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Resource contingency planning aims to mitigate the effects of unexpected disruptions in supply chains. While

these failures occur infrequently, they often have disastrous consequences. This paper formulates the resource

allocation problem in contingency planning as a two-stage stochastic optimization problem with a risk-averse

recourse function. Furthermore, the paper proposes a novel computationally tractable solution approach.

The proposed algorithm relies on an inexact bundle method with subgradient approximations through a

scenario reduction mechanism. We prove that our scenario reduction and function approximations satisfy

the requirements of the oracle in the inexact bundle method, ensuring convergence to an optimal solution.

The practical performance of the developed inexact bundle method under risk aversion is investigated for

our resource allocation problem. We create a library of test problems and obtain their optimal values by

applying the exact bundle method. The computed solutions from the developed inexact bundle method are

compared against these optimal values, under different risk measures. Our analysis indicates that our inexact

bundle method significantly reduces the computational time of solving the resource allocation problem in

comparison to the exact bundle method, and is capable of achieving a high percentage of optimality within

a much shorter time.
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1. Introduction

This paper studies the optimal allocation of resources to reduce the risk of demand unfulfilment

due to demand spikes, supply interruptions, or tie-line disruptions. Such network disruptions can

arise due to various man-made and natural disasters, such as severe weather or storms. Resource

contingency planning is one of the proactive strategies to mitigate such uncertainties and to be

prepared to withstand disruptions in supply chains (Tomlin 2006, Snyder et al. 2006). An optimal

allocation of these resources to different areas in a network is critical to achieve lower costs of

failure and higher reliability. While the frequency of network disruptions due to disasters can be

rare, they can lead to severe supply chain interruptions. Hence, decision makers should take into

account such risks when allocating additional resources.
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For various disaster management strategies, the reader is referred to Gupta et al. (2016). Matta

(2016) studies contingency planning by the addition of reserve capacity in the supply chain through

network optimization tools. Grass and Fischer (2016) provides a recent literature review on con-

tingency planning in disaster management by two-stage stochastic programming. The existing

literature primarily focuses on minimizing the expected failure cost, e.g., see Cui et al. (2010), Alem

et al. (2016) and the references therein. Noyan (2012) considers the risk-averse two-stage stochas-

tic optimization model for disaster management and discusses the importance of incorporating a

risk measure to derive optimal decisions computed from the Benders-decomposition method. A

risk-averse model is studied in Alem et al. (2016) where a heuristic solution approach is proposed.

As it is pointed out in Alem et al. (2016), computational challenges are the primary barrier in

the risk-averse models for such two-stage logistic problems since the number of decision variables

would depend on the number of scenarios, which is potentially large in the presence of down-side

risk measures. The present paper aims to address this challenge by proposing a computationally

tractable approach for the resource location problems arising in contingency planning.

This resource allocation problem lends itself to the class of two-stage stochastic optimization

problems with a risk-averse recourse function. Consider a stochastic optimization problem of the

form:

min
x∈X

ϕ(x) := c>x+ ρ [Q(x,ω)] , (1)

where ρ is a risk measure, and for any ω ∈ Ω, Q(x,ω) is the optimal value of the second-stage

problem
Q(x,ω) := min

y∈Y
q(y,ω)

s.t. ti(x,ω) + ri(y,ω)≤ 0, i= 1, . . . ,m.
(2)

Here, Ω is the support of the probability distribution of ω. For any ω ∈Ω, the feasible set Y ⊆Rs is

convex and compact, and the real valued functions q(·, ω), ri(·, ω), ti(·, ω), i= 1, . . . ,m are proper

convex almost everywhere; consequently, they are continuous. The function Q(x,ω) is assumed

to be finite for all x ∈ X and all ω ∈ Ω, which implies that the two-stage risk-averse stochastic

problem has complete recourse. The functions ti(·, ω), i= 1, · · · ,m, are assumed to be continuously

differentiable. Hence, T (x,ω) := (t1(x,ω), · · · , tm(x,ω))
>

is differentiable in x. We assume that 0∈

int{T (x,ω) +∇xT (x,ω)Rs−domϑ(·, ω)}, where ϑ(T (x,ω), ω) :=Q(x,ω) for all x ∈ X and ω ∈Ω.

The feasible set X ⊆Rn is nonempty and compact.

In this paper, we focus on coherent risk measures (Artzner et al. 1999). The convexity of the

second-stage problem together with the convexity and monotonicity of coherent risk measures ρ

imply that ϕ is a proper convex function, e.g., see Ruszczyński and Shapiro (2003). In addition,

ϕ(·) is subdifferentiable over the interior of its domain (Ruszczynski 2006, p. 59-61). However, the

function ϕ(x) is nonsmooth in general for nondifferentiable coherent risk measures ρ.
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The bundle method is an approach for solving problems of the form (1), which is capable of

handling the non-smoothness in the objective function φ(x). For details see Hiriart-Urruty and

Lemarechal (1993), Ruszczynski (2006), Teo et al. (2010). This approach iteratively builds lineariza-

tions for ϕ(x) around a projection point and includes a cutting-plane model using the piecewise

maximum of linearizations. At iteration k, given the finite set of information Jk = {x̂j, ϕ(x̂j), gj ∈

∂ϕ(x̂j)}j∈Jk for Jk ⊆ {1, · · · , k}, the bundle method constructs a piecewise-linear approximation of

ϕ obtained from finitely many linear constraints

ϕk(x) := max
j∈Jk

{
ϕ(x̂j) +

〈
gj, x− x̂j

〉}
. (3)

The function ϕk is then used to approximate ϕ(x) and compute its gradients.

This process requires evaluations of the objective function ϕ(x̂j) and consequently computing

Q(x̂j, ω) for all ω ∈ Ω. This step involves solving |Ω| problems of the form (2), that can be com-

putationally intensive particularly when the size of the scenario space grows or a large number of

decision variables and constraints are present.

While this computational challenge persists when the expected value of the recourse function

E [Q(x,ω)] is considered in ϕ(x), the computational demand increases in the presence of a downside

risk measure. Obtaining a reliable estimation of the probability distribution of Q(x,ω), and hence

an accurate evaluation of ρ [Q(x,ω)], often relies on a large number of scenarios.

To alleviate the computational cost when the first stage objective function includes the expec-

tation of the recourse function E [Q(x,ω)], a number of extensions to bundle methods capable of

working with less accurate function evaluations have been developed, see Oliveira and Sagastizabal

(2014). These methods replace the function values and subgradients by their approximations, for

all or just a subset of the iterations.

Suppose ϕ̃x̂j and g̃x̂j are estimates obtained from an oracle for the projection point x̂j. Then, at

iteration k the inexact bundle method uses the approximate linearization ϕk as follows,

ϕk(x) = max
j∈Jk

{
ϕ̃x̂j +

〈
g̃x̂j , x− x̂

j
〉}
. (4)

When ϕ̃x̂j =ϕ(x̂j) and g̃x̂j = gj, equation (4) is reduced to that of the exact bundle method.

To achieve convergence in the inexact bundle method, the estimates ϕ̃x and g̃x, which are the

outputs of an oracle, should satisfy some conditions. At each iteration for a given point x, the

inexact bundle method (Kiwiel 2006, Oliveira et al. 2011) requires a function estimate ϕ̃x and a

subgradient estimate g̃x satisfying

ϕ̃x ∈ [ϕ(x)− ε1, ϕ(x) + ε2], (5)

g̃x ∈ ∂ε0ϕ(x). (6)
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Here, ε1, ε2 ≥ 0 are unknown but bounded, ε0 = ε1 + ε2, and the ε0-approximate subdifferential

∂ε0ϕ(x) in (6) is given by

∂ε0ϕ(x) := {g ∈Rn | ϕ(z)≥ϕ(x) + 〈g, z−x〉− ε0, ∀z ∈X} . (7)

Therefore, to achieve convergence in this risk-neutral inexact bundle method, one needs to compute

approximations ϕ̃x and g̃x which satisfy equations (5) and (6). In addition, to address the original

motivation of achieving a computationally efficient approach, these approximations must be easily

computable.

This paper extends this inexact bundle method for problems of the form (1) when the aversion

to risk in the second-stage optimal value ρ[Q(x,ω)] appears in the objective function of the first

stage problem. We achieve this by describing appropriate oracles capable of generating estimates

ϕ̃xj and g̃xj , which guarantee convergence in the developed inexact bundle method. A scenario

reduction method is also proposed to further mitigate the computational cost of evaluating (the

tail of) the distribution of Q(x,ω) and consequently ρ[Q(x,ω)]. The convergence of the approach

to a risk-averse optimal solution is established.

The developed inexact bundle method for the resource allocation model is studied using an

extensive computational investigation. In particular, we focus on two coherent risk measures and

compare their outcomes with those for the case of minimizing the resource costs and the risk of

unfulfilled demand.

The contributions of the paper can be summarized as follows.

• An oracle needed to implement the framework of inexact bundle method is introduced for a

class of risk-averse two-stage stochastic optimization problems.

• We prove that the objective function and subgradient approximations from this oracle meet

the requirements stated in (5)-(6).

• The inexact approach with the introduced risk-averse oracle is applied to a resource allocation

problem arising in contingency planning.

• We perform the benchmarking of the algorithm against the exact bundle method for problem

instances with different sizes, and demonstrate the computational benefits of the developed

approach.

This paper is organized as follows. Section 2 provides background on risk-averse two-stage opti-

mization. Section 3 explains the bundle method for the risk-averse optimization problem, where the

details on evaluating the objective function in (1) and its subgradient are also discussed. Section 4

presents an overview of the inexact bundle methods. Section 5 introduces the risk-averse oracle

and proves its correctness. The modeling details for a resource allocation problem in contingency

planning are explained in Section 6. Section 7 reports the results of the numerical experiments and

the comparisons on the benchmark problems. We list our conclusions in Section 8.
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2. Coherent Risk Measures and Risk-Averse Stochastic Optimization

Risk-averse bundle methods reduce the risk-averse problem to iteratively constructing a family of

risk-neutral approximations. This section details the evaluation of the first-stage objective function

with risk-averse recourse and the computation of its subgradients. First, we briefly discuss coherent

risk measures and its representation theorem. For an in-depth treatment see Ruszczyński and

Shapiro (2006b, 2007, 2006a), Shapiro et al. (2014).

Let (Ω,F , P ) be a probability space with sigma-algebra F and probability measure P . Let p ∈

[1,+∞) and q ∈ (1,+∞] be such that 1/p+1/q= 1. Define Z :=Lp(Ω,F , P ) and Z∗ :=Lq(Ω,F , P )

to be a pair of conjugate dual spaces with the scalar product

〈µ,Z〉 :=
∫

Ω

µ(ω)Z(ω)dP (ω).

Each element Z := Z(ω) of Z is viewed as an uncertain outcome on (Ω,F) and is by definition a

random variable whose p-th order moment is finite.

For Z,Z ′ ∈Z, let Z �Z ′ denote the pointwise partial order, i.e., Z(ω)≤Z ′(ω) for all ω ∈Ω. In

our model Z represents a random cost and as such smaller realizations are preferred.

Definition 2.1 Let R=R∪{+∞}∪{−∞}. A coherent risk measure is a proper function ρ :Z →R

satisfying the following axioms:

(A1) Convexity: ρ (αZ + (1−α)Z ′)≤ αρ(Z) + (1−α)ρ(Z ′), for all Z,Z ′ ∈Z and all α∈ [0,1].

(A2) Monotonicity: If Z,Z ′ ∈Z and Z �Z ′, then ρ(Z)≤ ρ(Z ′).

(A3) Translation Equivariance: If α∈R and Z ∈Z, then ρ(Z +α) = ρ(Z) +α.

(A4) Positive Homogeneity: If α> 0 and Z ∈Z, then ρ(αZ) = αρ(Z).

The following theorem is a fundamental result employed in the evaluation of coherent measures

and risk-averse stochastic optimization (Shapiro et al. 2014):

Theorem 2.1 (Representation Theorem of Coherent Risk Measures) Let ρ :Z →R be a

lower semicontinuous coherent risk measure. Then the function ρ is subdifferentiable at 0 and

ρ(Z) = sup
µ∈∂ρ(0)

〈µ,Z〉 , (8)

where ∂ρ(0)⊆
{
µ∈Z∗

∣∣µ� 0 and
∫

Ω
µdP = 1

}
. When Ω is finite with N elements and the proba-

bility measure P = (p1, . . . , pN), equation (8) takes the form

ρ(Z) = max
µ∈∂ρ(0)

N∑
i=1

µizipi := max
µ∈∂ρ(0)

Eµ[Z], (9)

where ∂ρ(0)⊆
{
µ∈RN

∣∣∣µ≥ 0 and
∑N

i=1 µipi = 1
}

.
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Theorem 2.1 implies that problem (1) can be reformulated as

min
x∈X

c>x+ ρ(Q(x,ω)) = min
x∈X

{
c>x+ sup

µ∈∂ρ(0)

〈µ,Q(x)〉

}
= min

x∈X
sup

µ∈∂ρ(0)

c>x+ 〈µ,Q(x)〉 ,

where Q(x) :=Q(x, ·) denotes the random variable on Ω described by problem (2). For x∈X and

µ∈Z∗, define

φ(x) := sup
µ∈∂ρ(0)

〈µ,Q(x)〉 . (10)

For the finite sample space Ω, we have 〈µ,Q(x)〉=
∑

ω∈ΩQ(x,ω)µωPω, where Pω is the probability

of sample ω ∈Ω. Consequently

φ(x) = sup
µ∈∂ρ(0)

∑
ω∈Ω

Q(x,ω)µωPω. (11)

Each Q(x,ω) is computed by solving an optimization problem of type (2). Given x ∈ X and ω ∈
Ω, let yω be an optimal solution of problem (2), i.e., Q(x,ω) = q(yω, ω). Using this equality in

equation (11) yields

φ(x) = sup
µ∈∂ρ(0)

∑
ω∈Ω

q(yω, ω)µωPω. (12)

Problem (11) is a convex optimization problem and for common coherent risk measures ρ this

problem can be reformulated as a linear optimization problem. Subsequently, let µ∗ denote an

optimal solution for the supremum problem in (12).

The rest of this section aims to specify the subdifferential ∂φ(x). Let Q̃ : Rn ×Z∗→ R where

Q̃(x,µ) := 〈µ,Q(x)〉. The subdifferential of φ (e.g., see Theorem 2.87 in Ruszczynski (2006)) is

given by

∂φ(x) = conv

 ⋃
µ∈∂̂ρ(0)[x]

∂xQ̃(x,µ)

 , (13)

where ∂̂ρ(0)[x] := {µ ∈ ∂ρ(0) | Q̃(x,µ) = φ(x)} and ∂xQ̃(x,µ) is the subdifferential of Q̃(·, µ) eval-

uated at x. The subdifferential set ∂ρ(0) is convex, and for most popular coherent risk measures

∂ρ(0) is a compact set, e.g., see Shapiro et al. (2014). The compactness of ∂ρ(0) implies that

∂̂ρ(0)[x] is nonempty and compact, for every x∈X .

It follows from optimality of µ∗ in (12) that µ∗ ∈ ∂̂ρ(0)[x]. Therefore, from equation (13)

∂xQ̃(x,µ∗)⊆ ∂φ(x). (14)

Next, we further characterize ∂xQ̃(x,µ∗). For the finite set Ω, it follows from the Moureau-

Rockafeller Theorem (see Theorem 6 in Ruszczyński and Shapiro (2003)) that

∂xQ̃(x,µ) =
∑
ω∈Ω

µωPω∂xQ(x,ω), (15)
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where ∂xQ(x,ω) is the subdifferential ofQ(·, ω) evaluated at x. Denote χi = ti(x,ω) and χ= T (x,ω).

Then the problem (2) achieves strong primal-dual optimality (see Proposition 25 in Ruszczyński

and Shapiro (2003)) and is given by

Q(x,ω) = max
π≥0

{
π>χ+ inf

y∈Y
L(y,π,ω)

}
, (16)

where L(y,π,ω) is the Lagrangian of problem (2), i.e., L(y,π,ω) := q(y,ω) +
∑m

i=1 πiri(y,ω).

Let D(χ,ω) denote the set of optimal solutions of problem (16) with the optimal value ϑ(χ,ω),

i.e., Q(x,ω) = ϑ(χ,ω). It follows from the convexity of problem (2), the differentiability property

of ti(·, ω)s, the assumption 0 ∈ int{T (x,ω) +∇xT (x,ω)Rs−domϑ(·, ω)}, and Proposition 26 in

(Ruszczyński and Shapiro 2003) that

∂xQ(x,ω) =∇xT (x,ω)>D(χ,ω). (17)

This result along with equation (15) imply that

∂xQ̃(x,µ) =
∑
ω∈Ω

µωPω∇xT (x,ω)>D(χ,ω). (18)

For a given x∈X and ω ∈Ω, let πω be a dual optimal solution corresponding to yω of problem (2).

Then equation (18) at µ∗ together with equation (14) yields

ζx =
∑
ω∈Ω

µ∗ωPω∇xT (x,ω)>πω ∈ ∂φ(x). (19)

Consider the risk-averse two-stage stochastic programming problem (1)–(2) with the objective

function ϕ(x). Let X ⊂Rn be convex and compact. By Theorem 2.1, the function ρ is subdifferen-

tiable at zero and satisfies equation (8).

Remark 2.1 This paper considers finite sample spaces Ω potentially of very large cardinality.

While the methods presented here can be applied to problems with infinite sample space using

numerical integration and approximation, this is not within the scope of the present paper.

3. Bundle Method

For risk-neutral multistage stochastic optimization problems, the family of decomposition methods

constitutes an established and efficient approach (see Birge and Louveaux (1997), Kall and Mayer

(2005), Prékopa (1995), Ruszczyński (2003) and the references therein). However, it cannot be

directly applied to problem (1) where the risk aversion to the recourse objective function is present.

With coherent risk measures, the main feature facilitating decomposition, the integral form of the

objective function, is absent. The class of cutting plane methods, in particular bundle methods,

proved to be a useful approach to solve risk-averse optimization problems. This approach has been
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successfully applied to multistage risk-averse optimization problems (Miller and Ruszczyński 2008,

Choi and Ruszczyński 2008, Miller and Ruszczyski 2011, Collado et al. 2012).

The essence of the bundle method includes the application of Moreau-Yosida regularization with

respect to the first-stage decision variable x∈X and solving a sequence of quadratic optimization

problems. Localizing the iterations through regularization improves linear approximations, and

makes the bundle method more reliable for problems of higher dimension, where simpler methods,

such as the cutting plane method, become too slow to reach convergence in a reasonable time.

We apply the bundle method directly to the first-stage problem (1). Consider

min
x∈X

ϕ(x).

At each iteration of the bundle method, given Jk, the piecewise-linear approximation of ϕ as in

equation (3) denoted by ϕk is constructed. For a regularization parameter γ > 0 and the stability

center βk ∈X , the following master problem is solved,

min
x∈X

ϕk(x) +
γ

2

∥∥x−βk∥∥2
. (20)

Given the definition of ϕk in equation (3), problem (20) is expressed as

min
x∈X , v∈R

υ+
γ

2

∥∥x−βk∥∥2
(21)

s.t. ϕ(x̂j) +
〈
gj, x− x̂j

〉
≤ υ, ∀ j ∈ Jk.

Iterations in the bundle method require to evaluate ϕ(x) and obtain subgradients g ∈ ∂ϕ(x), for

any x ∈ X . These tasks are carried out by means of equations (12) and (19). The details of the

steps in the (exact) bundle method are presented in Algorithm 1. See section 7.4 in (Ruszczynski

2006) for an in-depth discussion on the details and convergence of the bundle method for a generic

nondifferentiable optimization problem.

Algorithm 1 Bundle Method

Inputs: regularization parameter γ > 0, tolerance level δ > 0.

Step 0: (Initialization).

[i] Set k := 1, J0 := ∅, υ1 :=−∞.

[ii] Let x̂1 ∈X be a given initial feasible point and set β0 := x̂1.

Step 1: For all ω ∈Ω, compute Q(x̂k, ω) by solving problem (2). Let (yω, πω) be its optimal primal-dual pair.

Step 2: Compute φ(x̂k) using equation (12). Let µ∗ be an optimal solution for problem (12).

Step 3: Compute:

[i] ϕ(x̂k) = c>x̂k + ρ [Q(x̂k, ω)] = c>x̂k +φ(x̂k).
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[ii] gk := c+ ζx, where ζx is given in equation (19). Notice that gk ∈ ∂ϕ(x̂k).

Step 4: If ϕ(x̂k)>υk, then Jk := Jk−1 ∪{k}. Otherwise, Jk := Jk−1.

Step 5: If k= 1 or if k≥ 2 and ϕ(x̂k)≤ (1− γ)ϕ(βk−1) + γϕk−1(x̂k), then βk := x̂k. Otherwise, βk := βk−1.

Step 6: Solve problem (21). Let (x̂k+1, υk+1) be an optimal solution.

Step 7: If ϕ(βk)− υk+1 < δ (1 + υk+1), then stop and return x̂k+1 as a solution with tolerance δ. Otherwise,

set k := k+ 1 and continue to Step 1.

Notice that here we forgo the typical bundle “pruning” of Jk based on Lagrangian multipliers.

This guarantees optimality but has the disadvantage of increasing the size of the master problem

at every iteration.

4. Inexact Bundle Method

Computing ϕ(x̂k) and gk in Step 3 of the bundle method involves solving the second-stage problem

for all ω ∈Ω. This is a computationally expensive task. To mitigate this computational challenge,

inexact bundle methods, which rely on only approximations of these values, have been proposed.

Here, we follow the inexact bundle method appearing in Kiwiel (2006), Oliveira et al. (2011).

Suppose, at a point x, approximations ϕ̃x and g̃x as in equations (5) and (6) are available. At

iteration k, problem (20) with the regularization parameter 1
tk

is solved, where here ϕk(x) is given

by (4). Therefore, this problem can be written as

min
x∈X , υ∈R

υ+
1

2tk

∥∥x−βk∥∥2

s.t. ϕ̃x̂j +
〈
g̃x̂j , x− x̂j

〉
≤ υ, ∀ j ∈ Jk.

(22)

The parameter tk > 0, referred to as the stepsize, controls the quadratic penalty
∥∥x−βk∥∥2

and is

adjusted during iterations (Kiwiel 1990, 2006). Let x̂k+1 be an optimal solution to this problem. It

will be a candidate point to be included to achieve an improved linear approximation. This method

is described in Algorithm 2.

Algorithm 2 Inexact Bundle Method.

Inputs: descent parameter κ∈ (0,1), stepsize bound T1 > 0, stepsize t1 ∈ (0, T1], tolerance level δ > 0.

Step 0: (Initialization).

[i] Set k := k(0) := 1 and ` := 0. Here k(`)− 1 denotes the iteration of the `th descent step.

[ii] Let x̂1 ∈X be a given initial feasible point with inexact oracle approximations ϕ̃x̂1 and g̃x̂1 .

[iii] Set β1 := x̂1, J1 := {1}, and i1 := 0.

Step 1: (Trial point finding). Let (x̂k+1, vk+1) be an optimal solution of problem (22), and {λkj }j∈Jk be the

Lagrangian multipliers.

Compute pk :=
1

tk
(βk− x̂k+1), the nonnegative predicted descent wk := ϕ̃x̂k−vk+1 > 0, and the aggregate

linearization error αk :=wk− tk‖pk‖2.
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Step 2: (Stopping criterion). Compute optimality measure Wk := max{‖pk‖, αk}. If Wk ≤ δ, stop.

Step 3: (Noise attenuation & stepsize correction). If wk < −αk, set tk := 10 tk, Tk := max{Tk, tk}, ik := k

and loop back to Step 1; else set Tk+1 := Tk.

Step 4: (Descent test). Obtain ϕ̃x̂k+1 and g̃x̂k+1 from the inexact oracle satisfying (5) and (6). If

ϕ̃x̂k+1 ≤ ϕ̃βk −κwk,

declare a descent step, set βk+1 := x̂k+1, ` := `+ 1, ik+1 := 0, k(`) := k+ 1.

Otherwise (if ϕ̃x̂k+1 > ϕ̃βk −κwk), declare a null step, and set βk+1 := βk and ik+1 = ik.

Step 5: (Bundle management). Choose Jk+1 ⊇
{
j ∈ Jk

∣∣λkj 6= 0
}
∪{k+ 1}.

Step 6: (Stepsize updating & looping). If k(`) = k + 1 (i.e., after a descent step), select tk+1 ∈ [tk, Tk+1].

Otherwise declare a null step and set tk+1 := tk. If ik+1 = 0 and

Wk ≤ ϕ̃βk −
(
ϕ̃x̂k+1 +

〈
g̃x̂k+1 , βk− x̂k+1

〉)
,

choose tk+1 ∈ [0.1 tk, tk]. Set k := k+ 1 and go to Step 1.

Due to errors in the approximations obtained from the oracle, the model might not approximate

ϕ from below. If this is the case then we increase the stepsize tk and loop over a noise attenuation

step in Step 3 until corrected. In the descent test in Step 4, a null step improves the model

approximation (4) through the addition of an extra constraint.

The method uses the Lagrange multipliers λkj in Step 5 to reduce the number of cuts used to

construct the model approximation. Namely, those cuts j corresponding to inactive Lagrange mul-

tipliers λkj = 0 that do not contribute to the new trial point xk+1 can be eliminated in equation (4).

We refer the reader to Kiwiel (2006) for an in-depth discussion on the convergence of the inexact

bundle method and some of its applications. In order to guarantee convergence of Algorithm 2, it

is sufficient to require that X 6= ∅ is closed convex, ϕ is finite convex on a neighborhood of X , and

estimates ϕ̃x and g̃x satisfy (5) and (6). With the tolerance level δ= 0, the inexact bundle method

has the following two possible outcomes, see Theorem 9 in Oliveira et al. (2011):

I. The method loops forever at noise attenuation (Step 3), in which case the last generated βk

is 2(ε1 + ε2)-optimal.

II. The method generates and infinite sequence of either descent or null steps. In this case due to

the compactness of X , the method generates a sequence {βk}∞k=1 for which each cluster point

β∗ satisfies β∗ ∈X and β∗ is 2(ε1 + ε2)-optimal.

Lagrangian multipliers λkj are only necessary for bundle management (Step 5). For the feasible

set X = {x∈X | Ax≤ b, x≥ 0, x is integral} with integrality constraints we forgo Step 5. As with

the bundle method, this has the effect of increasing the size of the master problem with each

iteration.
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5. Defining a Risk-Averse Inexact Oracle

A key component in Algorithm 2 is the definition of an inexact oracle capable of providing estimates

ϕ̃x, g̃x satisfying (5) and (6). In this section, we define an inexact oracle specialized to work on

our two-stage risk-averse stochastic optimization problem (1)–(2). We refer to this oracle as the

inexact risk-averse oracle which together with Algorithm 2 comprises the risk-averse inexact bundle

method. The construction of our risk-averse inexact oracle is motivated by the approach in (Oliveira

et al. 2011) for the risk-neutral case and linear two-stage models.

The analysis in this section relies on the assumption that for every x ∈X , the optimal value of

the second-stage problem takes the form

Q(x,ω) = max
π

{
π>η(x,ω) | π ∈Π(ω)

}
, (23)

for some differentiable function η :X ×Ω→Rs and a nonempty convex set Π(ω)⊆Rs. The function

Q(x,ω) attains the structure in (23), when the optimal value infy∈Y L(y,π,ω) in (16) is linear in π.

The feasible region Π(ω) can be expressed in the general form {π ∈Rs | ci(π,ω)≤ 0, i= 1, · · · , l}.

Denote an optimal solution of the maximization problem (23) by πω. Given the optimality of πω

and expression (23), we have Q(x,ω) = π>ω η(x,ω).

The main idea to estimate {πω}ω∈Ω, without computing πω for every single ω ∈Ω, is to select a

subset I ⊆Ω, and then assign to every scenario ω ∈Ω \ I an estimate for πω based on an element

of I in the same cluster.

Suppose I is a subset of scenarios I ⊆Ω obtained through a clustering procedure for the scenario

set Ω. Therefore, Ω = ∪ω∈IJω, where Jω denotes a cluster around ω. Given I and for any ω ∈ I,

define

Π̂ω := {π ∈Rs | Eξ [ci(π, ξ)|ξ ∈Jω]≤ 0, i= 1, · · · , l} . (24)

For the finite scenario space, we have

Eξ [ci(π, ξ)|ξ ∈Jω] =

∑
ξ∈Jω Pξci(π, ξ)∑

ξ∈Jω Pξ
.

Consider the optimization problem corresponding to the feasible set Π̂ω, defined in (24), and denote

its optimal solution by π̃ω:

π̃ω ∈ argmax
π

{
π>η(x,ω) | π ∈ Π̂ω

}
. (25)

The approximate oracle then computes the exact optimal values Q(x,ω) for every ω ∈ I and

derives approximate optimal values for the remaining scenarios ω ∈ Ω \ I. This is carried out

as follows. For each element in I, we compute Q(x,ω), by first obtaining an exact solution πω,
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and thus Q(x,ω) = π>ω η(x,ω). Then, for each remaining scenario ω ∈ Ω \ I, we obtain, without

solving the second-stage optimization problem, an approximation to Q(x,ω). More precisely, the

corresponding cluster Jω is identified and an appropriate π̃ω as in (25) is computed. Hence, the

algorithm adopts Qapprox(x,ω) = π̃>ω η(x,ω) as an approximation of Q(x,ω). These computed values

are then aggregated to form the objective function approximation ϕ̃x,

ϕ̃x := c>x+ sup
µ∈∂ρ(0)

∑
ω∈I

µωPωπ̃
>
ω η(x,ω) +

∑
ψ∈Ω\I

µψPψ$̃
>
ψ η(x,ψ)

 . (26)

and the approximate subgradient g̃x,

g̃x := c+

∑
ω∈I

µ∗ωPω∇xη(x,ω)>π̃ω +
∑
ψ∈Ω\I

µ∗ψPψ∇xη(x,ψ)>$̃ψ

 , (27)

where, µ∗ := (µ∗ω)ω∈Ω is an optimal solution to the supremum problem in (26). In both equa-

tions (26) and (27), $̃ψ = π̃ω̄, where ω̄ is associated to the cluster Jω̄ that contains ψ ∈ Ω \ I.

Later in Theorem 5.1, we prove that under some conditions on structure (23) and I, the computed

function and gradient approximations satisfy conditions (5) and (6).

We select the subset I such that the corresponding set of vectors {η(x,ψ) |ψ ∈ I} sufficiently

deviates from collinearity. We measure collinearity of two scenarios ω and ψ by the cosine of the

angle θω,ψ between the two vectors η(x,ω) and η(x,ψ), namely

θω,ψ := cos−1

(
η(x,ω)>η(x,ψ)

‖η(x,ω)‖‖η(x,ψ)‖

)
. (28)

Hence, two scenarios ω and ψ are collinear if cosθω,ψ = 1. For any given x∈X and a given collinear-

ity parameter εcos ∈ (0, 1), we consider a maximal subset I ⊆ Ω such that for every ω,ψ ∈ I we

have cosθω,ψ ≤ 1− εcos. Algorithm 3 formally states the risk-averse inexact oracle.

Algorithm 3 Risk-Averse Inexact Oracle

Inputs: collinearity parameter εcos ∈ (0, 1) and x∈X .

Step 0: (Initialization). Select a maximal subset I ⊆Ω such that cosθω,ψ ≤ (1− εcos), for every ω,ψ ∈ I.

Step 1: (Collinearity clustering). For each ω ∈ I, set Jω := {ω}∪ {ψ 6∈ I | cosθω,ψ > 1− εcos}.

Step 2: (Estimates in I). For each ω ∈ I, specify Π̂ω in (24) and obtain an optimal solution π̃ω as in (25).

Step 3: (Estimates in Ω \ I). For each ψ ∈ Ω \ I, let Jω̄ be its containing set in the collinearity partition

obtained in Step 1, i.e. ψ ∈Jω̄. Then set $̃ψ := π̃ω̄.

Step 4: (Risk-averse oracle estimates). Use the approximate solutions obtained in Step 3 to compute ϕ̃x

using equation (26). Compute an optimal solution to the optimization problem in equation (26) and

denote by µ∗ := (µ∗ω)ω∈Ω. Derive the subgradient approximation g̃x by equation (27).
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For each ω ∈ I, we first construct the set of all ω-almost collinear scenario set Jω ⊆Ω. This task

is carried out in Step 1. Note that maximality of I implies that ∪ω∈IJω = Ω. We then in Step 2

compute a π̃ω ∈ Rs by solving version of problem (23) with the feasible set Π̂(ω), in which qω by

the corresponding average over the set Jω. Step 3 makes the approximation that πψ ≈ π̃ω for all

ψ ∈ Jω. Note that to clearly express that it is just an approximation we use the notation $̃ψ to

refer to π̃ω when assigned to the scenario ψ.

Each call to Algorithm 3 requires the calculation of I ⊆ Ω. We carry out this step via a com-

binatorial method given in Oliveira et al. (2011). This method is presented in Algorithm 4. This

algorithm completes Steps 0 and 1 in Algorithm 3.

Algorithm 4 Selection of I ⊆Ω and {Jω}ω∈Ω

Inputs: Ω = {ω1, . . . , ωN}, x, and εcos ∈ (0, 1).

Step 0: (Initialization). Set I := Ω.

Step 1: (Main procedure).

for every i∈ {1, · · · , |Ω|} such that ωi ∈ I: do

define Jωi
:= {ωi}

for every j ∈ {i+ 1, · · · , |Ω|} such that ωj ∈ I do

compute cosθωi,ωj
using equation (28).

If cosθωi,ωj
> 1− εcos then I := I \ {ωj} and Jωi

:=Jωi
∪{ωj}.

end for

end for

The generated subset I ⊆ Ω from Algorithm 4 depends on the permutation of elements of Ω

fixed in Step 0. In particular, the initial elements of the permutation of Ω are favored to be part

of I. We consider a random permutation of elements of Ω on each call to Algorithm 4.

5.1. Proof of Results

In this section, we prove that the risk-averse inexact oracle (Algorithm 3) offers ϕ̃x and g̃x satisfying

(5) and (6); hence ensuring optimality of the risk-averse inexact bundle method. This property is

referred to as the correctness of the risk-averse inexact oracle.

For a given convex set S, denote the support function of S evaluated at d by sS(d), i.e.,

sS(d) := max
{
π>d

∣∣ π ∈ S} . (29)

Denote dxω = η(x,ω). The following assumptions are made on the structure in (23):
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[A] For every x ∈ X and ω ∈Ω, there exists a constant Γxω > 0 such that |sΠ(ω)(d)− sΠ̂ψ
(d)| ≤ Γxω

holds, for every d∈Rs ∩{η(u,ω)}u∈X . Here, ψ= ω if ω ∈ I, otherwise if ω 6∈ I, it is the ψ ∈ I

where ω ∈Jψ.

[B] For every x ∈ X and ω ∈ Ω, there exists a constant κxω such that sΠ̂ψ
(dxω)− π̃>ψ dxω ≤ κxω‖dxω‖

holds. Here, ψ= ω if ω ∈ I, otherwise if ω 6∈ I, it is the ψ ∈ I where ω ∈Jψ.

Notice that the parameters Γxω and κxω, and consequently ε∗ defined below, do depend on the set

of clusters I and consequently the clustering mechanism through the collinearity measure (28).

Theorem 5.1 Consider a two-stage risk-averse stochastic optimization problem with the first-stage

problem (1) with the nonempty compact feasible set X , and the second-stage problem (2) which

has fixed and complete recourse. Suppose the optimal value of the second-stage problem Q(x,ω)

can be expressed as in equation (23) for some function η. Then, for every x ∈ X and εcos ∈ (0,1),

Algorithm 3 along with the I–selection method described in Algorithm 4 provides outputs ϕ̃x and

g̃x satisfying equations (5) and (6) with ε1 = ε2 = ε∗ > 0, where ε∗ := maxx∈X ,ω∈Ω{Γxω +κxω ‖dxω‖}.

Proof of Theorem 5.1 Fix x ∈ X . Let Qapprox(x,ω) be the approximation of Q(x,ω) com-

puted from Algorithm 3. According to equation (23) and using the notation in (29), we have

Q(x,ω) = sΠ(ω)(d
x
ω). If ω ∈ I, Step 2 in Algorithm 3 yields Qapprox(x,ω) := sΠ̂ω

(dxω). If ω 6∈ I, there

exists some ψ ∈ I such that ω ∈ Jψ. Hence, Algorithm 3 results in Qapprox(x,ω) := $̃>ω d
x
ω = π̃>ψ d

x
ω,

where π̃ψ solves problem maxπ∈Π̂ψ
π>η(x,ψ). Therefore, the approximation error in the second-

stage value function evaluation is given by

εω :=Q(x,ω)−Qapprox(x,ω) =

{
sΠ(ω)(d

x
ω)− sΠ̂ω

(dxω), if ω ∈ I
sΠ(ω)(d

x
ω)− π̃>ψ dxω, if ω 6∈ I and ω ∈Jψ.

(30)

For any ω ∈ I, it follows from assumption [A] that

εω ≤
∣∣sΠ(ω)(d

x
ω)− sΠ̂ω

(dxω)
∣∣≤ Γxω. (31)

For any ω 6∈ I and ω ∈Jψ, from equation (30) we have

εω ≤ |sΠ(ω)(d
x
ω)− π̃>ψ dxω| = |sΠ(ω)(d

x
ω)− sΠ̂ψ

(dxω) + sΠ̂ψ
(dxω)− π̃>ψ dxω|

≤ |sΠ(ω)(d
x
ω)− sΠ̂ψ

(dxω)|+ |sΠ̂ψ
(dxω)− π̃>ψ dxω|

≤ Γxω +κxω‖dxω‖, (32)

where the inequality (32) follows from assumptions [A] and [B]. Hence,

εω ≤ Γxω +κxω ‖dxω‖ . (33)
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Therefore, from equations (31) and (33) we see that for any ω ∈Ω,

εω ≤max{Γxω, Γxω +κxω ‖dxω‖}= (Γxω +κxω ‖dxω‖)≤ ε∗. (34)

Note that given the compactness of X and finiteness of Ω, ε∗ is well-defined and ε∗ <∞.

With this bound (34) on estimation errors, we can focus on proving that the inexact risk-averse

oracle satisfies requirements (5) and (6). We complete this step in two parts focusing on ϕ̃x and

g̃x, respectively.

Part 1: Correctness of ϕ̃x: It follows from the definition of ϕ(x) in (1), ϕ(x) = c>x +

supµ∈∂ρ(0)

∑
ω∈ΩQ(x,ω)µωPω, and the expression (23) that

ϕ(x) = c>x+ sup
µ∈∂ρ(0)

∑
ω∈I

µ∗ωPωQ(x,ω) +
∑
ψ/∈I

µψPψQ(x,ψ)


= c>x+ sup

µ∈∂ρ(0)

∑
ω∈I

µωPω
(
π̃>ω η(x,ω) + εω

)
+
∑
ψ/∈I

µψPψ
(
$̃>ψ η(x,ψ) + εψ

)
≤ c>x+ sup

µ∈∂ρ(0)

∑
ω∈I

µωPωπ̃
>
ω η(x,ω) +

∑
ψ/∈I

µψPψ$̃
>
ψ η(x,ψ)

+ sup
µ∈∂ρ(0)

∑
ω∈Ω

µωPωε
∗

= ϕ̃x + ε∗. (35)

The last equality comes from the definition of ϕ̃x in equation (26), and the equality

supµ∈∂ρ(0)

∑
ω∈Ω µωPωε

∗ = ε∗. This equality holds since by Theorem 2.1, for every µ ∈ ∂ρ(0), we

have
∑

ω∈Ω µωPω = 1.

Similarly, we have

ϕ(x) = c>x+ sup
µ∈∂ρ(0)

∑
ω∈I

µωPωπ̃
>
ω η(x,ω) +

∑
ψ/∈I

µψPψ$̃
>
ψ η(x,ψ) +

∑
ω∈Ω

µωPωεω


≥ c>x+ sup

µ∈∂ρ(0)

∑
ω∈I

µωPωπ̃
>
ω η(x,ω) +

∑
ψ/∈I

µψPψ$̃
>
ψ η(x,ψ)−

∑
ω∈Ω

µωPωε
∗


= ϕ̃x− ε∗. (36)

Inequalities (35) and (36) imply that ϕ̃x−ε∗ ≤ϕ(x)≤ ϕ̃x+ε∗, thus satisfying the requirement (5),

ϕ̃x ∈ [ϕ(x)− ε∗, ϕ(x) + ε∗], with ε1 := ε2 := ε∗.

Part 2: Correctness of g̃x. Let z ∈X such that z 6= x. Let πzω be an optimal solution for problem

(23), i.e.,

Q(z,ω) = max
π∈Π(ω)

π>η(z,ω) = (πzω)>η(z,ω) = sΠ(ω)(d
z
ω), (37)
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where dzω := η(z,ω). From Algorithm 3, Qapprox(x,ω) = η(x,ω)>ϑxω for ϑxω ∈ S, where S := Π̂ω (if

ω ∈ I) and S := Π̂ψ (if ω 6∈ I and ω ∈Jψ). Using assumptions [A] at d= dzω, we get

ε∗ ≥ Γ≥ |sΠ(ω)(d
z
ω)− sΠ̂ψ

(dzω)| ≥ sΠ̂ψ
(dzω)− sΠ(ω)(d

z
ω) = max

π∈Π̂ψ

π>dzω − sΠ(ω)(d
z
ω).

Since ϑxω ∈ Π̂ψ, we have maxπ∈Π̂ψ
π>dzω ≥ (ϑxω)>dzω. Applying this inequality in the above statement

yields

sΠ(ω)(d
z
ω)≥ (ϑxω)>dzω − ε∗. (38)

Using (37) and (38) along with the equality Qapprox(x,ω) = η(x,ω)>ϑxω implies that

Q(z,ω) ≥
(
Qapprox(x,ω)− η(x,ω)>ϑxω

)
+
(
(ϑxω)>dzω − ε∗

)
=Qapprox(x,ω)− ε∗+ (η(z,ω)− η(x,ω))

>
ϑxω. (39)

From the differentiability of η(·, ω) at x, we have η(z,ω) − η(x,ω) ≥ 〈∇xη(x,ω), z−x〉 =

∇xη(x,ω)(z− x). Here, ∇xη(x,ω) is the s× n Jacobian matrix of η. Using this inequality in (39)

along with ϑxω ≥ 0 (problem (16) includes π≥ 0 as the constraints), we arrive at

Q(z,ω) ≥Qapprox(x,ω)− ε∗+ (〈∇xη(x,ω), z−x〉)> ϑxω

=Qapprox(x,ω)− ε∗+ (ϑxω)
>∇xη(x,ω)(z−x). (40)

From the definition of ϕ(z) we have

ϕ(z) = c>z+ sup
µ∈∂ρ(0)

[∑
ω∈Ω

µωPωQ(z,ω)

]
= c>x+ sup

µ∈∂ρ(0)

[∑
ω∈Ω

µωPωQ(z,ω) + c>(z−x)

]
≥ c>x+

∑
ω∈Ω

µ∗ωPωQ(z,ω) + c>(z−x),

where µ∗ω is an optimal solution to the optimization problem in equation (26) for x. Using inequal-

ity (40) in the above equality yields

ϕ(z) ≥ c>x+
∑
ω∈Ω

µ∗ωPω

(
Qapprox(x,ω) + (ϑxω)

>∇xη(x,ω)(z−x) + c>(z−x)− ε∗
)

=

[
c>x+

∑
ω∈Ω

µ∗ωPωQapprox(x,ω)

]
+

[∑
ω∈Ω

µ∗ωPω (ϑxω)
>∇xη(x,ω)(z−x) + c>(z−x)

]
− ε∗

=ϕx +

[∑
ω∈Ω

µ∗ωPω (∇xη(x,ω))
>
ϑxω + c

]>
(z−x)− ε∗

=ϕx + 〈g̃x, z−x〉− ε∗

≥ϕ(x) + 〈g̃x, z−x〉− 2ε∗.

Here, the first equality uses
∑

ω∈Ω µ
∗
ωPωε

∗ = ε∗. The last inequality comes from inequality (35).

Thus, g̃x ∈ ∂2ε∗ϕ(x) satisfies (6) with ε1 := ε2 := ε∗. This completes the proof. �
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5.2. The Case of Linear Second-Stage Problem

The modeling assumption (23) holds, for example, for linear second-stage problems, q(y,ω) = q>ω y,

t>i (x,ω) = ti,ωx, and ri(y,ω) = r>i y−hω, and Y =Rs+, i.e.,

Q(x,ω) = min
y∈Rs

q>ω y

s.t. Ry+Tωx≤ hω, y≥ 0,
(41)

where qω, hω are vectors, Tω is a stochastic matrix, and R is a fixed recourse matrix, i.e.,

ω := (qω, Tω, hω). The full recourse assumption on the second-stage problem implies that the strong

duality for problem (41) holds and we have

Q(x,ω) = max
π∈Rs

π> (Tωx−hω)

s.t. R>π≥−qω, π≥ 0.
(42)

Hence, Q(x,ω) takes the form of (23) with Π(ω) :=
{
π ∈Rs+

∣∣R>π≥−qω} and η(x,ω) = Tωx−hω.

Whence, ∇xη(x,ω)>πω = T>ω πω ∈ ∂xQ(x,ω).

For the linear second-stage model (41), the expression (24) implies that Π̂ω ={
π ∈Rs+

∣∣ R>π≤ q̂ω}, where q̂ω is the average of qψ over the collinear set Jω, i.e.,

q̂ω :=

∑
ξ∈Jω Pξqξ∑
ξ∈Jω Pξ

. (43)

For the linear model (41) both assumptions [A] and [B] stated in Subsection 5.1 hold. Applying

the result that for the linear optimization problem (42) its feasible set is Lipschitz with respect to

perturbations in the right-hand-side vector qω (e.g., see Theorem 2.4 of Mangasarian and Shiau

(1987)), we have
∣∣sΠ(ω)(d

x
ω)− sΠ(ψ)(d

x
ω)
∣∣≤ lω ‖qω − qψ‖, for some constant lω > 0. Therefore, Γxω :=

maxψ∈ω{lψ ‖qω − qψ‖} satisfies in assumption [A]. This establishes the validity of assumption [A]

for linear second-stage models.

Assumption [B] also holds when the second-stage problem is linear, as in (42). To see this, suppose

that π̄ is an optimal solution of problem maxπ∈Π̂ψ
π>dxω, i.e., sΠ̂ψ

(dxω) = π̄>dxω. Since π̃ψ ∈ Π̂ψ, we

have π̃>ψ d
x
ω < sΠ̂ψ

(dxω). Hence,

sΠ̂ψ
(dxω)− π̃>ψ dxω = |sΠ̂ψ

(dxω)− π̃>ψ dxω|= |π̄>dxω − π̃>ψ dxω| ≤ ‖π̄− π̃ψ‖‖dxω‖.

Thus, assumption [B] holds for κxω := ‖π̄− π̃ψ‖. Note that π̄ and π̃ψ depends on x and ω.

6. Resource Allocation for Contingency Planning

This section presents the details of our resource allocation problem and its formulation as a risk-

averse two-stage stochastic optimization problem. For a detailed review on facility location prob-

lems, the reader is referred to (Daskin 1995, Drezner 1995). This problem aims to allocate a set
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of reserve resources to the nodes in a network in order to achieve an optimal risk-adjusted level

of cost versus reliability in the network. This problem arises for example in the optimal allocation

of a finite number of energy storage facilities to different areas in an electricity grid, given area

generation, area demand, and tie-line connections between areas. For details on this problem see

see Jirutitijaroen and Singh (2006, 2008), Chowdhury et al. (2004). We formulate the optimal allo-

cation problem as a two-stage risk-averse stochastic optimization problem, where the second-stage

problem is modeled as a capacity network flow problem.

Note that in this problem, integer constraints only appear in the first-stage problem. This ensures

the convergence of the inexact bundle method and particularly the results in Kiwiel (2006) remain

valid. We start by describing the network components in the model.

6.1. The Model

Consider a multi-area network with the set of nodes I := {1, . . . , n} and edges E ⊆ {{i, j} | i, j ∈ I}.

We let the network be directed and define Ẽ := {(i, j), (j, i) | {i, j} ∈E}. Elements of randomness

in the network are driven by a finite probability space (Ω,F , P ), where each ω ∈Ω represents an

outcome of the system via the following given functions:

ti,j(ω): Tie-line capacity between areas i and j under scenario ω: ti,j(ω): Ẽ×Ω→R

cli(ω): Cost of demand unfulfillment in area i under scenario ω: cli(ω): I ×Ω→R

gi(ω): Production capacity of area i under scenario ω: gi(ω): I ×Ω→R

li(ω): Demand in area i under scenario ω: li(ω): I ×Ω→R

In addition, the following parameters are provided:

cbi : Cost of an additional reserve resource in area i

Gb
i : Capacity of the reserve facility if installed in area i

B: Maximum capacity of reserve resources for contingency planning

The network (I ∪ {G,L} , Ẽ ∪ {(G, i)}i∈I ∪ {(i,L)}i∈I) with supply, demand, tie-line capacity,

and cost demand functions encode the full state of the network under scenario ω ∈Ω. This paper

assumes that all described functions of scenario ω are known and given. We refer the reader to

Jirutitijaroen and Singh (2006, 2008), Lago-conzalez and Singh (1989), Garver (1966), Mitra and

Singh (1999), Lawton et al. (2003) for more details in the generation of state-dependent functions

from available data. Our model can cast as a generalization of the model in Jirutitijaroen and Singh

(2006, 2008). Our model does not assume that the events of network disruptions are independent.

Our computational studies let the tie-line distributions be dependent.

The main objective of the problem is to efficiently allocate the given set of external reserve

resources in terms of cost versus reliability, in the presence of uncertainties and state dependent

functions ti,j, ci, gi, and li.
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The first stage decision variables, xi’s, are the number of reserve facilities to be allocated to

each area. These integer decision variables must be determined before the realization of a random

scenario ω ∈Ω for demands, generations, and congestions. Given an allocation {xi}i∈I , flows in the

network for each scenario constitute the second-stage decision variables. Denote the flow from arc

i to j for system state ω by yij(w). The precise formulation of this two-stage problem is as follows:

min
x∈Rn

∑n

i=1 c
b
ixi + ρ [Q(x,ω)] (44)

s.t.
∑n

i=1 xi ≤B (45)

x≥ 0, x is integral, (46)

where ρ :Z →R is a coherent risk measure, and

Q(x,ω) = min
y∈R|Ẽ|

yG,yL∈Rn

n∑
i=1

cli(ω) (li(ω)− yL,i(ω)) (47)

s.t. yG,i(ω)≤ gi(ω) +Gb
ixi, i∈ {1,2, · · · , n}, (48)

yL,i(ω)≤ li(ω), i∈ {1,2, · · · , n}, (49)

|yji(ω)− yij(ω)| ≤ ti,j(ω), i, j ∈ {1,2, · · · , n}, i 6= j, (50)∑
j∈I
j 6=i

yji(ω)−
∑
j∈I
j 6=i

yij(ω) + yG,i(ω)− yL,i(ω) = 0, i∈ {1,2, · · · , n}, (51)

yij(ω), yG,i(ω), yL,i(ω)≥ 0, i, j ∈ {1,2, · · · , n}. (52)

Function Q(x,ω) is the optimal objective value of the second-stage problem of minimizing the

cost of demand unfulfillment under scenario ω ∈Ω. Constraints (48)–(50) correspond to the max-

imum capacity flow in the network. These constraints consider generation, demand, and tie-line

capacity, respectively. Equation (51) is the flow conservation constraint. The cost cli(ω) is the

penalty cost of not serving the customer per unit of missed demand. Hence, the objective function

(48), cli(ω)(li(ω)− yL,i(ω)), serves as an unreliability index, which we aim to minimize. The failure

cost to measure reliability is typical in the facility location literature, e.g., see Cui et al. (2010).

In the first-stage problem, Q(x,ω) is a random variable on Ω. Equation (45) is the first-stage

bound on the total number of reserve facilities to be allocated. This bound is based on our resource

availability on such components. The objective function (44) adds the cost of additional reserve

capacities to the risk-averse evaluation of the second-stage cost of demand loss under uncertainty.

The risk measure ρ as included in the first-stage problem makes our model fundamentally dif-

ferent from the standard literature on related problems, e.g. Jirutitijaroen and Singh (2006, 2008),

Ruszczyński and Shapiro (2006b,a, 2007), Shapiro et al. (2014). More specifically, instead of con-

sidering as our recourse the (risk-neutral) expectation of the cost of demand unfulfillment, we use
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a risk measure of the second-stage objective value. This enables the decision maker to incorporate

his risk preferences in the reliability management while allocating the reserve resources.Under this

paradigm, the decision maker is capable of placing more attention on particular scenarios based

on his risk preferences.

6.2. Coherent Risk Measures for Network Reliability Assessment

We illustrate the inexact bundle method with the risk averse oracle for two important coherent

risk measures: Mean-Upper Semideviation and Coditional-Value-at-Risk CVaR. For further review

on these risk measures, see Shapiro et al. (2014). Below, [a]+ := max{0, a}.

Definition 6.1 Let α∈ [0,1]. The mean-upper semideviation measures the risk of our loses exceed-

ing the expectation and is defined by

ρ(Z) =E[Z] +αE [Z −E[Z]]+ , ∀ Z ∈Z.

For a finite probability space Ω and probability density function p= (p1, . . . , p|Ω|), we have that ρ’s

subdifferential at zero is given by

∂ρ(0) =

{
1−1

|Ω|∑
i=1

piτi + τ

∣∣∣∣∣ τ = (τi)
|Ω|
i=1 and 0≤ τi ≤ α, ∀i= 1, . . . , |Ω|

}
, (53)

where 1 is the vector with all entries equal to 1.

Definition 6.2 Let α∈ [0,1] and VaRα[Z] := inf{t |Pr(Z ≤ t)≥ 1−α}, ∀z ∈Z, be the value-at-risk

(at level α) operator. The conditional value-at-risk at level α is defined by

CVaRα(Z) := inf
t∈R

{
t+α−1E[Z − t]+

}
=

1

α

∫ 1

1−α
VaR1−τ (Z)dτ, ∀ Z ∈Z.

For a finite probability space Ω and probability density function p = (p1, . . . , p|Ω|), we have that

CVaRα’s subdifferential at zero is given by

∂(CVaRα)(0) =
{
τ ∈R|Ω|

∣∣E[τ ] = 1 and 0≤ τi ≤ 1/α, ∀i= 1, . . . , |Ω|
}
. (54)

The subdifferentials in (53) and (54) can be expressed by linear programming formulations. For

example, (53) imply that under the mean-upper semideviation risk measure we obtain φ(x) in (12)

by solving the following linear optimization problem:

sup
µ,τ∈R|Ω|

∑
ω∈Ω

q̄ωµω

s.t. µω = 1−
∑
ν∈Ω

Pντν + τ, ω ∈Ω

0≤ τω ≤ κ, ω ∈Ω,
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where q̄ω = q(yω, ω)Pω, for every ω ∈Ω.

Continuing with the example of mean-upper semideviation, we show below how to compute the

essential components needed in Algorithm 1, namely ∇T (x,ω) and ζ ∈ ∂φ(x). It follows from the

rules of subdifferential calculus that for x ∈X and ω ∈Ω the gradient ∇T (x,ω) corresponding to

the two-stage model (44)-(52) is given by

(∇T (x,ω))
>

=
[
−Gb

1(e1
n) · · · −Gb

n(enn) 0n · · · 0n
]

:= (∇T )
>
, (55)

where 0n ∈Rn is the zero vector of size n, and ein, i= 1, · · · , n, is the canonical basis of Rn. There

are 2n2 +n consecutive transposed zero vectors at the bottom of the vector in (55). Since ∇T (x,ω)

does not depend on x or ω, we simplify the notation and denote it by ∇T .

Applying equations (19) and (55), given µ∗, optimal solution to equation (12), and primal-dual

optimal pairs (yω, πω), ∀ω ∈Ω, we obtain ζ ∈ ∂φ(x) by

ζ =
∑

Ω

µ∗(ω)Pω



−Gb
1(e1

n)>

...
−Gb

n(enn)>

0>n
...

0>n



>

πω =


∑
ω∈Ω

µ∗(ω)Pω
(
−Gb

1πω,1
)

...∑
ω∈Ω

µ∗(ω)Pω
(
−Gb

nπω,n
)
 , (56)

where πω,i is the i-th coordinate of vector πω.

6.3. Application of Risk-Averse Inexact Bundle Method

This section presents the details when applying the risk-averse inexact bundle method described

in Algorithms 2 to 4 for the two-stage model (44)-(52). This time we use CVaR in our description.

For x∈X and ω ∈ I, we consider Q(x,ω) as given in (47)–(52) but with cost vector qω replaced by

the corresponding average cost q̃ω vector given in eq. (43). We solve the resulting linear optimization

problem (via for example the dual simplex method) and obtain the pair of primal–dual solutions

(ỹω, π̃ω). The dual solution π̃ω is used to get ϕ̃x as stated in eq. (26), where ∂(CVaRα)(0) is formed

from finitely many inequalities (54). More explicitly, ϕ̃x is obtained as a solution to

c>x+ sup
µ∈R|Ω|

∑
ω∈I

µωPωπ̃
>
ω (hω −Tωx) +

∑
ψ/∈I

µψPψ$̃
>
ψ (hψ −Tψx)


s.t.

∑
ν∈Ω

Pνµν = 1 and 0≤ µν ≤ 1/α, ν ∈Ω,

(57)

where $̃ψ, ψ 6∈ I, is as described in Step 3 of Algorithm 3.

Equation (27) is then used to obtain the approximate subgradient g̃x. To complete this phase,

we use the optimal solution µ∗ω from (57) and Tω from the linearization of Q(x,ω).
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7. Computational Results

In our numerical experiments we randomly generate sparse connected networks of different sizes

(see Figure 1).

(a) 15 nodes. (b) 18 nodes. (c) 20 nodes.

Figure 1 Examples of randomly generated connected networks of 15, 18, and 20 nodes.

A set of simulations is used to generate the set of scenarios Ω.

• ti,j: For each tie-line (i, j) ∈ Ẽ, the tie-line capacity is generated as ti,j = βi,j (ci,j + Λi,j),

where βi,j is a Bernoulli random variable with probability pi,j, ci,j is the (i, j) tie-line average

capacity, and Λ is a multivariate Poisson random variable with parameter λ= (λi,j)(i,j)∈Ẽ. The

random variable βi,j represents the probability of tie-line (i, j) to be completely cut-off due

to an extreme event. This, coupled with the Poisson marginal distribution Λi,j with intensity

factor λi,j, enables the simulation of failures across multiple lines. In order to obtain a wide

range of extreme events we setup the parameters to pi,j = 0.7, ci,j = 900, and λi,j = 0.5.

• cli: The cost of demand loss is simulated independently as cli = β`i × 4,000 + 1,000, where β`i is

a Bernoulli random variable with probability pi = 0.5.

• gi: Generation capacity is simulated independently by a discrete random variable under the

assumption of equally likely 500, 600, 800, 950, 1,000, and 1,200 MW of generation.

• li: Similar to tie-line generation, demand levels li is generated as a discrete stochastic process

with log-Poisson spikes; hence, capturing demand spikes in the network.

In our simulations, we set B = 10n, where n is the number of nodes. Algorithms (1)-(2) are imple-

mented in the Python programming language with calls to Gurobi quadratic, mixed-integer, and

dual simplex solvers (Gurobi Optimization 2016). To improve efficiency, we parallelized the calls to

multiple scenarios ω ∈Ω. An Ubuntu 14.04 PC with dual Intel Xeon E5-2650 v4 @ 2.20GHz CPU

with a total of 48 threads available for computation and 128GB of RAM is used in these numerical

experiments.
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7.1. Computational Time: Inexact Bundle Method versus Exact Bundle Method

This section reports the run-time of the inexact bundle method and compares it with the run-time

of the exact bundle method. The analysis on run-time is conducted by varying the number of

nodes in the network, the number of scenarios in the scenario set Ω, and the parameter εcos in the

inexact method. The results are presented for three risk functionals ρ: expectation, mean-upper

semideviation, and CVaR.

Figure 2 shows the run-times (in seconds) of the exact method and the inexact bundle methods

(with different collinearity parameters εcos = 0.2, 0.1, 0.05) with different risk measures. In Fig-

ure 2, left plots illustrate the run-times to networks of 5 to 25 nodes. Each network was randomly

generated. In this experiment, the scenario set has |Ω|= 100 scenarios. Every point in these plots

represent the average over 5 simulations, as described before, of cli(ω), gi(ω), li(ω), and ti,j(ω).

In the exact method, the regularization parameter is set to γ = 0.31. In the inexact method, the

descent parameter is κ = 0.3, the initial stepsize bound is T1 = 0.05, and the initial stepsize is

t1 = 0.1. In both exact and inexact methods tolerance level δ= 10−6 is used.

Plots in Figure 2 illustrate that significant run-time improvements (85%−95% for εcos = 0.1,0.2

and 65%−75% for εcos = 0.05) can be achieved through the inexact method. The run time for both

exact and inexact method for the case of CVaR is lower than the other two risk measures, which is

more prominent as the number of nodes grows. The time improvement from inexact bundle method

is slightly higher for expectation and mean-upper semideviation risk functionals than the CVaR.

In Figure 2, right plots depict the run-time as the number of scenarios |Ω| increases. Here,

we consider a network with 10 nodes and 20 arcs and vary the number of scenarios. Each point

represents the average over 3 simulations. These results indicate that higher run-time improvements

are observed as the size of the scenario set increases. The run-time for CVaR is again lower than

that of the mean-upper semi deviation risk measure and the expectation.

7.2. Accuracy: Inexact Bundle Method versus Exact Bundle Method

Figure 3 exhibits the percentage of approximation error (suboptimality) of the solution computed

from the inexact bundle method. The suboptimality is computed as the absolute value of (optimal

value of the inexact method-optimal value of the exact method) divided by the optimal value of the

exact method. These plots are obtained from applying the exact bundle method and the inexact

bundle methods (with εcos = 0.2, 0.1, 0.05) under different risk functionals to random networks of

2 to 25 nodes. Each point represents the average over 5 simulations on a fixed network with 100

randomly generated scenarios. Other settings are similar to those explained in Subsection 7.1. The

error in approximation improves with smaller values of εcos. This is expected since a smaller εcos

creates a finer partition I, thus leading to solving more second-stage scenarios in Algorithm 3.
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(a) Conditional Value-at-Risk with α= 0.40

(b) Mean-Upper Semideviation Risk Measure with α= 0.40

(c) Expectation E

Figure 2 Run time (in seconds) for exact and inexact bundle methods (with εcos = 0.2, 0.1, 0.05). Left plots: Run

time vs. number of nodes. The x-axis represents the number of nodes in the network. Right plots: Run

time vs. size of the scenario set. The x-axis represents the number of scenarios in the simulation.
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The suboptimality level is relatively consistent among different risk measures and different scenario

sizes. Right plots in Figure 3 indicate that a solution with an acceptable level of accuracy can be

obtained from the inexact method even for a large number of scenarios. This result along with

the time improvements achieved in the inexact method makes this approach attractive for solving

risk-averse two-stage stochastic problem with downside risk measures. For risk measures such as

CVaR, a large number of scenarios must be considered to accurately capture the tail of the recourse

function distributions. This leads to high computational time in the exact method for risk-averse

two-stage stochastic problems.

Table 1 reports the run-times of the inexact bundle method for different risk measures and

the corresponding suboptimality levels against the exact bundle method. All parameters are fixed

except εcos. In this analysis, a network with 20 nodes and 48 arcs are considered. The size of the

scenario set is |Ω|= 100, and the risk parameters in CVaR and mean-upper semideviation are set

to α = 0.40. The results in Table 1 suggest that εcos = 0.1 offers an acceptable tradeoff between

approximation error and run-time.

CVaR
εcos Time Suboptimality
0.9 2.60 80.85%
0.8 2.32 80.85%
0.7 2.34 80.85%
0.6 2.33 80.85%
0.5 2.33 80.85%
0.4 4.68 48.04%
0.3 5.01 44.58%
0.2 8.34 26.85%
0.1 28.10 10.51%
0.09 20.33 12.42%
0.08 21.77 5.28%
0.07 41.47 4.28%
0.06 41.88 2.95%
0.05 94.53 1.76%
0.04 61.97 0.23%
0.03 114.55 0.00%
0.02 71.03 0.00%
0.01 69.38 0.00%
Exact running time: 80.43

Semideviation
εcos Time Suboptimality
0.9 2.72 71.87%
0.8 2.44 71.87%
0.7 2.46 71.87%
0.6 2.46 71.87%
0.5 2.47 71.87%
0.4 4.75 36.16%
0.3 5.50 32.65%
0.2 7.23 14.81%
0.1 15.22 0.31%
0.09 27.55 8.06%
0.08 23.73 2.31%
0.07 31.83 3.14%
0.06 42.43 2.05%
0.05 69.67 1.67%
0.04 79.26 0.12%
0.03 69.62 0.08%
0.02 61.04 0.00%
0.01 61.28 0.00%
Exact running time: 121.44

Expectation
εcos Time Suboptimality
0.9 2.52 63.58%
0.8 2.47 63.58%
0.7 2.46 63.58%
0.6 2.47 63.58%
0.5 2.47 63.58%
0.4 4.53 32.60%
0.3 4.85 29.30%
0.2 7.54 11.95%
0.1 15.60 3.30%
0.09 14.71 7.74%
0.08 22.52 0.84%
0.07 50.80 1.55%
0.06 49.93 1.16%
0.05 103.80 1.27%
0.04 148.38 0.14%
0.03 96.96 0.11%
0.02 124.28 0.00%
0.01 121.38 0.00%
Exact running time: 124.87

Table 1 Run-time (in seconds) of the inexact bundle methods as a function of εcos and the percentage of

sub-optimality (approximation errors in %) against the exact bundle method.

8. Conclusion

This paper studies the resource allocation problem as a two-stage stochastic optimization prob-

lem with risk-averse recourse. An inexact bundle method with a risk-averse oracle for evaluating

objective function and a subgradient is developed and the correctness of the risk-averse oracle is

theoretically established. The performance of the methodology is investigated using an applica-

tion in a network reliability management using reserve resources. Our computational experiments
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(a) Conditional Value-at-Risk with α= 0.40

(b) Mean-Upper Semideviation Risk Measure with α= 0.40

(c) Expectation E

Figure 3 Suboptimality of (linear fits) inexact bundle methods (with εcos = 0.2, 0.1, 0.05). Left plot: Suboptimality

vs. number of nodes. The x-axis represent the number of nodes in the network. Right plot: Suboptimality

vs. size of the scenario set. The x-axis represent the number of scenarios in the simulation.
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exhibit that the inexact bundle method can provide a significant improvement in the run-time to

achieve a solution for the two-stage problem with a low relative error. A sensitivity analysis on the

scenario clustering parameter εcos for this two-stage risk averse stochastic problem is carried out,

which guides on the selection of an appropriate value for this parameter.
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