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Abstract

In this paper we propose an adaptively extrapolated proximal gradient method, which is
based on the accelerated proximal gradient method (also known as FISTA), however we
locally optimize the extrapolation parameter by carrying out an exact (or inexact) line
search. It turns out that in some situations, the proposed algorithm is equivalent to a
class of SR1 (identity minus rank 1) proximal quasi-Newton methods. Convergence is
proved in a general non-convex setting, and hence, as a byproduct, we also obtain new
convergence guarantees for proximal quasi-Newton methods. In case of convex problems,
we can devise hybrid algorithms that enjoy the classical O(1/k2)-convergence rate of
accelerated proximal gradient methods. The efficiency of the new method is shown on
several classical optimization problems.

1 Introduction

The introduction of accelerated gradient methods by Nesterov in [37] has arguably revo-
lutionized the world of large-scale convex and non-smooth optimization. Computationally,
they are as simple and efficient as plain gradient descent, but come along with a much faster
rate of convergence. Therefore, they found numerous applications in modern signal and
image processing, and machine learning. It is well-known that these accelerated gradient
methods are “optimal” for the class of smooth and convex (not necessarily strongly-convex)
problems with Lipschitz continuous gradient, in the sense that their worst case complexity is
proportional to the theoretical lower complexity bound of first-order methods for this class
of problems [36, 38]. The mechanism of accelerated gradient methods can be interpreted
and explained in many different ways and hence, the magic of acceleration is still subject of
intensive research efforts.

Accelerated gradient methods can be seen as a modification of the heavy-ball method of
Polyak [45]. While the heavy-ball method already achieves an optimal convergence rate on
smooth and strongly convex functions with Lipschitz continuous gradient, accelerated gra-
dient methods are optimal for the complete class of smooth convex problems with Lipschitz
continuous gradient [38].
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Introduction

In the original work [38], the acceleration is explained by the concept of so called es-
timation sequences, which generate a sequence of simple convex functions approximating
the original function. Accelerated gradient methods also show strong connections to the
Störmer–Verlet method [27] for discretizing second order ordinary differential equations
(ODEs). Using this connection, both the heavy-ball method [45] and Nesterov’s original
method [37] can be seen as particular types of discrete-time approximations to the “heavy-
ball with friction” dynamical system. The main principle here is to attach a “mass” to
the sequence of points generated which accelerates when moving down the landscape of the
objective function. More recent works use this relation to investigate the properties of ac-
celerated gradient methods in the framework of ODEs [49, 2]. Finally, accelerated gradient
methods can also be explained by accelerated primal-dual methods that are based on an
optimal choice of dynamic step sizes in the primal and dual spaces [12].

For quadratic functions, both the heavy-ball method and accelerated gradient methods
show striking similarities to the conjugate gradient method [28]. However, while in the
conjuagte gradient method, the step size and extrapolation parameters are chosen locally
using an exact line (or plane) search, accelerated gradient methods derive their parameters
from global properties of the objective such as the smallest and largest eigenvalues of the
corresponding system matrix. On the one hand, the conjugate gradient method is optimal
and comes along with a finite convergence property. On the other hand, they are much harder
to generalized to non-quadratic functions. At this point, accelerated gradient methods take
their advantage. They can be applied not only to quadratic problems but to the whole class
of one times differentiable functions with Lipschitz continuous gradient.

Accelerated gradient methods have been generalized to be applicable to a class of convex
optimization problems that can be written as the sum of a differentiable function with
Lipschitz continuous gradient and a non-smooth function with easy to compute proximal
map. The most popular instance is the Fast Iterative Shrinkage Thresholding Algorithm
(FISTA) [4] but also other, more general schemes have been proposed. See the work of
Tseng [50] for an excellent presentation and unification of a whole family of accelerated
proximal gradient methods.

Finally, accelerated gradient methods have also turned out to perform very well on non-
convex optimization problems. However, while their empirical performance is often com-
parable to the convex case, their convergence properties are still hardly understood from a
theoretical point of view [25, 33, 21, 42].

In this paper, we study a modification of the accelerated proximal gradient method for
minimizing an objective given by the sum of a smooth function f with Lipschitz continuous
gradient and a non-smooth function g with simple proximal mapping. We still rely on a step
size parameter related to the global Lipschitz parameter L, however similar to the conjugate
gradient method, we propose to locally adapt the extrapolation parameter by means of an
exact line search. A simplified version of the algorithm’s update step is the following:

y
(β)
k = xk + β(xk − xk−1)

x
(β)
k+1 = argmin

x∈RN

g(x) +
〈
∇f(y

(β)
k ), x− y(β)

k

〉
+
L

2
‖x− y(β)

k ‖
2 ,
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where β ∈ R is a free parameter which is optimized in each step in order to provide the
locally fastest rate of decrease of the proximal subproblem. It turns out that if the function
f is quadratic, the optimal choice of β makes the scheme equivalent to a proximal SR1 (iden-
tity minus rank one) quasi-Newton method. This equivalence yields a connection between
accelerated schemes and quasi-Newton methods, which holds even when g is a non-convex
function. The convergence that we establish for our method in a general non-smooth non-
convex setting translates directly to a class of proximal quasi-Newton methods. Unlike the
general class of proximal quasi-Newton methods which usually suffer from the problem that
simple proximal mappings become hard to solve, efficient solutions to the “rank-1 proximal
mappings” are known [5, 30].

The remainder of the paper is organized as follows: In Section 2 we provide a state-of-
the-art review and put the contributions of this paper into related work. In Section 3, we
detail the proposed algorithm and give different convergence guarantees for both convex and
non-convex problems. Numerical results of the proposed algorithm are provided in Section 4.
In the last section we give some conclusions and discuss open problems for future research.

2 Related work

Proximal Gradient Method. The basic update step of our method is a so-called prox-
imal gradient step (also known as forward-backward splitting) [34, 19, 18, 38]. Although,
using this basic step only yields an efficient algorithm in many cases, it has been observed
that the worst case complexity is not optimal [38] for certain classes of convex optimization
problems. This observation led to the exploration of so-called accelerated schemes. The
basic proximal gradient step can be accelerated by an additional (computationally cheap)
extrapolation step [4, 37, 50] (see also [51]), where the iteration-dependent extrapolation
parameter obeys a certain rule derived from global properties of the objective function. In
contrast to prescribed rules, in this paper, we explicitly optimize the extrapolation param-
eter. Surprisingly, for a certain class of problems, the optimized scheme has a closed form
expression as a proximal quasi-Newton method, which yields new convergence results.

Classical quasi-Newton Methods. Quasi-Newton methods are intensively studied in
the classic context of smooth optimization problems. We refer to [40, 20, 9] for an overview
and references. The basic idea of quasi-Newton methods is to successively improve a quadratic
approximation to the objective function, i.e., the goal is to approximate second order infor-
mation (Hessian) using combinations of first order information. Maybe the most widely
known and used quasi-Newton method is BFGS [22] or its low memory variant L-BFGS
[35], and its extension to bound constraints L-BFGS-B [11]. More results that motivate the
acceleration governed by such a variable metric approach are [8, 10, 44].

Quasi-Newton Methods for non-smooth problems. Though, originally designed for
smooth optimization problems, the BFGS method shows a good performance on non-smooth
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problems as well. In [52], the method was reinterpreted and analysed in the non-smooth con-
vex setting. Theoretical guarantees of the original BFGS method for one or two dimensional
non-smooth problems could be established in [31, 32]. Motivated by the original global
convergence proof of Powell [46], Guo and Lewis [26] substantially extended the previous
theoretical guarantees to a class of non-smooth convex problems. In general, convergence
cannot be expected.

Proximal quasi-Newton Methods. Driven by the success of proximal splitting meth-
ods, the concept of quasi-Newton methods was also applied to optimization problems with
more structure than just smoothness, alike the setting of Proximal Gradient Descent. The
crucial aspect for the efficiency of such a variable metric Proximal Gradient Method is the
evaluation of the proximal mapping, which is often expensive when coordinates are not sep-
arated in the objective. There are specific choices of the metric that allow the proximal
mapping to be solved efficiently, e.g. when the metric is a diagonal matrix, which preserves
the separability. Becker and Fadili [5] derived efficient solutions when the metric is of type
“identity plus rank 1”. The proximal step was embedded into a zero memory variant of
the SR1 quasi-Newton method [40]. Unlike the BFGS-method, which updates the Hessian
approximation with a matrix of rank 2, the SR1 method updates the approximation with a
rank 1 matrix. Nevertheless, Nocedal and Wright [40] state the observation that the “[...]
SR1 method appears to be competitive with the BFGS method”. The case of an “identity
minus rank 1” metric was studied in [30], which also leads to an efficiently solvable proximal
mapping. In [24], interior point methods are used to solve the proximal mapping efficiently
for so-called quadratic support functions.

Variable metric versions of the Proximal Gradient Method have been studied without
paying special attention to efficiently solving the proximal mapping. The earliest reference
is [13, Section 5]. In the broader context of monotone inclusion problems, the general
framework for analyzing the convergence of variable metric methods is that of quasi-Fejér
sequences [16], which was used in [17] to find a relation to primal–dual schemes. For a
variable metric algorithm with mild differentiability assumption (without the usual gradient
Lipschitz continuity), we refer to [47]. The convergence of forward–backward splitting with
iteration dependent Bregman distances in an infinite dimensional setting, which contains the
variable metric proximal step as a special case, was proved in [39].

Non-convex setting. In [14], the metric is constructed to induce a quadratic majorizer
in each iteration [29]. Extensions to a block-coordinate descent version are presented in [15]
and a combination with an inertial method in [41]. In [6, 7], the choice of the metric enjoys a
great flexibility at the cost of an additional line search step in the algorithm. An extension of
their framework to a general non-smooth first-order oracle and a flexible choice of Bregman
distances was proposed in [43]. A different way to incorporate a variable metric into forward–
backward splitting (FBS) was proposed in [48]. They reinterpret FBS as a gradient descent
method with a variable metric, which allows them to use some of the machinery from smooth
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optimization. Besides accelerating optimization methods by a variable metric, accelerated
(optimal) gradient methods can be used in the non-convex setting [25, 33, 21] as well, where
the goal is to preserve the optimality for convex problems.

2.1 Contribution

Convergence of an optimally extrapolated Proximal Gradient Method (PGM).
We study a novel, optimally extrapolated PGM for non-convex optimization problems. If
the function is composed of a continuously differentiable function with Lipschitz continuous
gradient and a non-smooth function, we prove subsequential convergence to a stationary
point and convergence of the objective values. Restricted to convex optimization problems,
we propose two variants of our method with an accelerated convergence rate for the functional
residual of O(1/k2) where k is the iteration counter.

Convergence of a non-convex SR1 proximal quasi-Newton method. In another
special non-convex setting, if the objective is the sum of a quadratic function and a non-
smooth (possibly non-convex) function, we prove our method to be equivalent to a proximal
quasi-Newton variant of the SR1 quasi-Newton method [40]. To be more precise, we prove
the equivalence between an optimally rank-r extrapolated Proximal Gradient Method and
an identity minus rank-r proximal quasi-Newton method. Our convergence results can be
applied directly to these methods, leading to the first convergence result of this SR1 proximal
quasi-Newton for non-convex optimization problems.

Relation to [5] and [30]. A related proximal quasi-Newton method was considered by
Becker and Fadili [5]. However, they adapt a Barzilai–Borwein step length, whereas we relate
the step length to the Lipschitz constant. Moreover, the proposed quasi-Newton metric in
the evaluation of the proximal mapping is of type “identity plus a rank 1 matrix”, whereas
ours is of type “identity minus rank 1”, and we allow for non-convex functions in the proximal
mapping. Another closely related approach is that of Karimi and Vavasis [30], which applies
to problems that are the sum of a convex quadratic and a convex non-smooth function. The
considered proximal mapping is also of type “identity minus rank 1”, however the relation
to the SR1 metric [40, Section 8.2] is unclear and the analysis is completely different to ours.

3 The optimization problem

The setting of this paper is that of a Euclidean vector space RN of dimensionN equipped with
the standard inner product 〈·, ·〉 and induced norm ‖x‖ =

√
〈x, x〉 for x ∈ RN . Moreover,

we use the notation ‖x‖2
M := 〈x, x〉M := 〈x,Mx〉 for a matrix M ∈ RN×N .

Optimization problem. We consider optimization problems of the following form:

min
x∈RN

f g(x) , f g(x) := g(x) + f(x) , (1)
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where f : RN → R is a continuously differentiable function with ∇f being L-Lipschitz con-
tinuous, g : RN → R, R := R ∪ {+∞}, is a proper lower semi-continuous (lsc) function, and
f g is bounded from below. We solve the problem by sequential minimization of surrogate
functions alike the proximal gradient method (Forward–Backward Splitting).

The update step. Let x̄ ∈ RN be the current point of the iterative scheme and {d1, . . . , dm}
be vectors in RN and

y(β) := x̄+
m∑
i=1

βidi (2)

for β := (β1, . . . , βm) ∈ Rm. In matrix–vector notation, we have y(β) = x̄ + Dβ where
D = (d1, . . . , dm) ∈ RN×m contains the vectors d1, . . . , dm as columns. The optimal next
iterate (x̂, β̂) is computed as follows:

x̂ = argmin
x∈RN

min
β∈Rm

`gf (x; y(β)) +
1

2
‖x− y(β)‖2

T ,

`gf (x; y(β)) := g(x) + f(y(β)) +
〈
∇f(y(β)), x− y(β)

〉 (3)

where T is a symmetric positive definite matrix S++(N) of dimension N × N . However,
we also allow for inexact minimizers of (3). We call (x̃, β̃) an inexact next iterate if it
satisfies the following condition:

`gf (x̃; y(β̃)) +
1

2
‖x̃− y(β̃)‖2

T ≤ f g(x̄). (4)

The right hand side of (4) is the value of the objective in (3) at x̄ with β = 0.

Example 1. Let T = α−1I in (3) where I denotes the identity matrix. The update step is
a proximal gradient step at the extrapolated point y(β). The formula in (3) is equivalent to

x̂ = argmin
x∈RN

g(x) +
1

2α
‖x− (y(β) − α∇f(y(β)))‖2 ,

which is exactly the form of an accelerated proximal gradient step (FISTA-update step) [4].
When β is chosen iteration-dependent with a behaviour asymptotically like (1 − 3/k)k∈N,
where k is the iteration count, the method can be shown to satisfy a convergence rate of
O(1/k2) when f and g are convex functions.

As the proposed update step in (3) takes the same form, but optimizes the update with
respect to β, each step guarantees a better objective value than an accelerated proximal
gradient step. However, this is not enough to guarantee the same rate of convergence, which
requires a global picture of the objective.

If the minimum w.r.t. β in (3) is attained at β = 0, the update step reduces to a standard
proximal gradient step

x̂ = argmin
x∈RN

g(x) +
1

2α
‖x− (x̄− α∇f(x̄))‖2 .
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Relation to Proximal Quasi-Newton Methods

3.1 Relation to Proximal Quasi-Newton Methods

In this section, we show that for a quadratic function f , the optimal parameter β can be
computed analytically. Using the optimal β in the update step yields an interpretation of
the update step (3) as a proximal gradient step in a modified metric without extrapolation,
also known as proximal quasi-Newton method. The modified metric is of type identity minus
rank r, where r is the number of linearly independent columns of the matrix D. Proximal
quasi-Newton methods have recently drawn attention, as for r = 1, the associated proximal
mapping can be evaluated efficiently [5, 30].

Theorem 2. Consider the problem in (3). Suppose that f(x) = 1
2
〈x,Hx〉 + 〈b, x〉 + c is

quadratic with Hessian H , b ∈ RN , c ∈ R, the matrix T is chosen such that M := T −H ∈
S++(N), and the columns of D are linearly independent. Then, the inner optimization
problem w.r.t. β is solved by

β∗ = (D>MD)−1D>M (x− x̄) .

The optimization problem in (3) is equivalent to the following:

x̂ = argmin
x∈RN

g(x) +
1

2
‖x− x̄+Q−1∇f(x̄)‖2

Q ,

where
Q := T −U>U with U := (D>MD)−

1
2D>M

and U>U is of rank m. The inverse metric is

Q−1 = T−1 + T−1U>(I −UT−1U>)−1UT−1 .

Proof. Since f is a quadratic function, we have

f(y(β)) = f(x̄) +
〈
∇f(x̄), y(β) − x̄

〉
+

1

2

〈
y(β) − x̄,H(y(β) − x̄)

〉
and

∇f(y(β)) = ∇f(x̄) +H(y(β) − x̄) .
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We plug these equations into the objective in (3), use Dβ = y(β) − x̄, and obtain

`gf (x; y(β)) +
1

2
‖x− y(β)‖2

T = g(x) + f(x̄) +
〈
∇f(x̄), y(β) − x̄

〉
+

1

2
〈Dβ,HDβ〉

+
〈
∇f(x̄), x− y(β)

〉
+
〈
x− y(β),HDβ

〉
+

1

2
‖x− x̄‖2

T +
1

2
‖Dβ‖2

T − 〈x− x̄,Dβ〉T

= g(x) + f(x̄) + 〈∇f(x̄), x− x̄〉+
1

2
‖x− x̄‖2

T

− 1

2
〈Dβ,HDβ〉+ 〈x− x̄,HDβ〉

+
1

2
〈Dβ,TDβ〉 − 〈x− x̄,TDβ〉

= g(x) + f(x̄) + 〈∇f(x̄), x− x̄〉+
1

2
‖x− x̄‖2

T

+
1

2
〈Dβ,MDβ〉 − 〈x− x̄,MDβ〉 .

Since this function is convex and differentiable with respect to β, the optimal choice for β
can be found by the first order optimality condition, which reads:

D>MDβ = D>M (x− x̄) . (5)

As the columns of D are linearly independent, this optimality condition has the unique
solution β∗ as stated. Using this optimal β∗, the objective in (3) reads as follows:

`gf (x; y(β∗)) +
1

2
‖x− y(β∗)‖2

T = `gf (x; x̄) +
1

2
‖x− x̄‖2

T −
1

2
〈Dβ∗,MDβ∗〉

= `gf (x; x̄) +
1

2
‖x− x̄‖2

Q ,

and the representation in the statement follows directly. The rank of U is obviously m and
the inversion follows from the rank-m generalization of the Sherman–Morrison–Woodbury
formula.

Remark 3. We could consider different points for the linearization and the proximal center.
Let γ ∈ Rm and z(γ) = x̄+Dγ. Instead of the objective in (3), we consider

`gf (x; y(β)) +
1

2
‖x− z(γ)‖2

T .

Requiring that H ∈ S++(N) and using the optimal β∗ and γ∗, it is equivalent to

`gf (x; x̄) +
1

2
‖x− x̄‖2

T−U>U−V >V ,

where
U := (D>HD)−

1
2DH and V := (D>TD)−

1
2DT .
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The rank 1 case. In practical applications, the case where β = β is 1-dimensional is most
interesting, since the resulting quasi-Newton method is of type identity minus rank 1, for
which the update steps can be evaluated efficiently. In fact, it turns out that in this case (3)
is equivalent to a generalization of the SR1 quasi Newton method with a non-smooth term,
i.e. a proximal SR1 quasi Newton method. Therefore, we provide the formulas explicitly for
this case in the following corollary.

Corollary 4. Consider the problem in (3). Suppose that f(x) = 1
2
〈x,Hx〉 + 〈b, x〉 + c

is quadratic with Hessian H , b ∈ RN , c ∈ R, the matrix T = α−1I is a multiple of the
identity with α > 0 such that M := T −H ∈ S++(N), and D = d ∈ RN . Then, the inner
optimization problem w.r.t. β is solved by

β∗ =
〈d, x− x̄〉M
〈d, d〉M

.

The optimization problem in (3) is equivalent to the following:

x̂ = argmin
x∈RN

g(x) +
1

2
‖x− x̄+Q−1∇f(x̄)‖2

Q , (6)

where

Q := T − uu> with u :=
Md

‖d‖M
(7)

and

Q−1 = T−1 +
T−1uu>T−1

1− u>T−1u
= α · I +

α2uu>

1− αu>u
. (8)

Proof. The statement is an obvious consequence of Theorem 2.

Corollary 5. Consider the situation in Corollary 4. Let d = xk − xk−1 be the difference
between the current and the previous iterate, define y := Hd = ∇f(xk)−∇f(xk−1). Then

Q = T +
(y − T d)(y − T d)>

〈d, y − T d〉
and Q−1 = T−1 +

(d− T−1y)(d− T−1y)>

〈d− T−1y, y〉
.

Proof. The formulas follow directly from Corollary 3 by simple algebraic manipulations.

Remark 6. The naming “proximal SR1 quasi-Newton method” is justified as follows: In (3),
using standard notation of quasi-Newton methods, let T = Bk be the current approximation
of the Hessian matrix, then the formula for Bk+1 = Q in Corollary 5 is exactly the update
formula for the SR1 quasi Newton method [40, Eq. 8.24], and Hk+1 = Q−1 the formula for
the approximation of the inverse Hessian matrix [40, Eq. 8.25].

Unfortunately, the SR1 update formula does not preserve the positive definiteness, which
makes the convergence analysis for line search based algorithms difficult. For more details
on this discussion, we refer to [40, Section 8.2].
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In case we restart the approximation of the Hessian matrix in each iteration with a mul-
tiple of the identity matrix (with a Barzilai–Borwein rule), we obtain the recently proposed
zero memory version of the SR1 quasi-Newton method [5]. If the chosen multiplicity is
larger than the Lipschitz constant of ∇f , the following section proves the convergence of
this method.

3.2 Convergence analysis

In this section, we analyze the convergence of the method with exact updates (3) and inexact
updates (4) for solving the optimization problem (1). The main convergence result (The-
orem 7), which shows convergence to a stationary point of the objective, does not require
the function f or g to be convex. In subsequent sections, we provide two hybrid algorithms
involving (3), which yield an accelerated convergence rate of O(1/k2) in the convex case.
Note that, when f is a quadratic function, the convergence results also apply to the zero
memory SR1 proximal quasi-Newton method.

For the convergence analysis, we make use of the following notation:

x̂(β) := argmin
x∈RN

`gf (x; y(β)) +
1

2
‖x− y(β)‖2

T ,

which denotes the proximal point given a specific choice of β. The required concepts from
non-smooth analysis are introduced in Section A.

3.2.1 The non-convex case

Theorem 7. Let (xk)k∈N, (βk)k∈N, and (Dk)k∈N be sequences satisfying the condition (4),
i.e. given x̄ = xk we set xk+1 = x̃, βk = β̃, and Dk = D from (4), with starting point
x0 ∈ RN . If T − L · I ∈ S++(N), then

• the objective values are non-increasing and converging, and

• xk+1 − y(βk)
k → 0 as k →∞.

Moreover, if the sequence (xk)k∈N is bounded, and ‖∂f g(xk+1)‖− ≤ C‖xk+1−y(βk)
k ‖ for all k,

then xk
K→ x∗ for some K ⊂ N (i.e. xk → x∗ for k →∞ with k ∈ K), where x∗ is a critical

point of f g, i.e. 0 ∈ ∂f g(x∗).

Proof. Combining the quadratic upper bound from the Lipschitz continuity of ∇f with (4),
we obtain

f g(x̃) ≤ `gf (x̃; y(β̃)) +
1

2
‖x̃− y(β̃)‖2

L·I

≤ `gf (x̃; y(β̃)) +
1

2
‖x̃− y(β̃)‖2

T −
1

2
‖x̃− y(β̃)‖2

T−L·I

≤ `gf (x; y(β)) +
1

2
‖x− y(β)‖2

T −
1

2
‖x̃− y(β̃)‖2

T−L·I .

(9)
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Variants with O(1/k2)-convergence rate

The non-increasingness of the objective values is a direct consequence of (9) with x = x̄ and
β = 0 and the positive definiteness of T −L ·I ∈ S++(N). Summing both sides of (9) yields

1

2

k∑
i=0

‖xi+1 − y(βi)
i ‖2

T−L·I ≤ f g(x0)− f g(xk+1) ,

hence, xk+1 − y
(βk)
k → 0 as k → ∞. Combining the lower semi-continuity of f g with a

consideration of the limit of (9) for x = x∗, we obtain

lim sup
k
K→∞

f g(xk+1) ≤ lim sup
k
K→∞

`gf (x
∗; y

(βk)
k ) +

1

2
‖x∗ − y(βk)

k ‖2
T −

1

2
‖xk+1 − y(βk)

k ‖2
T−L·I

= f g(x∗) ≤ lim inf
x
K→∞

f g(xk+1) ,

where we used to continuous differentiability of f and y
(βk)
k

K→ x∗. This shows the f g-attentive

convergence of (xk+1)k∈N. From ‖∂f g(xk+1)‖− ≤ C‖xk+1−y(βk)
k ‖ and the closedness property

of the limiting subdifferential, we conclude 0 ∈ ∂f g(x∗), which proves the statement.

Remark 8. (i) The boundedness assumption of (xk)k∈N in Theorem 7 is not restrictive,
and is, in fact implied here, when f g is coercive (f g(x)→∞ when ‖x‖ → ∞).

(ii) The relative error condition (cf. [1]) ‖∂f g(xk+1)‖− ≤ C‖xk+1− y(βk)
k ‖ is automatically

satisfied when exact update steps (3) instead of (4) are considered. In fact, optimality
of xk+1 requires the following condition

0 ∈ ∂g(xk+1) +∇f(y
(βk)
k ) + T (xk+1 − y(βk)

k ) ,

which, together with ‖∇f(y
(βk)
k )−∇f(xk+1)‖ ≤ L‖xk+1 − y(βk)

k ‖, implies the relative
error condition.

3.3 Variants with O(1/k2)-convergence rate

In this section, we introduce two variants of our method (with β = β ∈ R) for convex
optimization problems (1), which have a convergence rate of O(1/k2). The two methods
are variants in the sense that the update step (3) (or an inexact version) is embedded into
another algorithmic strategy. Both cases are related to the standard FISTA method [4, 50].

The final rate of convergence is dictated by a sequence (θk)k∈N with θ0 = θ−1 ∈ (0, 1] and
θk+1 ∈ (0, 1] such that

1− θk+1

θ2
k+1

≤ 1

θ2
k

(10)

holds. As a particularly simple and enlightening choice of this sequence is θk = 2/(k + 2),
for which the left hand side above, which is the inverse of the convergence rate θ2

k/(1− θk),
becomes k(k + 2)/4.
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Variants with O(1/k2)-convergence rate

3.3.1 Monotone FISTA version

We use the idea of [33] (see also [3]) to obtain an acceleration. We generate a sequence
(zk)k∈N starting at some z0 ∈ RN that obeys the following update scheme:

ỹk = zk +
θk(1− θk−1)

θk−1

(zk − zk−1) +
θk
θk−1

(x̂k − zk) (11)

x̃k+1 = argmin
x

`gf (x; ỹk) +
1

2
‖x− ỹk‖2 (12)

y
(β)
k = zk + β(zk − zk−1) (13)

x̂k+1 = argmin
x

min
β

`gf (x; y
(β)
k ) +

1

2
‖x− y(β)

k ‖
2 (14)

zk+1 =

{
x̂k+1 , if f g(x̂k+1) ≤ f g(x̃k+1)

x̃k+1 , if f g(x̂k+1) > f g(x̃k+1)
(15)

Remark 9. (14) is an update step as in our method (3) with dk = zk − zk−1.

This scheme obeys an accelerated rate of convergence as the following proposition shows.

Proposition 10. The sequence (zk)k∈N obeys the following rate of convergence with respect
to the objective values:

f g(zk)− f g(x∗) ≤
θ2
k

1− θk

(
L

2
‖z0 − x∗‖2 +

1− θ0

θ0

(f g(z0)− f g(x∗))

)
∈ O(1/k2) .

Proof. We make the following estimation:

f g(zk+1)
(i)

≤ f g(x̃k+1)

(ii)

≤ `gf (x̃k+1, ỹk) +
L

2
‖x̃k+1 − ỹk‖2

(iii)

≤ `gf (y, ỹk) +
L

2
‖y − ỹk‖2 − L

2
‖y − x̃k+1‖2

(iv)

≤ `gf ((1− θk)zk + θkx, ỹk) +
L

2
‖(1− θk)zk + θkx− ỹk‖2 − L

2
‖(1− θk)zk + θkx− x̃k+1‖2

(v)

≤ (1− θk)`gf (zk, ỹk) + θk`
g
f (x, ỹk) + θ2

k

L

2
‖(1− θk)/θkzk + x− ỹk/θk‖2

− θ2
k

L

2
‖(1− θk)/θkzk + x− x̃k+1/θk‖2

(vi)

≤ (1− θk)f g(zk) + θkf
g(x) + θ2

k

L

2
(‖Uk(x)‖2 − ‖Uk+1(x)‖2)

where (i) uses (15), (ii) uses the quadratic (Lipschitz) upper bound, (iii) holds for all y
by using L-strong convexity of x 7→ `gf (x, ỹk) + L

2
‖x − ỹk‖2 and optimality of x̃k+1, (iv)
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Variants with O(1/k2)-convergence rate

holds for all x by the change of variables y = (1 − θk)zk + θkx, (v) holds by convexity of
`gf in the first argument and a simple algebraic manipulation, and (vi) holds by defining
Uk+1(x) := (1− θk)/θkzk + x− x̃k+1/θk and the definition of1 ỹk.

Rearranging this inequality and setting x = x∗ yields

1

θ2
k

(f g(zk+1)− f g(x∗)− (1− θk)
θ2
k

(f g(zk)− f g(x∗)) ≤
L

2
(‖Uk(x∗)‖2 − ‖Uk+1(x∗)‖2) ,

which by standard arguments shows the result.

3.3.2 Tseng-like version

The following variant does not require a comparison of the objective value, it relies on a
comparison of the value of the proximal linearization. This algorithm is closely connected
to [50, Algorithm 1]. Here, we need an auxiliary sequence (zk)k∈N and consider the following
update scheme:

ỹk = (1− θk)x̂k + θkx̃k (16)

x̃k+1 = arg min
x

`gf (x, ỹk) + θk
L

2
‖x− x̃k‖2 (17)

zk+1 = (1− θk)x̂k + θkx̃k+1 (18)

find (x̂k+1, ŷk) s.t. `gf (x̂k+1, ŷk) +
L

2
‖x̂k+1 − ŷk‖2 ≤ `gf (zk+1, ỹk) +

L

2
‖zk+1 − ỹk‖2 (19)

Remark 11. Our scheme (3) is hidden in (19). We can choose any point ŷk. In fact, if we
use the exact version of our update scheme (3) with dk = x̃k − x̂k, there is no need to check
this inequality. In this case, unlike in Section 3.3.1, no additional comparison of objective
values is required.

Remark 12. The original version of the Algorithm [50, Algorithm 1] allows for a certain
class of Bregman distances in the proximal update steps. We could also include this extension
in theory, but left it for future work, since it is not clear which “rank-1 Bregman proximal
mappings” can be solved efficiently.

Proposition 13. The sequence (x̂k)k∈N obeys the following rate of convergence with respect
to the objective values:

f g(x̂k)− f g(x∗) ≤
θ2
k

1− θk

(
L

2
‖x0 − x∗‖2 +

1− θ0

θ0

(f g(x̂0)− f g(x∗))

)
∈ O(1/k2) .

1This equality was actually used to define ỹk.
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Numerical Experiments

Proof. We make the following estimation:

f g(x̂k+1)
(i)

≤ `gf (x̂k+1, ŷk) +
L

2
‖x̂k+1 − ŷk‖2

(ii)

≤ `gf (zk+1, ỹk) +
L

2
‖zk+1 − ỹk‖2

(iii)

≤ `gf ((1− θk)x̂k + θkx̃k+1, ỹk) +
L

2
‖(1− θk)x̂k + θkx̃k+1 − ỹk‖2

(iv)

≤ (1− θk)`gf (x̂k, ỹk) + θk(`
g
f (x̃k+1, ỹk) + θk

L

2
‖x̃k+1 − x̃k‖2)

(v)

≤ (1− θk)`gf (x̂k, ỹk) + θk(`
g
f (x, ỹk) + θk

L

2
‖x− x̃k‖2 − θk

L

2
‖x− x̃k+1‖2)

(vi)

≤ (1− θk)f g(x̂k) + θkf
g(x) + θ2

k

L

2
(‖Uk(x)‖2 − ‖Uk+1(x)‖2)

where (i) uses the quadratic (Lipschitz) upper bound, (ii) uses (19), (iii) uses (18), (iv)
uses convexity of `gf and the definition of2 ỹk , (v) holds for any x thanks to the optimality

of x̃k+1 in (17) and the L-strong convexity of x 7→ `gf (x, ỹk) + θk
L
2
‖x − x̃k‖2, (vi) holds by

defining Uk(x) := x − x̃k and by convexity of `gf . The statement follows analogously to
Proposition 10.

4 Numerical Experiments

For optimization problems (1) where f is a quadratic function and g is convex, adaptive
FISTA (aFISTA) is equivalent to the zero memory SR1 quasi-Newton method with α < 1/L.
Algorithm 1 provides the details of aFISTA when f is quadratic and g may be non-convex.
For the experiments in this paper, we assume that β = β is one-dimensional. In Section 4.1
and 4.2, we focus on a comparison between aFISTA and the accelerated variants aMFISTA
proposed in Section 3.3.1 and aTseng in Section 3.3.2, standard FISTA [4], and its monotone
variant (MFISTA) [3].

Remark 14. The matrix Q and Q−1 are not explicitly constructed. It is more efficient to
work with the identity minus rank 1 decomposition T − uu>.

In Section 4.3, we consider a “highly” non-convex and non-smooth optimization problem.
We compare our proposed method (aFISTA), for which an overview of the implementation
is provided in Algorithm 2, with other solvers with theoretical convergence guarantees for
such problems: Forward–Backward Splitting (FBS) [1], iPiano [42], and a monotone variant
of FISTA (MFISTA) [33].

2Again, ỹk is actually chosen such that this equality holds.
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Numerical Experiments

Algorithm 1 (Exact Adaptive Fista for partially quadratic Problems).

• Optimization Problem: min
x∈RN

f(x) + g(x) where

– f is quadratic with L-Lipschitz gradient, and

– g is proper lower semi-continuous with simple proximal mapping.

• Parameters:

– Initialization: Set x0 = x−1 = x̄ for some x̄ ∈ RN .

– Step size: T = α−1I with α < 1/L.

• Update for k = 0, . . . , n

– Set x̄ = xk and d = xk − xk−1 in (3) and (2).

– Compute Q and Q−1 from (7) and (8).

– Compute the solution x̂ of the (identity minus rank 1) proximal mapping (6).

– Set xk+1 = x̂.

Algorithm 2 (Adaptive Fista for Non-convex Problems).

• Optimization Problem: min
x∈RN

f(x) + g(x) where

– f is continuously differentiable with L-Lipschitz gradient, and

– g is proper lower semi-continuous with simple rank-1 proximal mapping.

• Parameters:

– Initialization: Set x0 = x−1 = x̄ for some x̄ ∈ RN .

– Maximal number of backtracking line-search steps: m ∈ N.

– Backtracking line-search scaling factor: δ > 0.

– Step size: T = α−1I with α < 1/L.

• Update for k = 0, . . . , n

– Set x̄ = xk and d = xk − xk−1 in (4) and (2).

– Fix β̄k (e.g. β̄k = θk(θ
−1
k−1 − 1) with (θk)k∈N as in (10)).

– Select β̃ in {β̄k, β̄kδ1, β̄kδ
2, . . . , β̄kδ

m, 0} in (4).

– Set xk+1 = x̃ and with x̃ from (4) with β̃.
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Nesterov’s worst case functions

Remark 15. (i) Unlike classical (backtracking) line-search strategies, which are applied
to find the step size, the line-search in Algorithm 2 seeks for the overrelaxation pa-
rameter, for which β̃ = 0 is always a feasible choice that satisfies (4). Therefore,
the line-search can trivially be terminated after a finite number of steps, which is
sometimes hard to verify for classical line-search strategies, especially, in non-smooth
optimization.

(ii) If the Lipschitz constant of ∇f is unknown, an additional line-search for the Lipschitz
constant is required, which has the same termination issues as classical line-search
strategies.

(iii) The most obvious way to generate x̃ for a given β̃ in (4), is to perform an exact proximal

gradient step from the point y(β̃).

(iv) Note the choice of the restriction of the scaling factor for the backtracking line-search
is δ > 0. Since the termination of the line-search is always satisfied, the trial values for
the extrapolation parameter can also be increased. In fact, there is no need to bound
the choice of β̃ to [0, 1) (see Section 4.3).

4.1 Nesterov’s worst case functions

The smooth problem to be minimized is the following Nesterov’s worst case function [38]:

min
x∈RN

f(x) , f(x) =
L

4

(1

2
(x2

1 +

p−1∑
i=1

(xi+1 − xi)2 + x2
p)− x1

)
, (20)

where, exceptionally, the sub-index refers to a coordinate of x ∈ RN , L is a parameter, which
coincides with the Lipschitz constant of the gradient of the objective, and we set p = 2k+ 1
with 1 ≤ k ≤ N−1

2
. In [38], this objective is constructed such that its minimization is hard

for any first-order algorithm and it is used to show that after k iterations there is no such
algorithm3 that generates a point xk ∈ RN with f(xk)−min f ≤ 3L‖x0 − x∗‖2/(32(k + 1)2)
where x0 is the initialization and x∗ is an optimal point of f , i.e. the right hand side is a
lower bound for the functional residual.

We set L = 1, k = 100, and p = N = 201. In Figure 1, we compare our accelerated
methods, which are optimal (the convergence rate is proportional to the lower bound), with
other optimal methods FISTA and MFISTA. Moreover, we also incorporate the pure aFISTA
method (here equivalent to the ZeroSR1 method). The convergence plot suggests that also
the aFISTA converges in O(1/k2), which we could not prove. All other accelerated methods
show a very similar performance with respect to the number of iterations and the actual
computation time. While aTseng and aMFISTA perform equally w.r.t. the number of
iteration, aTseng is slightly faster as it requires one comparison of objective values less than

3To be more precise, the consideration is restricted to algorithms that generate the next iterate on an
affine space spanned by the gradients evaluated at the current and all previous iterates.
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Figure 1: Convergence plots for the methods described in Section 4.1 for solving (20). The vertical axis
is the same for both plots. The coordinate system is set such that differences between the methods are
visible. The proposed acceleration strategies for the ZeroSR1 method in Section 3.3 perform similarly to the
state-of-the-art.

aMFISTA. The proposed acceleration strategies are competitive with the state-of-the-art for
Nesterov’s worst case problem.

As a reference, also the convergence of the Conjugate Gradient (CG) method is shown
in the convergence plots, which is known as the “best” method for minimizing quadratic
functions with a finite-time convergence property. It shows that Nesterov’s lower bound is
sharp with respect to the iteration count k = 100.

4.2 Lasso

We consider the example of sparsity regularized linear regression (also known as LASSO or
Basis Pursuit problem):

min
x∈RN

h(x) , h(x) =
1

2
‖Ax− b‖2 + λ‖x‖1 , (21)

where ‖x‖1 :=
∑N

i=1 |xi| is the `1-norm, A ∈ RM×N and b ∈ RM , M,N ∈ N. In this case
our algorithm aFISTA (Algorithm 1) is closely related to the zero memory SR1 proximal
quasi-Newton method from [5] with step size 1/‖A>A‖. The favorable performance for this
special instance was already demonstrated in [5, 30]. Moreover, efficient solution strategies
of the `1-proximal mapping with respect to a metric of type “identity plus/minus rank 1” are
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Sparsity regularized non-linear inverse problem
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Figure 2: Convergence plots for the methods described in Section 4.2 for solving (21). The vertical axis
is the same for both plots, where h∗ is the numeric optimal value computed with 106 Forward–Backward
iterations. The pure aFISTA method initially outperforms all accelerated variants for this problem, and
the accelerations from Section 3.3 outperform standard versions of FISTA. Using rank-1 proximal mappings
significantly speeds-up the convergence.

also given in [5, 30], which include the `1-norm. Therefore, we perform a quick comparison
with the accelerated variants as in Section 4.1 for this non-smooth problem only. We use
M = 800, N = 350, λ = 0.1, and the entries of A and b are drawn from a uniform distribution
in [0, 1].

The convergence plot in Figure 2 shows that aFISTA and its accelerations outperform
standard variants of FISTA. The usage of the proximal mapping with respect to metrics of
type “identity plus/minus rank 1”, significantly accelerated the convergence. Surprisingly,
the convergence of pure aFISTA outperforms its accelerated variants from Section 3.3 with
respect to the number of iterations and the actual computation time.

4.3 Sparsity regularized non-linear inverse problem

In this experiment, we consider a neural network formulation of a one dimensional regression
problem. We are given N = 80 noisy samples (X, Ỹ ) ∈ (R1×N)2 of the function F : [−3, 3]→
R, x 7→ x3 + cos(5x), arranged as corresponding columns of the matrices X and Ỹ , i.e.,

Ỹ1,i := F (X1,i) + E1,i ,

where E ∈ R1×N is an additive noise matrix that models Gaussian noise with standard
deviation 3

2
and 20 randomly scaled outliers. The neural network optimization problem,
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Figure 3: Convergence plots for the methods described in Section 4.3 for solving (22). The vertical axis
is the same for both plots. In this experiment, our method aFISTA outperforms the other methods with
respect to the actual computation time and the final objective value.

respectively the non-linear inverse problem, that we consider is formulated as follows:

min
W0,W1,W2
b0,b1,b2

N∑
i=1

(
‖(W2σ2(W1σ1(W0X +B0) +B1) +B2 − Ỹ )1,i‖2 + ε2

)1/2

+ λ
2∑
j=0

‖Wj‖1 ,

(22)

Bj := bj1
> , 1> := (1, . . . , 1) , j = 1, 2, 3 , (23)

where D0 = D3 = 1, D1 = D2 = 10, Wj ∈ RDj×Dj−1 , Bj+1 ∈ RDj×N , for j = 1, 2, 3, and
σj : RDj×N → RDj×N , A 7→ (max(0, (A2

i,l + ε2)1/2))i,l, for j = 1, 2, with ε = 0.1. We used
λ = 1, which led to a sparsity level of about 87% of the coordinates.

We compare our method aFISTA from Algorithm 2 with δ = 1
2
, m = 2, and β̄k = 2,

against Forward–Backward Splitting (FBS), iPiano with β = 0.95, and monotone FISTA
(MFISTA). We used the same heuristic step size α = 5 · 10−5 for all methods. Throughout
several experiments, the performance of aFISTA was on a par with MFISTA. The conver-
gence for one problem instance is shown in Figure 3. In this experiment, aFISTA is slightly
better and finds a lower objective value. Since aFISTA used a small number of backtracking
iterations, the performance with respect to time is also competitive with MFISTA.

5 Conclusion

In this paper, we analyzed a non-convex variant of the well-known FISTA, where the ex-
trapolation parameter is adaptively optimized in each iteration, which we call aFISTA. In
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Concepts from non-smooth analysis

the special case where the smooth part of the split objective function is quadratic, aFISTA
is equivalent to a certain proximal quasi-Newton method, which unlike the general class of
proximal quasi-Newton methods, allows for efficient solutions of the proximal mapping. This
equivalence relies on a reformulation of the quadratic function and is not influenced by the
non-smooth part of the objective, which may also be non-convex. It provides a different
view on quasi-Newton methods, which allows for accelerated variants. We propose two ac-
celerated variants of aFISTA for convex objective functions with convergence rate O(1/k2)
where k is the iteration count.

The general convergence of aFISTA is studied for non-convex objective functions that
are the sum of a continuously differentiable function with Lipschitz continuous gradient and
a proper lower semi-continuous non-smooth function with simple proximal mapping. Subse-
quential convergence to a stationary point in terms of the limiting subdifferential is proved.
In numerical experiments, aFISTA and its variants have been shown to be competitive with
the state-of-the-art.

In future work, we will explore the relationship between the adaptive extrapolation strat-
egy (aFISTA) with r linearly independent directions and other well known quasi-Newton
methods such as BFGS. Of course, this requires efficient solution algorithms for rank-r prox-
imal mappings. Moreover, our perspective of the SR1 quasi-Newton method might also lead
to new convergence results when the construction of the metric uses memory of previous
Hessian approximations. As a third direction of future research, the usage of Bregman dis-
tances needs to be investigated. For strongly convex Bregman functions, convergence should
not be difficult to proof, however, it is not clear what “rank-1” Bregman proximal mappings
can be solved efficiently.

A Concepts from non-smooth analysis

The Fréchet subdifferential of f at x̄ ∈ dom f := {x ∈ RN | f(x) < +∞} is the set ∂̂f(x̄)
of those elements v ∈ RN such that

lim inf
x→x̄
x 6=x̄

f(x)− f(x̄)− 〈v, x− x̄〉
‖x− x̄‖

≥ 0 .

For x̄ 6∈ dom f , we set ∂̂f(x̄) = ∅. The (limiting) subdifferential of f at x̄ ∈ dom f is
defined by

∂f(x̄) := {v ∈ RN | ∃ (xk, f(xk))→ (x̄, f(x̄)), vk ∈ ∂̂f(xk), vk → v} ,

and ∂f(x̄) = ∅ for x̄ 6∈ dom f . A point x̄ ∈ dom f for which 0 ∈ ∂f(x̄) is a called a critical
points. As a direct consequence, we have to following closedness property:

(xk, f(xk))→ (x̄, f(x̄)), vk → v̄, and for all k ∈ N : vk ∈ ∂f(xk) =⇒ v̄ ∈ ∂f(x̄) .

The distance of x̄ ∈ RN to a set ω ⊂ RN as is given by dist(x̄, ω) := infx∈ω ‖x̄ − x‖. We
introduce the non-smooth slope ‖∂f(x̄)‖− := infv∈∂f(x̄) ‖v‖ = dist(0, ∂f(x̄)) at x̄. Note
that inf ∅ := +∞ by definition. Furthermore, we have (see [23]):
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Lemma 16. If (xk, f(xk))→ (x̄, f(x̄)) and lim infk→∞ ‖∂f(xk)‖− = 0, then 0 ∈ ∂f(x̄).

References

[1] H. Attouch, J. Bolte, and B. Svaiter. Convergence of descent methods for semi-algebraic
and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–
Seidel methods. Mathematical Programming, 137(1-2):91–129, 2013.

[2] H. Attouch and J. Peypouquet. The rate of convergence of Nesterov’s accelerated forward-
backward method is actually faster than 1/k2. SIAM Journal on Optimization, 26(3):1824–
1834, 2016.

[3] A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained Total Variation image
denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11):2419–
2434, Nov. 2009.

[4] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Applied Mathematics, 2(1):183–202, Mar. 2009.

[5] S. Becker and J. Fadili. A quasi-Newton proximal splitting method. In Advances in Neural
Information Processing Systems (NIPS), pages 2618–2626. Curran Associates Inc., 2012.

[6] S. Bonettini, I. Loris, F. Porta, and M. Prato. Variable metric inexact line-search based
methods for nonsmooth optimization. SIAM Journal on Optimization, 26(2):891–921, Jan.
2016.

[7] S. Bonettini, I. Loris, F. Porta, M. Prato, and S. Rebegoldi. On the convergence of variable
metric line-search based proximal-gradient method under the Kurdyka– Lojasiewicz inequality.
ArXiv e-prints, May 2016. arXiv:1605.03791.
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