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Abstract. We describe BASBL, our implementation of the deterministic global optimization5
algorithm Branch-and-Sandwich for nonconvex/nonlinear bilevel problems, within the open-source6
MINOTAUR framework. The solver incorporates the original Branch-and-Sandwich algorithm and mod-7
ifications proposed in the first part of this work. We also introduce BASBLib, an extensive online8
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BASBLib to analyze the performance of BASBL using different algorithmic options.11
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1. Introduction. The numerous applications of bilevel programming problems15

(BPP) (see e.g. [10, 28, 29, 31] and references therein) provide a strong incentive16

for developing efficient solvers for this large class of problems. BPP are hierarchical17

optimization problems in which the outer problem constraints involve the solution set18

of an embedded inner global optimization problem parameterized by the outer level19

variables x ∈ X:20

(BPP)

min
x,y

F (x,y)

s.t. G(x,y) ≤ 0, H(x,y) = 0,
x ∈ X, y ∈ arg min

y∈Y
{f(x,y) s.t. g(x,y) ≤ 0, h(x,y) = 0} .

21

Here the n-dimensional vector x ∈ X ⊂ Rn denotes the outer-level (leader’s) variables22

and the m-dimensional vector y ∈ Y ⊂ Rm denotes the inner-level (follower’s) vari-23

ables. Functions F, f : Rn×Rm → R denote the outer/inner-level objective functions,24

G : Rn×Rm → Rp and g : Rn×Rm → Rr are the vector-valued outer/inner-level in-25

equality constraint functions and H : Rn×Rm → Rq and h : Rn×Rm → Rs are vector-26

valued outer/inner equality constraint functions. The optimistic (co-operative) [28]27

formulation is assumed, where if for a given x the inner subproblem (ISP(x))28

(ISP(x)) min
y∈Y
{f(x,y) s.t. g(x,y) ≤ 0, h(x,y) = 0} ,29

has multiple globally optimal solutions y to which the follower is indifferent, the leader30

can choose among them. Hence, the outer minimization in (BPP) is performed with31

respect to the whole set of variables.32

In this work, we seek to find an ε-optimal bilevel solution to problem (BPP),33

which is defined as follows:34
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Definition 1.1 (ε-optimal bilevel solution [66]). A pair (x∗,y∗) ∈ X × Y is35

an ε-optimal solution if it satisfies the inequality and equality constraints of the outer36

and inner problems, as well as εF -optimality in the outer problem and εf -optimality37

in the inner problem:38

G(x∗,y∗) ≤ 0, g(x∗,y∗) ≤ 0,(1.1)39

H(x∗,y∗) = 0, h(x∗,y∗) = 0,(1.2)40

F (x∗,y∗) ≤ F ∗ + εF , f(x∗,y∗) ≤ w(x∗) + εf ,(1.3)4142

where F ∗ denotes the outer optimal objective value, i.e., the optimal objective value43

of the bilevel problem (BPP) and w(x∗) is obtained from the solution of (ISP(x)).44

While problem (BPP) has been studied for a long time, the few software codes45

that are currently available are mainly limited to special subclasses. The bilevel46

solver in YALMIP (language for advanced modeling and solution of convex and non-47

convex optimization problems) [54] is restricted to convex quadratic inner problems,48

but convexity is not a requirement on the outer problem. Similarly, BIPA (BIlevel49

Programming with Approximation methods) [21], a software based on a trust-region50

method for nonlinear bilevel programming problems [22], requires f to be convex in51

y for each fixed value of x. The EMP (Extended Mathematical Programming) tool52

in GAMS (General Algebraic Modeling System) [23] automatically creates an MPEC53

(Mathematical Program with Equilibrium Constraints) [56] by expressing the lower54

level optimization problem via its Karush-Kuhn-Tucker (KKT) optimality conditions55

and finds a solution of the MPEC, not of the bilevel program. If the lower level56

program is nonconvex, the optimal solution of a bilevel problem may not even be a57

stationary point of the reduced single-level optimization problem [61]. Thus this solver58

is limited to bilevel problems with a convex inner problem that meets a constraint59

qualification. In a recent article [37], Fischetti el. al. introduced a novel publicly60

available solver [36] for mixed-integer bilevel linear programs. Finally, the publicly61

available MibS solver [72] requires that both the leader and the follower are purely62

integer problems.63

To handle general bilevel problems that do not adhere to the simplifying assump-64

tions required by these deterministic solvers, two evolutionary-based algorithms, that65

have been implemented in MATLAB, are available (http://www.bilevel.org/).66

To address the lack of general deterministic bilevel solvers, we introduce the first67

implementation of our bilevel solver capable of handling very general (BPP) problems.68

General bilevel problems are very challenging and only recently have the first algo-69

rithms to tackle them been proposed: the deterministic approach of Mitsos et al. [66],70

the approximation method of Tsoukalas et al. [82], and the Branch-and-Sandwich71

(B&S) algorithm introduced in [51, 52] and extended in [69]. The solver presented72

here, Branch-And-Sandwich BiLevel algorithm (BASBL), is based on this latter work.73

It is implemented within the open-source MINOTAUR toolkit [57, 58, 59, 60].74

The structure of this paper is as follows. In Section 2 the full implementation75

of BASBL is presented. Section 3 then describes BASBLib, a new library of bilevel76

test problems collected from the literature. In Section 4 an example of BASBL usage77

on one of the test problems is provided. In Section 5 the BASBL solver is applied to78

the problems in the library, including nonconvex bilevel benchmark problems and the79

impact of different algorithmic options on computational performance is investigated.80

Finally, in Section 6 we draw conclusions and discuss potential directions for future81

work.82
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2. Implementation of the BASBL solver. In this section, we describe the im-83

plementation of the BASBL solver. An understanding of the B&S algorithm, as de-84

scribed in part I of this work [69], is assumed.85

2.1. Prerequisites. We start by identifying the assumptions needed to ensure86

the convergence of the BASBL solver to global optimality. In global optimization, it is87

common to assume continuity of the participating functions and compactness of the88

host sets, i.e., finite lower and upper bounds on all problem variables:89

Definition 2.2 (Prerequisites for the BASBL solver).90

1. Explicit bounds are known for all variables, i.e. x ∈ X = [xL,xU] ⊂ Rn and91

y ∈ Y = [yL,yU] ⊂ Rm.92

2. All functions involved in (BPP) must be bounded from below and/or above93

and continuous on X × Y .94

3. All functions involved in (BPP) meet the conditions imposed by the single95

level optimization solver used (e.g., BARON [75, 81] is applicable to factorable96

functions)97

4. A constraint qualification holds for the inner problem (ISP(x)) for all x ∈ X98

values.99

During its execution, BASBL solver requires the global solution of nonconvex nonlin-100

ear (sub)problems (NLP), as described in [51, 69]. Note that even in the case of101

single-level optimization, algorithms that guarantee convergence to a global optimum102

in finite time exist only for special cases, e.g., linear or convex problems. For non-103

convex nonlinear problems, modern solvers (see, e.g., [1, 12, 62, 81]) offer finite-time104

convergence to an ε-optimal solution only. That is, they provide a lower bound on105

the optimal objective function value and a feasible point with an objective function106

value that is not more than ε larger than the lower bound. Taking this into account,107

the BASBL solver can provide a ε-optimal bilevel solution (Definition 1.1) of (BPP)108

in finite time, within the tolerances used for the necessary solution of the relevant109

subproblems. For example, a feasibility tolerance is specified to verify the satisfaction110

of constraints such as g(x,y) ≤ 0.111

2.1.1. Modifications to MINOTAUR classes. The BASBL solver is built within112

MINOTAUR [57, 58, 60], a flexible open-source toolkit written in C++ for solving mixed-113

integer nonlinear problems (MINLP).114

MINOTAUR provides an interface through which the user can implement a cus-115

tomized branch-and-bound algorithm. However, the B&S algorithm, which is the116

basis for the BASBL solver, differs significantly from classical branch-and-bound algo-117

rithms. In particular,118

• B&S uses a list of inner-active nodes as well as independent list and sublists,119

in addition to the usual list of active nodes;120

• every node in the Branch-and-Sandwich tree must hold lower and upper121

bounds for both the inner and outer problems.122

We have extended the MINOTAUR search tree and nodes management facilities to enable123

these features.124

2.1.2. NLP solvers. The nonconvex nonlinear subproblems that need to be125

solved during a BASBL run are shown in Table 2.1. Natively available MINOTAUR126

solvers (IPOPT (Interior Point OPTimizer) [84] and Filter-SQP [38]) can ensure only127

the local optimality of NLP problems. We therefore implemented an interface to GAMS128

(General Algebraic Modeling System) [23] which provides access to a range of state-of-129

the-art NLP solvers, including deterministic global solvers such as BARON [75, 81] and130
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ANTIGONE [62]. Furthermore, a native solver for the global solution of NLP problems,131

based on the αBB method [1, 2], has recently been implemented under the MINOTAUR132

framework [49]. BASBL subproblems can currently be solved to global optimality with133

GAMS/BARON or GAMS/ANTIGONE through system calls or using the MINOTAUR/αBB134

solver.135

Table 2.1
Summary of bounding NLPs to be solved during the execution of BASBL

Problem description Solution Problem name† Solver type

(Nonconvex) inner lower bound f (k),L (ILB(k)) Global

(Convex) relaxed inner lower bound f̆ (k),L (RILB(k)) Local

(Nonconvex) inner upper bound f (k),U (IUB(k)) Global

(Nonconvex) relaxed inner upper bound f̄ (k) (RIUB(k)) Global
(Convex) relaxed inner subproblem

w(j)(x̄) (RISP(x̄, j)) Local
at given x̄ over node j
(Nonconvex) inner subproblem

w(j)(x̄) (ISP(x̄, j)) Global
at given x̄ over node j
(Nonconvex) inner subproblem

w(x̄) (ISP(x̄, Y )) Global
at given x̄ over the whole of Y

(Nonconvex) outer lower bound F (k) (LB(k)) Global
(Nonconvex) outer upper bound

F̄ (k′)(x̄) (UB(x̄, k′)) Global or Local
at given x̄ over node k′

(Nonconvex) outer upper bound
F̄ (x̄) (UB(x̄, Y )) Global or Local

at given x̄ over the whole of Y

† As defined in the first part of this work [69].

136

2.2. Pseudo codes of the full BASBL implementation. BASBL starts with the137

execution of the Initialize() procedure described in Algorithm 2.1. The MINOTAUR138

AMPL interface function ReadInstance() is used to read a “*.nl” file. BASBL options139

should be provided either using command line arguments or an option file (basbl.opt)140

containing (at least) the main solver options: outer (εF ) and inner (εf ) optimal-141

ity tolerances; inner and outer bounding schemes; node selection rule (NodeSel);142

branching variable selection strategy (BrV arStra); the best inner upper bound strat-143

egy (BIUBStra); stopping criteria, e.g., maximum no. of iterations (MaxIter) and144

maximum allowed CPU time in sec. (MaxTime). The complete list of input options145

to the BASBL solver will be presented in Subsection 4.2.

Algorithm 2.1 BASBL: initialization

Input: AMPL input file (problem.nl) and BASBL option file (basbl.opt) files
Output: terminate BASBL if error occurred

1: procedure Initialize(problem.nl, basbl.opt)
2: StartTimer(time) . Initialize global timer

3: ReadOptions(basbl.opt) . Read BASBL options from basbl.opt file

4: ReadInstance(problem.nl) . Read problem from AMPL problem.nl file

5: CreateSubproblems() . Create ILB,IUB,LB,UB subproblems

6: L ← ∅,LIn ← ∅ . Initialize lists

7: iter ← 0, p← 1, k ← 1 . Set iteration, X-partition (p) and node (k) counters

8: FUB ←∞, fUB ←∞, (xUB,yUB)← ∅ . Set the incumbent

9: end procedure

146

If the initialization procedure succeeds, BASBL then executes procedure Process-147

RootNode() for a root node k = 1, as described in Algorithm 2.2. If BASBL is148
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not terminated at the root node, it continues to execute the main while() loop,149

described in steps 3–31 in Algorithm 2.3. On termination, if the incumbent value150

FUB = ∞, then the bilevel instance is infeasible. Otherwise, εF -optimal objective151

values FUB, fUB and ε-optimal solution (xUB,yUB) are returned.

Algorithm 2.2 BASBL: root node processing

Input: Node k = 1
Output: Lists L,Lp

1: procedure ProcessRootNode(k)
2: f (k) ← SolveILB(k) . Solve (ILB(k)), see Sec. 3.1 in [69]

3: if FullyFathom(k) == true then . see Definition 2.9 in [69]

4: return Infeasible problem and terminate BASBL

5: end if
6: f̄ (k) ← SolveIUB(k) . Solve (IUB(k)), see Sec. 3.2 in [69]

7: if FullyFathom(k) == true then
8: return Infeasible problem and terminate BASBL

9: else
10: fUB,p ← f̄ (k)

11: end if
12: [F (k), (x̄(k), ȳ(k))]← SolveLB(k) . Solve (LB(k)), see Sec. 3.4 in [69]

13: if OuterFathom(k, εF ) == true then . see Definition 2.10 in [69]

14: return Infeasible problem and terminate BASBL

15: end if
16: x̄← x̄(k)

17: w(x̄)← SolveISP(x̄) . Solve (ISP(x̄)), see Sec. 3.5 in [69]

18: [F̄ (x̄), (x̄, ȳ)]← SolveUB(x̄) . Solve (UB(x̄)), see Sec. 3.5 in [69]

19: if F̄ (x̄) <∞ then
20: FUB ← F̄ (x̄), fUB ← f(x̄, ȳ), (xUB,yUB)← (x̄, ȳ)
21: if OuterFathom(k, εF ) == true then
22: return FUB, fUB, (xUB,yUB)
23: terminate BASBL

24: end if
25: end if
26: L ← {k},Lp ← {k} . Add root node to lists

27: end procedure

152

3. BASBLib - A Library of Bilevel Test Problems. The literature on the153

application of bilevel programming problems is extensive and diverse (see e.g., [10,154

28, 31, 78] and references therein), and there have been initial efforts to establish a155

systematic test library for the evaluation of the bilevel algorithms and their imple-156

mentations. While there exist generators of bilevel test problems [14, 15, 16], they157

are limited to linear and quadratic problems. There already exist several collections158

of bilevel test problems, focused on special subclasses:159

• Chapter 9 in [39] contains linear and quadratic problems (19 problems in160

total)161

• The GAMS EMP Library [33] contains mainly linear and quadratic problems (33162

problems in total)163

• The test set included with BIPA [21] contains BPPs with a convex inner164

problem (22 problems in total)165
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Algorithm 2.3 Full pseudo-code of the BASBL implementation

Input: AMPL problem.nl file and BASBL option (basbl.opt) file. Otherwise, default
BASBL values (see Table 4.3) are used.

Output: Best solution found (xUB,yUB); outer (FUB) and inner (fUB) objectives.
1: Initialize(problem.nl) . see Algorithm 2.1

2: ProcessRootNode(k) . see Algorithm 2.2

3: while L 6= ∅ and iter ≤MaxIter and time ≤MaxTime do
4: k ← SelectNode(NodeSel) . see Definition 2.8 in [69]

5: vbr ← SelectBranchingVariable(k,BrV arStra) . see Definition 2.5 in [69]

6: K ← {k1, k2} ← BranchNode(k, vbr) . see Definition 2.7, Steps 1-2 in [69]

7: [L,LIn,Lp]← UpdateLists(k, vbr,K) . see Definition 2.7, Step 3 in [69]

8: for all k ∈ K do
9: f (k) ← SolveILB(k)

10: CheckFathoming(k) . see Algorithm 2.4

11: if s(k) 6= inactive then . s(k) - state of node k: active, inner-active, inactive

12: f̄ (k) ← SolveIUB(k)
13: UpdateBIUB(BIUBStra) . see Algorithm 2.6

14: end if
15: if s(k) == active then
16: [F (k), (x̄(k), ȳ(k))]← SolveLB(k)
17: CheckOuterFathoming(k, εF ) . see Algorithm 2.5

18: x̄← x̄(k)

19: w(x̄)← SolveISP(x̄)
20: [F̄ (x̄), (x̄, ȳ)]← SolveUB(x̄)
21: if F̄ (x̄) < FUB then
22: FUB ← F̄ (x̄), fUB ← f(x̄, ȳ), (xUB,yUB)← (x̄, ȳ)
23: for all nodes j ∈ Lp : k ∈ Lp do
24: CheckOuterFathoming(j, εF )
25: end for
26: end if
27: end if
28: end for
29: iter ← iter + 1 . Increase the iteration counter

30: UpdateTimer(time) . Update global timer

31: end while

Algorithm 2.4 BASBL: check fathoming rule

Input: Node k
Output: Updated lists L,LIn,K

1: procedure CheckFathoming(k)
2: if FullyFathom(k) == true then . see Definition 2.9 in [69]

3: DeleteNode(k) . see Algorithm 2.7

4: CheckListDeletion(p) . see Definition 2.11 in [69]

5: UpdateBIUB(BIUBStra)
6: end if
7: end procedure
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Algorithm 2.5 BASBL: check outer fathoming rule

Input: Node k
Output: Updated lists L,LIn,K

1: procedure CheckOuterFathoming(k, εF )
2: if OuterFathom(k, εF ) == true then . see Definition 2.10 in [69]

3: MoveNode(k) . see Algorithm 2.8

4: CheckListDeletion(p)
5: UpdateBIUB(BIUBStra)
6: end if
7: end procedure

Algorithm 2.6 BASBL: update the best inner upper bound

Input: BIUBStra
Output: Updated fUB,p/fUB,k

1: procedure UpdateBIUB(BIUBStra)
2: if BIUBStra == overList then . BIUB for a list Lp : k ∈ Lp

3: Update fUB,p . see Sec. 3.3.1 in [69]

4: for all nodes j ∈ Lp : k ∈ Lp do
5: CheckFathoming(j) . see Algorithm 2.4

6: end for
7: else . BIUB for a set of sublists Lps : k ∈ Lps
8: Update fUB,k . see Sec. 3.3.2 in [69]

9: for all nodes j ∈ Lp
s : k ∈ Lp

s do
10: CheckFathoming(j) . see Algorithm 2.4

11: end for
12: end if
13: end procedure

Algorithm 2.7 BASBL: delete node

Input: Node k
Output: Updated lists L,LIn,K

1: procedure DeleteNode(k)
2: if s(k) == active then . Check state of node k

3: L ← L \ {k} . Delete node k from L
4: else . node k is inner-active

5: LIn ← LIn \ {k} . Delete node k from LIn
6: end if
7: K ← K \ {k} . Delete node k from K

8: end procedure

Algorithm 2.8 BASBL: move node from L to LIn

Input: Node k
Output: Updated lists L,LIn,K

1: procedure MoveNode(k)
2: L ← L \ {k} . Delete node k from L
3: LIn ← LIn

⋃{k} . Add node k to LIn
4: K ← K \ {k} . Delete node k from K

5: end procedure
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• A test set for bilevel problems [64] containing either nonconvex inner problems166

or problems with a structure that causes convergence issues for algorithms167

(36 problems in total)168

• MIPLIB introduced in [35] and based on MILPLIB 3.0 [13], containing bilevel169

problems with only binary variables (57 problems in total)170

• Bilevel optimization problem library, version 0.1 [73] containing binary bilevel171

problems (315 problems in total)172

Thus, the goal of this section is to present an actively growing online collection of173

general bilevel test problems, BASBLib [70] gathered from various sources and devoted174

to bilevel programming. The library is designed as an open resource to which other175

researchers in the bilevel programming community can easily contribute.176

3.1. Classification of BPP problems. Since bilevel programming involves177

two optimization problems (outer–inner), the proposed classification is based on the178

nature of these problems. Currently, we distinguish the following classes (types) of179

bilevel programming problems:180

• outer linear-inner linear bilevel problems (LP-LP)181

• outer linear-inner quadratic bilevel problems (LP-QP)182

• outer quadratic-inner quadratic bilevel problems (QP-QP)183

• outer linear-inner nonlinear bilevel problems (LP-NLP)184

• outer quadratic-inner nonlinear bilevel problems (QP-NLP)185

• outer nonlinear-inner nonlinear bilevel problems (NLP-NLP)186

A concise summary of the problems in BASBLib v2.2 [71] and their properties is187

presented in Table 4.2. The first column denotes the problem type, the second con-188

tains the problem name and the third the original source (to the best of our knowl-189

edge) source. The fourth through ninth columns (n,m,#G,#H,#g,#h) contain190

the number of outer (x) variables, inner (y) variables, inequality (G) and equality191

(H) constraints in the outer problem, inequality (g) and equality (h) constraints192

in the inner problem (excluding box constraints), respectively. Finally, the last193

four columns contain the best known optimal solutions: the outer (F ∗) and inner194

(f∗) objective function values and the set of optimal solutions (x∗ and y∗), respec-195

tively. Note that some problems do not contain any outer variables (n = 0), but196

have been included because they reveal issues with some previous approaches, as dis-197

cussed in [66]. An in-depth description of BASBLib is provided in the online resource198

http://basblsolver.github.io/BASBLib/. It includes problem statements, a geomet-199

rical analysis of the problems, the best known solutions, comments on inaccuracies200

in the literature, sources where the problem was used, AMPL input files in the BASBL201

format, and finally instructions on how to use it and contribute to it.202

3.2. Comments on the problems. In this section, we report some inaccuracies203

for problems reported in the literature. The most comprehensive and up to date source204

for all observed inaccuracies is http://basblsolver.github.io/BASBLib/.205

In the original source [78] of problem sib 1997 02 (shown in Eq. (3.4)) as well as206

in other well-known sources [10, 21], it is reported that the optimal solution occurs at207

(x∗, y∗) = (4.0, 4.0) with F ∗ = −12.0 and f∗ = 4.0. However, the solution obtained208

with BASBL (see Table 5.4) is (x∗, y∗) = (2.0, 1.0) with F ∗ = −2.0 and f∗ = 1.0.209

The solution in the literature (x, y) = (4.0, 4.0) is in fact not a bilevel feasible point.210

When the leader (outer decision maker) selects x = 4.0, the follower (inner decision211

maker) responds with y = 0.0, as this is better for the follower, although it is worse212

for the leader. Moreover, the graphical analysis in Figure 16.1.1 in [78] between the213

geometrical interpretation of the problem and its formulation confirms there is an214
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inconsistency.215

(3.4)

min
x,y

x− 4y

s.t. y ∈ arg min
y∈[0,10]

y

s.t. −x− y + 3 ≤ 0
−2x+ y ≤ 0

2x+ y − 12 ≤ 0
−3x+ 2y + 4 ≤ 0

x ∈ [0, 10], y ∈ [0, 10],

216

Therefore, we introduce a variation of problem sib 1997 02, which we name sib-217

1997 02v. The only difference is in the fourth inner constraint, which is changed218

from −3x+2y+4 ≤ 0 to 3x−2y−4 ≤ 0. The feasible region of problem sib 1997 02v219

coincides with the one shown in Figure 16.1.1 in [78] and the optimal solution of this220

problem is (x∗, y∗) = (4.0, 4.0) with F ∗ = −12.0 and f∗ = 4.0.221

In the original source of problem mb 2007 18 (mb 1 1 11 in [64]):222

(3.5)

min
x,y

−x2 + y2

s.t. y ∈ arg min
y∈[−1,1]

xy2 − y4

2

x ∈ [−1, 1], y ∈ [−1, 1]

223

as well in [66], the reported optimal solution is achieved at (x∗, y∗) = (0.5, 0.0) with224

F ∗ = 0.25 and f∗ = 0.0. However, the solution obtained with BASBL is (x∗, y∗) =225

(1.0, 0.0) with F ∗ = −1.0 and f∗ = 0.0. When the leader selects x = 1.0, the follower226

responds with y = 0.0, and hence (x∗, y∗) = (1.0, 0.0) is a bilevel feasible point.227

Similarly to the situation for problem sib 1997 02, we introduce a variation of228

problem mb 2007 18 named mb 2007 18v. The only difference is in the outer objective229

function, which is changed from −x2 +y2 to x2 +y2. The optimal solution for problem230

mb 2007 18v is (x∗, y∗) = (0.5, 0.0) with F ∗ = 0.25 and f∗ = 0.0, and this coincides231

with the solution of the problem mb 1 1 11 reported in [64].232

In the original source of problem mb 2007 19 (mb 1 1 12 in [64]), the reported233

optimal solution is “(x∗, y∗) = ( 7−
√

13
18 ,−

√
7−
√

13
18 ) ≈ (0.189,−0.768)” with F ∗ =234

−0.258. However, the solution obtained with BASBL is (x∗, y∗) ≈ (0.189, 0.434) with235

F ∗ = −0.258 and f∗ = −0.018. First, note, that −
√

7−
√

13
18 ≈ −0.434. Next, in236

Mitsos et al. [66],Table 2, the reported solution is (x̄, ȳ) ≈ (0.1874, 0.438), which is237

very close to the solution found using BASBL, as well to the solution of the same238

problem tackled in Example 3.2 in [68]. Therefore, we adopt (0.1874, 0.438) as the239

approximate global solution.240

Similarly, we introduce problem mb 2007 22v - variation of problem mb 2007 22241

(mb 1 1 15 in [64]). The only difference is in the outer objective function, which is242

changed from (x− 0.6)2 + y2 to (x+ 0.6)2 + y2. After this modification, the optimal243

solution of problem mb 2007 22v is (x∗, y∗) ≈ (−0.555, 0.452) with objective values244

F ∗ = 0.207 and f∗ = −0.066. These values are very close to the values reported for245

problem mb 1 1 15 in [64].246

In problem mb 2007 24 (mb 1 1 12 in [64]), we have changed the third constraint247

to −2.5 + y2
1 + y2

2 + y2
3 ≤ 0 (it was 2.5 + y2

1 + y2
2 + y2

3 ≤ 0 in the original source).248
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The same correction was made in [68]. Furthermore, we note there are two global249

solutions, (x∗, y∗) = (−1,−1, 1,±1,−
√

0.5) whereas only one was reported in [64].250

4. Solving problems using BASBL.251

4.1. Problem input via the AMPL interface. The BASBL solver reads the252

bilevel problem as described using the AMPL (A Mathematical Programming Lan-253

guage) [41] file format (.mod). Any information on the bilevel problem needed for254

BASBL execution is obtained through AMPL’s Solver interface Library (ASL) [42] from255

a generated file (*.nl). AMPL/ASL does not support the modeling of programs with256

a multi-level structure, therefore we have developed a naming convention to define257

the bilevel structure of the problem. We use the prefixes “outer ” and “inner ” to258

distinguish information corresponding to the outer/inner problem.259

We provide an example of use of the BASBL solver to solve problem sib 1997 01260

(originally introduced as Example 15.3.1 in [78]), the formulation of which is presented261

in Example 4.1:262

Example 4.1 (bilevel problem sib 1997 01).263

min
x,y

16x2 + 9y2

s.t. −4x+ y ≤ 0

y ∈ arg min
y∈[0,50]

(x+ y − 20)4

s.t. 4x+ y − 50 ≤ 0

x ∈ [0, 12.5], y ∈ [0, 50]

264

Listing 1 provides an AMPL modeling example for the bilevel instance described265

in Example 4.1. We provide the AMPL file in [71], which is directly connected to the266

online resource http://basblsolver.github.io/BASBLib/.267

Listing 1
Description of bilevel problem sib 1997 01 in AMPL language, with the specific format required

for its solution with the BASBL solver
268

var x >= 0 , <= 1 2 . 5 ; # Outer v a r i a b l e bounds269
var y >= 0 , <= 50 ; # Inner v a r i a b l e bounds270
var l {1 . . 3} >= 0 , <= 200 ; # KKT m u l t i p l i e r s bounds271

272
# Outer o b j e c t i v e273
minimize o u t e r o b j : 16∗xˆ2 + 9∗y ˆ2 ;274

275
s ub j e c t to276
# Outer c o n s t r a i n t s :277

oute r con 1 : −4∗x + y <= 0 ;278
# Inner o b j e c t i v e :279

i n n e r o b j : ( x + y −20)ˆ4 = 0 ;280
# Inner c o n s t r a i n t s :281

inne r con 1 : 4∗x + y −50 <= 0 ;282
# KKT c o n d i t i o n s :283

s t a t i o n a r i t y 1 : 3∗( x + y −20)ˆ3 + l [ 1 ] − l [ 2 ] + l [ 3 ] = 0 ;284
complementar ity 1 : l [ 1 ] ∗ ( 4 ∗ x + y −50) = 0 ;285
complementar ity 2 : l [ 2 ] ∗ y = 0 ;286
complementar ity 3 : l [ 3 ] ∗ ( y − 50) = 0 ;287288

Note that although the inner objective function (inner obj) could be construed as289

an outer constraint, the prefix “outer con ” is not required.290

This manuscript is for review purposes only.
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Table 4.2: Description of the bilevel test problems in BASBLib v.2.2: data and references. [*] in the “Source” refers to the current work. #G (#g) denotes the number of outer (inner) inequality
constraints, #H (#h) denotes the number of outer (inner) equality constraints. Other symbols are as defined in the text.

Bilevel problem Problem properties Best known global solution(s)

Type Name Source n m #G #H #g #h F∗ f∗ x∗ y∗
L
P

-
L
P

mb 2007 01 [64] 0 1 0 0 0 0 1.000 −1.000 − 1.000
mb 2007 02 [64] 0 1 1 0 0 0 Infeas. Infeas. − −
as 2013 01 [5] 1 1 0 0 2 0 0.000 0.000 0.000 0.000
cw 1988 01 [19] 1 1 0 0 3 0 −37.000 14.000 19.000 14.000
lh 1994 01 [53] 1 1 0 0 3 0 −16.000 4.000 4.000 4.000
sib 1997 02 [78] 1 1 0 0 4 0 −2.000 1.000 2.000 1.000
sib 1997 02v [*] 1 1 0 0 4 0 −12.000 4.000 4.000 4.000
b 1984 01 [7] 1 1 0 0 4 0 3.111 −6.667 0.889 2.222
aw 1990 01 [6] 1 1 0 0 5 0 −49.000 17.000 16.000 11.000
b 1991 01 [9] 1 2 0 0 3 0 −1.000 0.000 1.000 (0.000, 0.000)
b 1991 01v [*] 1 2 0 0 3 0 −2.000 −1.000 0.000 (0.000, 1.000)
cw 1990 01 [20] 1 2 0 0 3 0 −13.000 −4.000 5.000 (4.000, 2.000)
bf 1982 02 [11] 2 2 0 0 3 0 −3.250 −4.000 (2.000, 0.000) (1.500, 0.000)
bf 1982 01 [11] 2 3 0 0 3 0 −26.000 3.200 (0.000, 0.900) (0.000, 0.600, 0.400)
s 1989 01 [76] 2 3 1 0 3 0 −14.600 0.300 (0.000, 0.650) (0.000, 0.300, 0.000)
ct 1982 01 [18] 2 6 0 0 0 3 −29.200 3.200 (0.000, 0.900) (0.0, 0.6, 0.4, 0.0, 0.0, 0.0)

L
P

-
Q

P

mb 2006 01 [63] 0 1 0 0 0 0 −1.000 −1.000 − −1.000
mb 2007 04 [64] 0 1 0 0 0 0 1.000 −1.000 − 1.000
mb 2007 03 [64] 0 1 0 0 1 0 −1.000 1.000 − −1.000
b 1991 02 [9] 1 2 0 0 1 0 2.000 12.000 (2.000) (6.000, 0.000)
as 1984 01 [4] 2 2 1 0 2 0 0.000 200.000 (0.000, 0.000) (−10.000,−10.000)

0.000 100.000 (0.000, 30.000) (−10.000, 10.000)

Q
P

-
Q

P

b 1998 04 [10] 1 1 0 0 0 0 81.330 −0.336 10.020 0.820
b 1998 05 [10] 1 1 0 0 0 0 1.000 0.000 1.000 0.000
lmp 1987 01 [55] 1 1 0 0 0 0 0.000 0.000 1.000 0.000
y 1996 02 [86] 1 1 0 0 0 0 1.500 −2.500 0.250 0.000
d 1992 01 [26] 1 1 0 0 1 0 31.25 4.000 1.000 1.000
d 2000 01 [27] 1 1 0 0 2 0 0.000 −0.250 0.500 −0.500
cw 1990 02 [20] 1 1 0 0 3 0 5.000 4.000 1.000 3.000
tmh 2007 01 [83] 1 1 0 0 3 0 22.500 −4.500 1.500 4.500
b 1988 01 [8] 1 1 0 0 3 0 17.000 1.000 1.000 0.000
sa 1981 01 [77] 1 1 1 0 1 0 100.000 0.000 10.000 10.000
sc 1998 01 [74] 1 1 3 0 0 0 9.000 0.000 3.000 5.000
b 1998 02 [10] 2 1 0 0 0 0 0.000 −0.900 (0.800, 0.200) 1.000
b 1998 03 [10] 2 1 0 0 0 0 0.000 −0.320 (1.000, 0.400) 0.800
b 1998 07 [10] 1 2 0 0 4 0 −1.410 7.620 1.890 (0.890, 0.000)
d 1978 01 [25] 2 2 0 0 0 0 −1.000 0.000 (0.500, 0.500) (0.500, 0.500)
fl 1995 01 [34] 2 2 0 0 0 0 −2.250 0.000 (0.750, 0.750) (0.750, 0.750)
sa 1981 02 [77] 2 2 2 0 0 0 225.000 100.000 (20.000, 5.000) (10.000, 5.000)
b 1984 02 [7] 2 2 1 0 2 0 −12.687 −6.473 (0.0, 2.0) (1.875, 0.9063)
dd 2012 02 [30] 2 2 0 1 2 0 −1.000 4.000 (0.707, 0.707) (0.000, 1.000)
as 1981 01 [3] 4 4 1 0 4 0 −6600.000 54.000 (7.0, 3.0, 12.0, 18.0) (0.0, 10.0, 30.0, 0.0)

L
P

-
N

L
P

mb 2007 05 [64] 0 1 0 0 0 0 0.500 −1.000 − 0.500
mb 2007 06 [64] 0 1 0 0 0 0 −1.000 −1.000 − −1.000
mb 2007 10 [64] 1 1 0 0 0 0 0.500 −0.100 [0.100, 1.000] 0.500
mb 2007 11 [64] 1 1 0 0 0 0 −0.800 0.000 0.000 −0.800
mb 2007 13 [64] 1 1 0 0 0 0 −1.000 0.000 0.000 1.000
mb 2007 13v [*] 1 1 0 0 0 0 −2.000 −1.500 −1.000 −1.000
mb 2007 15 [64] 1 1 0 0 0 0 0.000 −0.830 −1.000 1.000
mb 2007 16 [64] 1 1 0 0 0 0 −2.000 0.000 −1.000 0.000

Continued on next page
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Table 4.2 Continued from previous page

Bilevel problem Problem properties Best known global solution(s)

Type Name Source n m #G #H #g #h F∗ f∗ x∗ y∗

−2.000 0.000 −0.500 −1.000
ka 2014 01 [52] 1 1 0 0 0 0 −1.000 0.000 0.000 1.000
mb 2007 09 [64] 1 1 1 0 0 0 −1.000 −1.000 −1.000 −1.000
nwj 2016 01 [68] 1 2 0 0 1 0 2.000 0.000 (2.000) (0.000, 0.000)
gf 2001 01 [44] 1 2 0 0 2 0 0.190 −7.250 0.194 (9.970, 10.000)
cg 1999 01 [17] 2 3 0 0 3 0 −29.200 0.310 (0.000, 0.900) (0.000, 0.600, 0.400)

Q
P

-
N

L
P

mb 2007 12 [64] 1 1 0 0 0 0 0.000 0.000 0.000 0.000
mb 2007 14 [64] 1 1 0 0 0 0 0.250 −0.083 0.250 0.500
mb 2007 17 [64] 1 1 0 0 0 0 0.188 −0.016 −0.250 0.500

0.188 −0.016 −0.250 −0.500
mb 2007 18 [64] 1 1 0 0 0 0 −1.000 0.000 1.000 0.000
mb 2007 18v [*] 1 1 0 0 0 0 0.250 0.000 0.500 0.000
mb 2007 19 [64] 1 1 0 0 0 0 −0.258 −0.018 0.189 0.434
mb 2007 20 [64] 1 1 0 0 0 0 0.313 −0.083 0.500 0.500
mb 2007 21 [64] 1 1 0 0 0 0 0.210 −0.069 −0.555 0.455
mb 2007 23 [64] 1 1 0 0 0 0 −1.755 0.009 0.211 1.799
mb 2007 22 [64] 1 1 0 0 1 0 0.189 −0.042 0.635 −0.433
mb 2007 22v [*] 1 1 0 0 1 0 0.210 −0.069 −0.555 0.455
dd 2012 01 [30] 1 1 0 0 1 0 1.000 0.000 0.000 0.000
sib 1997 01 [78] 1 1 1 0 1 0 2250.000 194.800 11.250 5.000
yz 2010 01 [85] 1 1 0 0 1 0 1.000 −2.000 1.000 1.000
mb 2007 08 [64] 1 1 2 0 0 0 0.000 0.000 −0.567 0.000
c 2002 02 [21] 1 1 0 0 3 0 17.000 2.000 1.000 0.000
c 2002 04 [21] 1 1 1 0 1 0 88.754 −0.077 0.000 0.579

N
L
P

-
N

L
P

c 2002 01 [21] 1 1 1 0 1 0 227.691 0.000 6.082 4.487
c 2002 03 [21] 1 1 1 0 1 0 2.000 24.018 4.000 0.000
c 2002 05 [21] 1 2 0 0 2 0 2.750 0.548 1.941 (0.000, 1.211)
fz 1998 01 [40] 1 2 0 0 2 0 1.000 −1.000 1.000 (0.000, 1.000)
mb 2007 24 [64] 2 3 3 0 0 0 −2.350 −2.000 (−1.000,−1.000) (1.000,−0.707)

−2.350 −2.000 (−1.000,−1.000) (−1.000,−0.707)
nwj 2016 02 [68] 2 3 1 0 2 0 −1.710 −2.230 (−1.000,−1.000) (1.110, 0.310,−0.820)
nwj 2016 04 [68] 2 3 1 0 2 0 −2.000 −1.000 (1.000, 1.000) (0.000, 0.000, 1.000)
nwj 2016 03 [68] 4 4 3 0 2 0 −0.437 −1.190 (0.000, 0.000,−0.707,−0.707) (0.618, 0.000,−0.558,−0.554)
nwj 2016 05 [68] 4 4 3 0 2 0 −3.506 −0.834 (0.544, 0.468, 0.490, 0.495) (−0.783,−0.501,−0.288,−0.184)
ka 2014 02 [52] 5 5 3 0 1 0 −10.000 −3.100 (1.0,−1.0,−1.0,−1.0,−1.0) (−1.0,−1.0,−1.0,−1.0,−1.0)
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4.2. Algorithmic options. In Table 4.3 we list all options implemented in the291

current version of BASBL. Algorithmic options should be specified either in the BASBL292

option (basbl.opt) file, which contains the default values for the main algorithmic293

options, or using command line arguments.294

4.3. Command line interface. Interaction with the BASBL solver currently295

takes place using a command line interface (CLI). Upon execution, BASBL produced296

output (using the default log output value LogLevel = 2) is shown in Figure 4.1 (for297

Example 4.1 with default solver options). For each iteration, a one-line summary298

is printed, containing: the current iteration number (Iter), the incumbent solution299

found so far (Fopt, fopt), the outer optimality gap (Out.-Gap) which is equal to300

the difference between Fopt and the lowest outer lower bound in the current BASBL301

tree, the total number of solved subproblems including those solved at the current302

iteration, and the number of active (L) and inner-active (Lin) nodes in the BASBL303

tree. For all choices of Loglevel the BASBL status after termination is reported,304

together with the final objective values found (F* and f*) and the solution point (x*,305

y*). Finally, the time (wall-clock) spent on each type of BASBL subproblem and the306

total time are reported. BASBL also generates a file named BASBL-problem name.dat,307

which contains a summary of the optimization results.308

Command-line interface
2017-10-10 BASBL (BiLevel solver) v1.0 14:09:39

----------------------------------------------------------------------

Outer separation gap & obj. values | # of solved subproblems | L sizes

----------------------------------------------------------------------

Iter Out.-Gap Fopt fopt ILB IUB LB ISP UB L Lin

----------------------------------------------------------------------

0 0.00 2250.00 197.75 1 1 1 1 1 0 1

----------------------------------------------------------------------

*** Problem name : sib_1997_01

*** Solver status : Successful termination!

*** Solution :

Objectives : F* = 2250.00

f* = 197.75

Point : x* = 11.250

y* = 5.000

*** Solution time (s) :

ILB : 0.05

IUB : 0.05

LB : 0.08

ISP : 0.03

UB : 0.03

-----

Total : 0.24

Fig. 4.1. BASBL output screen using the default LogLevel = 2 value for problem sib 1997 01

5. Numerical results. Test problems from the BASBLib library (listed in Ta-309

ble 4.2) are used to evaluate the performance of the BASBL solver. Where relevant,310

BASBL subproblems are solved to global optimality with BARON version 17.4.1 [75, 81]311

accessed using GAMS version 24.8.4 [23] through system calls. Absolute (GAMS option312

This manuscript is for review purposes only.
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Table 4.3
Summary of available options in the BASBL v1.0

Option Flag Description Default value

Termination and output options

EpsF Outer optimality tolerance (εF ) 10−3

Epsf Inner optimality tolerance (εf ) 10−5

MaxIter Maximum number of iterations 1000

MaxTime Maximum allowed CPU time (sec.) 10000

LogLevel

Options to control log output

2

0 : all log output is suppressed
1 : print only error messages and warnings, if any
2 : print main info after each iteration
3 : print all log output

Tree management options

Branching variable (vbr) selection rule:
BrVarStra XY : priority given to X variables YX

YX : priority given to Y variables

The node selection rule:
Fl-lf : Option (Fl) - Option (lf)

NodeSel Fl-lff : Option (Fl) - Option (lf̄) Fl-lf

lF-lf : Option (lF ) - Option (lf)

lF-lff : Option (lF ) - Option (lf̄)

Bounding schemes options

Inner Lower Bounding scheme:

ILB strict : f (k),L (ILB(k)) strict

relaxed : f̆ (k),L (RILB(k))

IUB
Inner Upper Bounding scheme:

relaxed
relaxed : f̄ (k) (RIUB(k))

Best Inner Upper Bounding scheme:
BIUBStra overList : fUB,p (BIUB(p)) overSublists

overSublists : fUB,k (BIUB(k))

ISP

Inner Subproblem schemes:

strictOverList
relaxed : w(j)(x̄) (RISP(x̄, j))

strict : w(j)(x̄) (ISP(x̄, j))
strictOverList : w(x̄) (ISP(x̄, Y ))

LB
Outer Lower Bounding scheme:

strict
strict : F (k) (LB(k))

Outer Upper Bounding scheme:

UB strict : F̄ (k′)(x̄) (UB(x̄, k′)) strictOverList

strictOverList : F̄ (x̄) (UB(x̄, Y ))

Subsolver options

LocSolver

Specifies the local solver to be used:

MINOS
MINOS

FilterSQP

IPOPT

GlobSolver

Specifies the global solver to be used:

BARON
BARON

ANTIGONE

alphaBB

This manuscript is for review purposes only.
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OptCA) and relative (GAMS option OptCR) termination tolerances for BARON are set to313

10−5. The BASBL source code is compiled using the Clang compiler (version 3.8.0)314

with optimization level O3. All experiments are carried out on a computer with a315

64-bit Intel(R) Xeon(R) CPU X5675 @3.07GHz processor running Red Hat Linux.316

In Table 5.4 we present results using the BASBL solver with default options (see317

Table 4.3). In the second column (Name) we report the name of the problem, while318

in the third (FUB) and fourth (fUB) columns we report the outer and inner optimal319

objective values obtained with the BASBL solver. In the fifth column (Iter.) we show320

the total number of BASBL iterations at termination, while in the sixth column the321

number of outer upper bounding problems solved before the optimal solution was322

computed for the first time (Nopt) is reported. In the seventh column we report323

the total time (tB) (in seconds of wall-clock time) spent in BASBL execution. To324

benchmark BASBL, we use the precision-neutral the C++11 standard library facilities325

defined in the Chrono library [47]. In our implementation we use steady clock which326

guarantees that the time between clock ticks is constant. Thus, it is very well suited to327

measuring time intervals [24]. The implementation details of a particular clock depend328

on the compiler and the operating system. In our case steady clock, compiled with329

Clang 3.8, has nanosecond precision. The eighth column shows the sum of times (in330

seconds of wall-clock time) reported by GAMS for all subproblems (tG). These time331

measurements are based on the GAMS option etSolve, which combines the time to332

read and write files, the time to create the solution report, and the time taken by333

the actual solve. Next, in each pair of consecutive columns (starting with the ninth334

column and ending with the last one) the total number of subproblems solved (#)335

and the time spent in GAMS to solve BASBL subproblems (tG) are reported for the336

types of subproblems indicated. Finally, for each class of bilevel test problems from337

the BASBLib library, we emphasize the average and median results in bold.338

BASBL is able to find the optimal solution for all BASBLib problems. Since BASBL339

begins by solving subproblems of type (ILB) and outer/full fathoming is applied340

when appropriate, #ILB ≥ #IUB ≥ #LB ≥ #UB. The solution of the inner upper341

bounding problems (IUB) is the most expensive out of all BASBL subproblem types.342

Note that for all problems (including problems requiring a larger number of iterations)343

the optimal solution is found early (Nopt is typically small) and subsequent iterations344

are used to prove global optimality.345

All bilevel problems from the first three classes (LP-LP, LP-QP and QP-QP) are346

solved at the root node. In each case, BASBL thus achieves convergence after solving347

at most five subproblems at the root node. BASBL convergence is based on the outer-348

fathoming of the root node, i.e., the root node is outer-fathomed as a consequence of349

the test: F (0) ≥ FUB − εF (see Definition 2.10 [69]). BASBL is able to solve problem350

mb_2007_02 without having to perform the upper bounding procedure, as a result of351

detecting an infeasible outer lower bounding problem F (k) =∞.352

The next three classes of problems (LP-NLP, QP-NLP and NLP-NLP) contain nonlin-353

ear inner problems. With the exception of three problems (mb_2007_13, mb_2007_18v,354

and ka_2014_02) BASBL encounters no significant numerical difficulties, but, on av-355

erage, these problems require more BASBL iterations and longer execution times com-356

pared to the first three classes.357

Note that there is a significant difference between the total time spent in BASBL358

(tB(s)) and the sum of times reported by GAMS (tG(s)). This is most likely due to359

following reasons. First, to run BARON, each BASBL subproblem is transformed into360

the GAMS format by creating an external *.gms file. Importantly, given the small size361

of many problems in BASBLib and the fact that the corresponding subproblems are362
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fast to solve, much of total time in small problems is dominated by the overhead363

of setting up the problem. As a result, timings for such problems must be treated364

with caution. Second, running GAMS through system calls and reading results from365

the output (*.lst) file are slow operations. Therefore, the use of a native MINOTAUR366

global solver has great potential to reduce the observed bottlenecks, although the367

investigation of this aspect is beyond the scope of this work.368

5.1. Investigation of the relaxed scheme. In the original B&S paper [51]369

computationally less expensive convex alternatives for the inner lower bounding and370

inner subproblems were introduced. While this has great potential to significantly371

reduce the complexity of these BASBL subproblems, algorithmic analysis in Sec. 5372

of [69] revealed that this can increase the total number of BASBL iterations. Here we373

provide a further experimental investigation of the relaxed scheme and its influence374

on BASBL performance.375

The bounding schemes in BASBL are controlled using the options presented in Ta-376

ble 4.3. When the relaxed option is used for the inner lower bounding problems377

(ILB) and the inner subproblem (ISP), appropriate options for the global solver are378

set automatically. For the BARON solver these options are shown in Figure 5.2. First,379

BARON is forced to terminate after preprocessing by setting the number of iterations380

(MaxIter) to 0. Next, the number of local searches by BARON’s preprocessor is limited381

to 0 by setting the NumLoc option to 0. Finally, to sample the search space for local382

minima without range reduction, we set the range reduction options (PDo, TDo, MDo,383

LBTTDo, and OBTTDo) to 0 (see [75] for more details).

baron.opt
* BARON solver options file

MaxIter 0

NumLoc 0

PDo 0

TDo 0

MDo 0

LBTTDo 0

OBTTDo 0

Fig. 5.2. BARON options used for the relaxed BASBL bounding scheme

384
Note that for all tested instances from BASBLib, neither of two formulations385

(strict or relaxed, see Table 4.3) of the ILB and ISP require a lot of time to386

achieve convergence, even using strict tolerances (Table 5.4). Therefore, the time dif-387

ferences between solving strict or relaxed subproblems are almost negligible. However,388

obtaining less tight bounding values quite often results in slower BASBL convergence389

overall. This situation is investigated in Example 5.1390

Example 5.1 (problem b 1998 04).391

(5.6)

min
x,y

(x− 1)2 + (y − 1)2

s.t. y ∈ arg min
y∈[−100,100]

0.5y2 + 500y − 50xy

x ∈ [−100, 100], y ∈ [−100, 100]

392

The two-dimensional problem b 1998 04 belongs to the QP-QP class with variable393

bounds defining a wide range: [−100, 100]2. The solution of the strict inner lower394

This manuscript is for review purposes only.
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Table 5.4: BASBL performance solving test problems from BASBLib using default options. “T.” indicates problem type. See text for further explanation of the headings.

Solution found Total ILB IUB LB ISP UB

T. Name FUB fUB Iter. Nopt tB(s) tG(s) # tG(s) # tG(s) # tG(s) # tG(s) # tG(s)
L
P

-
L
P

mb 2007 01 1.00 −1.00 0 1 0.19 0.11 1 0.02 1 0.02 1 0.02 1 0.02 1 0.02
mb 2007 02 inf inf 0 0 0.11 0.06 1 0.02 1 0.02 1 0.02 0 0.00 0 0.00
as 2013 01 0.00 0.00 0 1 0.24 0.13 1 0.03 1 0.03 1 0.03 1 0.02 1 0.02
cw 1988 01 −37.00 14.00 0 1 0.21 0.12 1 0.02 1 0.02 1 0.02 1 0.02 1 0.02
lh 1994 01 −16.00 4.00 0 1 0.22 0.13 1 0.02 1 0.04 1 0.03 1 0.02 1 0.02
sib 1997 02 −2.00 1.00 0 1 0.22 0.13 1 0.02 1 0.04 1 0.03 1 0.02 1 0.02
sib 1997 02v −12.00 4.00 0 1 0.23 0.14 1 0.02 1 0.04 1 0.04 1 0.02 1 0.02
b 1984 01 3.11 −6.67 0 1 0.22 0.13 1 0.03 1 0.03 1 0.03 1 0.02 1 0.02
aw 1990 01 −49.00 17.00 0 1 0.25 0.15 1 0.02 1 0.04 1 0.04 1 0.02 1 0.02
b 1991 01 −1.00 0.00 0 1 0.22 0.12 1 0.02 1 0.03 1 0.02 1 0.02 1 0.02
b 1991 01v −2.00 −1.00 0 1 0.23 0.12 1 0.02 1 0.02 1 0.03 1 0.02 1 0.03
cw 1990 01 −13.00 −4.00 0 1 0.22 0.12 1 0.02 1 0.03 1 0.03 1 0.02 1 0.02
bf 1982 02 −3.25 −4.00 0 1 0.24 0.12 1 0.02 1 0.03 1 0.03 1 0.03 1 0.02
bf 1982 01 −26.00 3.20 0 1 0.28 0.16 1 0.03 1 0.03 1 0.05 1 0.02 1 0.03
s 1989 01 −14.60 0.30 0 1 0.29 0.17 1 0.02 1 0.05 1 0.05 1 0.02 1 0.02
ct 1982 01 −29.20 3.20 0 1 0.32 0.17 1 0.02 1 0.05 1 0.05 1 0.02 1 0.02

Average 0.00 0.94 0.23 0.13 1.00 0.02 1.00 0.03 1.00 0.03 0.94 0.02 0.94 0.02
Median 0.00 1.00 0.23 0.13 1.00 0.02 1.00 0.03 1.00 0.03 1.00 0.02 1.00 0.02

L
P

-
Q

P

mb 2006 01 −1.00 −1.00 0 1 0.21 0.12 1 0.03 1 0.03 1 0.02 1 0.02 1 0.02
mb 2007 04 1.00 −1.00 1 1 0.38 0.22 3 0.07 3 0.07 2 0.04 1 0.02 1 0.02
mb 2007 03 −1.00 1.00 0 1 0.29 0.20 1 0.03 1 0.05 1 0.06 1 0.04 1 0.02
b 1991 02 2.00 12.00 0 1 0.35 0.21 1 0.05 1 0.06 1 0.04 1 0.03 1 0.04
as 1984 01 −0.00 200.00 0 1 0.43 0.27 1 0.04 1 0.08 1 0.07 1 0.04 1 0.05

Average 0.20 1.00 0.33 0.20 1.40 0.04 1.40 0.06 1.20 0.05 1.00 0.03 1.00 0.03
Median 0.00 1.00 0.35 0.21 1.00 0.04 1.00 0.06 1.00 0.04 1.00 0.03 1.00 0.02

Q
P

-
Q

P

b 1998 04 81.33 −0.34 0 1 0.36 0.27 1 0.02 1 0.08 1 0.05 1 0.05 1 0.06
b 1998 05 1.00 0.00 0 1 0.38 0.28 1 0.02 1 0.12 1 0.08 1 0.02 1 0.03
lmp 1987 01 0.00 0.00 0 1 0.22 0.12 1 0.03 1 0.03 1 0.03 1 0.02 1 0.02
y 1996 02 1.50 −2.50 0 1 0.21 0.12 1 0.03 1 0.02 1 0.02 1 0.02 1 0.02
d 1992 01 31.25 4.00 0 1 0.31 0.21 1 0.03 1 0.03 1 0.10 1 0.03 1 0.03
d 2000 01 0.00 −0.25 0 1 0.28 0.18 1 0.03 1 0.07 1 0.03 1 0.02 1 0.02
cw 1990 02 5.00 4.00 0 1 0.25 0.16 1 0.03 1 0.03 1 0.06 1 0.03 1 0.02
tmh 2007 01 22.50 −1.50 0 1 0.32 0.20 1 0.04 1 0.04 1 0.07 1 0.03 1 0.03
b 1988 01 17.00 1.00 0 1 0.33 0.23 1 0.07 1 0.06 1 0.06 1 0.02 1 0.02
sa 1981 01 100.00 0.00 0 1 0.23 0.15 1 0.02 1 0.04 1 0.03 1 0.02 1 0.02
sc 1998 01 8.98 0.00 0 1 0.34 0.21 1 0.04 1 0.06 1 0.04 1 0.04 1 0.03
b 1998 02 0.00 −0.90 0 1 0.54 0.43 1 0.07 1 0.25 1 0.03 1 0.07 1 0.02
b 1998 03 0.00 −0.32 0 1 0.49 0.39 1 0.06 1 0.22 1 0.03 1 0.06 1 0.02
b 1998 07 −1.41 7.62 0 1 0.38 0.25 1 0.06 1 0.08 1 0.06 1 0.02 1 0.03
d 1978 01 −1.00 0.00 0 1 0.39 0.25 1 0.03 1 0.07 1 0.09 1 0.03 1 0.03
fl 1995 01 −2.26 0.00 0 1 0.31 0.21 1 0.03 1 0.06 1 0.07 1 0.02 1 0.04
sa 1981 02 224.94 100.00 0 1 0.32 0.20 1 0.03 1 0.06 1 0.04 1 0.03 1 0.04
b 1984 02 −12.69 −6.47 0 1 0.48 0.35 1 0.07 1 0.08 1 0.07 1 0.07 1 0.07
dd 2012 02 −1.99 8.95 0 1 0.68 0.55 1 0.02 1 0.40 1 0.04 1 0.06 1 0.03
as 1981 01 −6600.00 57.73 0 1 0.58 0.38 1 0.04 1 0.08 1 0.16 1 0.07 1 0.03

Average 0.00 1.00 0.37 0.26 1.00 0.04 1.00 0.09 1.00 0.06 1.00 0.04 1.00 0.03
Median 0.00 1.00 0.34 0.22 1.00 0.03 1.00 0.07 1.00 0.06 1.00 0.03 1.00 0.03

mb 2007 05 0.50 −1.00 1 1 0.61 0.44 3 0.11 3 0.15 2 0.10 1 0.04 1 0.05
Continued on next page
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Table 5.4 Continued from previous page

Solution found Total ILB IUB LB ISP UB

T. Name FUB fUB Iter. Nopt tB(s) tG(s) # tG(s) # tG(s) # tG(s) # tG(s) # tG(s)
L
P

-
N

L
P

mb 2007 06 −1.00 −1.00 0 1 0.19 0.12 1 0.03 1 0.02 1 0.03 1 0.02 1 0.02
mb 2007 10 0.50 −0.10 1 1 0.67 0.48 3 0.12 3 0.14 2 0.11 1 0.06 1 0.05
mb 2007 11 −0.80 0.00 0 1 0.27 0.18 1 0.04 1 0.07 1 0.02 1 0.02 1 0.02
mb 2007 13 −1.02 −0.01 269 71 158.18 104.38 1007 32.44 967 58.43 316 8.90 93 2.30 93 2.30
mb 2007 13v −2.00 −1.50 0 1 0.25 0.15 1 0.02 1 0.05 1 0.03 1 0.02 1 0.03
mb 2007 15 −0.00 −0.83 4 1 1.48 0.93 9 0.31 9 0.34 8 0.19 2 0.04 2 0.05
mb 2007 16 −2.00 0.00 6 1 2.68 1.63 18 0.55 16 0.63 11 0.30 3 0.07 3 0.08
ka 2014 01 −1.00 0.00 5 3 2.98 2.08 15 0.53 15 0.66 11 0.73 3 0.08 3 0.07
mb 2007 09 −1.00 −1.00 0 1 0.20 0.11 1 0.03 1 0.02 1 0.02 1 0.02 1 0.02
nwj 2016 01 2.00 0.00 0 1 0.23 0.13 1 0.02 1 0.04 1 0.02 1 0.02 1 0.02
gf 2001 01 0.19 −7.25 0 1 0.26 0.15 1 0.03 1 0.03 1 0.04 1 0.02 1 0.02
cg 1999 01 −29.20 0.31 0 1 0.45 0.28 1 0.05 1 0.08 1 0.07 1 0.04 1 0.04

Average 22.00 6.54 12.96 8.54 81.69 2.64 78.46 4.67 27.46 0.81 8.46 0.21 8.46 0.21
Median 0.00 1.00 0.45 0.28 1.00 0.05 1.00 0.08 1.00 0.07 1.00 0.04 1.00 0.04

Q
P

-
N

L
P

mb 2007 12 0.00 0.00 5 2 2.41 1.67 11 0.43 11 0.53 11 0.34 4 0.19 4 0.17
mb 2007 14 0.24 −0.08 6 4 2.28 1.44 13 0.36 12 0.38 12 0.45 4 0.11 4 0.13
mb 2007 17 0.18 −0.02 5 3 2.32 1.58 11 0.41 11 0.53 11 0.34 4 0.16 4 0.15
mb 2007 18 −1.00 0.00 2 2 0.88 0.55 5 0.13 5 0.19 5 0.13 2 0.04 2 0.06
mb 2007 18v 0.25 0.00 52 3 23.21 12.68 184 5.38 156 4.23 83 2.14 12 0.47 12 0.46
mb 2007 19 −0.26 −0.02 0 1 0.35 0.25 1 0.05 1 0.07 1 0.05 1 0.04 1 0.04
mb 2007 20 0.31 −0.08 7 5 2.74 1.78 15 0.47 13 0.50 13 0.49 6 0.15 6 0.16
mb 2007 21 0.21 −0.07 3 2 2.15 1.47 8 0.54 8 0.45 7 0.29 2 0.11 2 0.09
mb 2007 23 −1.76 0.00 0 1 0.25 0.16 1 0.03 1 0.04 1 0.04 1 0.03 1 0.02
mb 2007 22 0.19 −0.04 1 1 1.27 1.02 3 0.21 3 0.40 3 0.31 1 0.05 1 0.05
mb 2007 22v 0.21 −0.07 0 1 0.49 0.39 1 0.08 1 0.12 1 0.09 1 0.06 1 0.04
dd 2012 01 1.00 0.00 0 1 0.20 0.11 1 0.02 1 0.02 1 0.02 1 0.02 1 0.02
sib 1997 01 2250.00 197.75 0 1 0.24 0.16 1 0.03 1 0.03 1 0.06 1 0.02 1 0.02
yz 2010 01 1.00 −2.00 0 1 0.23 0.14 1 0.02 1 0.04 1 0.02 1 0.03 1 0.02
mb 2007 08 0.00 0.00 0 1 0.22 0.14 1 0.03 1 0.04 1 0.02 1 0.02 1 0.02
c 2002 02 17.00 2.00 0 1 0.27 0.18 1 0.06 1 0.04 1 0.04 1 0.02 1 0.02
c 2002 04 88.75 −0.77 0 1 0.66 0.56 1 0.04 1 0.40 1 0.04 1 0.04 1 0.04

Average 4.76 1.82 2.42 1.43 15.24 0.49 13.41 0.47 9.06 0.29 2.59 0.09 2.59 0.09
Median 0.00 1.00 0.66 0.55 1.00 0.08 1.00 0.19 1.00 0.09 1.00 0.04 1.00 0.04

N
L
P

-
N

L
P

c 2002 01 227.69 0.00 0 1 0.31 0.20 1 0.04 1 0.06 1 0.05 1 0.03 1 0.02
c 2002 03 2.00 24.02 0 1 0.22 0.12 1 0.02 1 0.03 1 0.03 1 0.02 1 0.02
c 2002 05 2.75 0.55 0 1 0.28 0.18 1 0.03 1 0.03 1 0.06 1 0.03 1 0.03
fz 1998 01 1.00 −1.00 0 1 0.32 0.21 1 0.03 1 0.06 1 0.07 1 0.03 1 0.02
mb 2007 24 −2.35 −2.00 0 1 1.03 0.87 1 0.05 1 0.62 1 0.14 1 0.03 1 0.03
nwj 2016 02 −1.71 −2.23 0 1 1.36 1.17 1 0.12 1 0.20 1 0.62 1 0.14 1 0.09
nwj 2016 04 −2.00 −1.00 0 1 0.61 0.45 1 0.11 1 0.16 1 0.06 1 0.06 1 0.05
nwj 2016 03 −0.44 −1.19 0 1 1.96 1.77 1 0.10 1 0.59 1 0.99 1 0.05 1 0.04
nwj 2016 05 −3.51 −0.83 0 1 3.13 2.92 1 0.08 1 1.96 1 0.73 1 0.08 1 0.08
ka 2014 02 −10.00 −5.10 0 1 227.16 226.92 1 0.03 1 226.68 1 0.14 1 0.03 1 0.03

Average 0.00 1.00 26.62 26.40 1.00 0.06 1.00 25.96 1.00 0.29 1.00 0.05 1.00 0.04
Median 0.00 1.00 0.82 0.66 1.00 0.05 1.00 0.18 1.00 0.11 1.00 0.03 1.00 0.04
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bounding problem, ILB = −54500, is obtained in tG = 0.057 sec. and the solution of395

the strict inner subproblem, ISP = −0.336, is obtained after tG = 0.072 sec. These396

values guarantee BASBL convergence at the root node. However, the relaxed inner397

lower bound, RILB = −550000 obtained after tG = 0.056 sec. and the solution of398

the relaxed inner subproblem, RISP = −81.969 obtained after tG = 0.056 sec. are399

significantly looser. These values result in an infeasible outer upper bounding problem400

and final BASBL convergence is achieved after 3 BASBL iterations and 4.31 seconds of401

BASBL execution. This is much slower compared to the 0.74 sec. needed when using402

strict bounds. For some other test problems this has an even more negative effect.403

5.2. Investigation of different branching variable and node selection404

rules. To test different branching and node selection variants (for more details, see405

Secs. 2.2.2. and 2.3 in [69]), we used all the test problems from BASBLib that were406

not solved at the root node (Iter. > 0): mb_2007_04, mb_2007_05, mb_2007_10,407

mb_2007_13, mb_2007_15, mb_2007_16, ka_2014_01, mb_2007_12, mb_2007_14,408

mb_2007_17, mb_2007_18, mb_2007_18v, mb_2007_20, mb_2007_21, mb_2007_22.409

The experimental results are reported in Table 5.5. In total, all problems were410

solved using three combinations of BASBL tree management options (see Table 4.3).411

The combination of BASBL options used is listed in the first column, while the mean-412

ing of the remaining columns was already described in section 5. Note, that this413

comparison does not include node selection strategies with lF, as we find that the414

choice of lF or lf does not affect the performance of BASBL for the test problems415

used. YX-Fl-lf is the combination closest to the original B&S [52], which combines416

the highest-index branching variable strategy (YX) and the (Fl)− (lf) node selection417

strategy. The other tested combinations are based on changing one of the options418

at a time. In comparing the different heuristics, we focus on the number of nodes419

explored and the GAMS time, tG, rather than the total time, tB , because the overhead420

associated with setting up and post-processing the GAMS files has a significant impact421

on tB .422

Comparing the different branching variable selection rules (YX vs. XY), we can423

observe that branching preferentially on y variables (YX strategy) reduces the total424

execution time by around 10% on average. However, this result is mainly influenced425

by the performance of BASBL on the most challenging problem, mb_2007_13. The426

smaller median value is obtained when branching strategy XY is used. In general,427

the XY strategy leads to a higher number of independent lists but a lower number of428

nodes inside these lists. Thanks to this, BASBL is able to fathom unpromising regions429

faster from the overall list of nodes. Also, by using the XY branching strategy, BASBL430

often locates the optimal solution of the bilevel problem for the first time after fewer431

nodes than other strategies (i.e., Nopt is smaller on average). However, this does432

not always lead to a faster BASBL convergence, for example for problem mb_2007_13.433

On the other hand, the YX strategy gives better performance in problems for which434

greater partitioning of the Y space leads to a faster improvement of the best inner435

upper bound value and full-fathoming of the nodes can be performed sooner (for436

example in problems mb_2007_17 and mb_2007_20). Next, observe there is only a437

minor difference (up to around 5%) in choosing one node selection strategy over the438

other (lf vs lf̄), therefore we do not include these results for the XY-based branching439

strategy, as they are almost identical to XY-Fl-lf.440

This manuscript is for review purposes only.



2
0

R
.

P
A

U
L

A
V

IČ
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Table 5.5: BASBL performance based on different variants of the branching variable and node selection rules on selected problems. See Table 4.3 for an explanation of the algorithmic options indicated
in column “Opt”

Total ILB IUB LB ISP UB

Opt. Name Iter. Nopt tB(s) tG(s) # tG(s) # tG(s) # tG(s) # tG(s) # tG(s)
Y
X
-
F
l
-
l
f

mb_2007_04 1 1 0.38 0.22 3 0.07 3 0.07 2 0.05 1 0.02 1 0.02
mb_2007_05 1 1 0.61 0.44 3 0.11 3 0.15 2 0.10 1 0.04 1 0.05
mb_2007_10 1 1 0.67 0.48 3 0.12 3 0.14 2 0.11 1 0.06 1 0.05
mb_2007_13 269 56 158.18 104.38 1007 32.44 967 58.43 316 8.90 93 2.30 93 2.30
mb_2007_15 4 1 1.48 0.93 9 0.31 9 0.34 8 0.19 2 0.04 2 0.05
mb_2007_16 6 1 2.68 1.63 18 0.55 16 0.63 11 0.30 3 0.07 3 0.08
ka_2014_01 5 3 2.98 2.08 15 0.53 15 0.66 11 0.73 3 0.08 3 0.07
mb_2007_12 5 2 2.41 1.67 11 0.43 11 0.53 11 0.34 4 0.19 4 0.17
mb_2007_14 6 4 2.28 1.44 13 0.36 12 0.38 12 0.45 4 0.11 4 0.13
mb_2007_17 5 3 2.32 1.58 11 0.41 11 0.53 11 0.34 4 0.16 4 0.15
mb_2007_18 2 2 0.88 0.55 5 0.13 5 0.19 5 0.13 2 0.04 2 0.06
mb_2007_18v 52 3 23.21 12.68 184 5.38 156 4.23 83 2.14 12 0.47 12 0.46
mb_2007_20 7 5 2.74 1.78 15 0.47 13 0.50 13 0.49 6 0.15 6 0.16
mb_2007_21 3 2 2.15 1.47 8 0.54 8 0.45 7 0.29 2 0.11 2 0.09
mb_2007_22 1 1 1.27 1.02 3 0.21 3 0.40 3 0.31 1 0.05 1 0.05

Average 24.53 5.73 13.62 8.82 87.20 2.80 82.33 4.51 33.13 0.99 9.27 0.26 9.27 0.26
Median 5.00 2.00 2.28 1.47 11.00 0.41 11.00 0.45 11.00 0.31 3.00 0.08 3.00 0.08

Y
X
-
F
l
-
l
f
f

mb_2007_04 1 1 0.39 0.23 3 0.07 3 0.07 2 0.04 1 0.02 1 0.03
mb_2007_05 1 1 0.60 0.43 3 0.12 3 0.15 2 0.08 1 0.03 1 0.05
mb_2007_10 1 1 0.69 0.49 3 0.13 3 0.14 2 0.12 1 0.05 1 0.05
mb_2007_13 269 56 156.98 101.98 1008 31.21 968 57.62 316 8.73 93 2.21 93 2.22
mb_2007_15 4 1 1.62 0.96 9 0.31 9 0.35 8 0.20 2 0.05 2 0.05
mb_2007_16 5 1 2.31 1.43 15 0.45 14 0.57 10 0.27 3 0.06 3 0.07
ka_2014_01 5 3 3.22 2.26 15 0.59 15 0.75 11 0.77 3 0.07 3 0.07
mb_2007_12 5 2 2.52 1.71 11 0.44 11 0.58 11 0.35 4 0.16 4 0.18
mb_2007_14 7 4 2.57 1.52 15 0.42 13 0.40 13 0.45 4 0.11 4 0.14
mb_2007_17 5 3 2.50 1.69 11 0.45 11 0.56 11 0.37 4 0.16 4 0.14
mb_2007_18 2 2 0.92 0.57 5 0.13 5 0.20 5 0.14 2 0.04 2 0.05
mb_2007_18v 51 3 22.77 11.74 178 4.97 150 3.85 79 1.94 13 0.50 13 0.49
mb_2007_20 7 5 3.04 1.89 15 0.49 13 0.52 13 0.51 6 0.17 6 0.18
mb_2007_21 3 2 2.23 1.63 8 0.58 8 0.50 7 0.34 2 0.12 2 0.09
mb_2007_22 1 1 1.56 1.18 3 0.25 3 0.42 3 0.39 1 0.06 1 0.05

Average 24.47 5.73 13.59 8.65 86.80 2.71 81.93 4.45 32.87 0.98 9.33 0.25 9.33 0.26
Median 5.00 2.00 2.31 1.52 11.00 0.44 11.00 0.50 11.00 0.35 3.00 0.07 3.00 0.07

X
Y
-
F
l
-
l
f

mb_2007_04 1 1 0.39 0.23 3 0.07 3 0.07 2 0.05 1 0.02 1 0.02
mb_2007_05 1 1 0.60 0.43 3 0.12 3 0.15 2 0.08 1 0.04 1 0.05
mb_2007_10 3 1 1.85 1.37 7 0.33 7 0.43 5 0.33 2 0.14 2 0.14
mb_2007_13 363 41 174.72 105.78 1295 39.03 1242 50.90 402 10.57 111 2.54 111 2.73
mb_2007_15 6 1 2.02 1.27 13 0.45 13 0.47 11 0.25 2 0.04 2 0.05
mb_2007_16 4 1 1.48 0.90 10 0.27 10 0.37 9 0.21 1 0.03 1 0.03
ka_2014_01 4 2 2.11 1.42 12 0.43 11 0.50 8 0.36 3 0.07 3 0.07
mb_2007_12 8 2 3.41 2.71 17 0.69 17 0.81 17 0.79 5 0.21 5 0.21
mb_2007_14 10 5 3.54 2.12 20 0.55 18 0.63 18 0.62 5 0.16 5 0.16
mb_2007_17 8 2 3.36 2.22 17 0.67 17 0.76 17 0.50 3 0.15 3 0.13
mb_2007_18 1 2 0.69 0.36 3 0.08 3 0.11 3 0.07 2 0.04 2 0.06
mb_2007_18v 46 3 19.87 11.02 157 4.67 136 3.54 74 1.85 13 0.48 13 0.48
mb_2007_20 11 5 4.48 2.88 23 0.79 23 0.86 23 0.85 7 0.18 7 0.20
mb_2007_21 2 1 1.79 1.30 5 0.41 5 0.38 5 0.36 1 0.07 1 0.07
mb_2007_22 2 1 2.10 1.68 5 0.44 4 0.57 4 0.40 2 0.14 2 0.13

Average 31.33 4.60 14.83 9.05 106.00 3.27 100.80 4.04 40.00 1.15 10.60 0.29 10.60 0.30
Median 4.00 2.00 2.10 1.42 12.00 0.44 11.00 0.50 9.00 0.36 2.00 0.14 2.00 0.13

T
h
is

m
a
n

u
scrip

t
is

fo
r

review
p
u

rpo
ses

o
n

ly.



BASBL: II. IMPLEMENTATION AND COMPUTATIONAL STUDY 21

5.3. Analysis of algorithmic progress for the most challenging prob-441

lems. Here, we investigate the performance of BASBL for the two most difficult prob-442

lems, mb 2007 13 (see Example 5.2 and Figure 5.3) and mb 2007 18v (see Example 5.3443

and Figure 5.5) problems.444

Example 5.2 (problem mb 2007 13).445

(5.7)

min
x,y

x− y

s.t. y ∈ arg min
y∈[−1,1]

xy2

2
− yx3

x ∈ [−1, 1], y ∈ [−1, 1]

446
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Fig. 5.3. Graphical illustration of the outer and inner problems for problem mb 2007 13, together
with their minima (solid lines) and suboptimal KKT points (dashed lines)

The problem has the unique optimal solution (x∗, y∗) = (0.0, 1.0) with the outer448

and inner optimal objective values F ∗ = −1.0 and f∗ = −1.0. Stationarity of the449

inner objective gives y − x2 = 0 and therefore for −1 ≤ x < 0 the unique global450

optimum for the inner problem is y = −1, while for x = 0, all y values are trivially451

optimal for the inner problem. Finally, when 0 < x ≤ 1, the unique global minimum452

is y = x2. In addition, for −1 ≤ x < 0, suboptimal KKT points are y = 1 and y = x2453

(see Figure 5.3).454

In Figure 5.4, from left to right, we illustrate the partitioned space after 2, 6 and455

16 BASBL iterations. As before, white partitions denote (outer) active nodes, light-456

gray ones, nodes that are outer-fathomed, i.e., moved to LIn, and dark-gray partitions457

those that are fully fathomed. From these partitions we can clearly see that BASBL458

convergence can be significantly influenced by suboptimal KKT points for the inner459

problem (y = 1 and −1 ≤ x < 0 in this case) that cause slow tightening of outer lower460

bound values for nodes containing y = 1 (node 3 ∈ X1, node 16 ∈ X3, and nodes 52 and461

59 ∈ X4 in Figure 5.4) and consequently slow outer-fathoming of these nodes. Note,462

that this is not the case for problem mb 2007 13v (variant of mb 2007 13), where the463

outer-objective function changed from x− y to x+ y, keeping the rest of the problem464

unchanged. When solving this problem BASBL terminates at the root node.465
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Fig. 5.4. Illustration of the partition space after 2, 6 and 16 BASBL iterations while solving
mb 2007 13 problem, together with their minima (solid lines) and suboptimal KKT points (dashed
lines)

Moreover, for x = 0, all y ∈ [−1, 1] are optimal for the inner problem. This466

situation prevents any improvement of the BIUB value over the (refined) X-partitions467

containing x = 0. Therefore, the number of sublists and the number of nodes within468

such X-partitions increase, causing a slower shrinking of X-partitions and thus, a469

slow convergence of BASBL.470

Finally, observe that the final obtained solution (FUB = −1.016) is slightly lower471

than the optimal solution reported in the literature F ∗ = −1.0. This is a consequence472

of the chosen inner tolerance εf = 10−5, which leads to an approximate of the upper473

outer bounding problem (see Sec. 3.5 in [69]). The solution of the outer lower bound-474

ing problem over node k = (220) ((x, y) ∈ [−0.016, 0.000]× [0.984, 1.000]) is attained475

at the point (x̄, ȳ) = (−0.015625, 1.0). Next, the solution of the inner subproblem476

over the whole of Y at fixed x̄ = −0.015625 is equal to −0.007816315 and attained477

at point (−0.015625,−1.0). Finally, the global solution of the outer upper bounding478

problem:479

(5.8)
F̄ (220)(x̄ = −0.015625) = min

y∈[−1,1]
x̄− y,

s.t. x̄y2

2 − yx̄3 ≤ −0.007816315 + 0.00001,
480

is equal to −1.015625, and is attained at (−0.015625, 1.0), which is a suboptimal KKT481

point, but satisfies requirements of the ε-optimal bilevel solution (see Definition 1.1).482

Note, that by using tighter inner tolerances (see Table 5.6) the reported solution483

becomes closer to −1.0. This highlights the importance played by the inner tolerance484

εf , which is responsible for the feasibility of the bilevel problem.485

Table 5.6
BASBL performance on problem mb 2007 13 using different outer optimality tolerances

Tol. Solution found Total

εf FUB fUB Iter. Nopt tB(s) tG(s) #ILB #IUB #LB #ISP #UB

10−5 −1.016 −0.008 269 71 318.99 146.47 1007 967 316 93 93

10−6 −1.010 −0.005 297 77 348.43 160.59 1123 1090 344 103 103

10−7 −1.008 −0.004 301 79 349.84 160.79 1139 1108 347 104 104
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Example 5.3 (problem mb 2007 18v).486

(5.9)

min
x,y

x2 + y2

s.t. y ∈ arg min
y∈[−1,1]

xy2 − y4

2

x ∈ [−1, 1], y ∈ [−1, 1]

487
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Fig. 5.5. Graphical illustration of the outer and inner problems for instance mb 2007 18, to-
gether with their minima (solid lines) and suboptimal KKT points (dashed lines)

The new problem has the unique optimal solution (x∗, y∗) = (0.5, 0.0) with outer489

and inner optimal objective values F ∗ = 0.25 and f∗ = 0.0 respectively. Stationarity490

of the inner objective gives xy − y3 = 0 and therefore for −1 ≤ x < 0.5 the global491

minima for the inner problem are y = ±1. For x = 0.5, three global minima are492

y = ±1 and y = 0, while for 0.5 ≤ x ≤ 1.0, the unique global minima is y = 0. In493

addition, for −1 ≤ x < 0, there are suboptimal KKT points at y = 0. For 0 ≤ x ≤ 0.5,494

suboptimal KKT points are y = 0 and y = ±√x, while for 0.5 < x ≤ 1.0, suboptimal495

KKT points are y = ±√x and y = ±1 (see Figure 5.5).496

Observe that the outer tolerance (εF ) has a huge impact on the overall BASBL497

performance (see Table 5.7). Similarly to problem mb_2007_13, the convergence rate is498

influenced by suboptimal KKT points for the inner problem (y = 0 and 0 ≤ x < 0.5 in499

this case) that cause slow tightening of outer lower bound values for nodes containing500

y = 0.501

Table 5.7
BASBL performance on problem mb 2007 18v using different outer optimality tolerances

Tol. Solution found Total

εF FUB fUB Iter. Nopt tB(s) tG(s) #ILB #IUB #LB #ISP #UB

10−3 0.25 0.0 52 3 23.21 12.68 184 156 83 12 12

10−2 0.25 0.0 40 3 17.54 9.54 139 117 65 9 9

10−1 0.25 0.0 28 3 11.80 6.55 94 78 47 6 6

This manuscript is for review purposes only.
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Fig. 5.6. Illustration of the partition space after 2, 6 and 17 BASBL iterations while solving
problem mb 2007 18, together with the minima (solid lines) and suboptimal KKT points (dashed
lines)

5.4. Comparison with other recent approaches. Here we comment on the502

performance of BASBL and other two recent approaches: approach of the Mitsos et503

al. [66] and that of Nie et al. [68]. Note that a direct comparison of performance504

is difficult, as the methods and their implementations are different. BASBL and the505

Mitsos et al. approaches were implemented in C++, and the subproblems were solved506

by GAMS/BARON. However, the Nie et al. approach was implemented in MATLAB, and507

the subproblems were solved by GloptiPoly 3 [46] and SeDuMi [79]. Moreover, the508

environments and machines used are different, and a direct comparison based on509

execution time would be not very informative.510

In such a situation, one way to compare algorithms is based on the number of511

subproblems solved. In [52] and [68], the authors compared their proposed algorithms512

with that of Mitsos et al. [66] based on such a criterion. In this work, for a given513

problem instance p, we use the following measure instead of the number of subprob-514

lems:515

(5.10) log

(
tBp (s)

tM (s)

)
.516

Here, tBp denotes the execution time, in seconds, spent solving bilevel problem p517

with a given implementation, and tM is the median value of all tBp ’s for the set of518

bilevel problems considered using the same implementation. The median is used as519

it is less sensitive to outliers than an average time. This measure thus indicates the520

relative effort a certain algorithm requires to a given problem, relative to the median521

effort over all problems. Positive values of the measure from Eq. (5.10) represent522

“harder” problems, while negative values represent “simpler” problems for the specific523

algorithm.524

We compare the performance of BASBL with two approaches from Mitsos et al.525

in Figure 5.7: with the KKT-based heuristic for the lower bound and without it.526

Note, that when the KKT heuristic is not used (shown as bars), the computational527

effort is much larger than when the KKT heuristic is applied (see bars). Note also528

that problem mb 2007 13 requires much more computational resources when solved529

with BASBL than other problems. Finally, observe that with the exception of problems530

mb 2007 13, mb 2007 15 and mb 2007 16, the same problems appear to be challeng-531

ing whether they are solved with BASBL or using the Mitsos et al. approach with KKT532

heuristic.533
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Fig. 5.7. Graphical comparison of BASBL and two approaches from Mitsos et al. [66] using the
measure shown in Eq. (5.10)
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Using the same approach, we compare the performance of BASBL with the Nie et534

al. approach in Figure 5.8. For the BASBL solver, problems mb 2007 14, mb 2007 15,535

mb 2007 16 appear to be the most difficult to solve, while for the Nie et al. approach536

problems mb 2007 24, nwj 2017 02, nwj 2017 03, nwj 2017 04, nwj 2017 05 are537

significantly harder relative to the median difficulty. Thus, the two different ap-538

proaches seem to perform best on different problems.539

5.5. Convergence issues with subsolvers. Choosing the best solver and op-540

tions to solve subproblems is not trivial. For example, the performance of a local541

solver can be highly dependent on the starting point. Furthermore, a tighter toler-542

ance is usually preferable to increase robustness, but even small changes can have543

a huge effect on the performance of the solver used. In this section we present two544

situations to illustrate these aspects.545

In Example 5.4, a one-dimensional bilevel problem, mb 2007 04, is considered.546

Example 5.4 (mb 2007 04 problem from [64]).547

At the root node, the outer upper bounding problem is:548

(5.12)
F̄ (1) = min

y∈[−0.5,1]
y,

s.t. −y2 ≤ −1.0 + 0.00001,
549

where the solution of the inner subproblem w(1) = −1.0 and an inner tolerance of550

εf = 0.00001 are used. Although y = 1.0 is a feasible point for Eq. (5.12), when551

solving this problem locally (without providing a starting point), GAMS/MINOS version552

5.6 [67] reports that “The problem is infeasible”. Two other local solvers GAMS/CONOPT553

version 3.17C [32] and GAMS/IPOPT version 3.12 [84], are also unable to find a feasible554

point. Only when a starting point close to the minimum (y = 1.0) is provided, e.g.,555

y = 0.9, GAMS/MINOS is able locating solution. The global solver BARON, on the other556
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26 R. PAULAVIČIUS, POLYXENI-M. KLENIATI AND C. S. ADJIMAN

Fig. 5.8. Graphical comparison of BASBL and Nie et al. approach [68] using the measure shown
in Eq. (5.10)
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Fig. 5.9. Graphical illustration of the inner and outer objective functions for mb 2007 04

hand, locates this solution successfully without the need for a starting point.557

As an example of the second situation, test problem mb 2007 12 is considered.558

The solution of the outer lower bounding problem over the node [0, 0.5]× [0.5, 1.0] is559

required. When the absolute termination tolerance is set to 10−6 in BARON, conver-560

gence is not achieved in over 1,000,000 iterations and 100 CPU seconds. However,561
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when we set the absolute tolerance to a looser value of 10−5, then BARON successfully562

terminates after 0.07 seconds and 0 iterations.563

6. Conclusions. We presented a detailed description of the new BASBL solver for564

the global optimization of nonconvex/nonlinear bilevel problems. The BASBL solver565

is implemented in the open source MINOTAUR framework, including the use of strict566

or relaxed bounding problems, branching strategies and approaches to node selec-567

tion. Furthermore, an online test library BASBLib, containing 81 problems, has been568

presented. This library has been designed to facilitate contributions from the bilevel569

optimization community so that it can be used to test future developments in the570

field.571

The performance of BASBL has been investigated with detailed numerical study572

using the bilevel test problems in the first release of BASBLib. The results demonstrate573

the promising performance of BASBL. Attention has been paid to the experimental in-574

vestigation of different algorithmic options. Based on this analysis, default choices for575

the various heuristics can be recommended as follows: the inner bounding problems576

should be solved using the “strict” formulations, i.e., as nonconvex problems whose577

global solution is sought; the YX branching strategy should be used, giving priority to578

branching on inner variables; the Fl-lff strategy should be used for node selection.579

While this combination of options gives the best average performance, as can be ex-580

pected, it is not optimal for all problems. Regardless of the options used, all problems581

in the test library were solved successfully using BASBLib; these extensive results on582

small problems motivate further developments, along the possible directions discussed583

in the remainder of this section.584

To improve performance, a quick win would be to explore ways to reduce the585

overheads involved in calling the global optimization solvers, through a C++ API (a586

beta version is available from GAMS v.24.9.1), which allows the seamless integration of587

GAMS into C++ applications.588

It would also be interesting to test other branching heuristics. For instance, it589

may be beneficial to branch exclusively on the outer variables in the first few iterations590

of the algorithm to locate the most promising regions from the outer-level perspective591

faster. Once these regions are identified, priority could then be given to branching592

on the inner variables, keeping the number of sublists small and improving the best593

inner upper bound, which can accelerate full fathoming. Furthermore, it would be594

particularly interesting to incorporate domain reduction techniques [80] in BASBL.595

Finally, the implementation of logical constraints could help to overcome the596

challenges of suboptimal KKT points.597

To spur on further theoretical and algorithmic advances, the BASBLib resource598

could be expanded to include more challenging problems. In the current version,599

the largest problem contains only 10 variables and the most challenging problems are600

solved within about 175 seconds in the worst case, with most problems solved in a few601

seconds. The inclusion of larger problems derived from practical applications (e.g.,602

[43, 48, 65]) would be very useful.603

In order to facilitate the adoption of implementations of bilevel solvers such as604

BASBL, it would be beneficial to implement a universal way to conveniently model605

bilevel problems in AMPL. A possible way to do it is through a set of extensions to the606

AMPL modelling language using AMPL user functions and suffixes, as was done in [50]607

for modelling mixed-integer optimal control problems. Other modelling languages608

and/or environments such as Pyomo [45] could also be considered.609
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Appendix. Comment on convergence tolerance used in global NLP616

solvers. Note that one must be especially careful with the convergence tolerance,617

εNLP > 0, used for the global solution of the inner subproblems. Upon termi-618

nation, global NLP solvers provide a lower bound (LB) on the optimal solution619

value and the best upper bound (BUB) at a feasible point (x∗NLP,y
∗
NLP) such that620

LB ≤ f(x∗NLP,y
∗
NLP) = BUB ≤ LB + εNLP. Since the global solution of the inner621

subproblems is needed for the formulation of subsequent subproblems, the quality of622

the approximation obtained can have a large impact on the progress of the algorithm.623

In particular, one can use LB + εf or BUB in formulating subproblems. The former624

is more accurate in principle, but its validity depends on the relative values of εNLP625

and εf : one must choose εNLP < εf . The precision of the LB value returned by626

the global solver can also have an impact on convergence speed. In practice, we have627

found the more conservative value BUB to yield faster convergence, although this628

sometimes comes at a cost of reduced precision.629
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