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Abstract—We develop and present the novel minimum estima-2

tion error variance waveform design method, that optimizes the3

spectral shape of a unimodular radar waveform such that the4

performance of a joint radar-communications system that shares5

spectrum is maximized. We also develop the novel spectral water-6

filling SIC data rate which employs the continuous spectral water-7

filling algorithm to obtain the optimal communications power8

spectrum. We also perform a numerical study to compare the9

performance of the new technique with the previously derived10

spectral mask shaping method. The global estimation rate and the11

data rate capture the radar and the communications performance12

respectively.13

Index Terms—Joint Radar-Communications, Radar Waveform14

Design, Successive Interference Cancellation, Continuous Spec-15

tral Water-Filling, Non-convex Optimization16

I. INTRODUCTION17

Spectral congestion is quickly becoming a problem for18

the telecommunications sector [1] and cooperative spectrum19

sharing between radar and communications systems such that20

both systems mutually benefit from the presence of each other21

has been proposed as a potential solution [2, 3]. In order22

to determine how to efficiently share spectral resources and23

achieve RF convergence [4], a through understanding of the24

fundamental performance limits of cooperative spectrum shar-25

ing is needed. References [3, 5] investigated the fundamental26

limits of a in-band cooperative radar and communications27

system and developed inner bounds on performance for such28

a system. However, these bounds were specifically developed29

by considering only local estimation errors and with a radar30

waveform that is suboptimal for joint performance. Generaliz-31

ing these performance bounds can help to establish limits for32

cooperative spectrum sharing.33

Furthermore, these joint radar-communications performance34

bounds were found to depend on the shape of the radar35

waveform spectrum [3, 5]. For a given bandwidth, an impulse-36

like radar spectral shape (small root mean square (RMS) band-37

width) was found to be more favorable for communications38
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performance, whereas a radar waveform spectrum with more 39

energy at the edges of the bandwidth allocation (large RMS 40

bandwidth) were found to be more favorable for estimation 41

performance. However, the latter waveform also has higher au- 42

tocorrelation side-lobes or ambiguity which negatively impact 43

the global (local and non-local regime) estimation performance 44

by increasing the radar threshold signal-to-noise ratio (SNR) 45

at which non-local estimation errors occur. Thus, the shape of 46

the radar spectrum poses a trade-off both in terms of radar 47

performance vs. communications performance and in terms 48

of improved estimation performance vs. an increased radar 49

threshold SNR.
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Fig. 1. The joint radar-communications system simulation scenario for radar
waveform design. In this scenario, a radar and communications user attempt
to use the same spectrum-space-time. This scenario is instructional, and can
easily be scaled to more complicated scenarios by using it as a building block
to construct real world examples.

50

Reference [6] generalized the performance bounds devel- 51

oped in References [3, 5] by taking non-local estimation errors 52

into account and tuning the shape of the radar waveform spec- 53

trum to maximize joint radar-communications performance. 54

The results presented in this paper is an extension of the 55

work presented in Reference [6]. In this paper, we present 56

a new radar waveform design method for a joint radar- 57

communications system that optimizes the radar waveform 58

spectrum to maximize radar performance or minimize estima- 59

tion error variance in the non-local (or low-SNR) regime and 60

optimizes the communications power spectrum to maximize 61

communications performance by employing the continuous 62

spectral water-filling algorithm [7]. This novel method designs 63

a jointly optimal radar waveform that is constant modulus, 64

unlike the method presented in Reference [6]. The global 65

estimation rate, introduced in [6], and data rate capture radar 66
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and communications performance respectively. In order to67

place emphasis on waveform design approaches and their68

performance, we assume a simple scenario with a single target69

and no clutter. The problem scenario considered in this paper70

is given by Figure 1.71

A. Contributions72

The main contributions of this paper are summarized below.73

• Develop novel minimum estimation error variance wave-74

form design method to design a constant modulus radar75

waveform that maximizes radar performance of a joint76

radar-communications system77

• Develop novel spectral water-filling SIC data rate that78

maximizes communications performance of a joint radar-79

communications system80

• Perform numerical study on the effects of radar threshold81

SNR and the order of non-linear chirp phase on waveform82

design performance83

• Compare performance of new waveform design algorithm84

with previously derived spectral-mask shaping waveform85

design method86

B. Background87

The performance bounds presented in References [3–5, 8],88

which only considered local estimation errors, were shown89

to be dependent primarily on the RMS bandwidth of the90

radar waveform. Reference [6] extended the estimation rate to91

consider non-local or global estimation errors and employed92

a spectral mask to shape the radar waveform spectrum so as93

to maximize the performance of a joint radar-communications94

system. An evolutionary optimization algorithm was applied95

to find the optimal spectral mask that maximizes radar and96

communications performance (estimation and data rate re-97

spectively) and new performance bounds were developed.98

Performance bounds comparing communications performance99

versus radar detection performance were derived for a joint100

radar-communications system in Reference [9].101

Modern approaches to the RF convergence problem have102

looked at waveform design in the context of a single, uni-103

fied waveform for radar and communications. For exam-104

ple, orthogonal frequency-division multiplexing (OFDM) is105

commonly chosen for this dual waveform [10–14], where a106

single transmission is used for communications and monostatic107

radar. Most results using OFDM waveforms revealed data-108

dependent ambiguities, opposing cyclic prefix requirements,109

and demanding peak-to-average power ratio (PAPR) require-110

ments. Spread spectrum waveforms have also been proposed111

for their autocorrelation properties [15–17], and MIMO radar112

techniques have been suggested, given that the independent113

transmitted waveforms allow more degrees of freedom for114

joint radar-communications co-design [18–20]. Multiple or-115

thogonal linear frequency modulated chirps have also been116

proposed to accomplish both radar detection and communica-117

tions transmissions in a MIMO system [21]. Both systems have118

fundamentally different waveform requirements and that is119

why, contrary to the aforementioned approaches, the waveform120

design method proposed in this paper assumes that radar and 121

communications systems transmit separate waveforms. 122

Researchers have also looked at optimization theory based 123

radar waveform design methods that look to optimize radar 124

performance while the communications system is constrained 125

to reduce interference. Optimization theory is used to maxi- 126

mize some radar performance metrics (detection probability, 127

ambiguity function features etc.) and keep interference to other 128

in-band systems at a minimum [22–24] or impose constraints 129

on the communications rate of other in-band systems [25]. 130

Researchers have searched several other research areas for 131

potential solutions to the spectral congestion problem. Some 132

researchers looked at spatial mitigation as a means to improve 133

spectral interoperability [26–28]. Joint coding techniques, such 134

as robust codes for communications that have desirable radar 135

ambiguity properties, as well as codes that trade data rate and 136

channel estimation error have been investigated as co-design 137

solutions [29–32]. 138

C. Problem Set-up 139

We consider the scenario shown in Figure 1, which in- 140

volves a radar and communications user attempting to use 141

the same spectrum-space-time. We consider the joint radar- 142

communications receiver to be a radar transmitter/receiver that 143

can act as a communications receiver. The key assumptions 144

made in this paper for the scenario described in Figure 1 are 145

as follows 146

• Joint radar-communications receiver is capable of simul- 147

taneously decoding a communications signal and estimat- 148

ing a target parameter 149

• Radar detection and track acquisition have already taken 150

place 151

• Radar system is an active, single-input single-output 152

(SISO), mono-static, and pulsed system 153

• Inter-pulse ambiguities between radar pulses not consid- 154

ered 155

• A single SISO communications transmitter is present 156

• Only one radar target is present 157

• Target range or delay is the only parameter of interest 158

• Target cross-section is well estimated 159

It should be noted that the performance bounds and results 160

presented in this paper are very closely dependent on the em- 161

ployed receiver model. By employing a mitigation technique 162

called successive interference cancellation (SIC) (discussed 163

later in the paper) at the receiver, the communications data 164

rate at the receiver becomes dependent on the radar waveform 165

spectrum [5]. Employing different mitigation techniques and 166

changing the receiver model will result in a set of performance 167

bounds that are different from the ones presented in this paper. 168

II. THE JOINT RADAR-COMMUNICATIONS SYSTEM - 169

RECEIVER MODEL AND PERFORMANCE METRICS 170

In this section, we present both the model used to represent 171

the joint radar-communications receiver and the performance 172

metrics used in this paper to characterize radar and com- 173

munications performance for the joint radar-communications 174
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system. A discussion of the SIC mitigation techniques em-175

ployed at the receiver is also provided. We present a table of176

significant notation that is employed in this paper in Table I.177

TABLE I
SURVEY OF NOTATION

Variable Description
〈·〉 Expectation
‖ · ‖ L2-norm or absolute value
QM (.) Marcum Q-function
δ(.) Dirac-delta function
f Frequency
t Time
B Full bandwidth of the system

Brms Root-mean-squared radar bandwidth
x(t) Unit-variance transmitted radar signal
X(f) Radar signal frequency response
Prad Radar power
τ Time delay to target
a Target complex combined antenna, cross-section, and

propagation gain
T Radar pulse duration
δ Radar duty factor

Pcom Total communications power
b Complex combined antenna gain and communications

propagation loss
n(t) Receiver thermal noise

nresi(t) Post-SIC radar residual
σ2
noise Thermal noise power
kB Boltzmann constant
Ttemp Absolute temperature
σ2
τ,proc Variance of range fluctuation process
σ2
CRLB Cramèr-Rao lower bound or estimation error variance
ISNR Integrated radar SNR

p1, . . . , pN Phase parameters of polynomial chirp

A. Successive Interference Cancellation Receiver Model178

We present the joint radar-communications receiver model179

that employs SIC, an interference mitigation technique. It is180

this receiver model that causes communications performance181

to be closely tied to the spectrum of the radar waveform. This182

receiver model was first developed in Reference [3].183

We assume we have some knowledge of the radar target184

range (or time-delay), based on prior observations, up to185

some random fluctuation or process noise which is mod-186

eled as a zero-mean random variable nτ,proc(t). Using this187

information, we can generate a predicted radar return and188

subtract it from the joint radar-communications received sig-189

nal. Since there is some error in the predicted and actual190

target locations, this predicted radar signal suppression leaves191

behind a residual contribution, nresi(t), to the joint received192

signal. By lowering the communications rate, the receiver193

can perfectly decode the communications message from the194

radar-suppressed joint received signal (which consists of the195

communications signal, thermal noise and radar residual).196

The joint radar-communications receiver uses the decoded197

communications message to reconstruct and remove the com-198

munications waveform from the received signal to obtain a199

radar return signal free of communications interference. This200

method of interference cancellation is called SIC. SIC is the201

same optimal multiuser detection technique used for a two user202

multiple-access communications channel [7, 33], except it is203

now reformulated for a communications and radar user instead204

of two communications users. The block diagram of the joint205

radar-communications system considered in this scenario is 206

shown in Figure 2. For a joint radar-communications received
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Fig. 2. Joint radar-communications system block diagram for SIC scenario.
The radar and communications signals have two effective channels, but
arrive converged at the joint receiver. The radar signal is predicted and
removed, allowing a reduced rate communications user to operate. Assuming
near perfect decoding of the communications user, the ideal signal can
be reconstructed and subtracted from the original waveform, allowing for
unimpeded radar access.

207

signal, z(t), given by 208

z(t) = b
√
Pcom r(t) + n(t) +

√
Prad a x(t−τ) ,

the received signal at the communications receiver with the
predicted radar return suppressed, z̃(t), is given by [3, 5]

z̃(t) = b
√
Pcom r(t) + n(t) (1)

+
√
Prad a[x(t−τ)−x(t−τpre)] ,

where x(t−τpre) is the predicted radar return signal, and τpre is
the predicted target delay. When applying SIC, the interference
residual plus noise signal nint+n(t), from the communications
receiver’s perspective, is given by [3, 5]

nint+n(t) = n(t) + nresi(t)

= n(t) +
√
‖a‖2 Prad nτ,proc(t)

∂x(t− τ)

∂t
, (2)

where nτ,proc(t) is the process noise with variance σ2
τ,proc. 209

It should be noted that SIC performance is highly sensitive 210

to model mismatch errors since they introduce larger residuals 211

in the SIC process, negatively impacting interference cancel- 212

lation performance. Potential sources for model mismatch in- 213

clude dynamic range constraints on the receiver or transmitter, 214

phase noise etc. Insufficient transmitter or receiver dynamic 215

range implies that if one received signal is stronger than the 216

other signal, mitigating the stronger signal through SIC will 217

be incredibly difficult, resulting in high residual values being 218

present in the weaker signal after SIC. Communications signal 219

mitigation by 40-50 dB has been demonstrated experimen- 220

tally [34, 35]. As a result, a dynamic range of 50 dB is 221

sufficient to avoid model mismatch errors for the joint radar- 222

communications receiver. Additionally, it should be noted that 223

the performance of the SIC receiver has a complex dependency 224

on receiver phase noise. Large phase noise can introduce larger 225

post-radar suppression residual values, negatively impacting 226

joint radar-communications performance. A better analysis of 227

the relationship between the SIC receiver and phase noise can 228

be found in [36]. 229

B. Spectral Water-filling SIC Data Rate 230

We develop and present the novel spectral water-filling SIC 231

data rate, which utilizes the continuous spectral water-filling 232
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algorithm [7, 37] to determine the optimal communications233

power distribution over frequency. The continuous spectral234

water-filling algorithm optimizes the data rate for a given235

noise power spectral density [7, 37]. Once the receiver model236

is known, the communications transmitter can easily deter-237

mine the noise spectral density at the receiver, Nint+n(f),238

and apply the continuous spectral water-filling algorithm to239

determine the optimal communications transmit power distri-240

bution, P (f). This communications power distribution, P (f),241

maximizes the communications data rate at which the joint242

radar-communications receiver decodes the communications243

message. We define this maximized communications rate as244

the spectral water-filling SIC data rate. The spectral water-245

filling SIC data rate is the data rate that will be used to measure246

communications performance. The continuous spectral water-247

filling algorithm is a continuous form extension of the water-248

filling algorithm employed in References [3, 5]. Figure 3249

highlights how the continuous spectral water-filling algorithm250

selects the optimal power distribution.
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Fig. 3. A notional example of the continuous spectral water-filling algo-
rithm. The black, dashed line indicates the fill level (maximum amount of
communications power that can be allocated at any frequency), the green
curve represents the noise power spectral density Nint+n(f), and the optimal
communications power spectral distribution is shown in blue.
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As mentioned earlier, since we employ the SIC model at the
joint radar-communications receiver, the receiver will decode
the communications message after the predicted radar signal
has been mitigated from the received signal. As a result, from
the communications receiver’s perspective, the channel will
be corrupted by noise given by Equation (2). In order to find
the noise spectral density, Nint+n(f), we first calculate the
autocorrelation function of the time- and band-limited noise
signal, n(t) (since the received signal is also time- and band-

limited),

γ(α) =
〈
nint+n(t)n∗int+n(t− α)

〉
= 〈n(t)n∗(t− α)〉+ 〈nresi(t)nresi(t− α)〉
= kB TtempB sinc(π B α)

+ ‖a‖2 Prad σ
2
τ,proc

∂x(t− τ)

∂t

∂x∗(t− τ − α)

∂t
= kB TtempB sinc(π B α) + (4π2) ‖a‖2 Prad σ

2
τ,proc

·
∫ ∞
−∞

dff2X(f)X∗(f)ei2πfα

= kB TtempB sinc(π B α) + (4π2) ‖a‖2 Prad σ
2
τ,proc g(α) ,

(3)

where Parseval’s theorem and the time-shift and time deriva-
tive properties of the Fourier transform are used between
the second and third steps, sinc(x) = sin(x)

x , and g(α) is
the inverse Fourier transform with respect to α of G(f) =
‖X(f)‖2 f2. Since the noise power spectral density and
autocorrelation are Fourier transform pairs, the noise power
spectral density is given by

Nint+n(f) = N(f) +Nresi(f)

= kB Ttemp ΠB(f)

+ (4π2) ‖a‖2 Prad σ
2
τ,proc ‖X(f)‖2 f2 , (4)

where N(f) and Nresi(f) are the Fourier transforms of n(t) 252

and nresi(t) respectively, and ΠB(f) is a top-hat or rectangular 253

function from −B
2 to B

2 . The optimal communications power 254

spectrum determined by the continuous spectral water-filling 255

algorithm is given by 256

P (f) =

(
µ− Nint+n(f)

b2

)+

, (5)

where (x)+ = x if x ≥ 0; otherwise (x)+ = 0 and µ is a 257

constant that is determined from the power constraint 258

Pcom =

∫ B
2

−B
2

dfP (f) =

∫ B
2

−B
2

df

(
µ− Nint+n(f)

b2

)+

. (6)

The spectral water-filling SIC data rate (the corresponding data 259

rate for the channel with noise spectral density Nint+n(f)) is 260

given by [7, 37] 261

Rcom =

∫ B
2

−B
2

df log

(
1 +

b2 P (f)

Nint+n(f)

)
. (7)

It should be noted that due to the complexity involved in 262

determining analytical solutions for the integrals shown in 263

Equations (6) and (7), these integrals are evaluated numerically 264

to determine the optimal value for µ and the communications 265

data rate. 266

C. Global Estimation Rate 267

Here, we provide a brief discussion of the global estimation 268

rate which was first developed in Reference [6]. We measure 269

radar performance by the estimation rate [3, 5] which measures 270
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the amount of information contained in radar returns. The271

estimation rate is upper bounded as follows:272

Rest ≤
δ

2T
log2

[
1 +

σ2
τ,proc

σ2
est

]
, (8)

where σ2
est is the range estimation noise variance, which is273

bounded locally by the Cramér-Rao lower bound (CRLB)274

[38]. The estimation rate was extended in Reference [6] to275

account for global estimation errors. The method of interval276

errors [33, 39, 40] is employed to calculate the effect of non-277

local errors on time-delay estimation performance. A closed-278

form solution of the probability of side-lobe confusion, Ps.l. is279

obtained in terms of the values and locations of the side-lobe280

peaks, integrated radar SNR, and the Marcum Q-function QM281

[33]. The method of intervals time-delay estimation variance282

is then given by283

σ2
est = [1− Ps.l.(ISNR)] σ2

CRLB(ISNR) + Ps.l.(ISNR)φ2
s.l. ,

(9)
where φs.l. is the offset in time (seconds) between the auto-284

correlation peak side-lobe and main-lobe [5]. The probability285

of side-lobe confusion, Ps.l., is given by [33]286

Ps.l.(ISNR) = 1−QM

(√
ISNR

2

(
1 +

√
1− ‖ρ‖2

)
,√

ISNR
2

(
1−

√
1− ‖ρ‖2

))

+QM

(√
ISNR

2

(
1−

√
1− ‖ρ‖2

)
,√

ISNR
2

(
1 +

√
1− ‖ρ‖2

))
, (10)

where ρ is the ratio of the main-lobe to the peak side-lobe287

of the autocorrelation function. For a radar system performing288

time-delay estimation, the CRLB for time delay estimation is289

given by [41]290

σ2
CRLB = (8π2B2

rmsISNR)−1 , (11)

where the RMS bandwidth is given by291

B2
rms =

∫
f2 ‖X(f)‖2 df∫
‖X(f)‖2 df

. (12)

A more intuitive understanding of how the estimation rate292

metric captures target parameter estimation performance and293

the implications of altering the estimation rate can be found294

in [4]. The estimation rate is extended to account for Doppler295

measurement and continuous signaling radars in Reference296

[42].297

III. NON-LINEAR CHIRP WITH PARAMETRIC POLYNOMIAL298

PHASE299

In this section, we briefly introduce the novel parameterized300

non-linear chirp that will be used to design the optimal radar301

waveform in the minimum estimation error variance waveform302

design method. We also derive an approximate closed-form303

solution for the spectrum for a special case of this non-linear 304

chirp waveform. 305

One desirable property for radar waveforms is to have a 306

peak-to-average power ratio as close as possible to 1 (the 307

smallest possible value). Thus, most radar systems now require 308

the signal to be constant modulus or unimodular, which 309

keeps the peak and the average power the same over any 310

time period, granting the signal the smallest possible peak-to- 311

average power ratio of 1. To ensure that the optimized radar 312

waveform is unimodular, we begin by considering the fol- 313

lowing unimodular non-linear chirp signal with a polynomial 314

phase 315

x(t) = eiπ(
∑N
m=1 pmt

2m), (13)

where N is a positive integer and pm ∈ R, ∀m are phase coef- 316

ficients. We let the polynomial phase to have only even terms 317

to ensure symmetry in the frequency domain. The shape of the 318

waveform spectrum is determined by the phase coefficients. 319

The minimum estimation error variance method selects the 320

appropriate phase coefficient values so as to optimize the shape 321

of the radar spectrum to maximize joint radar-communications 322

performance. 323

In the following discussion, we derive an approximate 324

expression for the spectrum of the non-linear chirp waveform 325

shown in Equation (13) for the case that N = 2. 326

A. Spectrum of Non-linear Chirp with Parametric Polynomial 327

Phase 328

Due to the increased complexity involved in evaluating the
spectrum for higher values of N , we consider the simple case
of N = 2. The spectrum of the band-limited non-linear chirp
with bandwidth B and time-duration T is given by

X(f) =

∫ T
2

−T
2

dt eiπ(p1 B
2 t2 + p2 B

4 t4) e−i2π f t

=

∫ T
2

−T
2

dt eiπ(p1 B
2 t2 + p2 B

4 t4− 2 f t)

=

∫ T
2

−T
2

dt eiφ(t,f) . (14)

In order to obtain a closed form solution for the above integral,
we employ the principle of stationary phase [43]. We first find
the points in time, t0, where the phase, φ(t, f), is stationary
i.e. when

∂φ(t, f)

∂t

∣∣∣
t=t0

= 0

⇒ π(2 p1B
2 t0 + 4 p2B

4 t30 − 2 f) = 0

⇒ 2 p1B
2 t0 + 4 p2B

4 t30 − 2 f = 0

(15)

Solving for t0, we get

t0 =
−6

2
3 B6 p1 p2

Q

+
6

1
3 (9B8 p2

2 f +
√

3B16 p3
2 (2B2 p3

1 + 27 p2 f2))
2
3

Q
(16)
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where329

Q = 6B4 p2 (9B8 p2
2 f +

√
3B16 p3

2 (2B2 p3
1 + 27 p2 f2))

1
3 .

Using the principle of stationary phase, the expression for an
approximation of the spectrum is given by [43]

X(f) ≈ 2

√
−π

2φ′′(t0, f)
e−i

π
4 x(t0) eiφ(t0,f)

= 2

√
−1

4 p1B2 + 24 p2B4 t20
e−i

π
4 eiπ(p1 B

2 t20 + p2 B
4 t40)

· eiπ(p1 B
2 t20 + p2 B

4 t40− 2 f t0) (17)

where φ′′(t, f) = ∂2φ(t,f)
∂t2 = π(2 p1B

2 + 12 p2B
4 t2).330

Although we do not use the above-discussed expression for331

the radar spectrum in our numerical study, nevertheless, the332

above result may be useful in other studies.333

IV. RADAR WAVEFORM DESIGN METHODS334

In this section, we present the two radar waveform design335

algorithms discussed in this paper. We first briefly discuss336

the spectral mask shaping method that was first introduced337

in Reference [6]. A novel radar waveform design method, the338

minimum estimation error variance method, is also presented339

in this section. The spectral mask shaping method will be used340

as a baseline to compare the performance of the minimum341

estimation error variance method presented in this paper.342

A. Spectral Mask Shaping Method343

We present the radar waveform design method presented in344

Reference [6]. This method will be used as a performance345

baseline to compare the performance of the novel radar346

waveform design method presented in this paper. The radar347

waveform can be designed to maximize radar estimation rate,348

communications rate, or some weighting therein. Without con-349

sideration of global error, waveform design can be simplified350

to tuning Brms [3]. A closed-form, parameterized spectral351

mask is used to tune Brms to jointly maximize both the radar352

and communications users’ information rate.353

We assume we have a linear frequency-modulated (FM)354

chirp which spans from −B/2 to B/2 in time T . We then355

apply a frequency domain spectral mask weighting to the356

chirp, W (f) = x + z f2 , |f | ≤ B
2 . The RMS bandwidth of357

the resulting weighted chirp is found by assuming the chirp358

spectrum is approximately flat using the principle of stationary359

phase (PSP) [43]. As a result, the RMS bandwidth is easily360

calculable in closed-form for the polynomial [6]:361

Brms =

√
x2 B3

12 + x z B5

40 + z2 B7

448

x2B + x z B3

6 + z2 B5

80

. (18)

Using differential evolution (DE) [44] to tune Brms, the362

following objective function (or cost function) is optimized to363

maximize joint performance (radar and communications users’364

information rate)365

Rtotal = Rest(Brms)
α R̃com(Brms)

(1−α), (19)

where R̃com(Brms) is the SIC communications data rate 366

defined in Reference [3] (not to be confused with the spectral 367

water-filling SIC data rate defined in this paper) and α is a 368

blending parameter that is varied from 0 to 1. When α = 0, 369

only communications rate is considered. When α = 1, only 370

the radar estimation rate is considered. In between, the product 371

is jointly maximized. Note that for α = 0.5, Rtotal represents 372

the geometric mean of the two rates. This provides a more 373

numerically stable error term, even when R̃com � Rest. 374

B. Minimum Estimation Error Variance Method 375

The waveform design algorithm that we propose in this 376

section designs an optimal non-linear chirp radar waveform 377

(as modeled in Section III) from a global estimation rate 378

perspective. In other words, we first design the waveform 379

to minimize the global estimation error variance (estimation 380

error variance taking into account both non-local and local 381

estimation errors), given by Equation (9). This minimization 382

of the global estimation error variance is accomplished by 383

minimizing the estimation error variance at the radar thresh- 384

old SNR of the radar estimator. The threshold point of an 385

estimator is the estimator (or radar) SNR value at which the 386

estimator’s performance deviates from the CRLB [38] due to 387

error contributions from non-local estimation errors. At SNR 388

values lower than the threshold point, due to autocorrelation 389

main-lobe - side-lobe confusion, non-local estimation errors 390

begin to contribute to estimator’s error variance which causes 391

the estimation performance to degrade and deviate from the 392

CRLB [33]. Since the threshold point is the SNR point at 393

which an estimator’s performance deviates from the CRLB 394

and also the SNR point at which non-local estimation errors 395

contribute to estimation performance, minimizing the CRLB at 396

the threshold point gives the lowest possible global estimation 397

error variance or highest possible global estimation rate. 398

For a given SNR, we have to design a radar waveform 399

that has a threshold point at that SNR and has the best 400

(or smallest) estimation error variance. We first eliminate all 401

radar waveforms that have a threshold point higher than the 402

current SNR and then, from the remaining feasible solution set, 403

we find the radar waveform that minimizes the CRLB given 404

by Equation (11). We perform the first elimination step by 405

imposing the following constraint on the ratio of the global 406

estimation error variance (given by Equation (9)) and the 407

CRLB (given by Equation (11)) 408

σ2
est

σ2
CRLB

≤ δconstraint, (20)

where δconstraint is a parameter whose value determines the 409

size of the feasible solution set. We discuss how to tune this 410

parameter in Section V. By ensuring the above ratio stays 411

below δconstraint, any radar waveforms with higher threshold 412

points (SNR values) are eliminated. Figure 4 depicts how this 413

constraint works on eliminating radar waveforms with higher 414

threshold points. 415

We also introduce an additional constraint on spectral leak- 416

age (constraint C2) to the waveform optimization problem 417

in order to obtain optimal radar waveforms that not only 418
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Fig. 4. A notional example depicting the impact of the constraint given
by Equation (20) on the feasible set for optimization. The dashed vertical
line indicates the given SNR. The red, purple and blue solid curves indicate
the estimator performance for different radar waveforms and the black
solid lines indicate the CRLB for each radar waveform. The black dots
indicate the CRLB values for various feasible radar waveforms at the given
SNR. The red and purple dots indicate the actual estimation error variance
(estimation performance) for various feasible radar waveforms at the given
SNR. The grayed out curves indicate estimation performance for unfeasible
radar waveforms at the given SNR. Minimizing the CRLB over the feasible
set ensures that the optimal radar waveform will have the lowest estimation
threshold point (or best estimation performance, taking both local and non-
local estimation errors).

ensure optimal joint radar-communications performance, but419

also satisfy additional real-world properties that a traditional420

radar waveform would. Since the system can only receive421

signals whose spectrum lies within the system’s bandwidth,422

any electromagnetic radio frequency (RF) energy that leaks423

outside of the bandwidth will be lost. To minimize this loss of424

RF energy, we introduce a constraint on the amount of energy425

present in the radar spectrum at frequencies out of the system426

bandwidth range. We enforce this spectral leakage constraint427

by having the radar spectrum be below a thresholding spectral428

mask such as the one seen in Figure 5.429

-2 -1 0 1 2
Frequency (Hz) 106

-20

-15

-10

-5

0

dB

Fig. 5. Spectral Leakage Mask used constrain the amount of energy in the
radar spectrum leaking out at frequencies out of the system bandwidth range.
The spectral leakage constraint is enforced by having the radar spectrum be
below this thresholding spectral leakage mask.

We consider the non-linear chirp waveform given by Equa- 430

tion (13). The spectral shape of the waveform is determined 431

by the parameters pm,m = 1, . . . , N . In order to design the 432

radar waveform spectrum that minimizes the global estimation 433

performance, we solve the following optimization problem: 434

minimize
p̄

1

8π2Brms(p̄)2TB(SNR)
,

subject to pm ∈ [0, 10] ∀m
σ2

est

σ2
CRLB

≤ δconstraint

1A(p̄) = 1 (C2)

(21)

where p̄ = (p1, . . . , pN ), and p1, . . . , pN are the coefficients 435

of the polynomial phase for the unimodular waveform in 436

Equation (13), and Brms(p̄) is given by Equation (12). The 437

constraint C2 constrains the coefficients p̄ such that the result- 438

ing spectrum of the waveform stays below a certain masking 439

threshold, which is represented by an indicator function, where 440

A is the set of all phase coefficients that let the resulting 441

masked spectrum stay below the masking threshold as shown 442

in Figure 5. 443

Once the optimal radar waveform that maximizes the 444

radar performance of a joint radar-communications system 445

is designed, the continuous spectral water-filling algorithm 446

described in Section II-B is employed to determine the spectral 447

water-filling SIC data rate that maximizes the communications 448

performance of a joint radar-communications system. This 449

optimization process is called the minimum estimation error 450

variance method. It should be noted that the optimization prob- 451

lem described in Equation (21) is a non-convex optimization 452

problem. 453

C. Impact of Threshold Point SNR 454

As mentioned in Section I, we saw from References [3, 5] 455

that the spectral shape of the radar waveform (the radar RMS 456

bandwidth) impacts the the performance of a joint radar- 457

communications system. Shaping the radar spectrum imposes 458

a trade-off both in terms of radar performance vs. commu- 459

nications performance and in terms of improved estimation 460

performance vs. an increased radar threshold SNR. In this 461

subsection, we briefly discuss how the choice of the threshold 462

SNR impacts both the shape of the radar waveform spectrum 463

and the performance of the joint radar-communications sys- 464

tem. 465

Selecting a low value for the threshold SNR implies that 466

even for small radar SNR values, the probability of side- 467

lobe confusion for the radar waveform autocorrelation function 468

(which causes the estimator performance to deviate from 469

the CRLB) is small. Radar waveforms with more energy at 470

frequencies closer to center of the bandwidth allocation can 471

have such autocorrelation functions. However, such a radar 472

waveform has a smaller RMS bandwidth which degrades the 473

overall estimation performance as seen in Equation (11). Fur- 474

thermore, as we observe from Equation (4), radar waveforms 475

with more spectral energy at the bandwidth center will reduce 476

the noise spectral density, Nint+n(f), due to minimal radar 477

residual values (Nresi(f)), thereby maximizing the data rate. 478
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Conversely, selecting a larger value for the threshold point479

implies there is more ambiguity in the radar waveform auto-480

correlation function (higher side-lobes), which occurs for radar481

waveforms with more energy at frequencies closer to the edges482

of the bandwidth allocation. Such waveforms also have larger483

RMS bandwidth values and a better estimation performance.484

Finally, radar waveforms with more spectral energy at the485

bandwidth edges have larger Nresi(f) values and consequently,486

larger Nint+n(f) values which degrade the communications487

data rate.488

Thus, we see that selecting a low radar SNR threshold point489

increases the communications performance and decreases the490

radar performance but also results in a radar waveform with491

low side-lobes in the autocorrelation. Similarly, selecting a492

high threshold point increases the radar performance and493

decreases the communications performance but also results494

in a radar waveform with large autocorrelation side-lobes.495

The objective is to select a threshold point that optimizes the496

spectral shape of the radar waveform such that the perfor-497

mance with respect to radar and communications is jointly498

maximized.499

The results from the numerical study of the above optimiza-500

tion problem are discussed in Section V.501

V. SIMULATION RESULTS502

In this section, we present an example of the waveform503

design technique discussed in this paper, the minimum estima-504

tion error variance method, for an example parameter set. The505

parameters used in the example are shown in Table II. Addi-506

tionally, a performance comparison of the minimum estimation507

error variance method with the previously derived spectral508

mask shaping method is also provided. We also study the509

effect of the order of the non-linear chirp phase on joint radar-510

communications performance. In order to better solve the511

non-convex optimization problem described in Section IV-B,512

all the results presented below were obtained by solving the513

optimization problem in Equation (21) using fmincon [45] for514

100 Monte-Carlo runs with randomized initial solutions and515

selecting the solution with the highest objective value.

TABLE II
PARAMETERS FOR WAVEFORM DESIGN METHODS

Parameter Value
Bandwidth (B) 5 MHz

Center Frequency 3 GHz
Effective Temperature (Ttemp) 1000 K

Communications Range 10 km
Communications Power (Pcom) 0.3 W
Communications Antenna Gain 0 dBi

Communications Receiver Side-lobe Gain 10 dBi
Radar Target Range 200 km
Radar Antenna Gain 30 dBi
Target Cross Section 10 m2

Target Process Standard Deviation (στ,proc) 100 m
Time-Bandwidth Product (TB) 128

Radar Duty Factor (δ) 0.01
Threshold Point Constraint (δconstraint) 1 + 0.01

516
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T
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Fig. 6. Real valued amplitude of waveform vs. time (s). We see that the radar
waveform has a chip shape similar to a non-linear chirp in the time domain.
The constant modulus nature of the radar waveform is also clearly evident.
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Fig. 7. Short-time Fourier transform spectrogram vs. time (s) and frequency
(Hz). We observe that the optimal radar waveform has a non-linear time-
frequency representation and is similar to a sum of polynomials.

A. Minimum Estimation Error Variance Method Optimal 517

Waveform Shape 518

Here we present an example of a joint radar- 519

communications optimal radar waveform designed by 520

the minimum estimation error variance method. Figures 6 521

and 7 show time domain and time-frequency representations 522

of the non-linear chirp waveform with polynomial phase 523

shown in Equation (13) for the number of polynomial phase 524

coefficients, N = 6 and a threshold SNR value of 0dB. 525

Figure 6 shows the real valued amplitude of the waveform 526

as a function of time. We see that the radar waveform has a 527

chip shape similar to a non-linear chirp in the time domain. 528

The constant modulus nature of the radar waveform is also 529

apparent from the figure. Figure 7 shows the short-time 530

Fourier transform spectrogram as a function of time and 531

frequency. From this figure, we observe that the optimal radar 532

waveform has a non-linear time-frequency representation and 533

is similar to a sum of polynomials. 534
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Fig. 8. The minimum estimation error variance optimized radar waveform
spectrum for different threshold SNR values. The radar waveform optimization
was done for N = 6. We see the optimal radar spectrum has more spectral
energy at the edges of the bandwidth for high threshold SNR values and has
more spectral energy closer to the center for low threshold SNR values.

B. Impact of Threshold SNR535

We now discuss the numerical results from implement-536

ing the minimum estimation error variance method in Sec-537

tion IV-B. First, we highlight the impact of the threshold SNR538

value on the shape of the radar spectrum. We consider two539

threshold SNR values of -80dB and 50dB and we choose540

N = 6 in Equation (13), i.e., x(t) = eiπ(
∑6
m=1 pmt

2m). The541

minimum estimation error variance optimized radar waveform542

spectrum for this set of parameters is shown in Figure 8. From543

Figure 8, we see the optimal radar spectrum has more spectral544

energy at the edges of the bandwidth for high threshold SNR545

values and has more spectral energy closer to the center for546

low threshold SNR values, as we stated in Section IV-C.547

We also study the impact of the threshold SNR (or radar548

SNR) on the system performance. For the purpose of this549

study, we choose N = 6. For different values of SNR, we550

optimize the shape of the waveform, i.e., optimize the coeffi-551

cients p̄ = (p1, . . . , p6), to minimize the CRLB achieved with552

the waveform. We also impose the constraint σ2
est/σ

2
CRLB ≤553

δconstraint, which ensures that for the given SNR, our feasible554

solution set include only waveforms whose threshold SNR555

is less than or equal to the given SNR (as discussed in556

Section IV-B). δconstraint is tuned so that the ratio between557

the estimation error variance (which characterizes estimation558

performance in this paper) and the CRLB remains close to559

1. For this simulation, we consider a δconstraint value of560

1 + ε, where ε introduces some flexibility to the constraint561

and typically has a value of 0.01.562

Figure 9 shows the RMS bandwidth values achieved with563

each optimized waveform for various values of threshold SNR.564

As expected, the optimal RMS bandwidth increases as we565

increase the threshold SNR. From Equation (11) and Sec-566

tion IV-C, we see that the optimal RMS bandwidth increasing567

as the threshold SNR increases will thereby reduce the CRLB568

as stated in Section IV-C.569

Figure 10 shows the autocorrelation function achieved with570

each optimized waveform for various values of threshold SNR.571
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Fig. 9. RMS bandwidth of the optimized radar waveform vs. SNR. As
expected, the optimal RMS bandwidth increases as we increase the threshold
SNR. From Equation (11), we see that the optimal RMS bandwidth increasing
as the threshold SNR increases will thereby reduce the CRLB. As a result,
we see that the estimation performance increases with SNR.
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Fig. 10. Autocorrelation function of the optimized radar waveform vs. SNR.
As expected, the peak side-lobe of the autocorrelation function increases as we
increase the threshold SNR. This trend is observed because a higher threshold
SNR implies the optimal waveform has more ambiguity which translates into
higher peak autocorrelation side-lobes.

For SNR values -80dB, -20dB and 20dB, we observed that 572

the peak side-lobes in all three cases occur at ±0.2 − 0.5µs 573

and have values of -10dB, -7dB, and -6dB respectively. As 574

expected, the peak side-lobe of the autocorrelation function 575

increases as we increase the threshold SNR. As mentioned 576

in Section IV-C, a higher threshold SNR implies the optimal 577

waveform has more ambiguity which translates into higher 578

peak autocorrelation side-lobes. 579

Now, for each threshold SNR value we considered and the 580

optimal waveform shape parameters p1, p2, p3, p4, p5, p6 we 581

obtained above, we evaluate the radar estimation rate bound 582

in Equation (8) and the spectral water-filling SIC data rate 583

in Equation (7) corresponding to each of these waveforms. 584
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Fig. 11. Estimation and data rates vs. threshold SNR. Clearly, we see the
performance of the system improve with respect to the estimation rate and
degrade with respect to the spectral water-filling SIC data rate as we increase
the threshold SNR.

Figure 11 shows the plot of estimation rate and the data rate585

against the threshold SNR value. Clearly, according to the586

figure, the performance of the system improves with respect587

to the estimation rate as we increase the threshold SNR,588

which is expected as the minimum achievable CRLB decreases589

with threshold SNR, and the estimation rate increases with590

decreasing CRLB according to Equation (8) and Equation (9).591

However, we observe that the spectral water-filling SIC data592

rate reduces as the threshold SNR increases. This trend occurs593

because, as we stated in Section IV-C, as the threshold594

SNR increases, the noise spectral density, Nint+n(f) achieves595

higher values due to larger radar residual values, which reduces596

the spectral water-filling SIC data rate.597

C. Impact of Order of Chirp Phase598

We first investigate the relationship between the autocorrela-599

tion peak side-lobe levels and the order of the non-linear chirp600

waveform’s phase, N . Figure 12 shows the autocorrelation601

function for N = 2 and N = 8 at a threshold SNR value602

of 0dB. We clearly see that the autocorrelation peak side-603

lobes decrease as N increases, which causes the estimation604

performance to improve overall as N increases.605

As the shape of the waveform explicitly depends on the606

coefficients p1, . . . , pN in Equation (21), we now study the607

effect of the number of coefficients, N , on both the estimation608

and the data rates. For this study, we choose a threshold SNR609

value of 0dB and vary N from 1 to 8. For each N and610

threshold SNR value, we solve Equation (21) and evaluate611

the estimation rate from Equation (8) and spectral water-filling612

SIC data rate from Equation (7). Figure 13 shows plots of these613

rates against N . From Figure 13, we see that as N increases,614

the estimation rate increases and the spectral water-filling SIC615

data rate decreases. The improvement in estimation rates as616

N increases is because there are more degrees of freedom617

available to shape the optimal radar waveform spectrum ob-618

tained by solving the optimization problem in Equation (21).619

As a result of these increased degrees of freedom, optimal620
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Fig. 12. Autocorrelation function of the optimized radar waveform vs. N . We
clearly see that the autocorrelation peak side-lobes decrease as N increases,
which causes the estimation performance to improve overall as N increases.

radar waveforms are obtained that have better or lower au- 621

tocorrelation side-lobe levels (a trend we observed earlier). 622

Additionally, increasing N means increasing the amount of 623

energy at higher frequencies for the radar waveform spectrum, 624

which results in the Brms value increasing, there by improving 625

local estimation performance given by Equation (11). This 626

increase in local estimation performance, coupled with lower 627

autocorrelation side-lobe levels, results in an overall increase 628

in the estimation rate as N increases. Furthermore, the increase 629

in the radar waveform’s spectral content at higher frequencies, 630

due to an increase in N , means that the noise spectral density, 631

Nint+n(f), achieves higher values due to larger radar residual 632

values, which reduces the spectral water-filling SIC data rate. 633

D. Performance Comparison of Waveform Design Algorithms 634

Next, we compare the performance of the minimum estima- 635

tion error variance method against the spectral mask shaping 636

method in [6]. We conduct a Monte Carlo study with 50 runs to 637

compare the performance of these methods. For this study, we 638

choose the SNR of 7.6dB, and set N = 6. In each Monte Carlo 639

run, we evaluate the estimation rates and the communications 640

rates (spectral water-filling SIC data rate for the minimum 641

estimation error variance method and the SIC data rate for 642

the spectral mask shaping method) from the two methods. 643

Table III shows the average of estimation rates (Rest) and 644

communications rates (Rcom) from the Monte-Carlo study. 645

From Table III, we clearly observe that the minimum esti- 646

mation error variance method outperforms the spectral-mask 647

shaping method in terms of estimation rate and communica- 648

tions rate. Furthermore, a significant increase in the achieved 649

communications rate highlights the impact of the continuous 650

water-filling algorithm. Thus, we see the explicit advantage 651

of the proposed method over the method in [6] in that the 652

minimum estimation error variance method proposed in this 653

paper designs radar waveforms that are constant modulus and 654
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Fig. 13. Estimation and data rates vs. N . We see that as N increases, the
estimation rate increases and the spectral water-filling SIC data rate decreases.
The improvement in estimation rates as N increases is because there are more
degrees of freedom available to shape the optimal radar waveform spectrum,
which results in optimal waveforms that have better or lower autocorrelation
side-lobe levels. Additionally, increasing N means increasing the amount
of energy at higher frequencies for the radar waveform spectrum, which
improves local estimation performance. Furthermore, the increase in the radar
waveform’s spectral content at higher frequencies, due to an increase in N ,
means that the noise spectral density, Nint+n(f), achieves higher values due
to larger radar residual values, which reduces the spectral water-filling SIC
data rate.

ensures better estimation performance and better communica-655

tions performance over the spectral shaping method.656

TABLE III
MINIMUM ESTIMATION ERROR VS. SPECTRAL-MASK SHAPING FOR SNR =

7.6DB

Performance metric
(average values)

Min. Est. Error Spectral-Mask
Shaping

Rest (b/s) 1.38× 103 3.05× 103

Rcom (b/s) 6.92× 106 1.38× 104

VI. CONCLUSIONS657

In this paper, we presented a novel radar waveform design658

technique that maximizes the performance of a spectrum shar-659

ing, joint radar-communications system. The global estimation660

rate, an extension on the estimation rate that takes into account661

non-local or global estimation errors, and the data rate are662

used to measure radar and communications performance re-663

spectively. We developed the novel minimum estimation error664

variance radar waveform design method that selects the phase665

parameters of a nonlinear chirp radar waveform to maximize666

radar performance. We also developed the spectral water-667

filling SIC data rate which is the maximized communications668

data rate for a joint radar-communications receiver employing669

SIC. This maximized data rate was obtained by employing the670

continuous spectral water-filling algorithm which determines671

the optimal communications power spectral distribution for a672

given noise spectral density. We presented examples of the673

minimum estimation error variance radar waveform design674

method for an example parameter set and also compared675

the method’s performance against the performance of the 676

previously derived spectral mask shaping method. We saw 677

that the minimum estimation error variance method is able to 678

achieve higher estimation and communications data rate values 679

than the spectral mask shaping method. We also observed that 680

the optimal estimation rate increases for higher radar SNR 681

values whereas the optimal spectral-water-filling SIC data rate 682

decreases for higher radar SNR values. Finally, we observed 683

that the estimation rate increases and the spectral water-filling 684

SIC data rate decreases as the number of coefficients in the 685

phase of the non-linear chirp increases. 686
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