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Abstract. We consider optimal control problems for gas flow in pipeline
networks. The equations of motion are taken to be represented by a first-order
system of hyperbolic semilinear equations derived from the fully nonlinear
isothermal Euler gas equations. We formulate an optimal control problem on
a network and introduce a tailored time discretization thereof. In order to
further reduce the complexity, we consider an instantaneous control strategy.
The main part of the paper is concerned with a nonoverlapping domain decom-
position of the optimal control problem on the graph into local problems on
smaller sub-graphs—ultimately on single edges. We prove convergence of the
domain decomposition method on networks and study the wellposedness of the
corresponding time-discrete optimal control problems. The point of the paper
is that we establish virtual control problems on the decomposed subgraphs
such that the corresponding optimality systems are in fact equal to the systems
obtained via the domain decomposition of the entire optimality system.

1. Introduction

We consider a semilinear hyperbolic system for gas flow in a network of pipes
that is derived from the Euler equations for compressible fluids in cylindrical pipes.
The overall goal is to control the flow of gas in an optimal way such that at so-
called entry nodes gas is provided at a certain pressure and at so-called exit nodes
pressure and flow conditions are realized. The control instruments in the system
are valves and compressors which, in turn, are modeled as switching boundary
conditions followed by continuous control profiles. Indeed, the decision to open
a valve is followed by a continuous opening of the valve, and, correspondingly,
once a decision is made to close the valve, the valve actually closes continuously.
A similar explanation holds for the action of compressors; see the mathematical
description below. The control costs are taken to be tracking costs for the flow and
the pressure plus a penalization of the control costs. The entire optimal control
problem can be put into the framework of mixed integer nonlinear optimal control
for partial differential equations (MINOC-PDE)—an extension of finite-dimensional
mixed-integer nonlinear programming (MINLP). Clearly, there is no general theory
available for this kind of problem; see, e.g., the recent survey paper [12] and the
references therein for further information.

The aim of this article is to reduce the size and the complexity of the problem by
a nonoverlapping domain decomposition procedure so that current methods from
the literature become feasible in order to handle the problem. To the best knowledge
of the authors, it is the first attempt in that direction towards systems of hyperbolic
first-order semilinear equations.
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The main strategy is as follows: The first step is to introduce a proper time
discretization of the problem, namely a semi-implicit-explicit Euler discretization,
which turns the problem into a sequence of static semilinear problems. The second
step is to apply the concept of “instantaneous” or “rolling horizon control” that
turns the problem into a sequence of one-step optimal control problems, each for
a given time level; see also [11]. The third step, and this is the essence of this
paper, is to apply a tailored nonoverlapping domain decomposition in a way similar
to [19] and, more recently, [20], in order to reduce the size and the complexity
of the problem to reasonably small networks—even to single pipes. This is done
via an iterative scheme: first for the mere simulation problem and then for the
corresponding optimality systems. We will show that, in both cases, the iterations
converge so that in the limit the solutions satisfy the original problem or the original
optimality system on the entire network. It is important to note that thereby the
optimal control problem on the entire network is iteratively decoupled to optimal
control problems on the smaller sub-networks by using so-called “virtual controls”.
The paper therefore aims at both the parallelization of the optimal original control
problem and a size reduction in order to finally apply tailored MINLP methods
(as developed in, e.g., [10, 26]) to the smaller sub-networks. These actual MINLP
techniques are, however, not in the scope of the present paper and, thus, we refer to
a forthcoming publication for the fully discrete-continuous problem.

In [20] one of the authors followed the described concept for a scalar semilinear
elliptic model, thereby extending corresponding results in [19]. This is extended
by this paper to hyperbolic semilinear systems. However, the regularity results
are different and so are the proofs. Moreover, in the current article we provide
the modeling and the corresponding mathematical handling of “discrete elements”
like valves and compressors. In this respect, the results obtained in the current
article are novel and better tuned to the actual gas network problem arising in the
considered application.

The remainder of the paper is structured as follows. The considered models of
single pipes and entire gas networks are introduced in Section 2 and Section 3 then
discusses the corresponding optimal control problems, tailored time discretization
schemes, and an instantaneous control approach. Afterward, in Section 4 we
review domain decomposition techniques, prove their convergence for semilinear and
hyperbolic models of gas networks, and describe the decomposition of graphs into
sub-graphs. In Section 5, the same is done for the corresponding optimality systems
and the wellposedness of the problems on a discrete time level is shown in Section 6.
The paper closes with some concluding remarks in Section 7.

2. Modeling of Single Pipes and Entire Networks

We now provide the modeling necessary in order to formulate the optimal control
problems.

2.1. Modeling of Gas Flow in a Single Pipe. The Euler equations are given
by a system of nonlinear hyperbolic partial differential equations (PDEs), which
represent the motion of a compressible non-viscous fluid or gas. They consist of the
continuity equation, the balance of moments, and the energy equation. The full set
of equations is given by

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(p+ ρv2) = − λ

2D
ρv|v| − gρh′,

∂t

(
ρ(

1

2
v2 + e)

)
+ ∂x

(
ρv(

1

2
v2 + e) + pv

)
= −kw

D
(T − Tw) ;
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see [4, 21, 22, 28]. Let ρ denote the density, v the velocity, and p the pressure of
the gas. We further denote by λ the friction coefficient and by D the diameter of
the pipe. The gas temperature is denoted by T , the temperature of the pipe’s wall
by Tw, and e denotes the internal energy of the gas. Finally, g is the gravitational
acceleration, h′ = h′(x) is the constant slope of the pipe, and kw is the pipe’s heat
transfer coefficient. The variables of the system are ρ, T , and the mass flow q = aρv,
where a is the cross-sectional area of the pipe. We also denote by c the speed of
sound, i.e., c2 = ∂ρp (for constant entropy). In particular, in the subsonic case
(|v| < c) that we consider in the sequel, two boundary conditions have to be imposed
on the left end and one at the right end of the pipe. We consider here the isothermal
case only. Thus, for horizontal pipes, i.e., h′ = 0, we have

∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂

∂t
(ρv) +

∂

∂x
(p+ ρv2) = − λ

2D
ρv|v|.

In the particular case, where we have a constant speed of sound c =
√
p/ρ and only

consider small velocities |v| � c, we arrive at the semilinear model; cf. [23]:
∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂

∂t
(ρv) +

∂p

∂x
= − λ

2D
ρv|v|.

(1)

2.2. Network Modeling. Let G = (V ,E) denote the graph of the gas network
with nodes V = {n1,n2, . . . ,n|V |} and edges E = {e1, e2, . . . , e|E|}. Node indices
are denoted j ∈ J = {1, . . . , |V |} while edges are labeled with i ∈ I = {1, . . . , |E|}.
For the sake of uniqueness, we associate to each edge a direction. Accordingly, we
introduce the edge-node incidence matrix with entries

dij =


−1, if node nj is the left node of the edge ei,
1, if node nj is the right node of the edge ei,
0, else.

In contrast to the classical notion of graphs in discrete mathematics, the graphs
considered here are known as metric graphs in the sense that the edges are continuous
curves. In fact, we consider straight edges along which differential equations hold.
The pressure variables pi(nj) coincide for all edges incident at node nj , i.e., for
all edge indices i ∈ Ij := {i = 1, . . . , |E| : dij 6= 0}. We express the transmission
conditions at the nodes in the following way. We introduce the edge degree δj := |Ij |
and distinguish between multiple nodes nj with δj > 1, whereas for simple nodes nj
we have δj = 1. The corresponding index sets are denoted by JM and J S. The set
of multiple nodes contains serial nodes, i.e., nodes with edge degree δj = 2. The set
of simple nodes further decomposes into those simple nodes J S

D at which Dirichlet
(i.e., pressure) conditions hold and Neumann nodes J S

N that are flow-controlled.
With this, the continuity conditions across an uncontrolled node reads

pi(nj , t) = pk(nj , t), j ∈ JM \ (Jc ∪ Jv), i, k ∈ Ij ,
where Jc and Jv denote the serial nodes of compressors and valves that we interpret
as controlled transmission conditions; see below for the details. The nodal balance
equation for the flows can be written as a classical Kirchhoff-type condition∑

i∈Ij

dijqi(nj , t) = 0, j ∈ JM.
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As already mentioned, we assume that valves and compressors are serial nodes nj ,
i.e., j ∈ JM with δj = 2. At such a node we have an incoming edge with unique
index i ∈ I+

j , where I+
j := {i ∈ Ij : dij = 1}, and an outgoing edge with unique

index k ∈ I−j := {k ∈ Ij : dkj = −1}.
We now provide the network model of (1), cf. System 1. It is obvious from

System 1 that for sv
j (t) = 1, i.e., the case in which the valve at node nj is open,

the classical transmission conditions hold, while for sv
j (t) = 0, the outgoing flow

and—according to the Kirchhoff condition, which still holds—the incoming flow is
zero. Similarly, for sc

j(t) = 1, the compressor is active, resulting in pressure control
such that the pressure in the outgoing pipe is increased with respect to (w.r.t.) the
pressures of the incoming pipes. To the best knowledge of the authors, System 1
with switching functions sv

j (t), sc
j(t) ∈ {0, 1}, even for the simplest possible network,

namely a two-link system with a compressor or valve at the connection point, has
not been considered for the semilinear problem so far. Even for smooth relaxations
of sv

j (·) and sc
j(·), no published result seems to be available.

System 1. Gas network model; x ∈ (0, `i) and t ∈ (0,T )

∂tpi(x, t) +
c2i
ai
∂xqi(x, t) = 0, i ∈ I

∂tqi(x, t) + ∂xpi(x, t) = − λc2i
2Dia2i

qi(x, t)|qi(x, t)|
pi(x, t)

, i ∈ I

pi(nj , t) = pk(nj , t), j ∈ JM \ (Jc ∪ Jv), i, k ∈ Ij
gj(pi(nj , t), qi(nj , t)) = uj(t), j ∈ J S, i ∈ Ij∑

i∈Ij

dijqi(nj , t) = 0, j ∈ JM

svj (t) (pi(nj , t)− pk(nj , t)) + (1− svj (t))qi(nj , t) = 0, j ∈ Jv, i ∈ I+j , k ∈ I−j

scj(t)

(
uj(t)− C

((
pk(nj , t)

pi(nj , t)

)sign(qk(nj ,t))κ

− 1

))
+(1− scj(t)) (pi(nj , t)− pk(nj , t)) = 0 j ∈ Jc, i ∈ I+j , k ∈ I−j
pi(x, 0) = pi,0(x), qi(x, 0) = qi,0(x), i ∈ I

For more details on the compressor model see, e.g., [25, 27] or the chapter [8] of
the recent book [17]. Note that we can replace the transmission conditions at the
compressor node by the bilinear transmission conditions as follows:

uj(t)− C
((

pk(nj , t)

pi(nj , t)

)sign(qk(nj ,t))κ

− 1

)
= 0

⇐⇒
(
uj(t) + C

C

)sign(qk(nj ,t))/κ

=
pk(nj , t)

pi(nj , t)
.

If we replace uj(t) by

uj(t) =

(
uj + C

C

)sign(qk(nj ,t))/κ

and ensure uj ≥ 1, the original transmission condition at the compressor node can
be replaced with

pi(nj , t)uj(t)− pk(nj , t) = 0

if the compressor is active. Otherwise, the classical continuity condition for the
pressure holds. This results in a bilinear boundary control.
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3. The Optimal Control Problem, Time Discretizations,
and an Instantaneous Control Approach

We are now in the position to formulate optimal control problems on the level
of entire gas networks. There are many different approaches towards optimizing
and/or control the flow of gas through pipeline networks. One of these approaches
aims at optimizing discrete decision variables such as on-off-states for valves and
compressors. We refer to [10–12, 26], refrain in the sequel from discussing issues
of valves and compressors in detail, and focus on the continuous aspects of the
problem. The combined discrete and continuous optimization will be the subject of
future research. We now describe the general format of an optimal control problem
associated with the semilinear model equations of the previous section:

min
(p,q,u,s)∈Ξ

I(p, q,u, s) s.t. (p, q,u, s) satisfies System 1, (2)

where

I(p, q,u, s) :=
∑
i∈I

∫ T

0

∫ `i

0

Ii(pi, qi) dxdt+
ν

2

∑
j∈J S∪Jc

∫ T

0

|uj(t)|2 dt

+
1

2

∫ T

0

∑
j∈Jv

|sv
j (t)|2 dt+

1

2

∫ T

0

∑
j∈Jc

|sc
j(t)|2 dt

(3)

and
Ξ :={(p, q,u, s) : pi ∈ [

¯
pi, p̄i], qi ∈ [

¯
qi, q̄i], i ∈ I,

uj ∈ [
¯
uj , ūj ], j ∈ J S ∪ Jc,

sv
j ∈ {0, 1}, j ∈ Jv, sc

j ∈ {0, 1}, j ∈ Jc}
(4)

holds. In (3), ν > 0 is a penalty parameter and Ii(·, ·) is a continuous function on
the pair (pi, qi). In (4), the quantities

¯
pi,

¯
qi, p̄i, q̄i are given constants that determine

the feasible pressures and flows in the pipes, while
¯
uj , ūj describe control constraints.

In the continuous-time case the inequalities are considered as being satisfied for all
times and everywhere along the pipes. In the sequel, we will not consider control
and state constraints and even reduce to a time semi-discretization.

To this end, we consider a time discretization of System 1 such that [0,T ] is
decomposed into break points 0 = t0 < t1 < · · · < tN = T with ∆tn := tn+1− tn for
n = 0, . . . ,N−1. Accordingly, we abbreviate pi,n(x) := pi(x, tn), qi,n(x) := qi(x, tn).
Next, we apply a semi-implicit Euler scheme, which takes pi in the friction term
in an explicit manner. The resulting semi-discretized system is given in System 2.
With this we obtain the optimal control problem on the time-discrete level:

min
(p,q,u,s)∈Ξ̂

Î(p, q,u, s) :=
∑
i∈I

N∑
n=1

∫ `i

0

Îi(pi,n, qi,n) dx+
ν

2

N∑
n=1

∑
j∈J S∪Jc

|uj,n|2

+
1

2

N∑
n=1

∑
j∈Jv

|sv
j,n|2 +

1

2

N∑
n=1

∑
j∈Jc

|sc
j,n|2

s.t. (p, q,u, s) satisfies System 2.

(5)

In (5), we consider discretized and edge-wise given cost functions, e.g.,

Îi(pi,n, qi,n)(x) :=
1

2

(
|pi,n(x)− pdi,n(x)|2 + |qi,n(x)− qdi,n(x)|2

)
for x ∈ (0, `i), i ∈ I, and tracking targets pdi,n and qdi,n. Moreover, Ξ̂ is the discretized
version of Ξ. It is clear that (5) involves all time steps in the cost functional. We
like to reduce the complexity of the problem even further. To this aim, we consider
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System 2. Semi-discretized model; x ∈ (0, `i), n = 0, . . . ,N − 1

1

∆tn
pi,n+1(x) +

c2i
ai
∂xqi,n+1(x) =

1

∆tn
pi,n(x), i ∈ I

1

∆tn
qi,n+1(x) + ∂xpi,n+1(x)

= − λc2i
2Dia2i

qi,n+1(x)|qi,n+1(x)|
pi,n(x)

+
1

∆tn
qi,n(x), i ∈ I

pi,n+1(nj) = pk,n+1(nj), j ∈ JM \ (Jc ∪ Jv), i, k ∈ Ij
gj(pi,n+1(nj), qi,n+1(nj)) = uj,n+1, j ∈ J S, i ∈ Ij∑

i∈Ij

dijqi,n+1(nj) = 0, j ∈ JM

svj,n+1 (pi,n+1(nj)− pk,n+1(nj))

+(1− svj,n+1)qi,n+1(nj) = 0, j ∈ Jv, i ∈ I+j , k ∈ I−j
scj,n+1 (pi,n+1(nj)uj − pk,n+1(nj))

+(1− scj,n+1) (pi,n+1(nj)− pk,n+1(nj)) = 0, j ∈ Jc, i ∈ I+j , k ∈ I−j
pi(x, 0) = pi,0(x), qi(x, 0) = qi,0(x), i ∈ I

what has come to be known as instantaneous control ; cf. [6, 7]. This approach has
also been used for the control of vibrating string networks in [16], for the control
of wave equations in networks in [14], for traffic flows in [13], or for the control of
linear wave equations in [2]. Very recently, a similar approach has been applied for
MPEC-type optimal control problems in [3] and for mixed-integer optimal control
problems with PDEs in [11]. The approach amounts to reducing the sums in the
cost function of (5) to the time-level tn+1. This strategy is known as rolling horizon
approach, the simplest case of the moving horizon paradigm; cf., e.g., [15, 16]. Thus,
for each n = 0, . . . ,N − 1 and given pi,n, qi,n, we consider the problems

min
(p,q,u,s)∈Ξ̂

Ĩ(p, q,u, s) :=
∑
i∈I

∫ `i

0

Îi(pi,n+1, qi,n+1) dx

+
ν

2

∑
j∈J S∪Jc

|uj,n+1|2 +
1

2

∑
j∈Jv

|sv
j,n+1|2 +

1

2

∑
j∈Jc

|scj,n+1|2

s.t. (p, q,u, s) satisfies System 2 at time level n+ 1.

(6)

It is now convenient to discard the actual time level index n+ 1 and redefine the
states at the former time as input data. To this end, we introduce

αi :=
1

∆tn
, βi =

αiai
c2i

, f1
i := βipi,n(x),

f2
i := αiqi,n(x), gi(x; qi(x)) :=

λc2i
2Dia2

i

qi(x)|qi(x)|
pi,n(x)

,

and rewrite System 2 as System 3.
This results in the final optimal control problem to be discussed below:

min
(p,q,u,s)∈Ξ̂

Î(p, q,u, s) s.t. (p, q,u, s) satisfies System 3. (7)

4. Domain Decomposition

In this section, we provide an iterative nonoverlapping domain decomposition that
can be interpreted as an Uzawa method; cf. Algorithm 3 in [9] and see the monograph
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System 3. Constraint system of Problem (7); x ∈ (0, `i)

βipi(x) + ∂xqi(x) = f1
i , i ∈ I

αiqi(x) + ∂xpi(x) + gi(x; qi(x)) = f2
i , i ∈ I

pi(nj) = pk(nj), j ∈ JM \ (Jc ∪ Jv), i, k ∈ Ij
gj(pi(nj), qi(nj)) = uj , j ∈ J S, i ∈ Ij∑

i∈Ij

dijqi(nj) = 0, j ∈ JM

svj (pi(nj)− pk(nj)) + (1− svj )qi(nj) = 0, j ∈ Jv, i ∈ I+j , k ∈ I−j
scj (pi(nj)uj − pk(nj)) + (1− scj) (pi(nj)− pk(nj)) = 0, j ∈ Jc, i ∈ I+j , k ∈ I−j

[19] for details. The idea for this algorithm originates from a decoupling of the
transmission conditions at all multiple nodes. In order to present the main ideas,
we concentrate on that case first in Section 4.1. After that, we decompose the full
graph into sub-graphs in Section 4.2, where we cut the connecting edges at possibly
artificial serial nodes. To this end, we define the flow vector qk := (dikqi(nk))>i∈Ik
and the pressure vectors pk := (pi(nk))>i∈Ik at a given node nk, k ∈ JM. Moreover,
given a vector z := (zi)i∈Ik , we define

Sk(z)i :=
2

dk

∑
j∈Ik

zj − zi.

Then, (Sk)2 = I, i.e., the mapping is idempotent, and Sk(e) = 1 for e :=
(1, . . . , 1)> ∈ Rdk . Using this notation, we now establish the general concept.
For any σ > 0 we set

− qk + σpk = σSk(pk) + Sk(qk). (8)

Applying Sk to both sides of (8), we obtain∑
i∈Ik

dikqi(nk) = 0. (9)

With this, (8) reduces to

pi(nk) =
1

dk

∑
j∈Ik

pj(nk), i ∈ Ik,

which, in turn, implies

pi(nk) = pj(nk), k ∈ JM, i, j ∈ Ik. (10)

Clearly, if the transmission conditions (9) and (10) hold at the multiple node nk,
then (8) is also fulfilled. Thus, (8) is equivalent to the transmission conditions
(9), (10). This new condition (8) is now relaxed in an iterative scheme (using l as
iteration number) as follows:

− (qk)l+1 + σ(pk)l+1 = σSk((pk)l) + Sk((qk)l) =: (gk)l+1, gk = (gik)>i∈Ik . (11)

We obtain the relation

(gk)l+1 = Sk(2σ(pk)l − (gk)l). (12)

This gives rise to the definition of a fixed point mapping. To this end, we need to
look into the behavior of the interface, i.e., the transmission nodes, in terms of gk,
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k ∈ JM, i.e.,

g ∈ X := Πk∈JMΠi∈IkR, ‖g‖2X :=
∑
k∈JM

∑
i∈Ik

1

σ
|gik|2 (13)

and T : X → X with
(T g)i,k = Sk(2σ(pk)− gk)i, k ∈ JM, i ∈ Ik,

(T g)k = {(T )i,k, i ∈ Ik},
T g = {(T g)k, k ∈ JM}.

(14)

Now,

‖T g‖2X =
∑
k∈JM

∑
i∈Ik

1

σk
|Sk(2σ(pk)− gk)i|2

holds. We use the facts ∑
i∈Ik

(Skgk)2
i =

∑
i∈Ik

(gk)2
i

and ∑
i∈Ik

(Skqk)i(Skgk)i =
∑
i∈Ik

qki g
k
i

to obtain
‖T g‖2X = ‖g‖2X − 4

∑
k∈JM

∑
i∈Ik

(gki − σkpi(nk))pi(nk). (15)

We now formulate a relaxed version of a fixed point iteration: For ε ∈ [0, 1), we set

gl+1 = (1− ε)T (gl) + εgl. (16)

So far, the relations concerning the iteration at the interfaces do not involve the
state equation explicitly. For the analysis of the convergence of the iterates, we need
to specify the equations.

4.1. The Nonoverlapping Domain Decomposition. For the ease of presenta-
tion, we first look at a graph that does not contain valves or compressors and we
only consider the situation of flow-controlled boundary nodes. Thus, at this point
we consider an edge that connects two multiple nodes or one multiple node and a
controlled simple node. We are interested in the errors between the solutions of
System 3 and the solutions of

βip
l+1
i (x) + ∂xq

l+1
i (x) = f1

i , x ∈ (0, `i), i ∈ I,

αiq
l+1
i (x) + ∂xp

l+1
i (x) + gi(x; ql+1

i (x)) = f2
i , x ∈ (0, `i), i ∈ I,

−dijql+1
i (nj) + σpl+1

i (nj) = gl+1
kj , j ∈ JM, i, k ∈ Ij ,

qi(nj) = uj , i ∈ Ij , j ∈ J S
N ,

(17)

where gl+1
kj satisfies (12). Notice that the third position in (17) describes a set of

equations, one for each edge incident at node nj . Thus, we introduce q̂l+1 := ql+1−q
and p̂l+1 := pl+1−p. Then q̂l+1 and p̂l+1 solve a nonlinear differential equation with
nonlinearity gi(q̂l+1

i + qi)− gi(qi), zero right-hand sides and homogeneous boundary
conditions at the simple nodes. As we noted above, the full transmission conditions
are equivalent to (8). Hence, the error satisfies the same iterative Robin-type
boundary conditions as ql+1 and pl+1. We consider the following integration by
parts formula after multiplying by a test function φ:
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0 =
∑
i∈I

∫ `i

0

(
βip̂

l+1
i + ∂xq̂

l+1
i

)
φi dx

=
∑
k∈JM

∑
i∈Ik

dikp̂
l+1
i (nk)φi(nk) +

∑
i∈I

∫ `i

0

(
βip̂

l+1
i φi − q̂l+1

i ∂xpi
)

dx,

0 =
∑
i∈I

∫ `i

0

(
αiq̂

l+1
i + ∂xp̂

l+1
i + gi(q̂

l+1
i + qi)− gi(qi)

)
qi dx.

We obtain
−
∑
k∈JM

∑
i∈Ik

dikq̂
l+1
i (nk)p̂l+1

i (nk)

=
∑
i∈I

∫ `i

0

(
βi(p̂

l+1
i )2 + αi(q̂

l+1
i )2 + (gi(q̂

l+1
i + qi)− gi(qi))q̂l+1

i

)
dx.

Moreover, we have∑
k∈JM

∑
i∈Ik

dikq̂
l+1
i (nk)p̂l+1

i (nk) = −
∑
k∈JM

∑
i∈Ik

(gik − σpi(nk))pi(nk).

This identity is used in (15), evaluated for the error

‖T g‖2X = ‖g‖2X − 4
∑
k∈JM

∑
i∈Ik

((gki )l − σk(p̂ki )l)(p̂eki )l.

We obtain
‖gl+1‖2X = ‖T gl‖2X

= ‖gl‖2X − 4
∑
i∈I

∫ `i

0

(
βi(p̂

l
i)

2 + αi(q̂i)
2 + (gi(q̂

l
i + qi)− gi(qi))q̂l

)
dx.

We assume monotonicity of the nonlinear term

(gi(x; s)− gi(x; t))(s− t) ≥ 0, x ∈ (0, `i), i ∈ I. (18)

Then, the error iteration is

‖gl+1‖2X ≤ ‖T gl‖2X = ‖gl‖2X − 4
∑
i∈I

∫ `i

0

(
βi(p̂

l
i)

2 + αi(q̂i)
2
)

dx (19)

and, thus, the error does not increase. That it actually decreases to zero is shown
below. Before, we look at the relaxed version of the iteration (16). Taking norms
we obtain

‖gl+1‖2X ≤ ‖gl‖2X − 4(1− ε)
∑
i∈I
‖q̂i‖2 + ‖p̂i‖2. (20)

We iterate in (19) or (20) down from l to zero and obtain

{gl} is bounded, ‖p̂li‖2, ‖q̂li‖2 → 0, l→∞.

But according to the error equations, if p̂i → 0 holds strongly, then also ∂xq̂i, and
in a similar way also ∂xp̂i, strongly tends to zero. Thus, the full sequence of traces
converges.

Theorem 4.1. Under the monotonicity assumption (18), for each ε ∈ [0, 1) the
iteration (16) with (11), (13), and (14) converges as l → ∞. The convergence of
the solutions is in the H1-sense (see (29)) on the entire network. Moreover, the
traces at the decomposition nodes converge.

Before we embark on the domain decomposition of the optimal control problems,
we discuss the extension to sub-graph decomposition.
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x = −1

n1

x = 0 x = 1
i = 1 i = 2

Figure 1. Two-link network of Example 4.2.

4.2. Sub-Graph Decomposition. We consider the graph G = (V ,E) being de-
composed into sub-graphs Gm = (Vm,Em) for m = 1, . . . ,K. For the ease of
presentation, we split the original graph only at serial nodes j ∈ JM. We assume
that the sub-graphs are connected according to an adjacency structure Am,n = 1 if
the two sub-graphs Gm and Gn with m,n ∈ {1, . . . ,K} are connected. Otherwise,
Am,n = 0 holds. We denote the edge sets of sub-graph Gm, m ∈ {1, . . . ,K}, by Im.
The serial transmission nodes between sub-graph Gm and Gn are denoted by the
set JM

m,n. Moreover, we assume that all valves and compressors are contained in the
interior of the sub-graphs. To express this, we introduce the set JM,o

m of multiple
nodes of Gm that are not in JM

m,n. Accordingly, Jm,c and Jm,v are the compressor
and valve nodes contained in Gm. Thus, after domain decomposition, System 3
then yields System 4.

System 4. Domain-decomposed system; x ∈ (0, `i), m = 1, . . . ,K

βip
l+1
i (x) + ∂xq

l+1
i (x) = f1

i , i ∈ Im

αiq
l+1
i (x) + ∂xp

l+1
i (x) + gi(x; ql+1

i (x)) = f2
i , i ∈ Im

pl+1
i (nj) = pl+1

k (nj), j ∈ JM,o
m \ (Jm,c ∪ Jm,v), i, k ∈ Ij

gj(p
l+1
i (nj), q

l+1
i (nj)) = uj , j ∈ J S

m, i ∈ Ij∑
i∈Ij

dijq
l+1
i (nj) = 0, j ∈ JM,o

m

svj

(
pl+1
i (nj)− pl+1

k (nj)
)

+ (1− svj )ql+1
i (nj) = 0, j ∈ Jm,v, i ∈ I+j , k ∈ I−j

scj

(
pl+1
i (nj)uj − pl+1

k (nj)
)

+(1− scj)
(
pl+1
i (nj)− pl+1

k (nj)
)

= 0, j ∈ Jm,c, i ∈ I+j , k ∈ I−j

−dijql+1
i (nj) + σpi(nj)

l+1

= σpk(nj)
l + dkjqk(nj)

l =: gl+1
kj , j ∈ JM

m,n, n : Am,n = 1, i, k ∈ Ij

Example 4.2. We consider a serial situation consisting of two links, labeled with
i = 1, 2, that are coupled at x = 0. The first link stretches from x = −1 to x = 0
while the second stretches from x = 0 to x = 1; cf. Figure 1. We choose αi = βi = 1,
γi = λc2i /(2Dia

2
i ) = 0, and the distributed loads are given by f1

1 (x) = 1, f2
1 (x) = 1,

f1
2 = 1, f2

2 = 2. We plot the first five iterations of the domain decomposition and
provide the nodal errors. The reference solution is obtained using the MATLAB
routine bvp4c with a tolerance of 10−4; cf. the bold lines in Figure 2. For the fixed
point behavior of the gkj at the interface see Table 1. The error after five iterations
in the continuity conditions for the pressures is 8.87× 10−4 and the final error in the
flow is 2.25× 10−4. After 20 iterations, the corresponding errors are 7.92× 10−12

and 1.71× 10−12, respectively. If we now choose γ = 5 and take 20 iterations we
obtain the errors 2.84× 10−9 and 4.08× 10−10, respectively. The corresponding
plots in Figure 2 do not show any difference w.r.t. the reference solution.
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Figure 2. The two-link serial network of Example 4.2; cf. Figure 1.
x-axis: spatial coordinate x ∈ [−1, 1]. y-axis: mass flow. The
reference solution is printed in bold.

Table 1. Iteration history of g11, g21 in Example 4.2.

Iteration: 0 1 2 3 4 5

g11 0.00 0.89 1.01 1.07 1.08 1.09
g21 0.00 0.45 0.68 0.71 0.73 0.73

Example 4.3. We now consider the situation in which a compressor is located in
the middle of the two links. Otherwise, the model is as in Example 4.2. The domain
decomposition is as follows:

βip
l+1
i (x) + ∂xq

l+1
i (x) = f1

i , i = 1, 2,

αiq
l+1
i (x) + ∂xp

l+1
i (x) + gi(x; ql+1

i (x)) = f2
i , i = 1, 2,

ql+1
1 (−1) = 0, ql+1

2 (1) = 0,

−ql+1
1 (0) + σp1(0)l+1u0 = σp2(0)l + q2(0)l,

−ql+1
2 (0) + σp2(0)l+1 = σp1(0)lu0 + q1(0)l.

We take 20 iterations and put the control u0 = 5. The flow of the last iteration is
plotted on top of the MATLAB reference solution, obtained as above; cf. Figure 3.
The errors are 3.55× 10−7 and 1.67× 10−7, respectively.

Remark 4.4. We consider the situation of the last example, analyze a particular
iteration l + 1 and omit this index while keeping the previous index in order to
identify the data of the problem. In particular, on edge 2 we have

β2p2(x) + ∂xq2(x) = f1
2 , x ∈ (0, `2),

α2q2(x) + ∂xp2(x) + g2(x; q2(x)) = f2
2 , x ∈ (0, `2),

−q2(0) + σp2(0) = σp1(0)l(s(u− 1) + 1) + q1(0)l, q2(1) = q̄2.

(21)
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Figure 3. The two-link serial network with activated compressor
(u0 = 5). x-axis: spatial coordinate x ∈ [−1, 1]. y-axis: mass flow.

If s = 1, the control u ≥ 1 is applied, as the pressure is then higher as in the
previous pipe. Otherwise, the control 1 is applied, as then the pressures are the
same. We may introduce v = u− 1 and have v ≥ 0. The control v then appearing
in the Robin-type boundary condition is multiplied by the binary variable s and by
σp1(0)l from the previous iteration. Thus, the constellation above is a Robin-type
boundary control problem for a single link. In [10], the authors have established
particular situations in which a master-sub-problem-strategy, where the master
problem consists in optimizing the discrete variables, i.e., deciding whether the
compressor is active or not, and the sub-problem takes the continuous optimization,
i.e., the pump-control, converges. In that study it was required that the control-
to-state map of the sub-problem is smooth, strictly monotone, and either convex
or concave. Further developments that alleviate the assumptions were presented
in [26]. A similar situation has been studied in [5] for an integer control problem
for a semilinear Laplace boundary value problem, where also the concavity of the
control-to-state-map turned out to be the crucial argument. We therefore ask the
question whether the flow q is concave as a function of u. For its answer, we
would like to resort to a maximum principle and transform Problem (21) into a
second-order problem. This is done by differentiating the first equation of (21)
with respect to x and inserting the resulting expression for ∂xp2 into the second
equation. The pressure terms in the boundary and transmission conditions are then
pi(nj) = −∂xqi(nj)/βi. We ignore the edge index and formulate an optimal control
problem for the single edge 2:

min
s∈{0,1},u∈[1,ū]

‖q − qd‖L2(0,1) +
ν

2
(s2 + u2)

s.t. αβq − ∂xxq + βg(x; q) = βf2 − ∂xf1,

q(0) +
σ

β
∂xq(0) = φs(u− 1) + µ,

q(1) = q̄.

(22)
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Figure 4. Network of Example 4.5.

Here, φ = σ/β1 ∂xq1(0)l,µ = φ − q1(0)l. In order to prove the concavity of q
as a function of u using differential calculus, we need to show that ∂uuq(u) < 0.
This, however, requires that g(x; ·) is twice differentiable. Obviously, the function
g(x; q) = γ(x)q(x)|q(x)| is first-order continuously differentiable, while the second
derivative is not well defined at x = 0, being otherwise identical to the Heavyside
function. Its Bouligand second derivative is the set {−1, 1}. We now use the
smoothed function gε(x; q) = γ(x)(ε+ |q(x)|2)

1
2 q(x). We can now differentiate the

constraints of (22) w.r.t. u and obtain for w := Duq(u) and z := Duuq(u):

αβz − ∂xxz + βD2gε(x; q(u))z = −βD2
2gε(x; q(u))w2, (23a)

q(0) +
σ

β
∂xz(0) = 0, (23b)

z(1) = 0. (23c)

As the flow is in the positive direction by construction, q(u) is positive for positive
controls. This can also be proven using the maximum principle for (22). The term
βD2

2gε(x; q(u))w2 is positive and, hence, the right-hand side of (23a) is negative.
According to the maximum principle, z is negative and, therefore, q(u) is concave
as a function of u > 0. Thus, for ε > 0, we have achieved the situation alluded to
above. This amounts to saying that up to a relaxation parameter, we can achieve a
global solution at the iteration level l + 1 and ε > 0 using the techniques of [10].
This property is reminiscent to the results in [1], where additional control and state
constraints are considered. However, the nonlinearity does not formally fit into the
framework of [1]. The extension of these results for constrained problems with the
nonlinearity discussed here is subject to a forthcoming publication. Having achieved
the optimal control in (22) for edge 2, we can use it in the iteration for the edge 1,
according to (21). While the question if the global optimum is stable as the domain
decomposition iteration converges is open. See, e.g., [24] for a sensitivity analysis
for MINLPs.

Example 4.5. We consider the serial situation displayed in Figure 4, where the
edges 1, 2 are connected by the node n0 (at x = 0), the edges 3, 4 are connected to
edge 1 via node n1 (at x = 1) and to edge 2 via node n2 (at x = 1). At x = 0,
i.e., the node between edges 1, 2, we have an active compressor, i.e., sc

0 = 1. We
decompose the network at the two serial nodes between edges 1, 3 and 2, 4 at x = 1,
respectively. With this configuration, we have I0 = {1, 2}, I1 = {1, 3}, I2 = {2, 4}.
At the simple nodes of edges 3 and 4, we consider controlled boundary flows. We
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write down the system in a more explicit way:

βip
l+1
i (x) + ∂xq

l+1
i (x) = f1

i , x ∈ (0, `i), i = 1, . . . , 4,

αiq
l+1
i (x) + ∂xp

l+1
i (x) + gi(x; ql+1

i (x)) = f2
i , x ∈ (0, `i), i = 1, . . . , 4,

pl+1
1 (0)u0 = pl+1

2 (0),

ql+1
1 (0) + ql+1

2 (0) = 0,

ql+1
3 (0) = u3, ql+1

4 (0) = u4,

−ql+1
1 (1) + σp1(1)l+1 = σp3(1)l + q3(1)l =: gl+1

31 ,

−ql+1
3 (1) + σp3(1)l+1 = σp1(1)l + q1(1)l =: gl+1

11 ,

−ql+1
2 (1) + σp2(1)l+1 = σp4(1)l + q4(1)l =: gl+1

42 ,

−ql+1
4 (1) + σp4(1)l+1 = σp2(1)l + q2(1)l =: gl+1

22 .

It is then obvious that the domain decomposition method converges.

Example 4.2, 4.3, and 4.5 show that a network with compressors and valves can
be decomposed into sub-graphs down to individual edges using the nonoverlapping
domain decomposition procedure.

Theorem 4.6. Let the assumption of Theorem 4.1 be valid. Then, the sub-graph
iteration (4) converges as l→∞ in the H1-sense.

5. Domain Decomposition for Optimal Control Problems

We now consider the optimal control problem (7) with two modifications: First,
we fix a given switching structure s. Second, we only consider flow boundary controls.
The latter means that we replace gj(pi(nj), qi(nj)) = uj by qi(nj) = uj for j ∈ J S,
i ∈ Ij . The corresponding optimality system is given in System 5.

System 5. Optimality system of Problem (7) with fixed switching
structure and flow boundary control; x ∈ (0, `i)

βipi(x) + ∂xqi(x) = f1
i , i ∈ I

αiqi(x) + ∂xpi(x) + gi(x; qi) = f2
i , i ∈ I

βiφi(x)− ∂xψi(x) = −κi(pi − p0i ), i ∈ I

αiψi(x)− ∂xφi(x) + ∂qgi(x; qi)φi = −κi(qi − q0i ), i ∈ I

qi(nj) = uj , ψi(nj) = 0, j ∈ J S, i ∈ Ij
pi(nj) = pk(nj), φi(nj) = φk(nj), j ∈ JM \ (Jc ∪ Jv), i, k ∈ Ij∑

i∈Ij

dijqi(nj) = 0,
∑
i∈Ij

dijψi(nj) = 0, j ∈ JM

svj (pi(nj)− pk(nj)) + (1− svj )qi(nj) = 0, j ∈ Jv, i ∈ I+j , k ∈ I−j
svj (φi(nj)− φk(nj)) + (1− svj )ψi(nj) = 0, j ∈ Jv, i ∈ I+j , k ∈ I−j

scj (pi(nj)uj − pk(nj)) + (1− scj) (pi(nj)− pk(nj)) = 0, j ∈ Jc, i ∈ I+j , k ∈ I−j
scj (ψi(nj)uj − ψk(nj)) + (1− scj) (φi(nj)− φk(nj)) = 0, j ∈ Jc, i ∈ I+j , k ∈ I−j

uj = − 1

ν
φi(nj), j ∈ J S, i ∈ Ij

uj = −scjpi(nj)ψi(nj), j ∈ Jc, i ∈ Ij

The idea is to use a domain decomposition similar to the one discussed so far.
We design a method that allows to interpret the decomposed optimality system 5 as
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Figure 5. Optimal control of the two-link serial network of Exam-
ple 5.1. Left: optimal states (with mass flow on the y-axis). Right:
Adjoints. x-axis: spatial coordinate x ∈ [0, 1].

an optimality system of an optimal control problem formulated on a sub-graph or,
ultimately, on an individual edge. To fix the ideas, we first concentrate on systems
without valves and compressors as before. The reason is that we do not intend to
decompose the systems at such nodes. Instead, we focus on the decomposition at
serial nodes again. To this end, we introduce the following local system involving
two edges labeled with i, k ∈ Ij :

βip
l+1
i (x) + ∂xq

l+1
i (x) = f1

i , i ∈ I,

αiq
l+1
i (x) + ∂xp

l+1
i (x) + gi(x; ql+1

i ) = f2
i , i ∈ I,

βiφ
l+1
i (x)− ∂xψl+1

i (x) = −κi(pl+1
i − p0

i ), i ∈ I,

αiψ
l+1
i (x)− ∂xφl+1

i (x) + ∂qgi(x; ql+1
i )φl+1

i = −κi(ql+1
i − q0

i ), i ∈ I,

−dijql+1
i (nj) + σpl+1

i (nj)− µφl+1
i (nj) = gl+1

kj , i, k ∈ Ij ,
dijψ

l+1
i (nj) + σφl+1

i (nj) + µpl+1
i (nj) = hl+1

kj , i, k ∈ Ij ,
gl+1
kj = dkjq

l
k(nj)) + σplk(nj)− µφlk(nj), i, k ∈ Ij ,

hl+1
kj = −dkjψlk(nj) + σφlk(nj) + µplk(nj), i, k ∈ Ij ,

(24)

where x ∈ (0, `i). System (24) reflects a situation where the domain decomposition
is applied at a serial node that connects two edges.

Example 5.1. We consider a serial situation, where two links are coupled at
x = 0 and the pressure is controlled at the two ends with x = 1. The transmis-
sion node at x = 0 is the one where we apply the domain decomposition. We
have the following academic scenario for demonstrating the domain decomposi-
tion for optimality systems. On both edges we apply a distributed load f1

i (x) = 0,
f2
i (x) = 1000 for all x ∈ (0, 1) and i = 1, 2. We would like to track the constant

targets f2,d
i (x) = 1,x ∈ (0, 1), i = 1, 2, and choose βi = 1, αi = 1000, and κi = 100

for i = 1, 2. As iteration parameters, we use µ = 0 and σ = 1. As above, we solve
the optimality system using the MATLAB routine bvp4c for obtaining the reference
solution and compare it with the result of our domain decomposition method. We
print the solution of the domain decomposition iterations on top of the reference
solutions, for the optimal states and the adjoints, respectively. For the results see
Figure 5 and 6 for the states, the adjoints, and the nodal errors, respectively. Since
the situation is fully symmetric, we only plot the solution in x ∈ [0, 1].

Example 5.2. Here, we consider the same network as in the previous example
but change the physical data. We recall that f1,2

i represent previous pressure and
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Figure 6. Optimal control of the two-link serial network of Exam-
ple 5.1. Nodal errors over the course of the iterations (x-axis).
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Figure 7. Optimal control of the two-link serial network of Exam-
ple 5.2 without nonlinearity. Left: optimal states (with mass flow
on the y-axis). Right: Adjoints. x-axis: spatial coordinate x ∈ [0, 1].

flow functions along the edges i = 1, 2. Assume those are constant and equal, say,
f1

1 = f1
2 = 1 for all x ∈ (0, 1), while f2

1 = −f2
2 = α. We may take αβ =: c = 1000,

which is fine for the time discretizations discussed above, in particular if we choose
the spatial discretization ∆x = 1/1000. We first ignore the nonlinearity. Then, the
flow is 1 and −1 on edge 1 and 2, respectively, while the pressure is equal to 1 in
both pipes. If we take these as tracking goals, the domain decomposition iteration
should finally reveal these solutions with controls ui = 1. This is what we observe
in Figure 7. The error behavior is as above. We now take the same configuration
and tune the nonlinearity. This gives new equilibria. Setting γ = 0.1, we obtain the
results shown in Figure 8, where also the change in the adjoints can be seen.

Let us now consider the following optimization problems on a single edge. The
idea is to introduce a virtual control that aims at controlling classical inhomoge-
neous Neumann conditions including the iteration history at the interface as the



DOMAIN DECOMPOSITION FOR OPTIMAL CONTROL OF GAS NETWORKS 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1

-0.5

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1

-0.5

0

0.5

1

1.5
10 -5

Figure 8. Optimal control of the two-link serial network of Exam-
ple 5.2 with nonlinearity. Left: optimal states (with mass flow on
the y-axis). Right: Adjoints. x-axis: spatial coordinate x ∈ [0, 1].

inhomogeneity to the Robin-type condition that appears in the decomposition. To
this end, it is sufficient to consider three cases:

a) The edge i connects a controlled flow-node j ∈ J S
N node with a multiple

(serial) node k ∈ JM at which the domain decomposition is active.
b) The edge i connects a controlled pressure-node j ∈ J S

D with multiple (serial)
node k ∈ JM at which the domain decomposition is active.

c) The edge i connects two multiple (serial) nodes j, k ∈ JM.
We concentrate on the last case as it is the most complex one. The two other cases
are completely analogous. Thus, in the case of a single edge i with no connection to
a controlled node, we consider the problem

min
qi,pi,vij ,vik

I(qi, pi, vij , vik) :=
κ

2

(
‖qi − q0

i ‖2 + ‖pi − p0
i ‖2
)

+
1

2µ
v2
ij +

1

2µ
v2
ik

+
1

2µ
(µpi(nk)− hik)2 +

1

2µ
(µpi(nj)− hij)2

s.t. βipi + ∂xqi = f1
i , x ∈ (0, `i),

αiqi + ∂xpi + gi(x; qi) = f2
i , x ∈ (0, `i),

− dijqi(nj) + σpi(nj) = gkj + vij , i, k ∈ Ij ,
− dikqi(nk) + σpi(nk) = gjk + vik, i, j ∈ Ik,

where the hij ,hik appear in the domain decomposition of the optimality system
in (24) and are taken at iteration level l. We now also involve valves and compressors
that are present in the sub-graphs Gm and formulate the analogous optimal control
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problem on the sub-graph Gm:

min
qi,pi,vij ,vik

I(qi, pi, vi, vj) :=
κ

2

∑
i∈Im

(
‖qi − q0

i ‖2 + ‖pi − p0
i ‖2
)

+
1

2µ

∑
j∈JM

m,n,Am,n=1

∑
i∈Ij

(
v2
ij + (µpi(nj)− hij)2

)
s.t. βipi(x) + ∂xqi(x) = f1

i , x ∈ (0, `i), i ∈ Im,

αiqi(x) + ∂xpi(x) + gi(x; qi(x)) = f2
i , x ∈ (0, `i), i ∈ Im,

qi(nj) = uj , j ∈ J S
m, i ∈ Ij ,

pi(nj) = pk(nj), j ∈ JM,o
m \ (Jm,c ∪ Jm,v), i, k ∈ Ij ,∑

i∈Ij

dijqi(nj) = 0, j ∈ JM,o
m ,

sv
j (pi(nj)− pk(nj)) + (1− sv

j )qi(nj) = 0,

j ∈ Jv,m, i ∈ I+
j , k ∈ I−j ,

sc
j (pi(nj)uj − pk(nj)) + (1− sc

j) (pi(nj)− pk(nj)) = 0,

j ∈ Jc,m, i ∈ I+
j , k ∈ I−j ,

− dijqi(nj) + σpi(nj) = gkj + vij ,

j ∈ JM
m,n, n : Am,n = 1, i, k ∈ Ij .

(25)

Here, we omitted the iteration indices l for the sake of convenience. Note that
the constraints of (25) are the same as in System 4 except for the case that we
only consider flow boundary control here and that we add the virtual controls.
The corresponding optimality conditions are given in System 6. Let us remark

System 6. Optimality system of Problem (25); x ∈ (0, `i)

βipi(x) + ∂xqi(x) = f1
i , i ∈ Im

αiqi(x) + ∂xpi(x) + gi(x; qi(x)) = f2
i , i ∈ Im

βiφi(x)− ∂xψi(x) = −κi(pi − p0i ), i ∈ Im

αiψi(x)− ∂xφi(x) + ∂qgi(x; qi(x))φi = −κi(qi − q0i ), i ∈ Im

qi(nj) = uj ,ψi(nj) = 0, j ∈ J S
m, i ∈ Ij

pi(nj) = pk(nj),φi(nj) = φk(nj), j ∈ JM,o
m \ (Jm,c ∪ Jm,v), i, k ∈ Ij∑

i∈Ij

dijqi(nj) = 0,
∑
i∈Ij

dijψi(nj) = 0, j ∈ JM,o
m

svj (pi(nj)− pk(nj)) + (1− svj )qi(nj) = 0, j ∈ Jv,m, i ∈ I+j , k ∈ I−j
svj (φi(nj)− φk(nj)) + (1− svj )ψi(nj) = 0, j ∈ Jv,m, i ∈ I+j , k ∈ I−j

scj (pi(nj)uj − pk(nj)) + (1− scj) (pi(nj)− pk(nj)) = 0, j ∈ Jc,m, i ∈ I+j , k ∈ I−j
scj (ψi(nj)uj − ψk(nj)) + (1− scj) (φi(nj)− φk(nj)) = 0, j ∈ Jc,m, i ∈ I+j , k ∈ I−j

−dijqi(nj) + σφi(nj) + µpi(nj) = gkj , j ∈ JM
m,n, n : Am,n = 1, i, k ∈ Ij

dijψi(nj) + σφi(nj) + µpi(nj) = hkj , j ∈ JM
m,n, n : Am,n = 1, i, k ∈ Ij

uj = − 1

ν
φi(nj), j ∈ J S, i ∈ Ij

uj = −scjpi(nj)ψi(nj), j ∈ Jc, i ∈ Ij

the following. Problem (25) and the corresponding optimality system 6 on the
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Figure 9. Network of Example 5.4

sub-graph Gm are now completely decoupled from the analogous problems on all
other sub-graphs Gn, n 6= m. This means that we can actually decompose the
optimization problem given on the graph into a set of local optimization problems
given on the sub-graphs.

Example 5.3. We continue with Example 4.5. The corresponding virtual control
problem regarding the decomposition at the nodes n1 and n2, where the edges 1 and
3 as well as 2 and 4 meet at x = 1, respectively, is then given by

min
u,v

I((qi, pi)
4
i=1, v11, v31, v22, v42,u0,u3,u4) :=

4∑
i=1

κ

2

(
‖qi − q0

i ‖2 + ‖pi − p0
i ‖2
)

+
1

2µ

(
v2

11 + (µp1(1)− h11)2
)

+
1

2µ

(
v2

31 + (µp3(1)− h31)2
)

+
1

2µ

(
v2

22 + (µp2(1)− h22)2
)

+
1

2µ

(
v2

42 + (µp4(1)− h42)2
)

s.t. βipi(x) + ∂xqi(x) = f1
i , x ∈ (0, `i), i = 1, . . . , 4,

αiqi(x) + ∂xpi(x) + gi(x; qi(x)) = f2
i , x ∈ (0, `i), i = 1, . . . , 4,

− q1(1) + σp1(1) = gl+1
31 + v11, −q3(1) + σp3(1) = gl+1

11 + v31

− q2(1) + σp2(1) = gl+1
42 + v12, −q4(1) + σp4(1) = gl+1

22 + v42,

p1(0)u0 = p2(0), q1(0) + q2(0) = 0, q3(0) = u3, q4(0) = u4.

Example 5.4. We expand the model of the last example by a valve parallel to the
compressor; cf. Figure 9. We have 8 edges and 8 nodes. Edge 1 has a simple
flow-controlled node n6 at x = 0. The edges 1, 2 are coupled at node n4, where x = 1.
Similarly, edge 4 has a simple node at n7, where x = 0, and is coupled to edge 3 at
x = 1 via node n5. These two serial links (1, 2) and (3, 4) are connected through
nodes n2,n3 to edges 5, 7 and 6, 8 at x = 0, respectively. These are triple junctions.
Finally, the compressor is located at n0 = nc between links 5, 6 at x = 1, while the
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valve connects edges 7, 8 at n1 = nv, where x = 1. The model is given by

βipi(x) + ∂xqi(x) = f1
i , (26a)

αiqi(x) + ∂xpi(x) + gi(x; qi(x)) = f2
i , (26b)

p1(1) = p2(1), p3(1) = p4(1), (26c)
q1(1) + q2(1) = 0, q3(1) + q4(1) = 0, (26d)

p2(0) = p5(0) = p7(0), p6(0) = p3(0) = p8(0), (26e)
q2(0) + q5(0) + q7(0) = 0, q6(0) + q3(0) + q8(0) = 0, (26f)

p5(1)u0 = p6(1), q5(1) + q6(1) = 0, if sc
0 = 1, (26g)

p5(1) = p6(1), q5(1) + q6(1) = 0, if sc
0 = 0, (26h)

p7(1) = p8(1), q7(1) + q8(1) = 0, if sv
1 = 1, (26i)

q7(1) = 0, q8(1) = 0, if sv
1 = 0, (26j)

q1(0) = u6, q4(0) = u7, (26k)

where we again have x ∈ (0, 1) and i = 1, . . . , 8. Constraints (26c) and (26d)
describe the serial nodes, where we will apply the domain decomposition. The
transmission nodes n2 and n3 are described in (26e) and (26f), the compressor’s
nodal conditions are given by (26g) and (26h). Similarly, (26i) and (26j) are the
valve conditions. Finally, the control and the demand are provided in (26k). The
corresponding virtual control problem is given by

min
u,v

I((qi, pi,u, s)8
i=1, v14, v24, v35, v45,u0,u6,u7)

s.t. (26a), (26b), (26e), (26f), (26g), (26h), (26i), (26j), (26k),

− q1(1) + σp1(1) = gl+1
14 + v14, −q2(1) + σp2(1) = gl+1

24 + v24,

− q3(1) + σp3(1) = gl+1
35 + v35, −q4(1) + σp4(1) = gl+1

45 + v45,

(27)

where the costs are similar to the previous example. In addition, these costs may
involve the switching parameters s. Problem (27) can be seen as a mixed-integer
nonlinear program (MINLP) on the sub-graph consisting of the edges 2, 3, 5, 6, 7, 8
involving the compressor at node n0 and the valve at node n1 with Robin-data

−q2(1) + σp2(1) = gl+1
24 + v24 =: rl2, −q4(1) + σp4(1) = gl+1

45 + v45 =: rl4.

For each given l, the sub-graph problem admits a minimal solution w.r.t. both u and s.
While the optimization w.r.t. the continuous variables results in the decomposed
optimality system, a similar conclusion cannot be drawn for the discrete optimization
part, as there is no such optimality system w.r.t. the switching variables. Moreover,
there is no sensitivity analysis available for such problems. Therefore, even given
the fact that the right-hand sides rl2, rl4 converge, as l→∞, it may happen that the
globally optimal switching change infinitely often in the course of the convergence.

An analysis of the situation addressed at the end of the example and scenarios
that avoid this Zeno-phenomenon is subject of future research.
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6. Wellposedness and Convergence

6.1. Uniqueness of the Primal Problem’s Solution. For a given switching
structure s ∈ S, the flow boundary controlled problem

βipi(x) + ∂xqi(x) = f1
i , x ∈ (0, `i), i ∈ I,

αiqi(x) + ∂xpi(x) + gi(x; qi(x)) = f2
i , x ∈ (0, `i), i ∈ I,

qi(nj) = uj , j ∈ J S, i ∈ Ij ,
pi(nj) = pk(nj), j ∈ JM \ (Jc ∪ Jv), i, k ∈ Ij ,∑

i∈Ij

dijqi(nj) = 0, j ∈ JM,

sv
j (pi(nj)− pk(nj)) + (1− sv

j )qi(nj) = 0, j ∈ Jv, i ∈ I+
j , k ∈ I−j ,

sc
j(pi(nj)uj − pk(nj))

+(1− sc
j)(pi(nj)− pk(nj)) = 0, j ∈ Jc, i ∈ I+

j , k ∈ I−j

(28)

on G admits a unique solution. In order to prove this, we introduce the first-order
differential expression

A(p, q) :=

(
∂xqi
∂xpi

)
i∈I

.

For defining a proper differential operator, we introduce the spaces

H := {(p, q) : (p, q) = (pi, qi)i∈I ∈ Πi∈IL
2(0, `i)

2},
H1 := H ∩Πi∈IH

1(0, `i)
2,

D(A) := {(p, q) = (pi, qi)i∈I ∈ H1 : qi(nj) = 0, j ∈ J S, i ∈ Ij ,
pi(nj) = pk(nj), j ∈ JM, i, k ∈ Ij ,∑
i∈Ij

dijqi(nj) = 0, j ∈ JM}.

(29)

Here we have taken the situation without valves and compressors. For an open valve
and a shut-down compressor, we have the canonical pressure and flow transmission
conditions as in definition above. If the valve is closed, we have two extra no-flow
conditions at the valve node. If the compressor is switched on, we have a pressure
transmission condition involving the control uj . For a given pressure ratio uj the
corresponding transmission can be integrated into the domain D(A), otherwise the
bilinear term has to be taken into account via shifting it into the state equation.
The norm in H is given by

‖(p, q)‖2H := 〈(p, q), (p, q)〉 :=
∑
i∈I

∫ `i

0

(
p2
i + q2

i

)
dx.

Obviously, H is a Hilbert space and we have the dense inclusion D(A) ⊂ H. A
simple calculation shows

〈A(p, q), (p, q)〉 = 0,

and that, in fact, A is skew-adjoint. Then, clearly, with Di := diag(βi,αi), D +A
has a bounded inverse on H. Now, the Nemytskii operator N : H1 → H with
N(p, q)i(x) := (0, γi(x)|qi(x)|qi(x))>, i ∈ I, is compact, as the embedding (in 1d)
of H1(0, `i) → L4(0, `i) is compact (and monotone on H). This implies that the
equation

(D +A+N)(p, q) = F
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admits a unique solution for F ∈ H. The same arguments apply for the problems
on a sub-graph Gm:

βipi(x) + ∂xqi(x) = f1
i , x ∈ (0, `i), i ∈ Im,

αiqi(x) + ∂xpi(x) + gi(x; qi) = f2
i , x ∈ (0, `i), i ∈ Im,

qi(nj) = uj , j ∈ J S
m, i ∈ Ij ,

pi(nj) = pk(nj), j ∈ JM,o
m \ (Jc,m ∪ Jv,m), i, k ∈ Ij ,∑

i∈Ij

dijqi(nj) = 0, j ∈ JM,o
m ,

sv
j (pi(nj)− pl+1

k (nj)) + (1− sv
j )qi(nj) = 0, j ∈ Jv,m, i ∈ I+

j , k ∈ I−j ,

sc
j(pi(nj)uj − pk(nj))

+(1− sc
j)(pi(nj)− pk(nj)) = 0, j ∈ Jc,m, i ∈ I+

j , k ∈ I−j ,

−dijqi(nj) + σpi(nj) = gkj + vij , j ∈ JM
m,n, n : Am,n = 1, i, k ∈ Ij .

Moreover, we may also apply the same methods in order to show that the corre-
sponding optimality systems admit a unique solution. We skip the details here.

6.2. Smoothness of the Control-to-State-Map. Let q̂t(û), p̂t(û) be the solution
of Problem (28) with u replaced by u + tû and let q, p be the solution of (28) at
t = 0. We denote by q̃ = q̂t − q, p̃ = p̂t − p the differences of these solutions and
obtain

βip̃i(x) + ∂xq̃i(x) = 0, x ∈ (0, `i), i ∈ I,

αiq̃i(x) + ∂xp̃i(x)

+gi(x; q̃i + qi)− gi(qi) = 0, x ∈ (0, `i), i ∈ I,

q̃i(nj) = tû, j ∈ J S, i ∈ Ij ,
p̃i(nj) = p̃k(nj), j ∈ JM \ (Jv ∪ Jc), i, k ∈ Ij ,∑

i∈Ij

dij q̃i(nj) = 0, j ∈ JM,

sv
j (p̃i(nj)− p̃k(nj)) + (1− sv

j )q̃i(nj) = 0, j ∈ Jv, i ∈ I+
j , k ∈ I−j ,

sc
j(p̃i(nj)(uj + tûj) + p̃i(nj)tûj − p̃k(nj))

+(1− sc
j)(p̃i(nj)− p̃k(nj)) = 0, j ∈ Jc, i ∈ I+

j , k ∈ I−j .

(30)

Dividing by t and letting t→ 0, we arrive at the sensitivity problem
βip
′
i(x) + ∂xq

′
i(x) = 0, x ∈ (0, `i), i ∈ I,

αiq
′
i(x) + ∂xp

′
i(x) + g′i(x; qi)q

′
i = 0, x ∈ (0, `i), i ∈ I,

q′i(nj) = û, j ∈ J S, i ∈ Ij ,
p′i(nj) = p′k(nj), j ∈ JM \ (Jv ∪ Jc), i, k ∈ Ij ,∑

i∈Ij

dijq
′
i(nj) = 0, j ∈ JM,

sv
j (p′i(nj)− p′k(nj)) + (1− sv

j )q′i(nj) = 0, j ∈ Jv, i ∈ I+
j , k ∈ I−j ,

sc
j(p
′
i(nj)uj + pi(nj)ûj − p′k(nj))

+(1− sc
j)(p

′
i(nj)− p′k(nj)) = 0, j ∈ Jc, i ∈ I+

j , k ∈ I−j .

(31)

For the solution q′, p′ of (31), we may apply standard techniques. As the cost
function in (7) is convex, Problem (7) admits a unique solution according to the
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classical Weierstraß theorem. One can then verify the conditions for the Ioffe–
Tichomirov theorem [18] in order to establish the first-order optimality conditions (5).
The following theorem summarizes the previous assertions.

Theorem 6.1. Under the assumption (18), for (f1
i , f2

i )i∈I ∈ Πi∈IL
2(0, `i)

2, there
exists a unique solution (q, p) ∈ D(A) of (30). In addition, the mapping from u
into q, p is Gateaux differentiable. Moreover, the optimal control problem (7) admits
a unique solution. The optimal solution is characterized by the optimality system of
first-order (5).

6.3. Convergence. For the proof of convergence, we concentrate on the decompo-
sition at a serial node. The decomposition of the problem on a graph into separate
problems on sub-graphs then follows as described above. To this end, we introduce
the errors p̄l+1 := pl+1 − p, q̄l+1 := ql+1 − q, and, accordingly, ĝl+1 := gl+1 − g,
which is to be understood in the vectorial sense. We consider serial nodes nj with
adjacent edges i, k ∈ Ij and obtain

βip̄
l+1
i (x) + ∂xq̄

l+1
i (x) = 0, x ∈ (0, `i), i ∈ I,

αiq̄
l+1
i (x) + ∂xp̄

l+1
i (x) + (gi(x; q̄l+1

i + qi)− gi(x; qi) = 0, x ∈ (0, `i), i ∈ I,

βiφ̄
l+1
i (x)− ∂xψ̄l+1

i (x) = −κi(p̄l+1
i ), x ∈ (0, `i), i ∈ I,

αiψ̄
l+1
i (x)− ∂xφ̄l+1

i (x) + ∂qgi(x; q̄l+1
i + qi)ψ

l+1
i

+(∂qgi(x; q̄l+1
i − ∂qgi(x; qi))pi = −κi(ql+1

i ), x ∈ (0, `i), i ∈ I,

−dij q̄l+1
i (nj) + λp̄l+1

i (nj)− µφ̄l+1
i (nj) = ḡl+1

kj , i, k ∈ Ij ,
dijψ̄

l+1
i (nj) + λφ̄l+1

i (nj) + µp̄l+1
i (nj) = h̄l+1

kj , i, k ∈ Ij ,
ḡl+1
kj = dkj q̄

l
k(nj)) + λp̄lk(nj)− µφ̄lk(nj), i, k ∈ Ij ,

h̄l+1
kj = −dkjψ̄lk(nj) + λφ̄lk(nj) + µp̄lk(nj), i, k ∈ Ij .

(32)

Moreover, we define

(ḡ, h̄) ∈ X := Πk∈JMΠi∈IkR2, ‖(ḡ, h̄)‖2X :=
∑
k∈JM

∑
i∈Ik

(
|ḡik|2 + |h̄ik|2

)
and T : X → X with

(T (ḡ, h̄)i,j :=
(
2(λp̄lk(nj)− µφ̄k(nj))− ḡlkj , 2(λφ̄k(nj)

l + µp̄k(nj)
l)− h̄lkj

)
for i, j ∈ Ik. Now,

‖T (ḡ, h̄)‖2X =
∑
k∈JM

∑
i∈I

(
|ḡl+1
ik |2 + |h̄l+1

ik |2
)

=
∑
k∈JM

∑
i∈I

(
(ḡlik)2 − 4dikq̄i(nk)l

(
λp̄i(nk)− µφ̄li(nk)

))
+
∑
k∈JM

∑
i∈I

(
(h̄lik)2 + 4dikψ̄

l
i(nk)

(
λφ̄li(nk) + µp̄li(nk)

))
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holds. We multiply the state equation for the errors pi, qi by φi and ψi, respectively,
and perform summations and integration by parts in order to obtain

‖T (ḡ, h̄)‖2X =
∑
k∈JM

∑
i∈I

(
|ḡl+1
ik |2 + |h̄l+1

ik |2
)

=
∑
k∈JM

∑
i∈I

(
|ḡlik|2 + |h̄lik|2

)
= −4λ

∑
i∈I

∫ `i

0

(
βi((p̄

l
i)

2 + (φli)
2) + αi(q̄

l
i)

2 + ψ̄li)
2) + (∂qgi(x; q̄i + qi)ψ̄

2
i

+(∂qgi(x; q̄i + qi)− ∂qgi(x; qi))ψ̄iψ + (gi(x; q̄i + qi)− gi(x; qi))q̄i

+κ(q̄iψ̄i + φ̄ip̄i
)

dx

− 4µ
∑
i∈I

∫ `i

0

(
κ((p̄i)

2 + (q̄i)
2) + ∂qgi(x; q̄i + qi)q̄iψ̄i

+(∂qgi(x; q̄i + qi)− ∂qgi(x; qi))ψq̄i

−(gi(x; q̄i + qi)− gi(x; qi))ψ̄i
)

dx.

Now,
(1) ∂qgi(x; s) ≥ |s|,
(2) gi(x; q̄i + qi)− gi(x; qi) = gi(x; θq̄i + qi)q̄i,
(3) (∂qgi(x; q̄i + qi)− (∂qgi(x; q̄i + qi)− gi(x; qi))ψ̄ ≤ |(1− θ)q̄i|q̄iψ̄i,
(4) ∂qgi(x; q̄i + qi)− ∂qgi(x; qi)) ≤ ‖γi‖|q̄i| =: Li|q̄i|

hold and with these statements we can estimate
‖T (ḡ, h̄)‖2X

=
∑
k∈JM

∑
i∈I

(
|ḡl+1
ik |2 + |h̄l+1

ik |2
)

=
∑
k∈JM

∑
i∈I

(
|ḡlik|2 + |h̄lik|2

)
=− 4λ

∑
i∈I

∫ `i

0

(
(λiαi + (µ− 1

2
λ)κ+ λ∂qgi(x; θq̄i + qi)

−Li((µ+
1

2
)|ψi|+ µ|ψ̄i|)|q̄i|2 + (λβi + (µ− 1

2
λ)κ)|p̄i|2

+λβi|φ̄i|2 + (λαi −
1

2
λκ+ λ∂qgi(x; q̄i + qi)− Li

1

2
|ψ|)|ψ|2i

)
dx.

(33)

This estimate has to be adjusted in a straight forward way for the case of a
decomposition at a boundary control node. It is obvious from (33) that for sufficiently
large αi,βi, the coefficients of the quantities with p̄2

i , q̄
2
i , φ̄2

i , ψ̄
2
i in (33) can be made

uniformly positive. It is also evident from (33) that the choice of the parameters
αi,βi,κ will depend on the flows qi,ψi (in case µ = 0) and additionally on the errors
q̄i, ψ̄i if λ,µ > 0. This means that the convergence is local.

Theorem 6.2. Under the positivity assumptions for the coefficients and the mono-
tonicity assumption (18), the iterations converge and the solutions ql = (qli, p

l
i)i∈I

of the iterative process (32), describing the local optimality systems on the individual
edges, converge to the solution of the optimality system (24). The convergence
takes place in the H1-sense. Moreover, the traces at the decomposition nodes also
converge.

We finally remark that the same theorem applies to the nonoverlapping domain
decomposition using sub-graphs.

7. Conclusion

In this paper, we first reduced the original time-dependent optimal control
problem (2) for the gas flow in a given network via a semi-implicit-explicit time
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discretization scheme first to (5) and then to an optimal control problem for a
single time step (7). The latter problem has to be solved in an instantaneous
control paradigm. We designed an iterative nonoverlapping domain decomposition
at multiple nodes in the spirit of [19] and [20] in order to decompose both the
system of equations on the entire network and the optimality system 6 to suitable
sub-networks containing valves and compressors. As a result, the iterations converge
in natural norms and, moreover, for the optimality system, the decomposed systems
are, in fact, optimality systems for virtual optimal control problems (25) on the
corresponding sub-networks. We provide numerical evidence for both iterations, i.e.,
for the solutions to the system on the network and for the optimal solutions together
with their adjoints, respectively. The results pave the way for MINLP solution
techniques for problems involving the on-off-control of valves and compressors
in combination with continuous controls at simple nodes and, e.g., continuous
compressor controls. By using the proposed domain decomposition method, the size
and the complexity of the MINLP problems to solve can now be controlled. Besides
this, the method developed here provides a completely parallel treatment of the
considered optimal control problems.
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