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Abstract

We consider an accelerated proximal gradient algorithm for the composite optimization with “in-
dependent errors” (errors little related with historical information) for solving linear inverse problems.
We present a new inexact version of FISTA algorithm considering deterministic and stochastic nois-
es. We prove some convergence rates of the algorithm and we connect it with the current existing
catalyst framework for many algorithms in machine learning. We show that a catalyst can be regard-
ed as a special case of the FISTA algorithm where the smooth part of the function vanishes. Our
framework gives a more generic formulation that provides convergence results for the deterministic
and stochastic noise cases and also to the catalyst framework. Some of our results provide simpler
alternative analysis of some existing results in literature, but they also extend the results to more
generic situations.

1 Introduction

Linear inverse problems have received a lot of attention last few years as they are widely applied
to many areas such as signal processing [2, 31], imaging sciences (image deblurring problem [4, 21])
and computational statistics [18], to name a few. Inverse problems involve estimating data or parameters
from incomplete or noisy observations, sometimes due to physical limitations of the measurement devices.
Therefore, solutions to inverse problems are non-unique, and so, we must exploit the underlying structure
of the desired solution set to pose a suitable approximate solution.

Basically, a linear inverse problem is usually described as

Ax = b+ w, (1.1)

where A ∈ RM×N is known, b ∈ RN is observed measured data, and w ∈ RN is an unknown additive
noise vector (in some situations, like in stability theory analysis, it can be considered as a perturbation
vector).

In this paper we are interested in the study of methods that permits to get the unknown vector
x ∈ RM . If A is nonsingular, an intuitive method is just using least squares (LS) approach [5], i.e.,
solving the following data error minimization problem

xLS ∈ argmin
x

∥Ax− b∥22. (1.2)

∗Department of Mathematics and System Science, National University of Defense Technology, Changsha, 410073, Hunan,
China. Email: nudttaosun@gmail.com;nudtsuntao@163.com
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However, in many applications, A is unfortunately singular. For example, in compressed sensing [11], A
is the sensing matrix whose number of rows is smaller than the number of columns. And in the image
blurring problem, A presents the blurring operator, which is also singular. It means that in this situation
the LS solution xLS will be infinitely undetermined and LS method will fail in finding the solution. In
other cases A is nonsingular but close to it (ill-conditioned), and again, xLS , although unique, has a huge
error norm and is thus meaningless.

In general, it is hard to get the solution x if A is singular (or highly ill-conditioned). But the good
news is the unknown vector is not “totally unknown” and we can use the underlying structure. In fact,
some qualitative information is usually detected in these problems, like sparsity.

Another way to deal with ill-conditioned or singular problems is by means of regularization methods
to stabilize the solution. The basic idea of regularization is to replace the original problem with a
well-conditioned problem whose solution approximates the original solution. Recently a method that is
commonly used (specially in signal processing literature) is the ℓ1 regularization problem [8, 14]

min
x

{
1

2
∥Ax− b∥22 + λ∥x∥1

}
, (1.3)

where ∥ · ∥1 stands for the l1 norm. This model is extended by the nuclear norm for solving the matrix
completion problem [6]. The success of the ℓ1 or nuclear norm regularization has attracted increasing
attentions in optimization and inverse problems community for solving the following general model

min
x

{F (x) = f(x) + g(x)}, (1.4)

where f is smooth and convex, and g is convex.
Some of the state-of-art methods for solving problem (1.4) are the Iterative Shrinkage-Thresholding

Algorithms (ISTA) [7, 8, 13, 15, 16]. The convergence rate of ISTA is well known as O(1/k) where k is
the iteration counter. In the nice paper [4], the authors propose a Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA), which improved the convergence rate from O(1/k) to O(1/k2) while keeping the
simplicity of ISTA. If g vanishes, FISTA will reduce to the Nesterov gradient method [23]. Plenty of
variants have also been developed in recent years [3, 4, 30, 32]. The part of the algorithm that demands
a higher computational cost is minimizing the convex function Qr(x, y

k) (see Eqn (2.1) below). For the
ℓ1 regularized problem, the minimizer usually enjoys a closed form; however, for many other situations,
the minimizing may be expensive and inexact. This paper focuses on an inexact version of FISTA

The contribution of the paper is three-fold: –1– We consider a new inexact version of FISTA. Such
algorithm is modeled basing on practical algorithms when the function Qr(x, y

k) is hard to minimize.
We prove the convergence rates of this inexact algorithm under different cases; –2– We consider the
expectation form of the error which has not been mentioned before in literature; –3– We build a connection
between this inexact algorithm with a catalyst algorithm for various first-order optimization algorithms.
Based on our results, the catalyst algorithm is still convergent under a much larger noise.

This paper is organized as follows: In Section 2, we present the new algorithm and the basic notations
and preliminaries; in Section 3, the convergence rates are proved under deterministic and stochastic
errors; Section 4 connects our results with a general catalyst method; some numerical tests are shown in
Section 5; and finally, Section 6 gives some conclusions.

2 FISTA algorithm and preliminaries

The Fast Iterative Shrinkage-Thresholding Algorithms (FISTA) [3, 4, 30, 32] for solving (1.4) are
based on the minimization of the functional

Qr(z, y
k) :=

⟨
z − yk,∇f(z)

⟩
+
r

2
∥z − yk∥22 + g(z). (2.1)

Most of the differences between different inexact FISTA methods are in the “inexact ways” used, i.e.,

xk+1 ≈ argmin
x
Qr(x, y

k).
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In paper [28], the authors introduced “two errors”: a process error ēk (is a vector) and the function
values error, i.e., Qr(x

k+1, yk) − minQr(x, y
k) ≤ εk (is a number). They proved the convergence for

an accelerated algorithm (different from FISTA) under several assumptions on both ēk and εk. Paper
[24] is devoted to xk+1 = argminxQr(x, y

k) + ek (we stress that ēk in [28] is different with ek in [24]).
The convergence is proved under several assumptions, which are related with historical information on
the noise ek. This is also to say that the noise is not independent. In paper [17], a slightly different
criterion F (xk+1) ≤ argminxQr(x, y

k) + εk is posed. Another approach on the inexactness is using the
ϵ-subdifferential [33]. And in [10], an inexact first order oracle is also proposed for minimizing Qr(x, y

k)
approximately.

In this paper, we consider the following inexact way (also used in [28])

Qr(x
k+1, yk)−minQr(x, y

k) ≤ εk

for FISTA. We remark that [28] is devoted to an accelerated forward-backward algorithm but not FISTA,
although we use the same function values error. We consider such scheme because the inexactness usually
comes from the fact the subproblem minxQr(x, y

k) does not enjoy a closed form solution, i.e., cannot be
solved exactly in a very few computations. Thus, we may use other algorithms to minimize Qr(x, y

k).
Besides, most of the convergence rates in literature of these algorithms are built on the function values,
and thus, we may obtain

Qr(x
k+1, yk)−minQr(x, y

k) ≤ O(j−γ
k ), (2.2)

where jk are the steps for minimizing Qr(x, y
k) and γ > 0. Moreover, we also consider the stochastic error

because we may use a stochastic method to solve the subproblem. In addition, we are also interested in
connecting this algorithm with a general catalyst method for a class of first-order optimization algorithms.

2.1 New FISTA algorithm

In this paper, we consider a new inexact FISTA scheme to solve problem (1.4) given by (following the
philosophy of [4])

..

New FISTA with constant stepsize

Input : Initial conditions x1 ∈ RN , constant r ∈ R+ of Qr(z, y
k).

Step 0 : Take y1 = x1 and t0 = 1.

Step k (k ≥ 1) :

solve xk+1 ≈ argminzQr(z, y
k) with rule Rd or Rs

tk+1 =
1 +

√
1 + 4t2k
2

yk+1 = xk+1 +

(
tk − 1

tk+1

)
(xk+1 − xk),

(2.3)

where Qr(z, y
k) :=

⟨
z − yk,∇f(z)

⟩
+ r

2∥z − yk∥22 + g(z).

Here, Rd and Rs stand for the different types of errors (deterministic or stochastic depending on the
problem):

1. Rd: Qr(x
k+1, yk)−minQr(z, y

k) ≤ εk.

2. Rs: E[Qr(x
k+1, yk) − minQr(z, y

k) | ψk] ≤ εk and ψk is the sigma algebra generated in solving
xk+1.

One interesting property of the scheme is related with the time or stepsize sequence (tk)k≥1 generated
by the method.
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Lemma 1. The sequence (tk)k≥1 generated by the scheme (2.3) satisfies the bounds

k + 1

2
≤ tk ≤ k + 1. (2.4)

Proof. In fact, we can easily see that given t0 = 1, t1 = (1 +
√
5)/2 ≈ 1.61803 and so 1/2 ≤ t1 ≤ 2. Now

using direct induction we have

tk =
1 +

√
1 + 4t2k−1

2
≤

1 +
√
1 + 4t2k−1

2

≤
1 +

√
1 + 4tk−1 + 4t2k−1

2
≤ 1 + 2tk−1 + 1

2
≤ tk−1 + 1. (2.5)

Thus, we obtain tk ≤ k + 1. Similarly, we have

tk =
1 +

√
1 + 4t2k−1

2
≥ 1 + 2tk−1

2
≥ 1

2
+ tk−1. (2.6)

Therefore, we have tk ≥ k+1
2 .

2.2 Preliminaries

Now, we introduce several definitions as well as some useful properties in variational and convex
analysis (see for more details the excellent monographes [22, 23, 25, 26]).

The subgradient set of a function J at x is the set given by

∂J(x) := {v | J(y) ≥ J(x) + ⟨v, y − x⟩, ∀y ∈ dom(J)} ,

and we say that v is a subgradient vector. Note that if J is convex and differentiable, then its gradient at
x is a subgradient and so ∂J(x) = {∇J(x)}. But a subgradient can exist even when J is not differentiable
at x. Let J be a convex function, we say that J is gradient-Lipschitz with constant LJ if J is differentiable
and

∥∇J(x)−∇J(y)∥2 ≤ LJ∥x− y∥2,

and we say J is strongly convex with constant νJ if for any x, y ∈ dom(J) and v ∈ ∂J(x)

J(y) ≥ J(x) + ⟨v, y − x⟩+ νJ
2
∥y − x∥22.

We collect several basic but useful lemmas, the proofs can be found in [23].

Lemma 2. If J is strongly convex with constant ν, for any x ∈ dom(J)

J(x)− J(x∗) ≥ v

2
∥x− x∗∥22, (2.7)

where x∗ is the minimizer of J .

Lemma 3. If J is gradient-Lipschitz with constant LJ , for any x, y ∈ dom(J),

J(y) ≤ J(x) + ⟨∇J(x), y − x⟩+ LJ

2
∥y − x∥22. (2.8)

We denote that a sequence (ak)k≥1 ∈ ℓ1 if
∑∞

i=1 |ak| < +∞.
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Lemma 4. Assume the nonnegative number sequences (ηk)k≥1, (δk)k≥1 and (ξk)k≥1 satisfying

ξk+1 ≤ (1 + ηk)ξk + δk, (2.9)

then we have

ξk+1 ≤ e
∑k

i=1 ηi(ξ1 +

k∑
i=1

δi). (2.10)

If further (ηk)k≥1 ∈ ℓ1, (δk)k≥1 ∈ ℓ1, then (ξk)k≥1 is convergent.

Proof. As we have nonnegative number sequences 1 + ηk ≤ eηk , so

ξk+1 ≤ (1 + ηk)ξk + δk

≤ eηkξk + δk

≤ eηk+ηk−1ξk−1 + eηkδk−1 + δk

...

≤ e
∑k

i=1 ηiξ1 + e
∑k

i=1 ηi ·
k∑

i=1

δi. (2.11)

Thus Eqn. (2.10) is obtained.

If further (ηk)k≥1 ∈ ℓ1, (δk)k≥1 ∈ ℓ1, i.e.,
∑k

i=1 ηi < +∞ and
∑k

i=1 δi < +∞ for any k ∈ Z+. That is

also to say
∑k

i=1 ηi and
∑k

i=1 δi are bounded. With (2.11), (ξk)k≥1 is bounded, and we denote the bound
M > 0. Thus,

ξk+1 − ξk ≤ ηkξk + δk ≤Mηk + δk. (2.12)

That is also

0 ≤

(
ξk+1 +

+∞∑
i=k+1

(Mηi + δi)

)
≤

(
ξk +

+∞∑
i=k

(Mηi + δi)

)
. (2.13)

Therefore, the new nonnegative sequence (ξk +
∑+∞

i=k (Mηi + δi))k≥1 is monotonically decreasing. That

means (ξk +
∑+∞

i=k (Mηi + δi))k≥1 converges. Noting that limk

∑+∞
i=k (Mηi + δi) = 0, then (ξk)k≥1 also

converges.

3 Convergence rates of the new FISTA algorithm

In this section we provide convergence results of the new FISTA method (2.3) under deterministic
and stochastic errors.

From now on, we suppose that the smooth-convex function f is gradient-Lipschitz with constant L
and we note that the functional Qr(z, y

k) is strongly convex with constant r. We denote by x∗ the
solution of the minimization problem (1.4) and therefore minF = F (x∗), and we also denote

x̃k+1 := argmin
z
Qr(z, y

k). (3.1)

3.1 Deterministic noise

In the case of having a deterministic noise, we use the deterministic error function Rd.
First, we introduce some technical lemmas that help us in the proof of the main convergence theorem.
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Lemma 5. If the constant r > 0, then

∥xk+1 − x̃k+1∥22 ≤ 2εk
r
. (3.2)

Proof. Note thatQr(z, y
k) is strongly convex with constant r, and x̃k+1 (3.1) is the minimizer ofQr(z, y

k).
With Lemma 2 we have

Qr(x
k+1, yk)−Qr(x̃

k+1, yk) ≥ r

2
∥xk+1 − x̃k+1∥22. (3.3)

Noting that
Qr(x

k+1, yk)−Qr(x̃
k+1, yk) = Qr(x

k+1, yk)−minQr(x, y
k) ≤ εk,

and then we obtain the result.

Lemma 6. If the constants satisfy r > L, then we have

F (x̃k+1) +
r

2
∥x̃k+1 − yk∥22 − (F (xk+1) +

r

2
∥xk+1 − yk∥22)

≥ −τεk − r − L

2
∥yk − x̃k+1∥22, (3.4)

where τ = 1 +
L2

r(r − L)
.

Proof. Using the convexity of f ,

0 ≤
⟨
∇f(xk+1), xk+1 − x̃k+1

⟩
+ f(x̃k+1)− f(xk+1). (3.5)

From the definition of Rd

−εk ≤ Qr(x̃
k+1, yk)−Qr(x

k+1, yk)

=
[
⟨x̃k+1 − yk,∇f(x̃k+1)⟩+ r

2
∥x̃k+1 − yk∥22 + g(x̃k+1)

]
−
[
⟨xk+1 − yk,∇f(xk+1)⟩+ r

2
∥xk+1 − yk∥22 + g(xk+1)

]
. (3.6)

Adding (3.5) to (3.6) side by side, we have

−εk ≤
(
F (xk+1) +

r

2
∥xk+1 − yk∥22

)
−
(
F (x̃k+1) +

r

2
∥x̃k+1 − yk∥22

)
+
⟨
∇f(xk+1)−∇f(x̃k+1), yk − x̃k+1

⟩
. (3.7)

Now, using the Schwarz inequality ⟨a, b⟩ ≤ ∥a∥2
2

2µ + µ
2 ∥b∥

2
2 with µ = r−L, a = ∇f(xk+1)−∇f(x̃k+1) and

b = yk − x̃k+1,

⟨
∇f(xk+1)−∇f(x̃k+1), yk − x̃k+1

⟩
≤ 1

2(r − L)
∥∇f(xk+1)−∇f(x̃k+1)∥22 +

r − L

2
∥yk − x̃k+1∥22

≤ L2

2(r − L)
∥xk+1 − x̃k+1∥22 +

r − L

2
∥yk − x̃k+1∥22. (3.8)

Combining (3.7) and (3.8), we have

−εk ≤
(
F (xk+1) +

r

2
∥xk+1 − yk∥22

)
−
(
F (x̃k+1) +

r

2
∥x̃k+1 − yk∥22

)
+

L2

2(r − L)
∥xk+1 − x̃k+1∥22 +

r − L

2
∥yk − x̃k+1∥22. (3.9)

By rearrangement of the above inequality (3.9) and using Lemma 5, we obtain the result.
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Lemma 7. If the constants satisfy r > L, then we have the bounds

F (xk)− F (xk+1) ≥ r

2
∥yk − xk+1∥22 + r⟨yk − xk, x̃k+1 − yk⟩ − τεk, (3.10)

F (x∗)− F (xk+1) ≥ r

2
∥yk − xk+1∥22 + r⟨yk − x∗, x̃k+1 − yk⟩ − τεk, (3.11)

where τ = 1 +
L2

r(r − L)
.

Proof. With Lemma 3, we have

−f(x̃k+1) ≥ −f(yk)−
⟨
x̃k+1 − yk,∇f(yk)

⟩
− L

2
∥x̃k+1 − yk∥22. (3.12)

Subtracting g(x̃k+1) to both sides

−F (x̃k+1) ≥ −f(yk)−
⟨
x̃k+1 − yk,∇f(yk)

⟩
− L

2
∥x̃k+1 − yk∥22 − g(x̃k+1).

Now, using the convexity of f and g, we have

f(xk)− f(yk) ≥ ⟨xk − yk,∇f(yk)⟩,
g(xk)− g(x̃k+1) ≥ ⟨xk − x̃k+1, ∇̄g(x̃k+1)⟩,

where ∇̄g(x̃k+1) is any vector of the set ∂g(x̃k+1). Summing the inequalities yields

F (xk) ≥f(yk) + g(x̃k+1) + ⟨xk − yk,∇f(yk)⟩
+ ⟨xk − x̃k+1, ∇̄g(x̃k+1)⟩. (3.13)

The definition of x̃k+1 is based on the minimization of (2.1), and the optimization condition gives

−∇f(yk)− r(x̃k+1 − yk) ∈ ∂g(x̃k+1). (3.14)

Substituting (3.14) into (3.13), we obtain

F (xk) ≥f(yk) + g(x̃k+1) + ⟨x̃k+1 − yk,∇f(yk)⟩
+ r⟨x̃k+1 − xk, x̃k+1 − yk⟩. (3.15)

Direct summation of (3.13) and (3.15) gives

F (xk)− F (x̃k+1) ≥ (r − L

2
)∥yk − x̃k+1∥22 + r⟨yk − xk, x̃k+1 − yk⟩. (3.16)

Summing (3.16) and (3.4), we obtain the first inequality (3.10)

F (xk)− F (xk+1) ≥ r

2
∥xk+1 − yk∥22 + r⟨yk − xk, x̃k+1 − yk⟩ − τεk. (3.17)

On the other hand, with the convexities of f and g,

f(x∗)− f(yk) ≥ ⟨x∗ − yk,∇f(yk)⟩,
g(x∗)− g(x̃k+1) ≥ ⟨x∗ − x̃k+1, ∇̄g(x̃k+1)⟩.

Adding them together, we have

F (x∗) ≥ f(yk) + g(x̃k+1) + ⟨x∗ − yk,∇f(yk)⟩+ ⟨x∗ − x̃k+1, ∇̄g(x̃k+1)⟩. (3.18)
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Substituting (3.14) into (3.18) gives

F (x∗)− F (x̃k+1) ≥
(
r − L

2

)
∥yk − x̃k+1∥22 + r⟨yk − x∗, x̃k+1 − yk⟩. (3.19)

Similarly, with (3.4), we have

F (x∗)− F (xk+1) ≥ r

2
∥xk+1 − yk∥22 + r⟨yk − x∗, x̃k+1 − yk⟩ − τεk, (3.20)

that gives the second inequality (3.11).

Lemma 8. Given a nonnegative sequence (sk)k≥0 → 0. Let the constants satisfy r > L and the sequence
(xk)k≥0 be generated by the inexact FISTA (2.3) with the deterministic error function Rd, then we have

F (xk)− F (x∗) ≤
r

(
F (x1)−minF

r
+ ∥x1 − x∗∥22 +

k∑
i=1

C
t2i εi
si

)
· e

∑k
i=1 si

2t2k−1

, (3.21)

where C = 2
r + 2maxk{ skτ

r }.

Proof. We denote
F k := F (xk)− F (x∗).

By (3.10)× (tk − 1) + (3.11),

2[(tk − 1)F k − tkF
k+1]

r
≥ tk∥xk+1 − yk∥22

+ 2⟨x̃k+1 − yk, tky
k − (tk − 1)xk − x∗⟩ − 2τtkεk

r
. (3.22)

With t2k−1 = t2k − tk, (3.22)× tk yields

2[t2k−1F
k − t2kF

k+1]

r
≥ ∥tkxk+1 − tky

k∥22

+ 2tk⟨x̃k+1 − yk, tky
k − (tk − 1)xk − x∗⟩ − 2τt2kεk

r
. (3.23)

Substituting a = tkx
k+1 − (tk − 1)xk − x∗ and b = tky

k − (tk − 1)xk − x∗ into identity

∥a− b∥22 + 2⟨a− b, b⟩ = ∥a∥22 − ∥b∥22, (3.24)

then we have:

∥tkxk+1 − tky
k∥22 + 2tk⟨x̃k+1 − yk, tky

k − (tk − 1)xk − x∗⟩
= ∥tkxk+1 − tky

k∥22 + 2tk⟨xk+1 − yk, tky
k − (tk − 1)xk − x∗⟩

+ 2tk⟨x̃k+1 − xk+1, tky
k − (tk − 1)xk − x∗⟩

(3.24)
= ∥tkxk+1 − (tk − 1)xk − x∗∥22 − ∥tkyk − (tk − 1)xk − x∗∥22

+ 2tk⟨x̃k+1 − xk+1, tky
k − (tk − 1)xk − x∗⟩

= ∥tkxk+1 − (tk − 1)xk − x∗∥22 − ∥tk−1x
k − (tk−1 − 1)xk−1 − x∗∥22

+ 2tk⟨x̃k+1 − xk+1, tk−1x
k − (tk−1 − 1)xk−1 − x∗⟩. (3.25)
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In the third identity, we use the fact tky
k = tkx

k + (tk−1 − 1)(xk − xk−1). If we denote wk = ∥tk−1x
k −

(tk−1 − 1)xk−1 − x∗∥22, (3.23) can be rewritten as

2t2kF
k+1

r
+ wk+1 ≤

2t2k−1F
k

r
+ wk +

2τt2kεk
r

+ 2tk⟨xk+1 − x̃k+1, tk−1x
k − (tk−1 − 1)xk−1 − x∗⟩

≤ 2t2kF
k

r
+ wk +

2τt2kεk
r

+ skw
k +

t2k
sk

∥xk+1 − x̃k+1∥22, (3.26)

where we use the Schwarz inequality 2⟨a, b⟩ ≤ µ∥a∥2 + 1
µ∥b∥

2 with a = xk+1 − x̃k+1, tk−1x
k − (tk−1 −

1)xk−1 − x∗ and µ = tk
sk
,

2tk⟨xk+1 − x̃k+1, tk−1x
k − (tk−1 − 1)xk−1 − x∗⟩

≤ t2k
sk

∥xk+1 − x̃k+1∥22 + sk∥tk−1x
k − (tk−1 − 1)xk−1 − x∗∥22

=
t2k
sk

∥xk+1 − x̃k+1∥22 + skw
k. (3.27)

Obviously,

skw
k ≤ sk

(
2t2kF

k

r
+ wk

)
;

and with Lemma 5,

2t2kF
k+1

r
+ wk+1 ≤ (1 + sk)

(
2t2k−1F

k

r
+ wk

)
+

2τt2kεk
r

+
2t2k
rsk

εk. (3.28)

Denoting

ξk :=
2t2k−1F

k

r
+ wk,

then, we have

ξk+1 ≤ (1 + sk)ξk +

[
2τt2kεk
r

+
2t2k
rsk

εk

]
≤ (1 + sk)ξk + C

t2kεk
sk

, (3.29)

where C = 2
r + 2maxk{ skτ

r } > 0. Applying Lemma 4 to (3.29), we obtain

2t2k−1F
k

r
≤ ξk ≤ e

∑k
i=1 si

(
F (x1)− F (x∗)

r
+ ∥x1 − x∗∥22 +

k∑
i=1

C
t2i εi
si

)
. (3.30)

That gives us the Eq. (3.21).

Now we can state the main theorem about the convergence rates for the deterministic case.

Theorem 1. Assume εk ∼ O(1/kα), and let the constants satisfy r > L and the sequence (xk)k≥0 be
generated by the new inexact FISTA (2.3) with the deterministic error function Rd, then we have the
following results

F (xk)−minF =



O
(

1

k2

)
, if α > 4,

O
(
ln3 k

k2

)
, if α = 4,

O
(

1

k
α
2 −1

)
, if 2 < α < 4.

(3.31)
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where minF = F (x∗).

Proof. Case –1– (α > 4): We set si = 1/i
α−2
2 ; and it is easy to see that (si)i≥0 ∈ ℓ1 and then e

∑k
i=1 si <

+∞. Noting that i
2 ≤ ti−1 ≤ i, then,

t2i εi
si

∼ O
(

1

i
α−2
2

)
∈ ℓ1.

Thus, we have

F (x1)−minF

r
+ ∥x1 − x∗∥22 +

k∑
i=1

C
t2i εi
si

< +∞.

Therefore (
F (x1)−minF

r
+ ∥x1 − x∗∥22 +

k∑
i=1

C
t2kεk
sk

)
· e

∑k
i=1 sk < +∞. (3.32)

From Lemma 8, we have the result

F (xk)−minF ∼ O
(

1

t2k−1

)
∼ O

(
1

k2

)
. (3.33)

Case –2– (α = 4): Now, we set si = 1/(i ln i); and then we have

k∑
i=2

1

i ln i
=

k∑
i=2

∫ 1

0

1

i ln i
dt ≤

k∑
i=2

∫ i+1

i

1

t ln t
dt

=

k∑
i=2

(ln ln(i+ 1)− ln ln i)

= ln ln(k + 1)− ln ln 2 ∼ O(ln ln k). (3.34)

That means e
∑k

i=1 si = O(ln k). With the fact i
2 ≤ ti−1 ≤ i, we have

t2i εi
si

∼ O(
ln i

i
).

That also indicates
k∑

i=1

C
t2i εi
si

∼ O(ln2 k).

Thus, we obtain

F (x1)−minF

r
+ ∥x1 − x∗∥22 +

k∑
i=1

C
t2i εi
si

∼ O(ln2 k).

Combining the above equations(
F (x1)−minF

r
+ ∥x1 − x∗∥22 +

k∑
i=1

C
t2kεk
sk

)
· e

∑k
i=1 sk ∼ O(ln3 k). (3.35)

And from Lemma 8, we have the result

F (xk)−minF ∼ O
(
ln3 k

t2k−1

)
∼ O

(
ln3 k

k2

)
. (3.36)
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Case –3– (2 < α < 4): We set si = 1/i
α
2 ; and then (si)i≥0 ∈ ℓ1 and e

∑k
i=1 si < +∞. Considering

i
2 ≤ ti−1 ≤ i, we have

t2i εi
si

∼ O
(

1

i2+
α
2

)
.

That also indicates
k∑

i=1

C
t2i εi
si

∼ O
(

1

k1+
α
2

)
.

Thus, we have

F (x1)−minF

r
+ ∥x1 − x∗∥22 +

k∑
i=1

C
t2i εi
si

∼ O(
1

k1+
α
2
).

Combining the above equations(
F (x1)−minF

r
+ ∥x1 − x∗∥22 +

k∑
i=1

C
t2kεk
sk

)
· e

∑k
i=1 sk ∼ O

(
1

k1+
α
2

)
. (3.37)

From Lemma 8, we have the result

F (xk)−minF ∼ O

(
1

k1+
α
2 t2k−1

)
∼ O

(
1

k
α
2 −1

)
. (3.38)

The εk stands for a bound of the noise in each iteration. The parameter α depends on the algorithm
and the inner loop iteration used to solve the subproblem (2.2). We recall the error in the subproblem
(2.2) in previous analysis, where γ in (2.2) is due to the algorithm chose for solving the subproblem. For
instance, if we select jk = k in (2.2), then γ is actually α; as another choice, if jk is set as jk = k2, then,

α = 2γ; similarly, if jk = k
1
2 , we have α = γ

2 .
Although our results look worse than those of Corollary 3.7 presented in [24], we remark that our

results are under totally different settings: –1– our error εk is based on the function values and can be
controlled; –2– the terms (sk) in [24] are not errors, but auxiliary parameters. The errors in [24] are given
by [Eqns. (18), (19), [24]], which are under very strong assumptions and hard to verify.

3.2 Stochastic noise

Up to our knowledge, previous literature in convergence analysis is always focusing on the use of
deterministic noise. This is because deterministic optimization methods are used for solving the subprob-
lem minz Qr(z, y

k). Actually, we can also use iterative stochastic algorithms for solving the subproblem
(2.2). And then, the inexact solver for the subproblems will lead to stochastic noise. Note that the
(conditional) expectation of the stochastic noise is bounded, but the noise itself may be unbounded (like
Gaussian noise). Thus, the case of stochastic noise should be discussed separately.

In the case of having a stochastic noise, we consider the stochastic error function RS .
First, we introduce some technical lemmas that help us in the proof of the main convergence theorem.

As the global procedure in this case is similar as in the previous subsection with the deterministic noise,
we will just detail some steps.

We denote by χk the sigma algebra generated by x0, x1, . . . , xk and ψ0, ψ1, . . . , ψk, i.e.,

χk := σ(x0, x1, . . . , xk, ψ0, ψ1, . . . , ψk).

Obviously, we have ψk ⊆ χk.

11



Lemma 9. If the constant r > 0, then

E(∥xk+1 − x̃k+1∥22 | χk) ≤ 2εk
r
. (3.39)

Proof. First we note that

E[Qr(x
k+1, yk)−minQr | ψk] = E[Qr(x

k+1, yk)−Qr(x̃
k+1, yk) | ψk] ≤ εk

Taking the conditional expectation on both sides over χk, and with the law of iterated expectations [1],
we then derive

E
[
E[Qr(x

k+1, yk)−Qr(x̃
k+1, yk) | ψk]

∣∣∣∣ χk

]
= E[Qr(x

k+1, yk)−Qr(x̃
k+1, yk) | ψk] ≤ εk. (3.40)

Now, taking again the conditional expectation of (3.3) on both sides over χk and using (3.40), we then
derive the result.

Lemma 10. Given a nonnegative sequence (sk)k≥0 → 0. Let the constants satisfy r > L and the sequence
(xk)k≥0 be generated by the inexact FISTA (2.3) with the stochastic error function Rs, then we have

E
(
F (xk)−minF

)
≤
r

(
F (x1)−minF

r
+ ∥x1 − x∗∥22 +

k∑
i=1

C
t2i εi
si

)
· e

∑k
i=1 si

2t2k−1

, (3.41)

where C = 2
r + 2maxk{ skτ

r }.
Proof. Taking conditional expectation on both sides of (3.26), we have

E
(
2t2kF

k+1

r
+ wk+1

∣∣∣∣ χk

)
≤ 2t2kF

k

r
+ wk +

2τt2kεk
r

+ skw
k +

t2k
sk

E(∥xk+1 − x̃k+1∥22 | χk)

≤ 2t2kF
k

r
+ wk +

2τt2kεk
r

+ skw
k +

2t2kεk
rsk

, (3.42)

where the last inequality is due to Lemma 10. Taking the total expectation, and using

E
(
E
(
2t2kF

k+1

r
+ wk+1

∣∣∣∣ χk

))
= E

(
2t2kF

k+1

r
+ wk+1

)
,

we have:

E
(
2t2kF

k+1

r
+ wk+1

)
≤ (1 + sk)E

(
2t2kF

k

r
+ wk

)
+

2τt2kεk
r

+
2t2kεk
rsk

. (3.43)

Denoting

ξk := E

(
2t2k−1F

k

r
+ wk

)
,

then, we have

ξk+1 ≤ (1 + sk)ξk + C
t2kεk
sk

, (3.44)

where C = 2
r + 2maxk{ skτ

r } > 0. Applying Lemma 4 to (3.44), we obtain

E

(
2t2k−1F

k

r

)
≤ ξk ≤ e

∑k
i=1 si

(
F (x1)−minF

r
+ ∥x1 − x∗∥22 +

k∑
i=1

C
t2i εi
si

)
. (3.45)

That gives us the result.
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Similarly, we can state (the proof is similar to those of Theorem 1) the main theorem about the
convergence rates for the stochastic case.

Theorem 2. Assume εk ∼ O(1/kα), and let the constants satisfy r > L and the sequence (xk)k≥0 be
generated by the inexact FISTA (2.3) with the stochastic error function Rs, then we have the following
results

E
(
F (xk)−minF

)
=



O
(

1

k2

)
, if α > 4,

O
(
ln3 k

k2

)
, if α = 4,

O
(

1

k
α
2 −1

)
, if 2 < α < 4.

(3.46)

Note that the convergence rate in the stochastic case is similar to the deterministic one (Theorem
1). The parameter α is also determined by the algorithm and the inner loop iteration used for the
subproblem (2.2). The main difference between deterministic and stochastic cases lies on the different
meanings of εk. In this stochastic settings, εk is a bound for the conditional expectation of the variable
(Qr(x

k+1, yk) −minQr(z, y
k)). But the variable itself may be unbounded; while for deterministic case,

the εk is a bound for the error.

4 Connection with the unified catalyst for first-order optimiza-
tion

In this section, we connect the inexact accelerated algorithm with a recent generic scheme for ac-
celerating first-order optimization methods in the sense of Nesterov, the catalyst algorithm proposed in
paper [19]. This catalyst algorithm is an accelerated framework which can be used for many existing
accelerated algorithms such as SAG[27], SAGA[9], MISO[20], SDCA[29], SVRG[35] and some coordinate
descent algorithm [34].

The catalyst algorithm is devoted to the following minimization problem

min
x

{G(x) = 1

n

n∑
i=1

hi(x) + g(x)}, (4.1)

where 1
n

∑n
i=1 hi(x) is the smooth convex part and g is a nonsmooth convex function. For a given

minimization algorithm M (it can be SAG, SAGA, MISO, SCDA or SVRG), the catalyst performs in
the iteration k-th as

solve xk+1 ≈ argminHk(x) = G(x) + r
2∥x− yk∥22 with

Hk(x
k+1)−minHk ≤ εk by M,

tk+1 =
1 +

√
1 + 4t2k
2

,

yk+1 = xk+1 +

(
tk − 1

tk+1

)
(xk+1 − xk).

(4.2)

In fact, in the inexact FISTA using Rd, if we set f ≡ 0 and g(x) = G(x) (in this case, L = 0), we
immediately obtain the convergence results using Theorem 1 as follows.

Theorem 3. Assume εk ∼ O(1/kα), let the constant satisfy r > 0 and the sequence (xk)k≥0 be generated
by the catalyst algorithm (4.2) with deterministic errors, then we have the same convergence results (Eq.
(3.31)) as Theorem 1.
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In paper [19], the authors just present convergence results for the case εk ∼ O(1/kα) and α > 4.
Noting that the catalyst algorithm is just a special case of our algorithm, we can use directly our results
to the catalyst. Based on Theorem 1, the catalyst still converges if 2 < α ≤ 4 and the convergence rates
are given in Theorem 3.

Moreover, the authors in [19] only consider the deterministic noised. Actually, algorithms like SAG,
SAGA, MISO, SCDA and SVRG are stochastic algorithms, and using them to minimize Hk only derive
stochastic errors. Thus, we also present the convergence rates for catalyst algorithm when the noise is
stochastic, i.e., solve xk+1 ≈ argminHk(x) = G(x) + r

2∥x − yk∥22 with E(Hk(x
k+1) −minHk | ψk) ≤ εk

by M. Similarly, using our results (Theorem 2), we have:

Theorem 4. Assume εk ∼ O(1/kα), let the constant satisfy r > 0 and the sequence (xk)k≥0 be generated
by the catalyst algorithm (4.2) with stochastic errors, then we have the same convergence results (Eq.
(3.46)) as Theorem 2.

Theorems 3 and 4 are direct applications of our previous findings. Compared with the convergence
rates in [19], our results provide more information (more values of α are studied). Besides, as in distributed
optimization community stochastic algorithms are quite popular to be used in the catalyst algorithm, we
have presented the Theorem 4 which states rigorous convergence results with stochastic errors.

5 Numerical tests

In this section, we present some numerical examples to demonstrate our theoretical findings. Two
tests are conducted for the following problem

min
x
H(x) :=

1

2
∥b−Ax∥22 + ∥x∥1. (5.1)

Applying accelerated proximal gradient algorithms to problem (5.1), and considering the inexact vector,
we then derive the FISTA scheme for the problem, i.e.,

xk+1 = Shλ(y
k − h ·A⊤(Ayk − b)) + ek

tk+1 =
1 +

√
1 + 4t2k
2

yk+1 = xk+1 +

(
tk − 1

tk+1

)
(xk+1 − xk),

(5.2)

where h is the stepsize, and Shλ is the well-known soft-shrinkage thresholding operator, and ek = υ/kα

where υ is the deterministic noise or the Gaussian noise. The stepsize h is set in this numerical test as
h = 1/∥A∥22.

The first test is done using Synthetic Data: the matrix A is generated by the Gaussian random
variables. We present the function values H(xk) using the inexact FISTA algorithm, for three different
values of α, and the case without noise (standard FISTA). Figure 1(a) presents the functions values of
500 iterations for different values of α for the deterministic noise case, where υ is generated by the Matlab
codes ones(.,.); while Figure 1(b) presents the functions values of 1000 iterations for different α for
the Gaussian random noise case which is generated by Matlab codes randn(.,.). From the figures, it is
easy to observe that in the case of deterministic noise the convergence is always faster, but also that the
convergence is faster increasing the value of the parameter α as shown theoretically in Theorem 1. In the
stochastic case (random noise) all the algorithms behave similarly, with very small differences.

The second test is about image deblurring [4, 21]. Using wavelet analysis, an image f can be described
as f = Fxf , where F is the wavelet matrix. It is well known that xf is sparse [12]. In our tests the
blurring operator B is a Gaussian blurring one, and therefore, the noised image can be presented as

b = Bf + e = (BF )xf + e,
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Figure 1: Functions values for different values of α = 3, 4 and 5, and without any noise (a) Deterministic
noise; (b) Stochastic noise.

(a) (b)

Figure 2: (a) Original image; (b) Noised image.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3: Deblurred images for different values of α = 3, 4 and 5, and without any noise (a) Deblurring by
FISTA; (b) Deblurring by inexact FISTA with deterministic noise and α = 3; (c) Deblurring by inexact
FISTA with deterministic noise and α = 4; (d) Deblurring by inexact FISTA with deterministic noise
and α = 5; (e) Deblurring by inexact FISTA with stochastic noise and α = 3; (f) Deblurring by inexact
FISTA with stochastic noise and α = 4; (g) Deblurring by inexact FISTA with stochastic noise and
α = 5.
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Figure 4: Function values versus iteration. (a) Deterministic case; (b) Stochastic case.

where e is the noise. Thus, we can use the following model for the image deblurring

min
x

1

2
∥(BF )x− b∥22 + σ∥x∥1, (5.3)

where σ > 0 is the parameter.
In our tests we consider the cameraman test image. The codes of all algorithms are written entirely

in MATLAB, and all the experiments are implemented under Windows 8 and MATLAB R2016a running
on a laptop with an Intel Core i5 CPU (2.8 GHz) and 8 GB Memory. The scale of all images is 256×256.
In this test, the blurring operator is generated as B=fspecial(’gaussian’,15,5). And the wavelet F
is chosen as the basic Haar wavelet. The maximum iteration number is set as 1000. Figure 2 shows
the original and blurred images, and Figure 3 presents the results of the deblurring process by inexact
FISTA algorithm with different values of α (α = 3, 4 and 5) using deterministic and stochastic noises and
without any noise (FISTA) to compare with. From the figures we observe that the inexact FISTA gives
similar results as the case without noise, providing useful algorithms in noisy situations. Finally, Figure 4
reports the function values versus the iteration. In all simulations, both deterministic and stochastic
noises in the algorithm are considered. We observe in the tests that the behaviour of the new inexact
FISTA converges in all cases, being slightly faster when α grows, as shown in the theoretical analysis,
and its behavior is close to the FISTA algorithm used without any noise.

From these preliminary tests, the new inexact FISTA algorithm presents a promising convergence
behaviour to deblurring images with extra deterministic or stochastic noises.

6 Conclusion

In this paper, we study an inexact accelerated proximal gradient algorithm (a new inexact version of
FISTA) considering both deterministic and stochastic error versions for solving linear inverse problems.
We have shown that the catalyst framework can be regarded as a special case of the FISTA algorithm
where the smooth part of the function vanishes. This new global FISTA framework provides generic
convergence results, giving simpler proofs of the convergence in some cases studied previously, but also
convergence results in cases not covered in literature, like the case of using stochastic errors or the catalyst
framework. We present some preliminary numerical tests supporting the theoretical statements.
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