (1990) showed that optimal policies asymptotically converge to the Lagrangian bound

in the average reward setting (in the relative sense of (23)) but provided an example that showed that the

Whittle index policy need not be asymptotically optimal.
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In EC §G, we consider a finite-horizon adaptation of the example from Weber and Weiss (1990) with

T = 20, 000. The key takeaway from this example is that, even in problems with constant rewards and

transition matrices and long horizons, we may need time-varying Lagrange multipliers to optimally control

selection decisions over time. Here again mixed policies and careful tiebreaking play an important role.

The initial distribution of items across states affects the optimal Lagrange multipliers and a full set of

Lagrange multipliers is required to align the optimal Lagrangian index policy with the optimal policy for

the Lagrangian relaxation in every period. The Whittle indices depend on the state of a given item but, by

construction, are independent of the states of all other items and of the distribution of items and the policy

need not be aligned with that for the Lagrangian relaxation.

7.2. Asymptotic Optimality for Infinite-Horizon Dynamic Selection Problems

We now consider the extension of the results of §5 to an infinite-horizon setting with discounting, assuming

a discount factor δ. We assume that the rewards for all items are bounded above and below by r̄ and
¯
r and

the number of items that may be selected Nt is bounded above by N .

There are two key challenges that must be addressed in the infinite-horizon setting. The first challenge,

suggested by Weber and Weiss (1990)’s example above, is that to achieve asymptotic optimality, we may

need to consider an infinite sequence of Lagrange multipliers λ = (λ1, λ2, . . .). This leads to a Lagrangian

dual problem (7) that is practically difficult (or impossible) to solve to optimality. The second challenge is

that the βt terms (19) appearing in the performance bound of Proposition 5 grow rapidly with the horizon T ,

reflecting the possible cascading of changes in selection decisions through subsequent periods. Incorporating

discounting in the finite-horizon model (with horizon T ), the result of Proposition 5 holds as stated, but

with

βt(T ) =
δt−1

2δ − 1

(
(2δ)T−t+1 − 1

)
. (24)

(See EC §H for a more detailed derivation.) If δ > 1/2, these βt terms will grow without bound as T grows

and the performance bound becomes increasingly slack. In our discussion, we will focus on this problematic

case where δ ∈ (1/2, 1). (We present results for δ ∈ (0, 1/2] in EC §H.)

We will address these challenges by considering a series of finite-horizon approximations with horizon

T and taking the limit as the horizon T and problem size S increase simultaneously. Let Lλ
∗

1 (x;T ) denote

the optimal Lagrangian with finite horizon T , defined as in (4) (but with discounting) where λ∗ solves

the corresponding Lagrangian dual problem (7). Let V π̃1 (x;T ) denote the present value generated by the

corresponding optimal Lagrangian index policy over the same finite horizon. Further, let Lλ
∗

1 (x;∞) denote

the optimal infinite-horizon Lagrangian with the optimal infinite sequence of Lagrange multipliers and let

V ∗1 (x) denote the optimal value function. Then, for any horizon T , we have

V π̃1 (x;T ) +
δT

1− δ¯
rS︸ ︷︷ ︸

≡ V̄ π̃1 (x;T )

≤ V ∗1 (x) ≤ Lλ
∗

1 (x;∞) ≤ Lλ
∗

1 (x;T ) +
δT

1− δ
r̄S︸ ︷︷ ︸

≡ L̄λ∗1 (x;T )

. (25)
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Here the term on the left, V̄ π̃1 (x;T ), represents a lower bound on the discounted rewards associated with

following the optimal Lagrangian index policy based on horizon T for T periods and then following any

policy thereafter (which generates rewards of at least
¯
rS in each period). Such a policy is feasible for the

infinite-horizon problem, hence the first inequality above. The second inequality follows from Lagrangian

duality, as in Proposition 1. The final term L̄λ
∗

1 (x;T ) represents the finite-horizon Lagrangian value for T

followed by an upper bound on the rewards for all subsequent periods. The final inequality follows from

the facts that the Lagrange multipliers (λ∗1, . . . , λ
∗
T ) that are optimal for the finite-horizon dual problem are

a feasible starting sequence (λ∗1, . . . , λ
∗
T , . . .) for the infinite-horizon dual problem but are not necessarily

optimal and that r̄ is an upper bound on the item rewards.

As in §5, we will show that, in relative terms, V̄ π̃1 (x;T ) approaches L̄λ
∗

1 (x;T ) as we increase S and T ; since

the optimal value function V ∗1 (x) is bracketed by these terms in (25), this will imply the desired asymptotic

optimality result. In our analysis, we will consider sums of cash flows in the difference of L̄λ
∗

1 (x;T )−V̄ π̃1 (x;T )

over a horizon T ′ ≤ T and obtain a bound of the form

L̄λ
∗

1 (x;T )− V̄ π̃1 (x;T ) ≤ (r̄ −
¯
r)

 T ′∑
t=1

βt(T
′)
√
N +

δT
′

1− δ
S

 . (26)

This follows from the argument underlying Proposition 5. We then choose T ′ to provide a good bound in

(26). Intuitively, we want to choose the horizon T ′ to balance two objectives: we want short horizons to

keep the finite-horizon performance gap (
∑T ′

t=1 βt(T
′)
√
N) small, but want longer horizons to reduce the

effect of considering a finite rather than an infinite horizon (represented by δT
′
S/(1− δ)). By choosing the

horizon T ′ to (approximately) minimize the bound of (26), we have the following infinite-horizon analog of

Proposition 5.

Proposition 6. Let L̄λ
∗

1 (x;T ) and V̄ π̃1 (x;T ) be defined as in (25) and let bzc denote the largest integer less

than or equal to z. For any T ≥ blog2
S√
N
c,

L̄λ
∗

1 (x;T )− V̄ π̃1 (x;T ) ≤ γ(r̄ −
¯
r)S

(√
N

S

)log2
1
δ

(27)

where γ is a positive constant that depends only on δ.

Although we would intuitively expect larger T to result in better heuristics and bounds, the bound of (27)

does not improve if we increase T beyond T ≥ blog2
S√
N
c. Like Proposition 5, this bound assumes the

maximum possible loss in rewards when the Lagrangian relaxation and Lagrangian index polices are in

different states and assumes the maximum possible cascading of differences in states through horizon T ′.

The bound also makes no assumptions about the performance of the heuristic or Lagrangian after period

T ′, again assuming the maximum possible difference in rewards.

Proposition 6 leads to the following asymptotic optimality result that is analogous to Corollary 1.
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Corollary 2 (Infinite-horizon asymptotic optimality). Consider a growing sequence of infinite-horizon dy-

namic selection problems (indexed by S) and let T (S) ≥ blog2
S√
N
c . Let L̄λ

∗

1 (x;S) = L̄λ
∗

1 (x;T (S)) and

V̄ π̃1 (x;S) = V̄ π̃1 (x;T (S)), as defined in (25). If the optimal value functions V ∗1 (x;S) are positive and satisfy

V ∗1 (x;S) ≥ κS, (28)

for some constant κ > 0, then

lim
S→∞

L̄λ
∗

1 (x;S)− V̄ π̃1 (x;S)

V ∗1 (x;S)
= 0 . (29)

Since the optimal value function V ∗1 (x;S) lies between V̄ π̃1 (x;S) and L̄λ
∗

1 (x;S), this result implies asymptotic

optimality of the sequence of finite-horizon Lagrangian index policies when normalized by the optimal value;

as discussed following Corollary 1, we could also normalize in other ways. The growth condition on the

optimal value function (28) is stronger than that in Corollary 1, as we require V ∗1 (x;S) to scale in proportion

with S (versus simply faster than
√
N(S)). For example, this stronger condition would hold if N(S) scales

in fixed proportion with S (i.e., N(S) = αS for some α ∈ (0, 1)), the reward for not selecting is nonnegative,

and the expected reward associated with selecting an item is bounded away from zero.

Though the asymptotic result of Corollary 2 suggests that the optimal Lagrangian index policies will

perform well in problems with many items, provided we take the horizon T in the Lagrangian model to be

sufficiently large. However, the guaranteed convergence rate is much slower in the infinite-horizon setting

than the finite-horizon setting. For example if N(S) = αS, in the infinite-horizon setting

lim
S→∞

L̄λ
∗

1 (x;S)− V̄ π̃1 (x;S)

S
,

converges to zero at rate (
√

1/S)log2(1/δ) (if we increase T with S accordingly), which is much slower than the√
1/S rate that we found in the finite-horizon setting. In particular, log2(1/δ) approaches 0 as δ approaches

1, implying slow convergence for large discount factors.

The slow convergence in the infinite-horizon result is primarily caused by the exponential growth in the

βt terms with the horizon T , reflecting the maximum possible cascading of differences in states visited by the

Lagrangian relaxation and Lagrangian index polices. If the problem has a structure where the item states

are (in some sense) recurrent, these differences may not cascade in this way and may no longer have such

an exponential effect; perhaps then we would again obtain
√

1/S convergence for large problems. We leave

this as a topic for future research.

8. Conclusions

The numerical and theoretical results of this paper suggest that the optimal Lagrangian index policies are

the most appropriate heuristic policies for use in dynamic selection problems, particularly for problems with

many items. The optimal Lagrangian index policies are both easier to compute and perform better than the
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popular Whittle index policies. The logic of the Lagrangian index policy is intuitive. First, find a set of prices

for the constrained resources (Lagrange multipliers λ∗) that lead to the required usage of the resource “on

average.” For large problems, the deviations from these averages will tend to be small in relative terms and

policies that are based on these prices will tend to perform well. There are however some important subtleties

that must be addressed, both in theory and in implementation. Notably, optimal prices often induce ties

where the DM will be indifferent to selecting or not selecting some items and optimal performance requires

careful coordination of the selection decisions across items when breaking ties.

A natural next step in this line of research would be to consider weakly coupled DPs with more general

decision variables and resource constraints. For example, one might consider problems where items have

multiple possible actions (rather than just select or not) with multidimensional budget constraints. The

analysis of the Lagrangian in §3 would seem to generalize directly to this more complex setting, but it is not

immediately clear how to generalize the Lagrangian index policies or the performance analysis of §5.

A. Cutting-Plane Method for Solving the Lagrangian Dual Problem

In the cutting-plane method, we proceed iteratively through a series of trial points λk, calculating the
item-specific value functions Vs(λk) and a subgradient ∇s,k ∈ ∂Vs(λk) at these points; as discussed in
Proposition 4, these subgradients correspond to selection probabilities for an optimal policy for the given
λk. By (9), we know Vs(λ) ≥ Vs(λk) + ∇ᵀ

s,k(λ − λk) for each k, i.e., the subgradients provide a linear

approximation of Vs(λ) from below. We then approximate the Lagrangian L(λ) = Nᵀλ+
∑S
s=1 Vs(λ) as

Nᵀλ+

S∑
s=1

Vs(λis) +∇ᵀ
s,is

(λ− λis) (30)

where we use the value and subgradient from iteration is, is ∈ {1, . . . , k}, to approximate Vs(λ). Taking the
upper envelope of these linear approximations, we have the cutting-plane model

`k(λ) ≡ max
i1,...,iS∈{1,...,k}

{
Nᵀλ+

S∑
s=1

(
Vs(λis) +∇ᵀ

s,is
(λ− λis)

)}
. (31)

Since the Vs(λ) are approximated from below, we know that `k(λ) ≤ L(λ), for all λ.9

The cutting-plane method proceeds by taking the next trial point λk+1 to be the point that minimizes
the cutting-plane model `k(λ), i.e.,

λk+1 = arg min
λ≥0

`k(λ) . (32)

We then calculate the item-specific value functions Vs(λk+1) and subgradients ∇s,k+1 ∈ ∂Vs(λk+1) for this

new point, as well as the Lagrangian L(λk+1) = Nᵀλk+1 +
∑S
s=1 Vs(λk+1). The process continues until

`k(λk+1) = L(λk+1). In this terminal case, since λk+1 minimizes `k(λ) and `k(λ) ≤ L(λ) for all λ ≥ 0, we
know that λk+1 is an optimal solution for (7). If `k(λk+1) < L(λk+1), we add the newly calculated values
Vs(λk+1) and gradients ∇s,k+1 to form a new cutting-plane model `k+1(λ). Note that in this case, we will

9The standard cutting-plane method takes the maximum in (31) using values and subgradients of the objective function, here
L(λ), at each stage. Effectively this requires using the values and gradients from the same iteration is for all items in (31) rather
than allowing the use of results from different iterations for different items. The flexibility to choose different approximations
for each item improves the bound given by the cutting-plane model (31) and thereby accelerates convergence of the algorithm.
This is particularly important when reoptimizing (as in §6.4) or calculating information relaxation bounds (EC §E) where the
items will necessarily be distinct.
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have a new cutting plane for L (corresponding to a new optimal policy for at least one item) since the new
subgradient will support L at λk+1 whereas minλ≥0 `k(λ) = `k(λk+1) < L(λk+1). Since L(λ) is piecewise
linear with a finite number of pieces, the cutting-plane method will converge to the optimal solution in a
finite number of iterations.

The cutting-plane optimization problem (32) can be formulated as a linear program (LP) as

min
λ,vs

Nᵀλ+

S∑
s=1

vs

s.t. vs ≥ Vs(λi) +∇ᵀ
s,i(λ− λi) ∀i ∈ {1, . . . , k},∀s ∈ {1, . . . , S} ,

λ ≥ 0 .

(33)

As we proceed iteratively in the cutting-plane method, we add additional constraints for the new values
Vs(λk+1) and subgradients ∇s,k+1 at the new trial value λk+1. We solve (33) using the dual simplex
method, using the optimal dual basis from one iteration as an initial dual basis for the next iteration.

We can write the dual of the LP (33) as

max
γs,i

S∑
s=1

k∑
i=1

(Vs(λi)−∇ᵀ
s,iλi)γs,i

s.t. −
S∑
s=1

k∑
i=1

γs,i∇s,i ≤ N (34)

k∑
i=1

γs,i = 1 ∀s ∈ {1, . . . , S} ,

γs,i ≥ 0 ∀i ∈ {1, . . . , k},∀s ∈ {1, . . . , S} .

In the final step of the cutting-plane method where `k(λk+1) = L(λ∗), the optimal dual variables γs,i will
correspond to mixing weights satisfying the conditions of Proposition 4(c). Counting constraints, we see
that in a basic solution for (34) at most S + T of these mixing weights γs,i will be positive and these will
correspond to the item-specific policies ψs,i that are optimal given λi and also optimal given λ∗.

If some or all items are identical, the cutting-plane method can be simplified as the DP and its gradients
need only be evaluated once for the identical items; the LPs (33) and (34) similarly simplify. If we let S′

denote the number of distinct items, the simplified version of the LP (33) will have S′+T decision variables
and k × S′ constraints. The basic solutions for the simplified version of the dual LP (34) will have at most
S′ + T positive mixing weights, corresponding to item-specific policies ψs,i that are optimal given λ∗. In
our numerical examples, we have found that optimal solutions typically have exactly S′ + T positive mixing
weights when the linking constraints (1) are binding.

In our numerical examples, the computational bottleneck when solving the Lagrangian dual problems
using the cutting-plane method is calculating the item-specific value functions (6) and their subgradients.
The LPs (33) are typically easy to solve, even if the item-specific DPs have large state spaces.
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Electronic Companion

B. Selected Proofs and Details for §3

B.1. Proofs for §3: Lagrangian Relaxations

Proof of Proposition 3. We can write the item-specific DP (6) as a maximization over item-specific poli-
cies ψs:

Vs(λ) = max
ψs

T∑
t=1

E[ rt,s(x̃t,s(x1,s;ψs), ψt,s(x̃t,s(x1,s;ψs))− λt ψt,s(x̃t,s(x1,s;ψs)) ] (35)

where x̃t,s(x1,s;ψs) is the random state for item s in period t when starting in state x1,s and following policy
ψs. For a fixed policy ψs, the objective in (35) is linear in λ. The pointwise maximum over these linear
functions yields a piecewise linear and convex function. The Lagrangian L(λ), as a finite sum of piecewise
linear convex functions Vs(λ) (plus additional linear terms), is also piecewise linear and convex.

Proof of Proposition 4. (i): Consider the representation of the item-specific DP given in equation (35)
in the proof of Proposition 3. There, for a fixed policy ψs, the objective in (35) is linear in λ and the
tth element of the gradient ∇s(ψs) with policy ψs is −E[ψt,s(x̃t,s(x1,s;ψs)) ], which is −pt,s(ψs). The
subdifferential result (10) then follows from Danskin’s Theorem (see, e.g., Bertsekas et al. 2003 Proposition
4.5.1, p. 245). This subdifferential result implies ∇s(ψs) is a subgradient of Vs at λ for any ψs ∈ Ψ∗s(λ).

(ii) The first equality follows from the fact the subdifferential of a sum of convex functions is the sum of the
subdifferentials for the component functions (see, e.g., Bertsekas et al. 2003, Proposition 4.2.4, p. 232). The
second equality follows from (i) and the fact that the Minkowski sum of the convex hulls of a collection of
sets is equal to the convex hull of the sum of the sets.

(iii) A necessary and sufficient condition for λ∗ to be optimal for the Lagrangian dual problem (7) is

0 ∈ ∂L(λ∗) +N{λ≥0}(λ∗)

where N{λ≥0}(λ∗) is the normal cone of {λ ≥ 0} at λ∗ (see, e.g., Bertsekas et al. 2003 Proposition 4.7.2,
p. 257). The result then follows from (11) and the form of this normal cone: the normal cone terms are
zero when λt > 0 and negative when λt = 0. The specific mixture representation here reflects the first
representation of ∂L(λ) in (11); we could obtain a different form of mixture using the second representation
in (11). The limit on the number of points involved in the mixtures (ns ≤ T +1) follows from Caratheodory’s
theorem.

B.2. Constructing a Markov Random Policy

Here we describe how to use the simple mixed policy representation of Proposition 4(iii) to construct a
corresponding Markov random policy that makes selection decisions with state-contingent selection proba-
bilities. First, let ρt,s(xs, ψs) denote the probability of item s occupying state xs at time t when following
a deterministic policy ψs; these probabilities are straightforward to compute. The probability of selecting
item s in state xs at time t with policy ψs is then ρt,s(xs, ψs)ψt,s(xs) and the probability of not selecting is
ρt,s(xs, ψs)(1− ψt,s(xs)).

Let ψ̃ denote a simple mixed policy representation of Proposition 4(iii) where γs,i is the mixing weight
associated with a deterministic policy ψs,i. Let νt,s(xs, us; ψ̃) denote the probability of item s being in state
xs and choosing action us with the simple mixed policy ψ̃. This is given by:

νt,s(xs, 1; ψ̃) =

ns∑
i=1

γs,i ρt,s(xs, ψs,i) ψt,s,i(xs)

νt,s(xs, 0; ψ̃) =

ns∑
i=1

γs,i ρt,s(xs, ψs,i) (1− ψt,s,i(xs))
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Thus the probability of being in state xs with this mixed policy is νt,s(xs, 0; ψ̃) + νt,s(xs, 1; ψ̃). If ψ̃ is an
optimal mixed policy for the Lagrangian dual problem, νt,s(xs, us; ψ̃) is an optimal solution for the LP (39).

For a Markov random policy that corresponds to the mixed distribution ψ̃, we can take the probability
of selecting an item s in state xs in period t to be:

νt,s(xs, 1; ψ̃)

νt,s(xs, 0; ψ̃) + νt,s(xs, 1; ψ̃)
(36)

By construction, this will generate the same state-action probabilities as ψ̃, will select the same number
of items on average in each period as ψ̃, and will have the same expected total reward as ψ̃. Note that
these selection probabilities will be undefined when the probability of being in state xs in period t (in the
denominator of (36)) is zero. These undefined selection probabilities are irrelevant for evaluating policies
for the Lagrangian relaxation, but may be relevant when we use the policy for the Lagrangian relaxation as
a tiebreaker for the optimal Lagrangian index policy (as discussed in §4.4P. In our numerical examples, we
take these undefined probabilities to be 0.5.

B.3. Linear Programming Formulation of the Lagrangian Dual Problem

We can also formulate the Lagrangian dual problem (7) as an LP; Hawkins (2003), Adelman and Mersereau
(2008), and Bertsimas and Mǐsić (2016) considered similar LP formulations. First, following the standard
LP formulation of a DP, we can write the item-specific DP (6) for item s with Lagrange multipliers λ as

min
V λt,s(xs)

V λs,1(x0
s)

s.t. V λt,s(xs) ≥ rt,s(xs, us)− λtus +
∑
χ̃t,s

pt(χ̃t,s |xs, us) V λt+1,s(χ̃t,s) ∀ t, xs, us ,
(37)

where x0
s is the initial state of item s and pt(χ̃t,s |xs, us) is the conditional probability of state χ̃t,s occurring

when starting in state xs and taking action us (with us ∈ {0, 1}). The decision variables in this LP are the
values V λt,s(xs) for each period t and state xs and the constraints represent the Bellman equations (6). (We

assume V λT+1,s(xs) = 0.) The value function constraints will be binding for optimal actions in states that
are visited when following the optimal policy, but need not be binding for any action in states that are not
visited by the optimal policy.

Building on this LP representation of the item-specific DPs, we can write the Lagrangian dual problem as
an LP by combining these item-specific DPs and including the Lagrange multipliers λ as decision variables:

min
λ, V λt,s(xs)

T∑
t=1

λtNt +

S∑
s=1

V λ1,s(x
0
s)

s.t. V λt,s(xs) ≥ rt,s(xs, us)− λtus +
∑
χ̃t,s

pt(χ̃t,s |xs, us) V λt+1,s(χ̃t,s) ∀ s, t, xs, us , (38)

λt ≥ 0 ∀ t .

If we let |Xs| be the size of the state space for item s, this LP has T ×
(

1 +
∑S
s=1|Xs|

)
decision variables

and 2 × T ×
∑S
s=1|Xs| constraints. (If some or all of the items are identical, this LP can be simplified.)

Though this LP formulation delivers optimal values for λ and the initial values V λ1,s(x
0
s) for the item-specific

DPs, it does not provide a full optimal value function for all periods and states because values for states that
are not visited under the optimal policy do not affect the objective function. The Lagrangian index policy
defined in §4 requires a full value function. To calculate these value functions using this LP formulation, we
need to fix λ at the optimal value from (38) and solve LPs like (37) with an objective function that includes
positive weights on the values V λt,s(xs) for all items, states, and periods.
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Taking νt,s(xs, us) to be the dual variables for the constraints in (38), we can write the dual of (38) as:

max
νt,s(xs,us)

∑
t

∑
s

∑
xs

∑
us

rt,s(xs, us)νt,s(xs, us)

s.t.
∑
us

ν1,s(x
0
s, us) = 1 ∀ s , (39)∑

us

νt,s(χ̃t,s, us) =
∑
xs

∑
us

pt(χ̃t,s |xs, us) νt−1,s(xs, us) ∀ s, t > 1, χ̃t,s ,∑
s

∑
xs

νt,s(xs, 1) ≤ Nt ∀ t ,

νt,s(xs, us) ≥ 0 ∀ s, t, xs, us .

The dual variables here have a natural interpretation as flows: νt,s(xs, us) can be interpreted as the probabil-
ity of being in state xs at time t and choosing action us. The objective in (39) is the expected total reward.
The first two constraints are flow conservation conditions: the total flow in the initial state x0

s for each item
(
∑
us
ν1,s(x

0
s, us)) is equal to 1 and the total flow into a later state χ̃t,s must have come from a transition

from some previous state. The third constraint requires the linking constraint to hold “on average” and com-
plementary slackness ensures that this linking constraint holds with equality in period t whenever λt > 0.
This average linking constraint is thus equivalent to the necessary and sufficient conditions for optimality in
the Lagrangian dual given in Proposition 4(iii). Complementary slackness also implies that if the optimal
flow νt,s(xs, us) is positive, the corresponding value function inequality in (38) holds with equality: that is,
the action us is optimal in state xs in period t. The optimal flows νt,s(xs, us) given by the LP (39) can also
be calculated from the policies ψs,i and mixing weights γs,i given by the cutting-plane method of Appendix
A; see Appendix B.2.

The Fluid Heuristic: Given this LP formulation, we can now describe the fluid heuristic that was
discussed in §6.4. Bertsimas and Mǐsić (2016) considered problems were the state dynamics are independent
across items, but the actions need not decompose across items. In dynamic selection problems these actions
would be vectors of decision variables u = (u1, . . . , uS) satisfying the linking constraint (1), i.e., u ∈ Ut. This
is not a practical way to formulate large dynamic selection problems as there are

(
S
N

)
+
(

S
N−1

)
+ · · · +

(
S
0

)
different actions to be considered.

In our numerical examples of §6.4, we consider a decomposed version of the fluid heuristic where we solve
the Lagrangian dual problem (39) in each period and select items to maximize the total flow,

u ∈ arg max
u∈Ut

∑
s

νt,s(xs, us),

where the νt,s(xs, us) are the optimal flows for the given period and state given by the solution to (39). Any
ties are broken randomly. As noted after (39), complementary slackness implies that if the optimal flow
νt,s(xs, us) in the LP is positive, the action us is optimal in state xs in period t. The heuristic chooses items
to maximize this flow.

An issue with this heuristic is that in the applicant screening examples is that in the first period, the
flow is maximized by not screening any applicants: because just 25% of the applicants can be screened and
all applicants are in the same initial state, the optimal flows in this first period are ν1,s(xs, 1) = 0.25 (select)
and ν1,s(xs, 0) = 0.75 (don’t select) for all applicants s in the initial (unscreened) state xs. Similar problems
arise in other periods. We address this issue by requiring the choice of exactly Nt applicants in each period,
rather than less than or equal to Nt applicants.
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C. Notes on Whittle Indices

C.1. Calculating Whittle Indices

Our procedure for calculating Whittle indices assumes the model is “indexable” – that is, the set of periods
and states (t, xs) where no selection is optimal is monotonically increasing from the empty set to all periods
and states as w increases from –∞ to +∞. Given this, if we want to calculate Whittle indices for all periods
and states for item s, we can proceed as follows:

(i) Start with a small w such that it is optimal to select in all periods and all states. Set ψt,s(xs;w) = 1
for all t, and xs, indicating that it is optimal to select in all time periods and states at the initial w.

(ii) For all t and xs, calculate V w1
t,s (xs) (by solving the DP (6)) and ηwt,s(xs) = ∂V w1

t,s (xs)/∂w. These partial
derivatives can be evaluated using backward recursion given the policy ψs, starting with ηwT,s(xs) = −1
for all xs such that ψT,s(xs;w) = 1 and ηwT,s(xs) = 0 otherwise. In addition, for all t and xs such that
ψt,s(xs;w) = 1, calculate

∆w
t,s(xs) =

(
rt,s(xs, 1) + E

[
V w1

t+1,s(χ̃t,s(xs, 1))
])
−
(
rt,s(xs, 0) + E

[
V w1

t+1,s(χ̃t,s(xs, 0))
])

σwt,s(xs) = E
[
ηwt+1,s(χ̃t,s(xs, 1))

]
− E

[
ηwt+1,s(χ̃t,s(xs, 0))

]
.

Here ∆w
t,s(xs) is the difference on the right side of (15) and σwt,s(xs) is the partial derivative of ∆w

t,s(xs)
with respect to w.

(iii) We next find a new value of w that sets ∆w
t,s(xs) = 0 for a new period and state. Calculate

δ? = min
t,xs

{
∆w
t,s(xs)− w

1− σwt,s(xs)
: ψt,s(xs;w) = 1

}
. (40)

For all periods t and states xs achieving this minimum, the Whittle index w∗t,s(xs) is w + δ?. (We
explain this calculation after the description of the algorithm.)

(iv) Set w to w + δ? and ψt,s(xs;w) = 0 for all periods t and states xs achieving the minimum in (iii).

(v) If there are no states for which selection is optimal, we are done. Otherwise, go to (ii).

The breakpoint calculation in (40) can be understood as follows: for any states and periods satisfying
ψt,s(xs;w) = 1, selection is strictly optimal at the current w, and hence ∆w

t,s(xs) > w in such states. Since
σwt,s(xs) represents the partial derivative of ∆w

t,s(xs) with respect to w, we seek a value δ such that w + δ is
a new Whittle index, i.e., δ satisfies

∆w
t,s(xs) + σwt,s(xs) · δ = w + δ .

The ratio in (40) represents the largest increase to w such that the policy ψs remains optimal. For times and
states attaining this value in (40), we are indifferent between selecting and not selecting the item at w+ δ?.

The efficiency of this procedure is improved by noting some properties of the value functions and deriva-
tives when updating in step (ii), i.e., as w is replaced with w′ = w+ δ?. First, we need only update ηw

′

t,s(xs)

and σw
′

t,s(xs) in time periods up to t?, where t? is the earliest time period attaining the minimum in (iv). The
partial derivatives for later periods are unchanged because no decisions change after period t?. Second, we
can update the differences as ∆w′

t,s(xs) = ∆w
t,s(xs) + σwt,s(xs) · δ?. This follows from the fact that the policy

ψs is optimal from w to w + δ? and thus the value functions are linear functions of w in this range.
Even with these improvements to efficiency, the procedure can be time consuming when there are many

states, because we have to repeatedly update the system of partial derivatives in step (ii), potentially once
for each period and state in the problem.

C.2. Whittle Indices for the Applicant Screening Example

Here we show that in the applicant screening example, the Whittle indices have a particularly simple form.
We let µ(xs) denote an applicant’s mean quality in state xs, which we assume to be positive. For example,
with a beta prior µ(xs) = αs/(αs + βs). The item-specific DP (6) with λ = w1 is given recursively as
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V w1
T,s (xs) = max{µ(xs)− w, 0} and, for t < T ,

V w1
t,s (xs) = max{−w + E

[
V w1
t+1,s(χ̃t,s(xs, 1))

]
, V w1

t+1,s(xs)} . (41)

A Whittle index for state xs in period t is a w that equates the screen and do not screen options in this DP:

−w + µ(xs) = 0 for t = T, and

−w + E
[
V w1
t+1,s(χ̃t,s(xs, 1))

]
= V w1

t+1,s(xs) for t < T.
(42)

We show the following.

Proposition 7. In the applicant screening example, for all s, t, and xs, the Whittle index is unique.
(i) In the final period (t = T ), the Whittle index is µ(xs).
(ii) In screening periods (t < T ), the Whittle index is zero.

In the proof, we will use the facts that µ(xs) > 0 in all states xs and that E[µ(χ̃t,s(xs, 1)) ] = µ(xs), i.e., the
expected posterior quality after screening is equal to the prior expected quality.

Proof. (i) For t = T , the result follows directly from the definition of the Whittle index.

(ii) We first show that w = 0 is a Whittle index for t < T . In this case, V w1
T,s (xs) = µ(xs), since

µ(xs) > 0. By induction and using the fact that the posterior mean is equal to the prior mean, for t < T ,
we have V w1

t,s (xs) = E
[
V w1
t+1,s(χ̃t,s(xs, 1))

]
= E[µ(χ̃t,s(xs, 1)) ] = µ(xs). Thus (42) holds for w = 0.

We next rule out w < 0 and w > 0 as possible Whittle indices. Suppose w < 0. In this case, we claim that
is strictly optimal to screen and collect the “reward” −w in every period and V w1

t,s (xs) = µ(xs)−(T −t+1)w.
Given this as an induction hypothesis for period t+1, in period t screening yields

−w + E
[
V w1
t+1,s(χ̃t,s(xs, 1))

]
= −w + E[µ(χ̃t,s(xs, 1)) + (T − t)w ] = µ(xs)− (T − t+ 1)w

where the first inequality follows from the induction hypothesis and the second from the fact that the
expected posterior mean is equal to the prior mean. This is clearly true in the final period as all applicants
would be admitted. From the induction hypothesis, not screening in period t yields

V w1
t+1,s(xs) = µ(xs)− (T − t)w

which, since w < 0 is strictly less than screening. Thus screening strictly dominates not screening in every
period and w < 0 cannot be a Whittle index.

Now suppose w > 0. In the final period, V w1
T,s (xs) = max{µ(xs) − w, 0}. We claim that not screening

strictly dominates screening in all screening periods; if this is true, then V w1
t,s (xs) = max{µ(xs) − w, 0} for

t ≤ T . For the induction hypothesis, assume this is true for period t + 1. Then for period t, not screening
yields

V w1
t+1,s(xs) = max{µ(xs)− w, 0}

and screening yields:

−w + E
[
V w1
t+1,s(χ̃t,s(xs, 1))

]
= −w + E[ max{µ(χ̃t,s(xs, 1))− w, 0} ]

< −w + E[µ(χ̃t,s(xs, 1)) ]

= −w + µ(xs)

≤ max{µ(xs)− w, 0}

The first equality follows from the induction hypothesis. The inequality follows from observing that, since
w > 0, we have max{x−w, 0} < x for all x > 0; this implies the strict inequality above, since µ(χ̃t,s(xs, 1)) >
0 for all χ̃t,s(xs, 1). The next equality follows from the fact that the posterior mean is equal to the prior
mean. The final inequality is straightforward. Notice this last term is equal to the value of not screening.
Thus, if w > 0, not screening strictly dominates screening and w > 0 cannot be a Whittle index.
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D. Proofs for §5: Analysis of the Optimal Lagrangian Index Policy

D.1. Proof of Proposition 5

The proof of Proposition 5 relies on three key steps which we state in Lemmas 1, 3, and 4 below. Lemma 2
supports Lemma 3. In this discussion, we let n(ut) =

∑S
s=1 ut,s denote the number of items selected with

action vector ut.

Lemma 1. For any λ ≥ 0 and initial state x, let ψ be an optimal policy for the Lagrangian (5), and let x̃t
denote the state transition process generated by ψ. Then, for any policy π,

Lλ1 (x)− V π1 (x) =

T∑
t=1

E[ dt(x̃t, ψt(x̃t), πt(x̃t)) ] (43)

where
dt(xt,u

ψ
t ,u

π
t ) = λt

(
Nt − n(uψt )

)
+ rt(xt,u

ψ
t )− rt(xt,uπt )

+ E
[
V πt+1(χ̃t(xt,u

ψ
t ))
]
− E

[
V πt+1(χ̃t(xt,u

π
t ))
]
.

(44)

Here the dt terms are the differences in total rewards with actions uψt and uπt in period t, reflecting the
differences in immediate rewards as well the differences in expected continuation values under π. The
difference in total values, Lλ1 (x)− V π1 (x), is the expected total of these period-specific differences.

Proof. Since ψ is an optimal policy for the Lagrangian Lλt starting in state x, we have

Lλ1 (x) =

T∑
t=1

E
[
λt
(
Nt − n(ψt(x̃t))

)
+ rt(x̃t, ψt(x̃t))

]
. (45)

We also have

V π1 (x) = V π1 (x) +

T∑
t=2

E[V πt (x̃t) ]−
T∑
t=2

E[V πt (x̃t) ]

=

T∑
t=1

E[V πt (x̃t) ]−
T∑
t=1

E
[
V πt+1(χ̃t(x̃t, ψt(x̃t)))

]
=

T∑
t=1

E
[
rt(x̃t, πt(x̃t)) + V πt+1(χ̃t(x̃t, πt(x̃t)))− V πt+1(χ̃t(x̃t, ψt(x̃t)))

]
.

The second equality uses the fact that V πT+1 = 0 and the definition of x̃t as the state process under policy
ψ, so x̃t+1 = χ̃t(x̃t, ψt(x̃t))). The last line uses the definition of the heuristic value function V πt given in
(3) and the law of iterated expectations. The result of the lemma then follows by taking the difference
Lλ1 (x)− V π1 (x) using these expressions.

The next lemma provides a bound on the differences in heuristic values V πt (x) as a function of the number
of states xs that differ. This bound is valid for any index policy, i.e., any policy that ranks items based on
item-specific indices and selects up to Nt of these items.

Lemma 2. Let π be an index policy and suppose states x′ and x′′ differ for m or fewer items. Then, for
any t, there exists a nonnegative constant kt (that depends only on t and T ) such that:∣∣V πt (x′)− V πt (x′′)

∣∣ ≤ kt · (r̄ −
¯
r) m .

Proof. We prove this result using an induction argument on t. For the terminal case with t = T + 1, we have
V πT+1(x′)− V πT+1(x′′) = 0 since V πT+1(x) = 0 for all x. Thus we can take kT+1 = 0.
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We then assume the result is true for t+ 1 and show that it holds for period t. We have:∣∣V πt (x′)− V πt (x′′)
∣∣ =

∣∣rt(x′, π(x′))− rt(x′′, π(x′′)) + E
[
V πt+1(χ̃t(x

′, π(x′)))
]
− E

[
V πt+1(χ̃t(x

′′, π(x′′)))
]∣∣

≤
∣∣rt(x′, π(x′))− rt(x′′, π(x′′))

∣∣+
∣∣E[V πt+1(χ̃t(x

′, π(x′)))
]
− E

[
V πt+1(χ̃t(x

′′, π(x′′)))
]∣∣

≤ 2(r̄ −
¯
r)m + 2kt+1(r̄ −

¯
r)m (46)

The first inequality above follows from the triangle inequality. The second inequality follows from the
following observations. First note that if states x′ and x′′ differ for m items, then with an index policy π,
the actions for at most 2m items will differ. (In the worst case, the differences lead all m items to change from
not selected to selected (or vice versa) and m other items make the reverse change.) Thus the item-specific
rewards differ for at most 2m items and∣∣rt(x′, π(x′))− rt(x′′, π(x′′))

∣∣ ≤ 2(r̄ −
¯
r)m .

With differences for at most 2m item decisions and state transitions that are independent across items, the
random continuation states χ̃t(x

′, π(x′)) and χ̃t(x
′′, π(x′′)) will differ for at most 2m items. (Here we are

assuming that items in the same state in x′ and x′′ make the same stochastic transitions.) Then, using the
induction hypothesis, we have∣∣E[V πt+1(χ̃t(x

′, π(x′)))
]
− E

[
V πt+1(χ̃t(x

′′, π(x′′)))
]∣∣ ≤ 2kt+1(r̄ −

¯
r)m ,

completing the proof of the inequality (46). Then taking kt = 2(1 + kt+1) = 2T−t+2− 2, we obtain the result
of the lemma.

We next use the previous lemma to establish an upper bound on the differences in Lemma 1 in the
case where the policy π is a Lagrangian index policy with a tiebreaker that is an optimal policy ψ for the
Lagrangian for any λ. The key observation in the proof is to note that though ψ and π may select different
numbers of items in a given state, the choices will differ for at most

∣∣n(ψt(xt))−Nt
∣∣ items.

Lemma 3. For any λ ≥ 0 and initial state x, let ψ be an optimal policy for the Lagrangian (5), and let π
be the Lagrangian index policy for λ with ψ as a tiebreaker. For each t, there exists a nonnegative constant
ct (depending only on t and T ), such that for all x̃t that may be realized when following policy ψ,

dt(x̃t, ψt(x̃t), πt(x̃t)) ≤ λt
(
Nt − n(ψt(x̃t))

)
+ ct(r̄ −

¯
r)
∣∣n(ψt(x̃t))−Nt

∣∣ . (47)

If λt = 0, we have a tighter bound:

dt(x̃t, ψt(x̃t), πt(x̃t)) ≤ ct(r̄ −
¯
r) max{n(ψt(x̃t))−Nt, 0} .

Proof. Fix period t and state x̃t. First note that since the policy ψ is optimal for the Lagrangian, it will
select all items that have priority indices it,s(xt,s) such that it,s(xt,s) > λt and perhaps some items such
that it,s(xt,s) = λt. (It is important that x̃t be a state that may be visited under the policy ψ. An optimal
policy ψ need not satisfy this condition in states that are not visited when using ψ.)

We consider two cases. Case (i): Suppose the Lagrangian policy ψ selects n(ψt(x̃t)) < Nt items. Those
items selected by ψ with it,s(xt,s) > λt will be included in the top Nt items as ranked by the priority index
and will thus also be selected by the heuristic π. The tiebreaking rules ensure that any other items selected
by ψ with it,s(xt,s) = λt will also be selected by π. π may also select up to Nt − n(ψt(x̃t)) additional items
with nonnegative priority indices that were not selected by ψ. (We note for future reference that if λt = 0,
then in this case ψ and π will select exactly the same items.)

Case (ii): If the Lagrangian policy ψ selects n(ψt(x̃t)) ≥ Nt items, these items selected by ψ will all have
nonnegative priority indices and the heuristic π will select Nt of these items: the tiebreaking rules ensure
that the Nt selected by π will be a subset of those selected by ψ. Thus, in both cases (i) and (ii), ψ and π
will select no more than

∣∣n(ψt(x̃t))−Nt
∣∣ different items in period t and state x̃t.
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The desired result (47) can now be established as follows:

dt(x̃t, ψt(x̃t), πt(x̃t)) = λt
(
Nt − n(ψt(x̃t))

)︸ ︷︷ ︸
(a)

+ rt(x̃t, ψt(x̃t))− rt(x̃t, πt(x̃t))︸ ︷︷ ︸
(b)

+ E
[
V πt+1(χ̃t(x̃t, ψt(x̃t)))

]
− E

[
V πt+1(χ̃t(x̃t, πt(x̃t)))

]︸ ︷︷ ︸
(c)

≤ λt(Nt − n(ψt(x̃t)))︸ ︷︷ ︸
(a)

+ (r̄ −
¯
r)
∣∣n(ψt(x̃t))−Nt

∣∣︸ ︷︷ ︸
(b′)

+ 2(r̄ −
¯
r)kt+1

∣∣n(ψt(x̃t))−Nt
∣∣︸ ︷︷ ︸

(c′)

= λt
(
Nt − n(ψt(x̃t))

)
+ (r̄ −

¯
r)(1 + 2kt+1)

∣∣n(ψt(x̃t))−Nt
∣∣

The inequality above follows term by term, using the terms identified above.

� The (a) term is unchanged.

� (b) ≤ (b′): Because ψ and π will select no more than
∣∣n(ψt(x̃t))−Nt

∣∣ different items, we have

rt(x̃t, ψt(x̃t))− rt(x̃t, πt(x̃t)) ≤ (r̄ −
¯
r)
∣∣n(ψt(x̃t))−Nt

∣∣ .
� (c) ≤ (c′): Because ψ and π will select no more than

∣∣n(ψt(x̃t))−Nt
∣∣ different items and state tran-

sitions are independent across items, the random continuation states χ̃t(x̃
′, π(x̃′)) and χ̃t(x̃

′′, π(x̃′′))
will differ for at most

∣∣n(ψt(x̃t))−Nt
∣∣ items. Lemma 2 then implies

E
[
V πt+1(χ̃t(x̃t, ψt(x̃t)))

]
− E

[
V πt+1(χ̃t(x̃t, πt(x̃t)))

]
≤ (r̄ −

¯
r)kt+1

∣∣n(ψt(x̃t))−Nt
∣∣

where kt is as defined in Lemma 2.
The desired result then follows by taking ct = (1 + kt+1).

In the case where λt = 0, as discussed above in Case (i), ψ and π will select the same items, so combining
Cases (i) and (ii), ψ and π will select no more than max{n(ψt(x̃t))−Nt, 0} different items. The proof then
proceeds as before.

The final lemma provides a bound on the expectations of the
∣∣n(ψt(x̃t))−Nt

∣∣ terms appearing in
Lemma 3 by calculating the variance of these quantities.

Lemma 4. Let λ∗ denote an optimal solution for the Lagrangian dual problem (7) with initial state x and
let ψ̃ denote an optimal mixed policy. Let ñt(ψ̃) = n(ψ̃t(x̃t(x, ψ̃))).

(i) If λt > 0, then

E
[ ∣∣ñt(ψ̃)−Nt

∣∣ ] ≤√Nt(1−Nt/S) . (48)

(ii) If λt = 0, then

E[ max{ñt(ψ̃)−Nt, 0} ] ≤
√
N̄t(1− N̄t/S) , (49)

where N̄t = E[ ñt(ψ̃) ] ≤ Nt.

Proof. We first characterize the variance of ñt(ψ̃). Since the state transitions are independent across items
and the policy mixing is also independent across items,ñt(ψ̃) is the sum of S independent Bernoulli trials
with probabilities of success pt,s = E[ pt,s(ψ̃s) ] where, as in Proposition 4, pt,s(ψs) is the probability of

selecting item s in period t when following a policy ψs. We then have E[ ñt(ψ̃) ] =
∑S
s=1 pt,s and

Var[ ñt(ψ̃) ] =

S∑
s=1

pt,s(1− pt,s)
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=

S∑
s=1

pt,s −
S∑
s=1

p2
t,s

= E[ ñt(ψ̃) ]−
S∑
s=1

p2
t,s

≤ E[ ñt(ψ̃) ]− E[ ñt(ψ̃) ]
2
/S

= E[ ñt(ψ̃) ](1− E[ ñt(ψ̃) ]/S)

The inequality follows from choosing pt,s to minimize
∑S
s=1 p

2
t,s subject to the constraint that

∑S
s=1 pt,s =

E[ ñt(ψ̃) ]. The minimum is obtained when pt,s = E[ ñt(ψ̃) ]/S for all s.
We then apply this inequality for the two different cases for λt. Case (i): If λt > 0, by Proposition 4(iii),

we know that E[ ñt(ψ̃) ] = Nt. Then we have

E
[ ∣∣ñt(ψ̃)−Nt

∣∣ ]2 ≤ Var[ ñt(ψ̃)−Nt ]

= Var[ ñt(ψ̃) ]

≤ E[ ñt(ψ̃) ](1− E[ ñt(ψ̃) ]/S)

= Nt(1−Nt/S)

The first inequality follows from Jensen’s inequality and the fact that E[ ñt(ψ̃) ] = Nt.
Case (ii): If λt = 0, by Proposition 4(iii), we know that N̄t ≡ E[ ñt(ψ̃) ] ≤ Nt. Then, following the same

logic as in the λt > 0 case after two preliminary steps:

E[ max{ñt(ψ̃)−Nt, 0} ]
2 ≤ E

[
max

{
ñt(ψ̃)− N̄t, 0

} ]2
≤ E

[ ∣∣ñt(ψ̃)− N̄t
∣∣ ]2

≤ Var
[
ñt(ψ̃)− N̄t

]
= Var[ ñt(ψ̃) ]

≤ E[ ñt(ψ̃) ](1− E[ ñt(ψ̃) ]/S)

= N̄t(1− N̄t/S)

Finally, we can assemble these results and prove Proposition 5.

Proof of Proposition 5. Using the notation of Lemmas 1, 3, and 4 and applying these results in that
order, we have:

Lλ
∗

1 (x)− V π̃1 (x) =

T∑
t=1

E[ dt(x̃t, ψ̃, π̃) ]

≤
T∑
t=1

{
λ∗t E[Nt − n(ψ̃(x̃t)) ] + ct(r̄ −

¯
r)E
[ ∣∣n(ψ̃(x̃t))−Nt

∣∣ ] if λ∗t > 0

ct(r̄ −
¯
r)E[ max{n(ψt(xt))−Nt, 0} ] if λ∗t = 0

}

≤
T∑
t=1

ct(r̄ −
¯
r)
√
N̄t(1− N̄t/S)

where N̄t = Nt if λ∗t > 0 and N̄t = E[ ñt(ψ̃) ] ≤ Nt if λ∗t = 0. In the final step above, we also use the fact that
E[Nt − n(ψ̃(x̃t)) ] = 0 when λ∗t > 0; see Proposition 4(iii). When considering expectations involving the
mixed policies, we assume that the realizations of ψ̃ and π̃ are coordinated so the realized π is the Lagrangian
index policy with the realized ψ as tiebreaker: this is necessary when applying Lemma 3 in the second line
above. Taking βt = ct = 2T−t+1 − 1, we obtain the result of the proposition.

The final inequality in (18) then follows from the fact that
√
N̄t(1− N̄t/S) ≤

√
N̄t ≤

√
N .
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Proof of Corollary 1. Theorem 1 implies

0 ≤ Lλ
∗

1 (x;S)− V π̃1 (x;S)

V ∗1 (x;S)

≤ (r̄ −
¯
r)

T∑
t=1

βt
√
N̄t(S)(1− N̄t(S)/S)

V ∗1 (x;S)

≤ (r̄ −
¯
r)

T∑
t=1

βt

√
N(S)

V ∗1 (x;S)
.

The growth assumption implies limS→∞
√
N(S)/V ∗1 (x;S) = 0, which gives the desired result (22).

D.2. Example Showing the Lagrangian Performance Gap of
√
N is Tight

We consider an example with T = 2 and assume the number of items S is divisible by 4. The DM can select
N1 = N2 = N = S/2 items in each period. There are three types of items:

(i) S/2 items are a priori identical and yield rewards rt,s(x
0
s, 1) = 1 in their initial state x0

s. If selected
in period one, in period two these items transition to state x with probability 1/2 and to state x with
probability 1/2, with r2,s(x, 1) = 2 and r2,s(x, 1) = 0. If not selected, these items do not change state.
Let S1 denote this set of items.

(ii) S/4 items are identical and yield deterministic rewards rt,s(x
0
s, 1) = 1/2 if selected in either period,

and never transition from their initial state x0
s, whether selected or not. Let S2 denote this set of items.

(iii) The remaining S/4 items are identical and yield deterministic rewards rt,s(x
0
s, 1) = 1/4 if selected in

either period, and never transition from their initial state x0
s, whether selected or not. Let S3 denote

this set of items.
All items yield zero reward when not selected.

Solution of the Lagrangian Dual. First, we claim that the Lagrange multipliers λ∗ = (λ∗1, λ
∗
2) = (1/2, 1/4)

are optimal for the Lagrangian dual (7) for this example. To see this, note that with this choice of λ∗, we
have the following optimal Lagrangian value functions and policies:

(i) For s ∈ S1: In period two, V λ
∗

2,s(x) = 7/4, V λ
∗

2,s(x) = 0, E
[
V λ
∗

2,s(χ̃1,s(x
0
s, 1))

]
= 7/8, and it is strictly

optimal to select in state x and not select in state x. In period 1, it is strictly optimal to select: the
value of selecting is r1,s(x

0
s, 1) − λ∗1 + E

[
V λ
∗

2,s(χ̃1,s(x
0
s, 1))

]
= 11/8 and the value of not selecting is

0 + V λ
∗

2,s(x
0
s) = 1− λ∗2 = 3/4. Thus, for s ∈ S1, there is a single optimal policy ψs for s ∈ S1.

(ii) For s ∈ S2: In period two, V λ
∗

2,s(x
0
s) = 1/4 and it is strictly optimal to select. In period one, selecting

or not selecting are both optimal: the value for selecting is r1,s(x
0
s, 1) − λ∗1 + V λ

∗

2,s(x
0
s) = 1/4 and the

value for not selecting is V λ
∗

2,s(x
0
s) = 1/4. For all s ∈ S2, we take ψs to be the optimal policy that does

not select these items in period one.
(iii) For s ∈ S3: In period two, V λ

∗

2,s(x
0
s) = 0 and selecting and not selecting are both optimal. In period

one, not selecting is strictly optimal. For all s ∈ S3, we take ψs to be the optimal policy that does not
select these items in period two.

With these optimal policies, we select exactly N = S/2 items (all items in S1) in period one. In period two,
we select those items in S1 that transition to x (expected number equal to S/4) and select all S/4 items in
S2, for a total of S/2 items in expectation. By Proposition 4(iii), this implies that λ∗ = (1/2, 1/4) is optimal.

Total Reward with the Optimal Policy for the Lagrangian Relaxation. In the Lagrangian re-
laxation, it is optimal to select all items in S1 in the first period. We let Y denote the random variable
corresponding to the number of items in S1 that transition to x in period two. The distribution of Y is
binomial with S/2 trials and probability 1/2.

The first period rewards are simply S/2, as exactly N = S/2 items with reward 1 are selected. In the
second period, all Y items in S1 are selected and yield reward 2, and all S/4 items in S2, each yielding reward
1/2, are selected. The Lagrangian penalty in period two is λ∗2(S/2− Y − S/4) = S/16− Y/4. Putting this
together, the total reward in the Lagrangian relaxation given Y is (7/4)Y + (11/16)S.
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Total Reward with the Optimal Lagrangian Index Policy. In the first period, the priority index
values are:

s ∈ S1 : i1,s(x
0
s) = (r1,s(x

0
s, 1) + E

[
V λ
∗

2,s(χ̃1,s(x
0
s, 1))

]
)− (r1,s(x

0
s, 0) + V λ

∗

2,s(x
0
s)) = (1 + 7/8)− (0 + 3/4) = 9/8,

s ∈ S2 : i1,s(x
0
s) = (r1,s(x

0
s, 1) + V λ

∗

2,s(x
0
s))− (r1,s(x

0
s, 0) + V λ

∗

2,s(x
0
s)) = (1/2 + 1/4)− (0 + 1/4) = 1/2,

s ∈ S3 : i1,s(x
0
s) = (r1,s(x

0
s, 1) + V λ

∗

2,s(x
0
s))− (r1,s(x

0
s, 0) + V λ

∗

2,s(x
0
s)) = (1/4 + 0)− (0 + 0) = 1/4,

and thus all items in S1 are selected in the first period by the optimal Lagrangian index policy.
In the second period, the selection indices in the optimal Lagrangian index policy equal the item’s rewards

in their current state. Thus, in period two, the optimal Lagrangian index policy selects all Y items in S1

that yield reward 2, possibly in addition to some other items, which differ in two cases:
(a) If Y < S/4, then all S/4 items in S2 are also selected, each yielding reward 1/2, as well as S/2− (Y +

S/4) = S/4−Y items in S3 are selected, each yielding reward 1/4. The total reward (including period
one) in this case is (7/4)Y + (11/16)S, equal to the Lagrangian relaxation value.

(b) If Y ≥ S/4, then S/2 − Y ≤ S/4 items from S2 are also selected, yielding a total reward (including
period one) of (3/2)Y + (3/4)S.

Difference in Total Rewards. It follows that the difference between the Lagrangian relaxation value
Lλ
∗

1 (x) and optimal Lagrangian index policy V π̃1 (x) is

Lλ
∗

1 (x)− V π̃1 (x) = E
[
1{Y ≥ S/4}

(
7

4
Y +

11

16
S − 3

2
Y − 3

4
S

)]
= E

[
1{Y ≥ S/4}

(
Y

4
− S

16

)]
=

1

4
E
[
1{Y ≥ S/4}

(
Y − S

4

)]
=

1

4
E

[(
Y − S

4

)+
]
.

Y follows a binomial distribution with S/2 trials and probability 1/2 so, as S → ∞, Y − S/4 approaches
a normal distribution with mean zero and variance S/8. Then in the limit as S → ∞,

∣∣Y − S/4∣∣ follows a
half-normal distribution generated by a normal random variable with variance S/8; thus, as S →∞,

Lλ
∗

1 (x;S)− V π̃1 (x;S) =
1

4
E
[

(Y − S/4)+
]

=
1

8
E
[ ∣∣Y − S/4∣∣ ] =

√
2S

8
√

8π
=

√
N

8
√

2π
.
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E. Information Relaxation Bounds

As discussed briefly in §6.3, in the numerical examples of §6 the gaps between the optimal Lagrangian index
policy and Lagrangian bound were very small (in relative terms) for large S, but were more substantial for
small S. One might wonder whether these gaps are due to the policies being suboptimal or due to slack in
the Lagrangian bound. In this section, we develop information relaxation bounds to provide tighter bounds.
Here we follow the general approach developed in Brown, Smith and Sun (2010, BSS hereafter) but the
application to dynamic selection problems poses some problem-specific challenges which we address here.

BSS (2010) generalized earlier applications of information relaxations for valuing American options (see,
e.g., Haugh and Kogan 2004 and Rogers 2002). Our application to dynamic selection problems can be
viewed as a new application in a growing list of applications of information relaxation methods. In addition
to the many applications to valuing options and other derivative securities, recent applications of information
relaxations include managing natural gas storage (Lai et al. 2010 and Lai et al. 2011), dynamic portfolio
optimization with transaction costs or taxes (Brown and Smith 2011 and Haugh et al. 2016), and inventory
and pricing models with lead time and backorders (Brown and Smith 2014 and Bernstein et al. 2015). Our
application of information relaxations to the dynamic selection problem combines information relaxations
and Lagrangian relaxations. Information relaxations and Lagrangian relaxations were similarly combined in
a network revenue management problem in Brown and Smith (2014), in a multiclass queueing problem in
Brown and Haugh (2017), and in Ye et al. (2018).

In this section, we first briefly and informally review the theory of information relaxation bounds as
developed in BSS (2010), discuss the application to our examples, and the discuss numerical results for the
examples considered in §6.

E.1. Information Relaxation Bounds

The key idea of information relaxation bounds is to consider models that relax the nonanticipativity con-
straints that require the DM to make decisions based only on information that is available at the time the
decision is made. For instance in the dynamic assortment problem, in the real model, the DM observes
demands for products that are displayed, when they are displayed, and uses this information to guide future
display decisions. We will consider a relaxed model where the DM knows the demands for all products in
all periods in advance, before making any display decisions.

The basic results on information relaxations are easiest to state if we take a high-level view of policies.
If we let ΠF denote the set of policies that respect the nonanticipativity constraints (as well as the linking
constraints) in the original problem, we can write the DP (2) as

V ∗1 (x) = max
π∈ΠF

E[ r(π) ]

where r(π) denotes the random total reward under policy π, i.e., r(π) =
∑
t rt(x̃t(π), πt(x̃t(π))) where x̃t(π)

represents the random state-evolution process when starting in state x and following policy π and πt(x) is
the period-t vector of selection decisions in state x when using policy π.

If we let ΠG denote a larger set of policies (ΠF ⊆ ΠG) that can use additional information,10 we can solve
a relaxed version of the DP to obtain an upper bound on the primal DP:

V ∗1 (x) = max
π∈ΠF

E[ r(π) ] ≤ max
π∈ΠG

E[ r(π) ] . (50)

Unfortunately, the bounds given by (50) will be weak if the extra information provided in the relaxation is
valuable. To counter this, we incorporate a penalty that “punishes” the DM for using information that would
not actually be available when making decisions. The penalty z(π) is a policy-dependent random variable,
like the rewards, i.e., z(π) =

∑
t zt(x̃t(π), πt(x̃t(π))) for some set of period-t penalty terms zt(xt, ut). A

penalty z(π) is dual feasible if E[ z(π) ] ≤ 0 for all π ∈ ΠF; that is, if the expected penalty is nonpositive for
all nonanticipative policies.

10To formalize the definitions of these sets of policies, a policy can be defined as a mapping from the underlying outcome space to
selection decisions (u1, . . . ,uT ) for each product and each period (with ut ∈ Ut). Policies in the DP (2) that make selections
as a function of the current state of the system can be viewed as imposing measurability restrictions on this more general set
of policies. The relaxed model imposes a weaker set of measurability restrictions. See BSS (2010) for more discussion.
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The following weak duality result from BSS (2010) is the key tool for generating performance bounds
using information relaxations.

Proposition 8 (Weak duality). Suppose ΠF ⊆ ΠG. If policy π is nonanticipative (i.e., π ∈ ΠF) and penalty
z is dual feasible then

E[ r(π) ] ≤ max
π′∈ΠG

E[ r(π′)− z(π′) ] . (51)

Proof. We have:
E[ r(π) ] ≤ E[ r(π)− z(π) ] ≤ max

π′∈ΠG
E[ r(π′)− z(π′)) ] .

Given π ∈ ΠF, the first inequality follows from the definition of dual feasibility (E[ z(π) ] ≤ 0) and the second
inequality follows from the fact that ΠF ⊆ ΠG.

BSS (2010) provide a strong duality result that shows that there is a penalty such that the value for the
relaxed model is exactly equal to the optimal value for the original, but these penalties require knowledge
of the optimal value function (more on this in the next subsection).

We also note that if we can restrict attention to a subset of the available policies ΠF in the original
problem without loss of optimality, we can impose these same restrictions on the policies ΠG for the relaxed
model. For example, if all items are initially identical in the dynamic assortment or applicant screening
examples, we can restrict the policies to a set of policies that select the first (in label index order) Nt
items in the initial period (i.e., s ≤ Nt), without loss of optimality. More generally, we can restrict the
DM to policies to selecting items with s ≤

∑t
τ=1Nτ in period t. In our numerical examples, we will impose

these restrictions on selections in the relaxed model. Enforcing these constraints can improve the information
relaxation bound (i.e., lead to a lower value) because the information revealed in a particular sample scenario
may favor selecting some items outside this restricted set.

E.2. Information Relaxation Bounds for the Dynamic Assortment Problem

The challenge is to find penalties and information relaxations that make the bound on right side of (51) easy
to compute and lead to reasonably tight bounds. For specificity, we will focus our discussion on the dynamic
assortment example, though the ideas also apply in the applicant screening example and other dynamic
selection problems. In the dynamic assortment example, the underlying uncertainties are the unknown
(Poisson) demand rates for each product and the demand realizations for each item, in each period. In the
original model, the demands are revealed for products when (and if) the products are selected; the demand
rates are never revealed. We can consider a number of different relaxations, including:

(i) Known rates: The DM knows the demand rates for all products in advance, but demands are revealed
sequentially only when the products are selected, as in the original model.

(ii) Known demands: The DM knows all demands for all products in all periods, in advance before making
any selection decisions (i.e., the DM knows what demand would be if a product were to be selected);
demands rates are never revealed.

(iii) Perfect information: The DM knows both demands and rates in advance.
(iv) Uncensored demand : Demands for all products are revealed sequentially (regardless of whether they

are selected or not); demand rates are never revealed.
In the applicant screening example, we can consider analogous relaxations, where the applicants’ quality
and/or the signals are known in advance in the relaxed model.

In our discussion and numerical examples, we will focus on the known demands relaxation and consider
a penalty based on the Lagrangian Lλt+1(x). Although we can use any λ ≥ 0, in our numerical examples
we will take these to be optimal Lagrange multipliers λ∗ given by solving the Lagrangian dual (7). We can
estimate the known demands bound, maxπ′∈ΠG E[ r(π′)− z(π′) ], by repeatedly:

(i) Drawing a demand rate γs for product s from the appropriate gamma distribution and then drawing
demands for this product from a Poisson distribution with this rate. Let d = (d1, . . . ,dT ) where
dt = (dt,1, . . . , dt,S) denotes the randomly generated vector of product demands in period t.

(ii) Solving a deterministic inner DP (to be described shortly) to find the optimal value V̂1(x1;d) given
these demand realizations, incorporating the Lagrangian penalty.

We estimate the known demands bound by averaging the V̂1(x1;d) for the different demand realizations d.
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Given a demand scenario d, we can write the inner DP for this demand scenario as follows. Let
V̂T+1(x;d) = 0 and, for earlier t, we recursively define

V̂t(x;d) = max
u∈Ut

{
rt(x,u)− zt(x,u;dt) + V̂t+1(χt(x,u;dt);d)

}
(52)

where
zt(x,u;dt) = Lλt+1(χt(x,u;dt))− E

[
Lλt+1(χ̃t(x,u))

]
. (53)

Here the last term in (52) and the first term in (53) involve deterministic state transitions because the DM
knows the demands: χt(x,u;dt) = (χt,1(x1, u1; dt,1), . . . , χt,S(xS , uS ; dt,S)) represents the state transitions
with the given product demands for period t. The expectation in (53) is calculated using the same state-
dependent negative-binomial distributions used in the original DP.

Using the law of iterated expectations, we know that E[ zt(x̃t(π), πt(x̃t(π))) ] = 0 for any nonanticipative
policy π. Thus the penalty z(π) =

∑
t zt(x̃t(π), πt(x̃t(π))) is dual feasible and the known demands bound

provides a performance bound, as in Proposition 8. This is an example of the general method for creating
“good” dual feasible penalties described in BSS (2010). As discussed there, if we replace the Lagrangian
Lλt+1 in (53) with the optimal value function V ∗t+1, the information relaxation bound will be exactly equal
to the optimal value. With this ideal penalty, the DM is exactly punished for using extra information: the
benefit gained is exactly canceled by the penalty. With a penalty based on an approximate value function
(such as the Lagrangian), the penalty approximately cancels this benefit. In general, to obtain good bounds,
we want to choose generating functions that approximate the optimal value function well.

We now consider the DP (52) in more detail. First, note that that the penalty terms involving the
Lagrangian Lλt+1 decompose into the sum of item-specific values, as in (5). However, the inner DP (52)
does not decompose into item-specific subproblems because the constraint on the total number of products
selected (u ∈ Ut where Ut is defined in (1)) links the decisions across items, as it did in the original DP (2).
Thus, the inner DP – though deterministic – is still difficult to solve in problems with many items.

To decouple the inner DP (52), we relax the linking constraint in the same way that we relaxed the
original DP (2). Consider Lagrange multipliers µ = (µ1, . . . , µT ) ≥ 0 and let L̂µT+1(x;d) = 0. The period-t
inner Lagrangian with demand realization d is then given recursively as

L̂µt (x;d) = max
u∈{0,1}S

{
rt(x,u)− zt(x,u;dt) + L̂µt+1(χt(x,u;dt);d) + µt

(
Nt −

S∑
s=1

us

)}
.

This can be decomposed into item-specific DPs as

L̂µt (x;d) = Nt

T∑
τ=t

µτ +

S∑
s=1

V̂ µt,s(xs;ds)

where ds = (d1,s, . . . , dT,s) is the demand sequence for product s and V̂ µt,s(xs;ds) is an inner item-specific

value function with V̂ µT+1,s(xs;ds) = 0 and

V̂ µt,s(xs;ds) = max

{
rt,s(xs, 1)− µt − V λs,t+1(χt,s(xs, 1, dt,s)) + E

[
V λs,t+1(χ̃t,s(xs, 1))

]
+ V̂ µt+1,s(χt,s(xs, 1, dt,s)),

rt,s(xs, 0) + V̂ µt+1,s(χt,s(xs, 0, dt,s))

}
. (54)

where V λt,s is the value-function for the item-specific DP (6). Note that in the dynamic assortment model,
the penalty term (53) is zero if a product is not selected because its state does not change.

These inner item-specific DPs and the Lagrangian satisfy properties like those of Propositions 1-4. In
particular, the Lagrangian is an upper bound on the inner DP: V̂t(x;d) ≤ L̂µt (x;d) for all x, t, d and µ ≥ 0.
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To ensure we have the best possible bound for a given d and x, we can solve the inner dual problem,

min
µ≥0

L̂µ1 (x;d) , (55)

for an optimal µ∗(x,d). This is a convex optimization problem and can be solved using the cutting-
plane method discussed in §A. Moreover, if we take the inner Lagrange multipliers µ to be equal to the
“outer” Lagrange multipliers λ used to define the penalty, we can use an induction argument to show that
L̂λt (x;d) = Lλt (x) for all t and d.11 Thus, since λ is feasible but not necessarily optimal for the inner
Lagrangian dual problem (55), we have

V̂1(x;d) ≤ L̂µ
∗(x,d)

1 (x;d) ≤ Lλ1 (x) .

Thus, for every demand scenario d, the information relaxation bound V̂1(x;d) and its computable upper

bound L̂
µ∗(x,d)
1 (x;d) will be at least as good as the Lagrangian bound Lλ1 (x).

We can also relate these bounds to the performance of a heuristic policy π in the same demand scenario.
We focus on deterministic Markovian heuristic policies where the period-t selection decision πt is chosen
based on the current state x. (When we are considering mixed policies, as in the optimal Lagrangian policy,
let π be a particular realization of the mixed policy.) We assume that the actions selected by the heuristic are
feasible, i.e., πt(x) ∈ Ut. To facilitate comparison with those of the information relaxation, we will adjust the
rewards using the penalty (53) as a control variate. Let V̂ πt (x;d) denote the value generated when following
policy π, starting in state x, given demand realization d, adjusted by the control variate. We can write this
value recursively in a form parallel to (52): let V̂ πT+1(x;d) = 0 and, for earlier t, we define

V̂ πt (x;d) =

{
rt(x, πt(x))− zt(x, πt(x);dt) + V̂ πt+1(χ̃t(x, πt(x);dt);d)

}
. (56)

Here this form exactly mimics the DP recursion (52), except the actions are chosen in accordance to the
policy π rather than optimized. Thus we know that V̂ πt (x;d) ≤ V̂t(x;d) for all t, x, and d. Moreover,
because the penalty terms zt have mean zero for all feasible policies, we know that the expected total reward
when following policy π is V π1 (x) = E[ V̂ π1 (x; d̃) ], where the expectations are taken over the random demand
scenarios. These control variates are helpful in reducing sampling error when estimating the expected values
associated with a given policy and were used in the simulations of §6.2.

Combining these observations, we can say the following.

Theorem 2 (Ordered bounds). Consider any feasible and nonanticipative policy π, Lagrange multipliers
λ ≥ 0 and initial state x.

(i) For any demand realization d, we have

V̂ π1 (x;d) ≤ V̂1(x;d) ≤ L̂
µ∗(x,d)
1 (x;d) ≤ Lλ1 (x) . (57)

(ii) Taking expectations over random demand realizations d̃, we have

V π1 (x) = E
[
V̂ π1 (x; d̃)

]
≤ V ∗1 (x) ≤ E

[
V̂1(x; d̃)

]
≤ E

[
L̂
µ∗(x,d̃)
1 (x; d̃)

]
≤ Lλ1 (x) . (58)

Working from the left in (58), we have the expected value with heuristic policy π (V π1 (x)) is equal to the
expected reward for this policy with the control variate included (E[ V̂ π1 (x; d̃) ]). This value is less than or
equal to the value with an optimal policy (V ∗1 (x)), which is typically impossible to compute. This, in turn,
is less than or equal to the known demands relaxation bound (E[ V̂1(x; d̃) ]) which is also typically impossible
to compute. However, the known demands bound is less than or equal to the Lagrangian relaxation of
the known demands information relaxation bound with optimized Lagrange multipliers (E[ L̂

µ∗(x,d̃)
1 (x; d̃) ]),

which is computable. Finally, all of these bounds are less than the ordinary Lagrangian bound (Lλ1 (x)). The

11Note that the V λ
s,t+1(·) and V̂ µ

t+1,s(·) terms in (54) cancel if µ = λ and we have the induction hypothesis that V λ
s,t+1(·) =

V̂ λ
s,t+1(·). Then (54) reduces to the the definition of V λ

s,t+1(·) in (6).
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bounds in (57) show that the demand-dependent terms in (58) are ordered in every demand scenario d and
less than or equal to the Lagrangian bound.

Though we have focused on the known demands relaxation in the dynamic assortment example, we can
use the same approach and derive similar results with other relaxations and in other problems. In the
applicant screening example, the information relaxation where all applicant signals are known in advance
is exactly analogous to the known demands relaxation and we obtain the same results. If we consider the
known rates relaxation instead of the known demands realization in the dynamic assortment example, we
arrive at an inner DP similar to (52), but the deterministic demand transitions are replaced with Poisson
distributions with (randomly drawn) known demand rates. This inner DP is also linked and we can use an
inner Lagrangian relaxation to derive results analogous to those of Theorem 2.

E.3. Numerical Examples

The (a) panels of Figures 2-5 show information relaxation bounds for the dynamic assortment and applicant
screening examples using the known demands and known signals relaxations. These bounds were evaluated
with S equal to 4, 8, 16, 32, and 64 in the same 1000 sample scenarios (i.e., same demand and signal
sequences) that were used to evaluate the heuristics. In all cases, we use penalties based on an optimal
solution λ∗ for the outer Lagrangian dual problem (7) and impose the policy restrictions discussed at the
end of §E.1. These figures also show 95% confidence intervals for the estimated bounds; these confidence
intervals are quite narrow, particularly for larger values of S.

In the results, we see that the information relaxation bounds improve on the Lagrangian dual, particularly
when S is small. The improvement is greatest in the dynamic assortment example with T = 8 and S = 4. In
this case, the Lagrangian bound ensures that the Lagrangian index policy is within (approximately) $0.88
per product displayed of the value given by an optimal solution. The information relaxation bound tells us
that the Lagrangian index policy is in fact within $0.16 per product displayed of an optimal solution. The
improvements in bounds are less significant in the applicant screening example, particularly in the case with
Bernoulli signals. Our intuition suggests that these information bounds are less effective when tiebreaking
plays an important role: intuitively, the Lagrangian penalties “punish” the DM for using additional infor-
mation in the selection decisions but do not punish for using this extra information to optimize tiebreaking.
In all problems, the information relaxation bounds do not improve on the Lagrangian bound with large S:
in these cases, the Lagrangian index policies are so close to the Lagrangian bound that there is very little
room for the information relaxation bounds to improve upon the Lagrangian bound.

Dynamic Applicant
assortment screening

example example
S T = 8 T = 20 n = 1 n = 5

4 9.9 143 2.7 3.3
8 15.1 208 4.4 5.6
16 23.9 301 7.5 9.1
32 42.1 471 13.3 16.0
64 75.0 750 24.4 29.1

Table 3: Run times (seconds) for information relaxation bound calculations

The run times are reported in Table 3. As discussed above, calculating these bounds requires solving the
inner Lagrangian dual problems for each simulated demand (signal) sequence, for each product (applicant).
This can be time consuming because the products (applicants) are not identical as each has its own demand
(signal) sequence. We use the cutting-plane method in each case and start with µ = λ∗, which yields the
Lagrangian dual bound. If we cannot improve on this value, the cutting-plane algorithm typically stops after
a few iterations. The run times grow roughly linearly with S, as one might expect, but not exactly because
these no-improvement scenarios are more common with large S.
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F. Numerical Results with Longer Horizons
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Figure 7: Results for the dynamic assortment examples with horizon T=40
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Figure 8: Results for the applicant screening examples with T=51 and Bernoulli signals (n = 1)
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G. Additional Details on Weber and Weiss’s Counterexample

Weber and Weiss (1990)’s example is useful for understanding dynamic selection problems with long or
infinite horizons. Though Weber and Weiss considered a continuous-time, average-reward setting, their
example can be adapted to discrete time with a long, but finite horizon. The example considers identical
items, each having four states; the transition matrices and rewards are constant over time and are shown
in Table 4. In each period, the DM must select exactly 83.5% of the items available. We assume that the
system starts with 16%, 9%, 35% and 40% of the items in states one through four, respectively. We will
consider a horizon T equal to 20,000 periods and focus on the dynamics of the Whittle and Lagrangian
index policies in the deterministic mean field limit as the number of items S approaches infinity. The plots
in Figure 9 show results for the first 3,000 of 20,000 periods; truncating these time series in this way makes
the patterns easier to see.

Probability Transition Matrices Rewards
Selected Not Selected Not

State 1 2 3 4 1 2 3 4 Selected Selected

1 0.9625 0.0075 0.0150 0.0150 0.9625 0.0075 0.0150 0.0150 0 10
2 0.0000375 0.9957625 0.0042 0.0000 0.0075 0.1525 0.8400 0.0000 10 10
3 0.0000 0.0000 0.9700 0.0300 0.0000 0.0000 0.9700 0.0300 10 1
4 0.0150 0.0000 0.0150 0.9700 0.0150 0.0000 0.0150 0.9700 10 0

Table 4: Assumptions for Weber and Weiss (1990)’s example

First we consider the Whittle index policy. The Whittle indices may be calculated analytically and
depend on an item’s state (as usual) but not the period (a feature of this example). The Whittle indices
are −10, 0, 9, and 10 for states one through four.12 The ingenious feature of Weber and Weiss’s example is
that the fractions of items in each state cycles under the Whittle index policy. For example, Figure 9a shows
the fraction of items in state one when following the Whittle index policy. The fraction of items in state
one starts at 16%, rises to 17%, and ultimately settles into a cyclical pattern with fractions varying between
16.2% and 16.6%. The fractions in other states also vary cyclicly. In this example, the DM must select
83.5% of the items, so whenever the fraction in state one exceeds 16.5% (indicated with a dashed line in
Figure 9a), the DM must select some items that are in state one. In periods where the Whittle index policy
selects items in states two, three and four only, the policy generates a reward of 10. In periods where the
policy selects some items in state one, the reward is less than 10, reflecting the zero reward when selecting
items in state one.

Now consider the Lagrangian relaxation with a full set of T Lagrange multipliers. The optimal Lagrange
multipliers λ∗ (solving the dual problem (7)) are shown in Figure 9b and the state one fractions for the
corresponding optimal Lagrangian index policy are shown in Figure 9a.13 In Figure 9b we see that the
optimal Lagrange multipliers λ∗t cycle initially with dampening amplitude, approaching a steady state value
of zero. The oscillations in the state fractions are less than those for the Whittle index policy and the
fraction in state one remains at or below 16.5% in all periods, hitting 16.5% in period 56. How do the
Lagrangian index and Whittle index policies differ? In the very early periods (1-6), the Lagrangian index
policy prioritizes items in higher states, like the Whittle index policy. But in periods 8-31, the Lagrangian
index policy prioritizes items in state two over state three, leaving some items in state three unselected.
(Items in states two and three have the same index values in periods 7 and 32 and tiebreaking plays a
role.) In most of the remaining periods, the Lagrangian index policy prioritizes items in the same way as
the Whittle index. However, there is one later period (period 73) where the Lagrangian index policy is
indifferent between selecting items in states one and two and the optimal Lagrangian index policy breaks
ties so some items in state one are selected, earning zero reward. In this period, λ∗t is −10 and the fraction
of items in state one is strictly less than 16.5% so the DM is not forced to select items in state one in this
period.

12For items in states one, three and four, the transition probabilities are identical in the active and passive states and the
continuation values cancel in (15); it is easy to verify that (15) is satisfied with these index values. It is not hard to see with
λt = 0 for all t, in every state the optimal value function is 10 times the number of periods remaining; (15) is thus satisfied
in state two with λt = 0.

13This example took about 30 minutes to solve using an LP formulation of the Lagrangian dual (7).
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Figure 9: Selected results for the Weber and Weiss example

These differences between the Whittle and Lagrangian index policies dampen the early oscillations seen
in Figure 9a and guide the Lagrangian index policy to an equilibrium where the fraction of items in state one
is approximately 16.4%; the fractions in other states also stabilize. In this equilibrium, the optimal Lagrange
multipliers are zero and the Lagrangian and Whittle priority indices are equal: all items in states three and
four are selected and approximately 99.0% of those in state two are selected. The rewards are 10 per period
in this equilibrium. The optimal Lagrangian bound for the example, which is equal to the reward of the
Lagrangian index policy, is slightly below 10 per period, reflecting the selection of some items in state one
in period 73. The Whittle index policy performs worse because it regularly selects items in state one.

These numerical results depend on the initial fractions of items in each state, but the results are typical.
For most initial conditions, the state fractions for the Whittle index policy settle into cycles as seen in
Figure 9a where items in state one are routinely selected and the average reward is strictly less than 10.
Similarly, for most initial conditions, the optimal Lagrange multipliers and state fractions for the Lagrangian
index policy cycle initially, but approach an equilibrium distribution where the period reward is always 10.
The exception to this typical behavior is that if we start the problem with initial conditions exactly equal
to the equilibrium distribution, λ = 0 is optimal for the Lagrangian dual problem and the Lagrangian
and Whittle policies are equivalent and remain at this equilibrium distribution; however, this equilibrium is
unstable and small deviations in initial conditions will lead the state distributions for Whittle index policies
to oscillate.
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H. Proofs for the Infinite-Horizon Extension

We begin our analysis of the infinite-horizon case by first considering how the result of Proposition 5 changes
if we incorporate a discount factor δ ∈ [0, 1) in the finite-horizon model of §2. We first briefly remark on
how the results of the technical lemmas of §D are affected by discounting and then consider Proposition 5.

Lemma 1: Here the result is

Lλ1 (x)− V π1 (x) =

T∑
t=1

δt−1E[ dt(x̃t, ψt(x̃t), πt(x̃t)) ]

where
dt(xt,u

ψ
t ,u

π
t ) = λt

(
N − n(uψt )

)
+ r(xt,u

ψ
t )− r(xt,uπt )

+ δE
[
V̄ πt+1(χ̃(xt,u

ψ
t ))
]
− δE

[
V̄ πt+1(χ̃(xt,u

π
t ))
]
.

The proof is analogous to the proof of Lemma 1.

Lemma 2: The result is exactly the same but discounting plays a role in the constants kt. The inequality
(46) is now ∣∣V πt (x′)− V πt (x′′)

∣∣ ≤ 2(r̄ −
¯
r)m + 2δkt+1(r̄ −

¯
r)m

and we wind up with kt = 2(1 + δkt+1) = 2
2δ−1

(
(2δ)T−t+1 − 1

)
.

Lemma 3: The result is the same but now ct = 1 + δkt+1 = 1/2kt = 1
2δ−1

(
(2δ)T−t+1 − 1

)
.

Lemma 4: The result and proof are unchanged.

Proposition 5: Using the analogs of Lemmas 1, 3, and 4 in the same way as before, we have:

Lλ
∗

1 (x)− V π̃1 (x) =

T∑
t=1

δt−1E[ dt(x̃t, ψ̃, π̃) ]

≤
T∑
t=1

δt−1ct(r̄ −
¯
r)
√
N̄t(1− N̄t/S) .

Taking βt(T ) (as claimed in equation (24)) to be

βt(T ) = δt−1ct =
δt−1

2δ − 1

(
(2δ)T−t+1 − 1

)
,

we obtain the result of Proposition 5. For future reference, we note that

T∑
t=0

βt(T ) =
1

2δ − 1

[
2δT (2T − 1)− 1− δT

1− δ

]
. (59)

In preparation for the proof of Proposition 6, we note that the result of Proposition 5 can be extended
to consider partial sums of cash flows, as claimed in (26). Specifically, consider two time horizons T and
T ′ where T ′ ≤ T . Now suppose we define the optimal Lagrangian policy ψ̃ and the corresponding optimal
Lagrangian index policy π̃ in the usual way for the longer time horizon T , with λ∗ denoting the optimal
Lagrange multipliers. Now consider the sum of the discounted expected cash flows for ψ̃ and and π̃ over the
shorter horizon T ′:

L̂λ
∗

1 (x;T ′, T ) ≡
T ′∑
t=1

δt−1E
[
λt
(
Nt − n(ψt(x̃t))

)
+ rt(x̃t, ψt(x̃t))

]
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V̂ ψ̃1 (x;T ′, T ) ≡
T ′∑
t=1

δt−1E[ rt(x̃t, πt(x̃t)) ]

Applying the argument of Proposition 5, but considering only the first T ′ periods, we obtain

L̂λ
∗

1 (x;T ′, T )− V̂ ψ̃1 (x;T ′, T ) ≤
T ′∑
t=1

βt(T
′)(r̄ −

¯
r)
√
N̄t(1− N̄t/S) ≤

T ′∑
t=1

βt(T
′)(r̄ −

¯
r)
√
N . (60)

where βt(T
′) is given by (24). This then implies the result of (26).

Proof of Proposition 6. Consider two time horizons T and T ′ where T ′ ≤ T and the optimal Lagrangian
policy ψ̃ and the corresponding optimal Lagrangian index policy π̃ are based on the longer time horizon T .
From (26) and (59), we have

L̄λ
∗

1 (x;T )− V̄ π̃1 (x;T ) ≤ (r̄ −
¯
r)

 T ′∑
t=1

βt(T
′)
√
N +

δT
′

1− δ
S


= (r̄ −

¯
r)

[
1

2δ − 1

(
2δT

′
(2T

′
− 1)− 1− δT ′

1− δ

)
√
N +

δT
′

1− δ
S

]
(61)

Since we have assumed δ > 1/2, (2δ − 1) > 0 and we can simplify the bracketed term in (61) by dropping
terms:

L̄λ
∗

1 (x;T )− V̄ π̃1 (x;T ) ≤ (r̄ −
¯
r)

[
2(2δ)

T ′

2δ − 1

√
N +

δT
′

1− δ
S

]
. (62)

Now consider the choice T ′ = blog2
S√
N
c. With this T ′, we have

δT
′

= δ
blog2

S√
N
c ≤ 1

δ
· δlog2

S√
N =

1

δ
·
(
2log2 δ

)log2
S√
N =

1

δ
·

(√
N

S

)log2
1
δ

, (63)

where the inequality uses the fact that δ < 1. Using the fact that δ > 1/2 and hence 2δ > 1, we have

(2δ)T
′

= (2δ)
blog2

S√
N
c ≤ (2δ)

log2
S√
N =

S√
N
·

(√
N

S

)log2
1
δ

. (64)

Using (63) and (64), the bracketed term in (62) satisfies

2(2δ)
T ′

2δ − 1

√
N +

δT
′

1− δ
S ≤ 2

2δ − 1

√
N ·

(
S√
N

)
·

(√
N

S

)log2
1
δ

+
1

δ(1− δ)
· S ·

(√
N

S

)log2
1
δ

=

(
2

2δ − 1
+

1

δ(1− δ)

)
· S ·

(√
N

S

)log2
1
δ

,

and the result of Proposition 6 then follows with γ = 2
2δ−1 + 1

δ(1−δ) . This choice of T ′ = blog2
S√
N
c can

be viewed as approximately minimizing the bound in (62). Specifically, this selection of T ′ differs from the
minimizing T ′ by rounding down and dropping a constant term that complicates the resulting expressions.
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Proposition 6 when δ ∈ [0, 1/2]: When δ < 1/2, following a similar analysis, we obtain

L̄λ
∗

1 (x;T )− V̄ π̃1 (x;T ) ≤
(

1

(1− δ)(1− 2δ)
+

2

1− δ

)√
N .

Thus, in this case, we have
√
N convergence as in the finite-horizon setting. When δ = 1/2, we obtain

L̄λ
∗

1 (x;T )− V̄ π̃1 (x;T ) ≤ 2

1− δ
√
N + 2 log2

(
S√
N

)√
N .

This convergence is worse than
√
N but not as slow as the case where δ > 1/2.

Proof of Corollary 2. Using Proposition 6 and (28), we have

lim
S→∞

Lλ
∗
(x;S)− V π̃(x;S)

V ∗(x;S)
≤ (r̄ −

¯
r) lim
S→∞

γS

(√
N(S)

S

)log2
1
δ

V ∗(x;S)

≤ (r̄ −
¯
r) lim
S→∞

γS

(√
N(S)

S

)log2
1
δ

κS

≤ (r̄ −
¯
r) lim
S→∞

γ

κ

(√
N(S)

S

)log2
1
δ

= 0 .
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