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Abstract

In this work, we give a tight estimate of the rate of convergence for the Halpern-Iteration
for approximating a fixed point of a nonexpansive mapping in a Hilbert space. Specifically,
using semidefinite programming and duality we prove that the norm of the residuals is upper
bounded by the distance of the initial iterate to the closest fixed point divided by the number
of iterations plus one.

Key words: Halpern-Iteration, fixed point methods, first order methods, semidefinite pro-
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1 Introduction

Let H be a Hilbert space equipped with a symmetric inner product 〈., .〉 : H ×H → R. Let
T : H → H be a nonexpansive mapping and consider for fixed x0 ∈ H the Halpern-Iteration
(named after Benjamin Halpern, who introduced it in [3])

xk+1 := λkx0 + (1− λk)T (xk) (1)

with λk := 1
k+2 for approximating a fixed point of T . Let ‖x‖ :=

√
〈x, x〉 denote the induced

norm and Fix(T ) := {x ∈ H : x = T (x)} the set of fixed points of T . It is well known
that, if the set Fix(T ) is nonempty, then the sequence {xk}k∈N0 will converge to x∗ ∈
Fix(T ) minimizing the distance to x0; see [9] Theorem 2, and [10] for generalizations of
this remarkable property. As a consequence the norm of the residuals xk − T (xk) tends to
zero, i.e. limk→∞ ‖xk − T (xk)‖ = 0. Our goal here is to quantify their rate of convergence.
A first result of this type was generated via proof mining in [4] in normed spaces. Here,
we improve the result for the setting of Hilbert spaces. Our proof technique is not based
on proof mining, but on semidefinite programming, and is strongly motivated by the recent
work of Taylor et al.[8] on worst case performance of first order minimization methods. Our
methodology and focus here are, however, slightly different. We present two new proofs
below. The first one is short and uses a parameter choice derived from [8]. The second proof
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based on semidefinite programming is self-contained and adapts the framework of [8] to fixed
point problems. The second approach can also be applied to other choices of parameters λk
and to other fixed point methods, for example the Krasnoselski-Mann (KM) iteration, which
has recently gained new attention due to [1]. The rates for the KM iteration are however in
general not obvious.

2 Main Result

Theorem 2.1. Let x0 ∈ H be arbitrary but fixed. If T has fixed points, i.e. Fix(T ) 6= ∅,
then the iterates defined in (1) satisfy

1
2 ‖xk − T (xk)‖ ≤

‖x0 − x∗‖
k + 1

∀k ∈ N0 ∀x∗ ∈ Fix(T ) (2)

Remark 2.1. A generalization of the Halpern iteration, the sequential averaging method
(SAM), was analyzed in the recent paper [7], where for the first time a rate of convergence
of order O(1/(k + 1)) could be established for SAM. The rate of convergence in (2) is even
slightly faster than the one established for the more general framework in [7] (by a factor of
4). More importantly, however, as shown by Example 3.1 below, the estimate (2) is actually
tight, in the sense that for every k ∈ N0 there exists a Hilbert space H and a non-expansive
operator T with some fixed point x∗ such that the inequality (2) is not strict.

Estimate (2) refers to the popular step length λk := 1/(k + 2). The restriction to this
choice is motivated by problem (17) below in the proof based on semidefinite programming;
in numerical tests for small for dimensions k these coefficients provided a better worst-case
complexity than any other choice of coefficients.

Next, an elementary direct proof of Theorem 2.1 is given.
Direct proof based on a weighted sum:
The iteration (1) with λk = 1/(k + 2) implies for 1 ≤ j ≤ k:

xj = 1
j+1x0 + j

j+1T (xj−1) or T (xj−1) = j+1
j xj − 1

jx0. (3)

By nonexpansiveness the following inequalities hold:

‖T (xk)− x∗‖2 ≤ ‖xk − x∗‖2 for x∗ ∈ Fix(T ) (4)

and
‖T (xj)− T (xj−1)‖2 ≤ ‖xj − xj−1‖2 for j = 1, . . . , k. (5)

Below we reformulate the following weighted sum of (5):

0 ≥
∑k

j=1 j(j + 1)
(
‖T (xj)− T (xj−1)‖2 − ‖xj − xj−1‖2

)
. (6)

Using the second relation in (3) the first terms in the summation (6) are

j(j + 1)‖T (xj)− T (xj−1)‖2

= j(j + 1)‖xj − T (xj) +
1

j
(xj − x0)‖2

= j(j + 1)‖xj − T (xj)‖2 + 2(j + 1)〈xj − T (xj), xj − x0〉+ j+1
j ‖xj − x0‖2, (7)
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and using the first relation in (3) it follows for the second terms in (6)

−j(j + 1)‖xj − xj−1‖2

= −j(j + 1)‖ 1
j+1(x0 − T (xj−1)) + T (xj−1)− xj−1‖2

= − j
j+1‖x0 − T (xj−1)‖2 − 2j〈x0 − T (xj−1), T (xj−1)− xj−1〉

− j(j + 1)‖T (xj−1)− xj−1‖2. (8)

Observe (using again the second relation in (3)) that the first term in (8)

− j
j+1‖x0 − T (xj−1)‖2 = − j

j+1‖
j+1
j x0 − j+1

j xj‖2 = − j+1
j ‖x0 − xj‖2 (9)

cancels the third term in (7). Summing up the second terms in (8) for j = 1, . . . , k we shift
the summation index,

−
k∑
j=1

2j〈x0 − T (xj−1), T (xj−1)− xj−1〉 =

k−1∑
j=0

2(j + 1)〈xj − T (xj), x0 − T (xj)〉,

so that summing up the second terms in (7) and in (8) for j = 1, . . . , k results in

2(k+ 1)〈xk−T (xk), xk−x0〉+ 2
k−1∑
j=1

(j+ 1)〈xj −T (xj), xj −T (xj)〉+ 2‖x0 − T (x0)‖2. (10)

Shifting again the index in the summation of the third terms in (8)

−
k∑
j=1

j(j + 1)‖xj−1 − T (xj−1)‖2 = −
k−1∑
j=0

(j + 1)(j + 2)‖xj − T (xj)‖2

and summing up the first terms in (7) and the third terms in (8) for j = 1, . . . , k gives

k(k + 1)‖xk − T (xk)‖2 − 2

k−1∑
j=1

(j + 1)‖xj − T (xj)‖2 − 2‖x0 − T (x0)‖2 (11)

where the sum in the middle cancels the sum in the middle of (10) and the terms 2‖x0 − T (x0)‖2
cancel as well. The only remaining terms are the first terms in (10) and (11).

Thus, inserting (9), (10), and (11) in (6) leads to

0 ≥ k(k + 1)‖xk − T (xk)‖2 + 2(k + 1)〈xk − T (xk), xk − x0〉. (12)

Applying the Cauchy-Schwarz inequality to the second term in (12) leads to

1

2
‖xk − T (xk)‖ ≤

1

k
‖xk − x0‖

which may be interesting in its own right. To prove the theorem, (12) is divided by k + 1
and then (4) is added:

0 ≥ k‖xk − T (xk)‖2 + 2〈xk − T (xk), xk − x0〉+ ‖T (xk)− x∗‖2 − ‖xk − x∗‖2

= k+1
2 ‖xk − T (xk)‖2 − 2

k+1‖x0 − x∗‖2 + 2
k+1‖x0 − x∗ − k+1

2 (xk − T (xk))‖2. (13)
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To see the last equation, the last two terms in (13) can be combined, and then a straightfor-
ward but tedious multiplication of the terms a := xk−T (xk), b := xk−x0, c := T (xk)−x∗,
a+ c = xk − x∗, and a+ c− b = x0 − x∗ reveals the identity.

Omitting the last term in (13) one obtains

‖xk − T (xk)‖2 ≤
(

2
k+1

)2
‖x0 − x∗‖2

which proves the theorem when taking square roots on both sides.
The above proof is somewhat unintuitive as the choice of the weights with which the

inequalities (4) and (5) are added in (6) and (13) is far from obvious. In fact we owe the
suggestion of these weights to an extremely helpful anonymous referee, who extracted it
from a more complex construction in [8] which was also the basis for the initial proof of
this paper based on semidefinite programming. We state this proof next since it offers a
generalizable approach for analyzing fixed point iterations; it can be modified to the KM
iteration, for example in the recent thesis [5] – though this modification is quite technical.
The proof based on semidefinite programming also led to Example 3.1 below showing that
the rate of convergence is tight.
Proof based on semidefinite programming: Let x∗ ∈ Fix(T ). The Halpern-Iteration
was stated in the form (1) to comply with existing literature. For our proof however, it is
more convenient to consider the shifted sequence x̄1 := x0 and x̄k := xk−1 ∀k ∈ N 6=0 :=
{1, 2, 3, ...} and to show a shifted statement

1
2 ‖x̄k − T (x̄k)‖ ≤

‖x̄1 − x∗‖
k

∀k ∈ N6=0 (14)

Let us define g(x) := 1
2(x− T (x)). It is well known that g is firmly nonexpansive. For sake

of completeness the argument is repeated here:

‖g(x)− g(y)‖2 − 〈g(x)− g(y), x− y〉

=
∥∥g(x)− g(y)− 1

2(x− y)
∥∥2 − 1

4 ‖x− y‖
2

=1
4 ‖T (x)− T (y)‖2 − 1

4 ‖x− y‖
2 ≤ 0 ∀x, y ∈ H.

Nonexpansiveness and the Cauchy-Schwarz inequality also imply ‖g(x)− g(y)‖ ≤ ‖x− y‖
∀x, y ∈ H. For k = 1 the statement (14) follows immediately since g(x∗) = 0 and therefore
1
2 ‖x̄1 − T (x̄1)‖ = ‖g(x̄1)‖ = ‖g(x̄1)− g(x̄∗)‖ ≤ ‖x̄1−x∗‖1 .
For fixed k ≥ 2 we first consider the differences x̄j − x̄1 for j ∈ {2, .., k}

x̄j − x̄1 = xj−1 − x̄1

= λj−2x0 + (1− λj−2)T (xj−2)− x̄1

= 1
jx0 + (1− 1

j )T (xj−2)− x̄1

= (1
j − 1)x̄1 + (1− 1

j )T (x̄j−1)

= (1
j − 1)x̄1 + (1− 1

j )(x̄j−1 − 2g(x̄j−1))

= (1− 1
j )(x̄j−1 − x̄1)− 2(1− 1

j )g(x̄j−1)

= j−1
j (x̄j−1 − x̄1)− 2 j−1

j g(x̄j−1)
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which inductively leads to

x̄j − x̄1 = −2

j−1∑
l=1

l
j g(x̄l).

Let us shorten the notation slightly and define gi := g(x̄i), R := ‖x̄1 − x∗‖ ≥ 0, the vector
b = (〈gi, x̄1 − x∗〉)ki=1, the matrices A := (〈gi, gj〉)ki,j=1 and

L := −2


0 1

2
1
3 . . . 1

k
0 0 2

3 . . . 2
k

...
... 0

. . .
...

0 0 0 0 k−1
k

0 0 0 0 0

 ∈ Rk×k.

Let bT denote the transpose of b. Note that(
R2 bT

b A

)
∈ R(k+1)×(k+1)

is a Gramian matrix formed from x̄1 − x∗, g1, .., gk ∈ H and is therefore symmetric and
positive semidefinite. We proceed by expressing the inequalities from firm nonexpansiveness
in terms of the Gram-Matrix. Since L often is of much lower dimension than H, this is
sometimes referred to as ’Kernel-Trick’. Keeping in mind that we can rewrite the differences
x̄j − x̄1 = −2

∑j−1
l=1

l
j gl for j ∈ {1, .., k}, we arrive at

AL = (〈gi, x̄j − x̄1〉)ki,j=1.

Let e ∈ Rk denote the vector of all ones. Then

diag(AL)eT −AL = (〈gi, x̄i − x̄j〉)ki,j=1,

where diag(.) denotes the diagonal of its matrix argument, holds true. Hence

diag(AL)eT + e diag(AL)T −AL− LTA = (〈gi − gj , x̄i − x̄j〉)ki,j=1

and
beT +AL = (〈gi, x̄j − x∗〉)ki,j=1,

diag(A)eT + e diag(A)T − 2A = (‖gi − gj‖2)ki,j=1.

The firm nonexpansiveness inequalities ‖gi − gj‖2 ≤ 〈gi − gj , x̄i − x̄j〉 are equivalent to the
component-wise inequality

diag(A)eT + e diag(A)T − 2A ≤ diag(AL)eT + e diag(AL)T −AL− LTA. (15)

Note that only k2−k
2 of these componentwise inequalities are non redundant. From

g∗ := g(x∗) = 0 we obtain another k inequalities, i.e. ‖gi‖2 ≤ 〈gi, x̄i − x∗〉, which translate
to

diag(A) ≤ b+ diag(AL). (16)
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Defining U := I − L , relations (15) and (16) can be shortened slightly to

diag(AU)eT + e diag(AU)T ≤ AU + UTA

and
diag(AU) ≤ b.

Let ek ∈ Rk denote the k-th unit vector, Sn := {X ∈ Rn×n | X = XT } denote the space of
symmetric matrices and Sn+ := {X ∈ Sn |xTXx ≥ 0 ∀x ∈ Rn} the convex cone of positive
semidefinite matrices. Consider the chain of inequalities

‖g(x̄k)‖2 = maximize
y0∈R,y1∈Rk,Y2∈Sk

(Y2)kk |
(
y0 yT1
y1 Y2

)
∈ Sk+1

+ , y0 ≤ R2, diag(Y2U) ≤ y1

| diag(Y2U)eT + e diag(UTY2)T ≤ Y2U + UTY2

| y0 = R2, y1 = b, Y2 = A

≤ maximize
y0∈R,y1∈Rk,Y2=Y T

2 ∈Sk
(Y2)kk |

(
y0 yT1
y1 Y2

)
∈ Sk+1

+ , y0 ≤ R2, diag(Y2U) ≤ y1

| diag(Y2U)eT + e diag(UTY2)T ≤ Y2U + UTY2
(17)

≤ minimize
ξ∈R+,X∈Sk∩Rk×k

+

R2ξ |
(

ξ −1
2diag(X)T

−1
2diag(X) UF (X) + F (X)UT

)
−
(

0 0
0 eke

T
k

)
∈ Sk+1

+

(18)
for

F (X) := Diag(Xe) + 1
2Diag(diag(X))−X, (19)

where Diag(.) denotes the square diagonal matrix with its vector argument on the diagonal.
The first equality follows from construction, the first inequality from relaxing, and the
second inequality from weak conic duality as detailed in Section 5. We conclude the proof
by showing feasibility of ξ̂ := 1

k2
> 0 and

X̂ :=
1

k2



0 1 · 2 0 . . . . . . 0

1 · 2 0 2 · 3 0 . . .
...

0 2 · 3 . . . . . . . . .
...

...
. . . . . . . . . (k − 2)(k − 1) 0

0 . . . 0 (k − 2)(k − 1) 0 (k − 1)k
0 . . . 0 0 (k − 1)k 2k


∈ Rk×k

for the last optimization problem (18). First note that X̂ = X̂T is symmetric and nonneg-
ative. A short computation reveals, that the equality

UF (X̂) + F (X̂)UT = 2eke
T
k
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holds true: Define the diagonal matrix D := 1
kDiag([1, . . . , k]T ) ∈ Rk×k, together with the

strict upper triangular matrix

P :=


0 1 . . . 1

. . . . . .
...

. . . 1
0

 ∈ Rk×k (20)

and the bidiagonal matrix

B :=


0 1

1
. . . . . .
. . . . . . 1

1 0

 ∈ Sk.

The matrices U, X̂ and F (X̂) can now be expressed as

U = I + 2DPD−1, X̂ = DBD +
2

k
eke

T
k and F (X̂) = 2D2 − ekeTk −DBD. (21)

Combining the equalities (21), Dek = ek and D−1ek = ek, yields

UF (X̂) =2D2 − ekeTk −DBD + 4DPD − 2DPeke
T
k − 2DPBD

=D(2I − ekeTk −B + 4P − 2Peke
T
k − 2PB)D

(22)

and using (22) we compute

UF (X̂) + F (X̂)UT − 2eke
T
k

=D(4I − 2eke
T
k − 2B + 4P − 2Peke

T
k − 2PB + 4P T − 2eke

T
k P

T − 2BP T − 2eke
T
k )D

=D(4I + 4P + 4P T︸ ︷︷ ︸
=4eeT

−4eke
T
k − 2 Pek︸︷︷︸

e−ek

eTk − 2ek e
T
k P

T︸ ︷︷ ︸
eT−eTk

−2B − 2PB − 2BP T )D

=D(4eeT −2eeTk − 2eke
T − 2B − 2PB − 2BP T︸ ︷︷ ︸

=−4eeT

)D

=0,

which implies UF (X̂) + F (X̂)UT = 2eke
T
k as we claimed above. Consequently(

ξ̂ −1
2diag(X̂)T

−1
2diag(X̂) UF (X̂) + F (X̂)UT

)
−
(

0 0
0 eke

T
k

)
=

(
1
k2

− 1
ke
T
k

− 1
kek eke

T
k

)
� 0

is positive semidefinite and as a result, ξ̂ and X̂ is feasible for (18). Hence

‖g(x̄k)‖2 ≤ R2ξ̂ =
‖x̄1 − x∗‖2

k2
,

which yields the desired result after taking the square root.
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Remark 2.2. The matrix X̂ in the above proof carrying the weights j(j + 1) used in
(6) were obtained by solving (18) with YALMIP [2] in combination with the SDP solver
Sedumi [6] for small values of k. In order to provide a theoretical proof that the points ξ̂
and X̂ above are not only feasible but actually optimal for (18) and to prove tightness of
the derived bound, we refer to Example 3.1 below, which was derived from a, numerically
obtained, low-rank optimal solution of (17). More precisely, after numerically determining
the optimal value of (18) a linear equation was added to (18) requiring that (Y2)kk equals
this value, and then the trace of Y2,2 was minimized with the intention to find the optimal
solution with minimum rank. This optimal solution was then used to derive Example 3.1
below proving the tightness of (2). In fact for any optimal solution of the SDP relaxation
(17), there exists at least one Lipschitz continuous operator T̃k : Rd → Rd for appropriately
chosen d with some fixed point x∗ such that the inequality in (18) is tight: This follows from
appropriately labeling the columns of the symmetric square root of such an optimal solution
and a Lipschitz extension argument.

3 Tightness and choice of step lengths

Example 3.1. We consider the following one-dimensional real example with fixed point
x∗ = 0 and starting point x0 6= 0. Let k ∈ N be given. A nonexpansive mapping proving
tightness of (2) can then be set up as follows: Let T : R→ R be defined via

T (x) :=


x+ 2R

k+1 if x ≤ − R
k+1

−x if − R
k+1 < x < R

k+1

x− 2R
k+1 if R

k+1 ≤ x
(23)

for some fixed k ∈ N and R := ||x0 − x∗||2 with x0 ∈ R and x∗ := 0. Note that T satisfies
T (x∗) = 0 = x∗ and is 1-Lipschitz continuous, i.e. nonexpansive, because it is piece-wise
linear, continuous and the derivative is bounded in norm by one (|T ′| ≤ 1) whenever it
exists. We will now show that applying the Halpern-Iteration results in an equality in (2)
for the k-th iterate, i.e.

||12(xk − T (xk))||2 = ||x0−x∗||2
k+1

is satisfied. This means that the bound (2) can not be improved without making further
assumptions, as the operator above would otherwise pose a counterexample. For the first k
iterates of the Halpern-Iteration (1) we can obtain

xj = x0 (1− j
k+1)︸ ︷︷ ︸

≥ 1
k+1

for j ∈ 0, .., k
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inductively: For x0 = 0 = x∗ there is nothing to prove. The case 0 < x0 = ||x0 − x∗||2 = R
follows by using the definition of T and considering for j ∈ {0, .., k − 1} the iterates

xj+1 = x0
j+2 + (1− 1

j+2)T ( xj︸︷︷︸
≥ x0
k+1 =

R
k+1

)

= x0
j+2 + (1− 1

j+2)(xj − 2R
k+1)

= x0
j+2 + (1− 1

j+2)(x0 (1− j
k+1)− 2x0

k+1)

=x0( 1
j+2 + (1− 1

j+2)(1− j
k+1 −

2
k+1))

=x0( 1
j+2 + 1− j+2

k+1 −
1
j+2 + 1

k+1)

=x0 (1− j+1
k+1)︸ ︷︷ ︸

≥ 1
k+1

,

which imply, that

||12(xk − T (xk))||2 = ||12(x0(1− k
k+1)− (x0(1− k

k+1)− 2R
k+1))||2 = R

k+1 = ||x0−x∗||2
k+1

holds true. The case x0 < 0 follows from the operators point symmetry, i.e. T (−x) = −T (x).
This completes the proof of tightness.

While Example 3.1 shows that the bound (2) is best possible for the original Halpern
iteration, the rate of convergence could be improved for this example, if the values λk were
chosen appropriately less than 1/(k + 2).

A simple example leading to the choice λk = 1/(k + 2) is the following: Let H be a
Hilbert space with a countable orthonormal Schauder basis {ej}j∈N and T be the linear
operator defined by T (ej) = ej+1 for j ∈ N. Hence the unique fixed point is x∗ = 0. When
choosing x0 = e1, then for any choice of step lengths λj ∈ [0, 1], the k-th iterate always lies
in the convex hull of e1, . . . , ek+1, and the choice of λj minimizing the error ‖xk − x∗‖ is
precisely the step length λj = 1/(j+2) for all 1 ≤ j ≤ k. This step length leads to a slightly
faster rate of convergence than (2) for this example, namely 1

2‖xk−T (xk)‖ ≤ ‖x0−x∗‖√
2(k+1)

. While

this step length does not minimize the residual 1
2‖xk − T (xk)‖ it shows that smaller values

of λj such as λj := ρ/(j + 2) for all j with ρ ∈ [0, 1) lead to larger residuals. On the other
hand larger values λj > 1/(j + 2) for all j lead to larger residuals for Example 3.1.

4 Conclusions

We have derived a new and tight complexity bound for the Halpern-Iteration with coefficients
chosen as λk = 1

k+2 . The proof based on semidefinite programming can in principle be
adapted for other choices of parameters and fixed point iterations, again leading to tight
complexity bounds. For the KM-Iteration with some constant stepsize t ∈ [1

2 , 1]

xk+1 := (1− t)xk + t T (xk)
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a proof can be found in [5] (Theorem 4.9), where

L := −2


0 t t . . . t
0 0 t . . . t
...

... 0
. . .

...
0 0 0 0 t
0 0 0 0 0

 ∈ Rk×k

is used to to define inequalities of the form (15). However, while in practice the KM-Iteration
with constant stepsize may often perform much better than the Halpern-Iteration, its worst-
case complexity is an order of magnitude worse – and the convergence analysis based on
semidefinite programming is considerably longer.

5 Appendix, a technical duality result

While the duality used in (6) and (7) is the well known weak conic duality the format of
the problems (6) and (7) is quite intricate. Here, the explicit derivation of the dual problem
therefore is derived in detail: Define the Euclidean space E := R × Sk × Sk+1 and the
closed convex cone K := R+ × (Sk ∩ Rk×k+ ) × Sk+1

+ . We denote the trace inner product
A • B := trace(AB) for all symmetric matrices A,B. Then K is self-dual with respect to
the canonical inner product 〈X,Y 〉E := xT1 y1 +X2 • Y2 +X3 • Y3, which we define for anyx1

X2

X3

 ,

y1

Y2

Y3

 ∈ E.

We proceed by restating problems (17) and (18) in standard form and exploit (weak) conic
duality. In fact, by adding slack variables S ∈ K, we can write (6) equivalently as a conic
optimization problem in dual standard form

maximize
Y ∈Sn+1, S∈E

{B̃ • Y | A∗(Y ) + S = C̃, S ∈ K} (24)

for

C̃ :=

R2

0
0

 ∈ E,

B̃ =

(
0 0
0 eke

T
k

)
∈ Sk+1 (25)

and the linear operator A∗ : Sn+1 → E

A∗(
(
y0 yT1
y1 Y2

)
) :=


y0

diag(Y2U)eT + e diag(UTY2)T − (Y2U + UTY2) +Diag(diag(Y2U)− y1)

−
(
y0 yT1
y1 Y2

)
 .

(26)
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The constraint A∗(Y ) +S = C̃, S ∈ K is a direct translation of the constraints in (6) except
for the diagonal entries. Here it is used that the term diag(Y2U)eT +e diag(UTY2)T−(Y2U+
UTY2) has an all zero diagonal, which is why we can ”place ” the constraints diag(Y2U)−y1 ≤
0 on the diagonal.
Recall that the optimal value of the conic optimization problem (12) in dual standard form
is upper bounded by the optimal value of the conic optimization in primal standard form

minimize
X∈E

{〈C̃, X̃〉E | A(X̃) = B̃, X̃ ∈ E, X̃ ∈ K} (27)

where the linear operators A∗ : Sn+1 → E and A : E → Sn+1 are adjoint, i.e. A is the
unique operator that satisfies

〈A∗(Y ), X̃〉E = Y • A(X̃) (28)

for all Y ∈ Sn+1, X̃ ∈ E. The ”Y2-part” of the adjoint of the second component of A∗ can
be obtained from

(diag(Y2U)eT + e diag(UTY2)T − (Y2U + UTY2) +Diag(diag(Y2U))) •X1

=Y2 • (U(Diag(X1e) + 1
2Diag(diag(X1))−X1︸ ︷︷ ︸

=F (X1)

) + (Diag(X1e) + 1
2Diag(diag(X1))−X1︸ ︷︷ ︸
=F (X1)

)UT )

(29)
leading to the full description of A

A(

 ξ
X1

X2

) =

(
ξ −1

2diag(X1)T

−1
2diag(X1) UF (X1) + F (X1)UT

)
−X2 (30)

where, as before F (X) = Diag(Xe)+ 1
2Diag(diag(X))−X. This shows that we can rewrite

(15) in the claimed form (7) by eliminating the (semidefinite) variable X2. This establishes
the inequality in (6) and (7).
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