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Abstract

It has long been known that the gradient (steepest descent) method
may fail on nonsmooth problems, but the examples that have ap-
peared in the literature are either devised specifically to defeat a gra-
dient or subgradient method with an exact line search or are unstable
with respect to perturbation of the initial point. We give an analy-
sis of the gradient method with steplengths satisfying the Armijo and
Wolfe inexact line search conditions on the nonsmooth convex function
f(x) = a|x(1)|+

∑n
i=2 x

(i). We show that if a is sufficiently large, sat-
isfying a condition that depends only on the Armijo parameter, then,

when the method is initiated at any point x0 ∈ Rn with x
(1)
0 6= 0, the

iterates converge to a point x̄ with x̄(1) = 0, although f is unbounded
below. We also give conditions under which the iterates f(xk)→ −∞,
using a specific Armijo-Wolfe bracketing line search. Our experimental
results demonstrate that our analysis is reasonably tight.

1 Introduction

First-order methods have experienced a widespread revival in recent years, as
the number of variables n in many applied optimization problems has grown
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far too large to apply methods that require more than O(n) operations per
iteration. Yet many widely used methods, including limited-memory quasi-
Newton and conjugate gradient methods, remain poorly understood on non-
smooth problems, and even the simplest such method, the gradient method,
is nontrivial to analyze in this setting. Our interest is in methods with in-
exact line searches, since exact line searches are clearly out of the question
when the number of variables is large, while methods with prescribed step
sizes typically converge slowly, particularly if not much is known in advance
about the function to be minimized.

The gradient method dates back to Cauchy [Cau47]. Armijo [Arm66] was
the first to establish convergence to stationary points of smooth functions
using an inexact line search with a simple “sufficient decrease” condition.
Wolfe [Wol69], discussing line search methods for more general classes of
methods, introduced a “directional derivative increase” condition among
several others. The Armijo condition ensures that the line search step is not
too large while the Wolfe condition ensures that it is not too small. Powell
[Pow76b] seems to have been the first to point out that combining the two
conditions leads to a convenient bracketing line search, noting also in another
paper [Pow76a] that use of the Wolfe condition ensures that, for quasi-
Newton methods, the updated Hessian approximation is positive definite.
Hiriart-Urruty and Lemarechal [HUL93, Vol 1, Ch. 11.3] give an excellent
discussion of all these issues, although they reference neither [Arm66] nor
[Pow76b] and [Pow76a]. They also comment (p. 402) on a surprising error
in [Cau47].

Suppose that f , the function to be minimized, is a nonsmooth convex
function. An example of [Wol75] shows that the ordinary gradient method
with an exact line search may converge to a non-optimal point, without
encountering any points where f is nonsmooth except in the limit. This
example is stable under perturbation of the starting point, but it does not
apply when the line search is inexact. Another example given in [HUL93,
vol. 1, p. 363] applies to a subgradient method in which the search direction is
defined by the steepest descent direction, i.e., the negative of the element of
the subdifferential with smallest norm, again showing that use of an exact
line search results in convergence to a non-optimal point. This example
is also stable under perturbation of the initial point, and, unlike Wolfe’s
example, it also applies when an inexact line search is used, but it is more
complicated than is needed for the results we give below because it was
specifically designed to defeat the steepest-descent subgradient method with
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an exact line search. Another example of convergence to a non-optimal point
of a convex max function using a specific subgradient method with an exact
line search goes back to [DM71]; see [Fle87, p. 385]. More generally, in a
“black-box” subgradient method, the search direction is the negative of any
subgradient returned by an “oracle”, which may not be a descent direction
if the function is not differentiable at the point, although this is unlikely if
the current point was not generated by an exact line search since convex
functions are differentiable almost everywhere. The key advantage of the
subgradient method is that, as long as f is convex and bounded below,
convergence to its minimal value can be guaranteed even if f is nonsmooth
by predefining a sequence of steplengths to be used, but the disadvantage is
that convergence is usually slow. Nesterov [Nes05] improved the complexity
of such methods using a smoothing technique, but to apply this one needs
some knowledge of the structure of the objective function.

The counterexamples mentioned above motivated the introduction of
bundle methods by [Lem75] and [Wol75] for nonsmooth convex functions
and, for nonsmooth, nonconvex problems, the bundle methods of [Kiw85]
and the gradient sampling algorithms of [BLO05] and [Kiw07]. These algo-
rithms all have fairly strong convergence properties, to a nonsmooth (Clarke)
stationary value when these exist in the nonconvex case (for gradient sam-
pling, with probability one), but when the number of variables is large the
cost per iteration is much higher than the cost of a gradient step. See the
recent survey paper [BCL+] for more details. The “full” BFGS method is
a very effective alternative choice for nonsmooth optimization [LO13], and
its O(n2) cost per iteration (for the matrix-vector products that it requires)
is generally much less than the cost of the bundle or gradient sampling
methods, but its convergence results for nonsmooth functions are limited to
very special cases. The limited memory variant of BFGS [LN89] costs only
O(n) operations per iteration, like the gradient method, but its behavior on
nonsmooth problems is less predictable.

In this paper we analyze the ordinary gradient method with an inex-
act line search applied to a simple nonsmooth convex function. We require
points accepted by the line search to satisfy both Armijo and Wolfe con-
ditions for two reasons. The first is that our longer-term goal is to carry
out a related analysis for the limited memory BFGS method for which the
Wolfe condition is essential. The second is that although the Armijo con-
dition is enough to prove convergence of the gradient method on smooth
functions, the inclusion of the Wolfe condition is potentially useful in the
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nonsmooth case, where the norm of the gradient gives no useful information
such as an estimate of the distance to a minimizer. For example, consider
the absolute value function in one variable initialized at x0 with x0 large. A
unit step gradient method with only an Armijo condition will require O(x0)
iterations just to change the sign of x, while an Armijo-Wolfe line search
with extrapolation defined by doubling requires only one line search with
O(log2(x0)) extrapolations to change the sign of x. Obviously, the so-called
strong Wolfe condition recommended in many books for smooth optimiza-
tion, which requires a reduction in the absolute value of the directional
derivative, is a disastrous choice when f is nonsmooth. We mention here
that in a recent paper on the analysis of the gradient method with fixed step
sizes [THG17], Taylor et al. remark that “we believe it would be interesting
to analyze [gradient] algorithms involving line-search, such as backtracking
or Armijo-Wolfe procedures.”

We focus on the nonsmooth convex function mapping Rn to R defined
by

f(x) = a|x(1)|+
n∑

i=2

x(i). (1)

We show that if a satisfies a lower bound that depends only on the
Armijo parameter, then the iterates generated by the gradient method with
steps satisfying Armijo and Wolfe conditions converge to a point x̄ with
x̄(1) = 0, regardless of the starting point, although f is unbounded below.
The function f defined in (1) was also used by [LO13, p. 136] with n = 2
and a = 2 to illustrate failure of the gradient method with a specific line
search, but the observations made there are not stable with respect to small
changes in the initial point.

The paper is organized as follows. In Section 2 we establish the main the-
oretical results, without assuming the use of any specific line search beyond
satisfaction of the Armijo and Wolfe conditions. In Section 3, we extend
these results assuming the use of a bracketing line search that is a specific
instance of the ones outlined by [Pow76b] and [HUL93]. In Section 4, we
give experimental results, showing that our theoretical results are reasonably
tight. We discuss connections with the convergence theory for subgradient
methods in Section 5. We make some concluding remarks in Section 6.
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2 Convergence Results Independent of a Specific
Line Search

First let f denote any locally Lipschitz function mapping Rn to R, and let
xk ∈ Rn, k = 0, 1, . . . , denote the kth iterate of an optimization algorithm
where f is differentiable at xk with gradient ∇f(xk). Let dk ∈ Rn denote
a descent direction at the kth iteration, i.e., satisfying ∇f(xk)Tdk < 0, and
assume that f is bounded below on the line {xk + tdk : t ≥ 0}. Let c1 and
c2, respectively the Armijo and Wolfe parameters, satisfy 0 < c1 < c2 < 1.
We say that the step t satisfies the Armijo condition at iteration k if

A(t) : f(xk + tdk) ≤ f(xk) + c1t∇f(xk)Tdk (2)

and that it satisfies the Wolfe condition if 1

W (t) : f is differentiable at xk+tdk with ∇f(xk+tdk)Tdk ≥ c2∇f(xk)Tdk.
(3)

The condition 0 < c1 < c2 < 1 ensures that points t satisfying A(t) and
W (t) exist, as is well known in the convex case and the smooth case; for
more general f , see [LO13]. The results of this section are independent
of any choice of line search to generate such points. Note that as long
as f is differentiable at the initial iterate, defining subsequent iterates by
xk+1 = xk+tkdk, where W (t) holds for t = tk, ensures that f is differentiable
at all xk.

We now restrict our attention to f defined by (1), with

dk = −∇f(xk) = −

[
sgn(x

(1)
k )a

1

]
, (4)

where 1 ∈ Rn−1 denotes the vector of all ones. We have

f(xk + tdk) = a
∣∣∣x(1)

k − sgn(x
(1)
k )at

∣∣∣+
n∑

i=2

x
(i)
k − (n− 1)t.

1There is a subtle distinction between the Wolfe condition given here and that given in
[LO13], since here the Wolfe condition is understood to fail if the gradient of f does not
exist at xk + tdk, while in [LO13] it is understood to fail if the function of one variable
s 7→ f(xk + sdk) is not differentiable at s = t. For the example analyzed here, these
conditions are equivalent.
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We assume that a ≥
√
n− 1, so that f is bounded below along the negative

gradient direction as t→∞. Hence, xk+1 = xk + tkdk satisfies

x
(1)
k+1 = x

(1)
k − sgn(x

(1)
k )atk and x

(i)
k+1 = x

(i)
k − tk for i = 2, . . . , n. (5)

We have
∇f(xk)Tdk = −(a2 + n− 1) (6)

and
∇f(xk + tkdk)Tdk = −(a2 sgn(x

(1)
k+1)sgn(x

(1)
k ) + n− 1). (7)

For clarity we summarize the underlying assumptions that apply to all
the results in this section.

Assumption 1. Let f be defined by (1) with a ≥
√
n− 1 and define xk+1 =

xk + tkdk, with dk = −∇f(xk), for some step tk, k = 1, 2, 3, . . ., where x0 is

arbitrary provided that x
(1)
0 6= 0.

Lemma 1. The Armijo condition A(tk) (i.e., (2) with t = tk), is equivalent
to

c1tk(a2 + n− 1) ≤ f(xk)− f(xk+1) (8)

and the Wolfe condition W (tk) (i.e., (3) with t = tk) is equivalent to each
of the following three conditions:

sgn(x
(1)
k+1) = −sgn(x

(1)
k ), (9)

tk >
|x(1)

k |
a

(10)

and
atk = |x(1)

k+1 − x
(1)
k | = |x

(1)
k |+ |x

(1)
k+1|. (11)

Proof. These all follow easily from (5), (6) and (7), using c2 < 1 and a ≥√
n− 1.

Thus, tk satisfies the Wolfe condition if and only if the iterates xk oscillate
back and forth across the x(1) = 0 axis.2

2The same oscillatory behavior occurs if we replace the Wolfe condition by the Goldstein
condition f(xk + tdk) ≥ f(xk) + c2t∇f(xk)T dk.

6



Theorem 2. Suppose tk satisfies A(tk) and W (tk) for k = 1, 2, 3, . . . , N
and define SN =

∑N−1
k=0 tk. Then

c1(a2 + n− 1)SN ≤ f(x0)− f(xN ) ≤ (n− 1)SN + a|x(1)
0 |, (12)

so that SN is bounded above as N → ∞ if and only if f(xN ) is bounded
below. Furthermore, f(xN ) is bounded below if and only if xN converges to
a point x̄ with x̄(1) = 0.

Proof. Summing up (8) from k = 0 to k = N − 1 we have

c1(a2 + n− 1)SN ≤ f(x0)− f(xN ). (13)

Using (5) we have

x
(i)
0 − x

(i)
N =

N−1∑
k=0

(x
(i)
k − x

(i)
k+1) = SN for i = 2, . . . , n,

so
f(x0)− f(xN ) = a|x(1)

0 | − a|x
(1)
N |+ (n− 1)SN .

Combining this with (13) and dropping the term a|x(1)
N | we obtain (12), so

SN is bounded above if and only if f(xN ) is bounded below. Now suppose
that f(xN ) is bounded below and hence SN is bounded above, implying

that tN → 0, and therefore, from (11), that x
(1)
N → 0. Since f(xN ) =

a|x(1)
N | +

∑n−1
i=2 x

(i)
N is bounded below as N → ∞, and since, from (5), for

i = 2, . . . , n, each x
(i)
N is decreasing as N increases, we must have that each

x
(i)
N converges to a limit x̄(i). On the other hand, if xN converges to a point

(0, x̄(2), . . . , x̄(n)) then f(xN ) is bounded below by
∑n−1

i=2 x̄
(i).

Note that, as f is unbounded below, convergence of xN to a point
(0, x̄(2), . . . , x̄(n)) should be interpreted as failure of the method.

We next observe that, because of the bounds (12), it is not possible that
SN →∞ if

a >
√

(n− 1)(1/c1 − 1)

(in addition to a ≥
√
n− 1 as required by Assumption 1).

It will be convenient to define

τ = c1 +
(n− 1)(c1 − 1)

a2
. (14)
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Since c1 ∈ (0, 1) and a ≥
√
n− 1, we have −1 < −1 + 2c1 < τ < c1 < 1,

with τ > 0 equivalent to c1(a2 + n− 1) > n− 1.

Corollary 3. Suppose A(tk) and W (tk) hold for all k. If τ > 0 then f(xk)
is bounded below as k →∞.

Proof. This is now immediate from (12) and the definition of τ .

So, the larger a is, the smaller the Armijo parameter c1 must be in order
to have τ ≤ 0 and therefore the possibility that f(xk)→ −∞.

At this point it is natural to ask whether τ ≤ 0 implies that f(xk)→ −∞.
We will see in the next section (in Corollary 9, for τ = 0) that the answer
is no. However, we can show that there is a specific choice of tk satisfying
A(tk) and W (tk) for which τ ≤ 0 implies f(xk) → −∞. We start with a
lemma.

Lemma 4. Suppose W (tk) holds. Then A(tk) holds if and only if

(1 + τ)
atk
2
≤ |x(1)

k |. (15)

Proof. Suppose x
(1)
k > 0. Since W (tk) holds, we can rewrite the Armijo

condition (8) as

c1tk(a2 + n− 1) ≤ f(xk)− f(xk+1)

=

(
ax

(1)
k +

n∑
i=2

x
(i)
k

)
−

(
−a(x

(1)
k − atk) +

n∑
i=2

x
(i)
k − (n− 1)tk

)
⇔ tk

(
c1(a2 + n− 1) + a2 − (n− 1)

)
≤ 2ax

(1)
k

⇔ tka
2(τ + 1) ≤ 2ax

(1)
k ,

giving (15). A similar argument applies when x
(1)
k < 0.

Theorem 5. Let

tk =
2|x(1)

k |
(τ + 1)a

. (16)

Then
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(1) A(tk) and W (tk) both hold.

(2) if τ ≤ 0, then f(xk) is unbounded below as k →∞.

Proof. The first statement follows immediately from (10) (since |τ | < 1) and
Lemma 4. Furthermore, (11) allows us to write (15) equivalently as

(1 + τ)|x(1)
k+1| ≤ (1− τ)|x(1)

k |. (17)

Since tk is the maximum steplength satisfying (15), it follows that (17) holds

with equality, so |x(1)
k+1| = C|x(1)

k |, where

C =
1− τ
1 + τ

,

and hence
|x(1)

k+1| = Ck+1|x(1)
0 |.

Then, we can rewrite (16) as

tk =
2Ck|x(1)

0 |
a(τ + 1)

.

When −1 < τ ≤ 0, we have C ≥ 1, so SN =
∑N−1

k=0 tk →∞ as N →∞ and
hence, by Theorem 2, f(xN )→ −∞.

3 Additional Results Depending on a Specific Choice
of Armijo-Wolfe Line Search

In this section we continue to assume that f and dk are defined by (1) and
(4) respectively, with a ≥

√
n− 1, and that A(t) and W (t) are defined as

earlier. However, unlike in the previous section, we now assume that tk is
generated by a specific line search, namely the one given in Algorithm 1,
which is taken from [LO13, p. 147] and is a specific realization of the line
searches described implicitly in [Pow76b] and explicitly in [HUL93]. Since
the line search function s 7→ f(xk + sdk) is locally Lipschitz and bounded
below, it follows, as shown in [LO13], that at any stage during the execution
of Algorithm 1, the interval [α, β] must always contain a set of points t with
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nonzero measure satisfying A(t) and W (t), and furthermore, the line search
must terminate at such a point. This defines the point tk. A crucial aspect
of Algorithm 1 is that, in the “while” loop, the Armijo condition is tested
first and the Wolfe condition is then tested only if the Armijo condition
holds.

Algorithm 1 (Armijo-Wolfe Bracketing Line Search)

α← 0
β ← +∞
t← 1
while true do

if A(t) fails (see (2)) then
β ← t

else if W (t) fails (see (3)) then
α← t

else
stop and return t

end if
if β < +∞ then

t← (α+ β)/2
else

t← 2α
end if

end while

We already know from Theorem 2 and Corollary 3 that, for any set of
Armijo-Wolfe points, if τ > 0, then f(xN ) is bounded below. In this section
we analyze the case τ ≤ 0, assuming that the steps tk are generated by the
Armijo-Wolfe bracketing line search. It simplifies the discussion to make a

probabilistic analysis, assuming that x0 = (x
(1)
0 , x

(2)
0 , . . . , x

(n)
0 ) is generated

randomly, say from the normal distribution. Clearly, all intermediate val-
ues t generated by Algorithm 1 are rational, and with probability one all

corresponding points x = (x
(1)
0 − sgn(x

(1)
0 )at, x

(2)
0 − t, . . . , x

(n)
0 − t) where

the Armijo and Wolfe conditions are tested during the first line search are
irrational (this is obvious if a is rational but it also holds if a is irrational
assuming that x0 is generated independently of a). It follows that, with
probability one, f is differentiable at these points, which include the next

iterate x1 = (x
(1)
1 , x

(2)
1 , . . . , x

(n)
1 ). It is clear that, by induction, the points

xk = (x
(1)
k , x

(2)
k , . . . , x

(n)
k ) are irrational with probability one for all k, and in
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particular, x
(1)
k is nonzero for all k and hence f is differentiable at all points

xk.

Let us summarize the underlying assumptions for all the results in this
section.

Assumption 2. Let f be defined by (1), with a ≥
√
n− 1, and define

xk+1 = xk + tkdk, with dk = −∇f(xk), and with tk defined by Algorithm 1,

k = 1, 2, 3, . . ., where xk = (x
(1)
k , x

(2)
k , . . . , x

(n)
k ), and x0 = (x

(1)
0 , x

(2)
0 , . . . , x

(n)
0 )

is randomly generated from the normal distribution. All statements in this
section are understood to hold with probability one.

Lemma 6. Suppose τ ≤ 0 and suppose |x(1)
k | > a. Define

rk =

⌈
log2

|x(1)
k |
a

⌉
so that a2rk−1 < |x(1)

k | < a2rk . (18)

Then, tk = 2rk .

Proof. Since |x(1)
k | > a any steplength t ≤ |x(1)

k |/a satisfies A(t) but fails
W (t). Starting with t = 1, the “while” loop in Algorithm 1 will carry out rk

doublings of t until t > |x(1)
k |/a, i.e., W (t) holds. Hence, in the beginning of

stage rk +1, we have α = 2rk−1 (a lower bound on tk), t = 2rk and β = +∞.
At this point, t satisfies W (t) and since τ ≤ 0, it also satisfies (15), i.e. A(t).
So tk = 2rk .

Theorem 7. Suppose τ ≤ 0 and |x(1)
0 | > a. Then after j ≤ r0 iterations

we have |x(1)
j | < a, where r0 is defined by (18), and furthermore, for all

subsequent iterations, the condition |x(1)
k | < a continues to hold.

Proof. For any k with |x(1)
k | > a we know from the previous lemma that

tk = 2rk with rk > 0. From (11) and (18) we get

|x(1)
k+1| = atk − |x

(1)
k | < a2rk − a2rk−1 = a2rk−1. (19)

See Figure 1 for an illustration with n = 2, with x
(1)
k > 0, so−a2rk−1 < x

(1)
k+1 < 0.

Hence, either |x(1)
k+1| < a, or a < |x(1)

k+1| < a2rk−1, in which case from (18)
and (19) we have

rk+1 ≤ rk − 1.
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x(2)

x(1)

xk

x
(1)
kx

(1)
k − a2rk−1x

(1)
k+1 = x

(1)
k − a2rk

2rk
√
a2 + 1

2rk−1
√
a2 + 1

Figure 1: Doubling t in order to satisfy W (t).

x(2)

x(1)

x
(1)
k

xk

x
(1)
k − a

√
a2 + 1

x
(1)
k − a/2

√
a2 + 1

2

x
(1)
k − a/4

√
a2 + 1

4

Figure 2: Halving t in order to satisfy A(t).

So, beginning with k = 0, rk is decremented by at least one at every iteration

until |x(1)
k | < a. Finally, once |x(1)

k | < a holds, it follows that the initial step
t = 1 satisfies the Wolfe condition W (t), and hence, if A(t) also holds, tk is
set to one, while if not, the upper bound β is set to one so tk < 1. Hence,

the next value x
(1)
k+1 = x

(1)
k − sgn(x

(1)
k )atk also satisfies |x(1)

k+1| < a.

Theorem 7 shows that for any τ ≤ 0 and sufficiently large k using Algo-

rithm 1 we always have |x(1)
k | < a. In the reminder of this section we provide

further details on the step tk generated when |x(1)
k | < a. In this case, the

initial step t = 1 satisfies W (t) but not necessarily A(t). So Algorithm 1 will
repeatedly halve t, until it satisfies A(t). See Figure 2 for an illustration.
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Suppose for the time being that τ = 0 and define pk by

pk =

⌈
log2

a

|x(1)
k |

⌉
so that

a

2pk
< |x(1)

k | <
a

2pk−1
. (20)

For example, in Figure 2, pk = 2. So, a/4 < |x(1)
k | < a/2. Hence t = 1/2

satisfies W (t). In fact it also satisfies A(t), because for τ = 0, we have

(1 + τ)at

2
=
a

4
< |x(1)

k |,

which is exactly the Armijo condition (15). So, Algorithm 1 returns tk =
1/2.

On the other hand if we had τ ≤ −1/2, t = 1 would have satisfied the
Armijo condition (15) since

(1 + τ)a

2
≤ a

4
< |x(1)

k |.

By taking τ into the formulation we are able to compute the exact value of
tk in the following theorem.

Theorem 8. Suppose τ ≤ 0 and |x(1)
k | < a. Then tk = min(1, 1/2qk−1),

where

qk =

⌈
log2

(1 + τ)a

|x(1)
k |

⌉
,

so
(1 + τ)a

2qk
< |x(1)

k | <
(1 + τ)a

2qk−1
. (21)

Note that, unlike rk and pk, the quantity qk could be zero or negative.

Proof. If |x(1)
k | > (1 + τ)a/2, then t = 1 satisfies the Armijo condition (15)

as well as the Wolfe condition, so tk is set to 1. Otherwise, qk > 1, so
1/2qk−1 < 1 and Algorithm 1 repeatedly halves t until A(t) holds. We

now show that the first t that satisfies A(t) is such that |x(1)
k | < at, i.e., it

satisfies W (t) as well. Since τ ≤ 0, the second inequality in (21) proves that
steplength t = 1/2qk−1 satisfies W (t). Moreover, the first inequality is the
Armijo condition (15) with the same steplength. Furthermore, the second
inequality in (21) also shows that t′ = 2t = 1/2qk−2 is too large to satisfy the
Armijo condition (15). Hence t = 1/2qk−1 is the first steplength satisfying
both A(t) and W (t). So, Algorithm 1 returns tk = 1/2qk−1.
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Note that if τ = 0, pk and qk coincide, with pk ≥ 1 since |x(1)
k | < a,

and hence tk = 1/2pk−1 ≤ 1. Furthermore, pk = 1 and hence tk = 1 when

a/2 < |x(1)
k | < a.

Corollary 9. Suppose τ = 0. Then xk converges to a limit x̄ with x̄(1) = 0.

Proof. Assume that k is sufficiently large so that |x(1)
k | < a. From (20) we

have a/2pk < |x(1)
k |. Using Theorem 8 we have tk = 1/2pk−1 and therefore

|x(1)
k+1| = atk − |x

(1)
k | <

a

2pk−1
− a

2pk
=

a

2pk

(see Figure 2 for an illustration). So pk+1 ≥ pk + 1. Using Theorem 8 again
we conclude tk+1 ≤ 1/2pk and so tk+1 ≤ tk/2. The same argument holds for
all subsequent iterates so SN =

∑N−1
k=0 tk is bounded above as N →∞. The

result therefore follows from Theorem 2.

Corollary 10. If τ ≤ −0.5 then eventually tk = 1 at every iteration, and
f(xk)→ −∞.

Proof. As we showed in Theorem 7, for sufficiently large k, |x(1)
k | < a and

therefore t = 1 always satisfies the Wolfe condition, so tk ≤ 1. If |x(1)
k | >

(1 + τ)a/2, then t = 1 also satisfies the Armijo condition (15), so tk = 1.

If |x(1)
k+1| > (1 + τ)a/2 as well, then tk+1 = 1 and hence x

(1)
k+2 = x

(1)
k . It

follows that tj = 1 for all j > k + 1. Hence, by Theorem 2, f(xk) → −∞.

Otherwise, suppose |x(1)
k | < (1 + τ)a/2 (in case |x(1)

k | > (1 + τ)a/2 and

|x(1)
k+1| < (1 + τ)a/2 just shift the index by one so that we have |x(1)

k−1| >
(1 + τ)a/2 and |x(1)

k | < (1 + τ)a/2).

Since |x(1)
k | < (1+τ)a/2, from the definition of qk in (21) we conclude that

2 ≤ qk, i.e. 1/2qk−1 ≤ 1/2, so from Theorem 8 we have tk = 1/2qk−1 ≤ 1/2.

Since |x(1)
k | < (1 + τ)a/2qk−1 and 1 + τ ≤ 1/2 we have

|x(1)
k | <

a

2qk
. (22)

So by (11)

|x(1)
k+1| = atk − |x

(1)
k | ≥

a

2qk−1
− a

2qk
=

a

2qk
>

(1 + τ)a

2qk−1
(23)
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and using (21) again we conclude qk+1 ≤ qk − 1. So,

tk+1 = min

(
1,

1

2qk+1−1

)
≥ min

(
1,

1

2qk−2

)
=

1

2qk−2
= 2tk

and therefore, applying this repeatedly, after a finite number of iterations,
say at iteration k̄, we must have tk̄ = 1 for the first time. Furthermore, from

(22) and (23) we have |x(1)
k | < |x

(1)
k+1|, and applying this repeatedly as well

we have |x(1)

k̄
| < |x(1)

k̄+1
|. From the Armijo condition (15) at iteration k̄ we

have (1 + τ)a/2 ≤ |x(1)

k̄
| and therefore

(1 + τ)a

2
< |x(1)

k̄+1
|.

Hence, t = 1 also satisfies the Armijo condition (15) at iteration k̄+1. With

tk̄ = 1 and tk̄+1 = 1 , we conclude x
(1)

k̄+2
= x

(1)

k̄
. It follows that tj = 1 for all

j > k̄ + 1. Hence f(xk)→ −∞ by Theorem 2.

4 Experimental Results

In this section we again continue to assume that f and dk are defined by
(1) and (4) respectively. For simplicity we also assume that n = 2, writing
u = x(1) and v = x(2) for convenience. Our experiments confirm the theoret-
ical results presented in the previous sections and provide some additional
insight. We know from Theorem 2 that when the gradient algorithm fails,
i.e, xk converges to a point (0, v̄), the step tk converges to zero. However, an
implementation of Algorithm 1 in floating point arithmetic must terminate
the “while” loop after it executes a maximum number of times. We used the
Matlab implementation in hanso3, which limits the number of bisections
in the “while” loop to 30.

Figure 3 shows two examples of minimizing f with a = 2 and a = 5,
with c1 = 0.1 in both cases, and hence with τ < 0 and τ > 0, respectively.
Starting from the same randomly generated point, we have f(xk) → −∞
(success) when τ < 0 and xk → (0, v̄) (failure) when τ > 0.

3www.cs.nyu.edu/overton/software/hanso

15



u

-3 -2 -1 0 1 2 3

v

0

1

2

3

4

5

6
f(u,v) = 2|u|+v.  x_0 = (-2.264; 5), c_1=0.1, τ  =-0.125
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Figure 3: Minimizing f with n = 2, u = x(1), v = x(2) and c1 = 0.1. Left, with a = 2, so
τ < 0 and f(uk, vk) → −∞ (success). Right, with a = 5, so τ > 0 and (uk, vk) → (0, v̄)
(failure).
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For various choices of a and c1 we generated 5000 starting points x0 =
(u0, v0), each drawn from the normal distribution with mean 0 and variance
1, and measured how frequently “failure” took place, meaning that the line
search failed to find an Armijo-Wolfe point within 30 bisections. If failure
did not take place within 50 iterations, i.e., with k ≤ 50, we terminated the
gradient method declaring success. Figure 4 shows the failure rates when
(top) c1 is fixed to 0.05 and a is varied and (bottom) when a =

√
2 and c1

is varied. Both cases confirm that when τ > 0 the method always fails, as
predicted by Corollary 3, while when τ ≤ −0.5, failure does not occur, as
shown in Corollary 10.

As Figure 4 shows, when τ < 0 with |τ | small, the method may or may
not fail, with failure more likely the closer τ is to zero. Further experiments
for three specific values of τ , namely −0.1,−0.01 and −0.001, using a fixed
value of c1 = 0.05 and a defined by a =

√
(1− c1)/(c1 − τ), confirmed

that failure is more likely the closer that τ gets to zero and also showed
that the set of initial points from which failure takes place is complex; see
Figure 5. The initial points were drawn uniformly from the box (−100, 100)×
(−100, 100).

We know from Corollary 9 that, for τ = 0, with probability one tk → 0,
so even if high precision were being used, for sufficiently large k an imple-
mentation in floating point must fail. It may well be the case that failures
for τ < 0 occur only because of the limited precision being used, and that
with sufficiently high precision, these failures would be eliminated. This sug-
gestion is supported by experiments done reducing the maximum number of
bisections to 15, for which the number of failures for τ < 0 increased signif-
icantly, and increasing it to 50, for which the number of failures decreased
significantly.

5 Relationship with Convergence Results for Sub-
gradient Methods

Let h be any convex function. The subgradient method [Sho85, Ber99]
applied to h is a generalization of the gradient method, where h is not
assumed to be differentiable at the iterates {xk} and hence, instead of setting
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Figure 4: Failure rates (small circles) for f with n = 2 when (top) c1 is fixed to 0.05
and a is varied and (bottom) a is fixed to

√
2 and c1 is varied. The solid curves show the

value of τ . Each experiment was repeated 5000 times.
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Figure 5: Mixed success and failure when τ is negative but close to zero. Each plot
shows 5000 points. The green circles show starting points for which the method succeeded,
generating xk = (uk, vk) ∈ R2 for which f(xk) is apparently unbounded below, while the
red crosses show starting points for which the method failed, generating xk converging to
a point on the v-axis.
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−dk = ∇h(xk), one defines −dk to be any element of the subdifferential set

∂h(xk) =
{
g : h(xk + z) ≥ h(xk) + gT z ∀z ∈ Rn

}
.

The steplength tk in the subgradient method is not determined dynamically,
as in an Armijo-Wolfe line search, but according to a predetermined rule.
The advantages of the subgradient method with predetermined steplengths
are that it is robust, has low iteration cost, and has a well established con-
vergence theory that does not require h to be differentiable at the iterates
{xk}, but the disadvantage is that convergence is usually slow. Provided
h is differentiable at the iterates, the subgradient method reduces to the
gradient method with the same stepsizes, but it is not necessarily the case
that f decreases at each iterate.

We cannot apply the convergence theory of the subgradient method di-
rectly to our function f defined in (1), because f is not bounded below.
However, we can argue as follows. Suppose that τ > 0, so that we know

(by Corollary 3) that for all x0 with x
(1)
0 6= 0, the iterates xk generated by

the gradient method with Armijo-Wolfe steplengths applied to f converge

to a point x̄ with x̄(1) = 0. Fix any initial point x0 with x
(1)
0 6= 0, and let

M = f(x̄), where x̄ is the resulting limit point (to make this well defined,
we can assume that the Armijo-Wolfe bracketing line search of Section 3 is
in use). Now define

f̃(x) = max
(
M − 1, a|x(1)|+

n∑
i=2

x(i)
)
.

Clearly, the iterates generated by the gradient method with Armijo-Wolfe
steplengths initiated at x0 are identical for f and f̃ , with f (equivalently,
f̃) differentiable at all iterates {xk}, and with f(xk) = f̃(xk) → M . Fur-
thermore, the theory of subgradient methods applies to f̃ . One well-known
result states that provided the steplengths {tk} are square-summable (that
is,
∑∞

k=0 t
2
k <∞, and hence the steps are “not too long”), but not summable

(that is,
∑∞

k=0 tk =∞, and hence the steps are “not too short”), then conver-
gence of f̃(xk) to the optimal value M−1 must take place [NB01]. Since this
does not occur, we conclude that the Armijo-Wolfe steplenths {tk} do not
satisfy these conditions. Indeed, the “not summable” condition is exactly
the condition SN → ∞, where SN =

∑N−1
k=0 tk, and Theorem 2 established

that the converse, that SN is bounded above, is equivalent to the function
values f(xk) being bounded below. This, then, is consistent with the con-
vergence theory for the subgradient method, which says that the steps must

20



not be “too short”; in the context of an Armijo-Wolfe line search, when
c1 is not sufficiently small, and hence τ > 0, the Armijo condition is too
restrictive: it is causing the {tk} to be “too short” and hence summable.

Of course, in practice, one usually optimizes functions that are bounded
below, but one hopes that a method applied to a convex function that is not
bounded below will not converge, but will generate points xk with f(xk)→
−∞. The main contribution of our paper is to show that, in fact, this does
not happen for a simple well known method on a simple convex nonsmooth
function, regardless of the starting point, unless the Armijo parameter is
chosen to be sufficiently small — how small, one does not know without
advance information on the properties of f .

6 Concluding Remarks

Should we conclude from the results of this paper that, if the gradient
method with an Armijo-Wolfe line search is applied to a nonsmooth func-
tion, the Armijo parameter c1 should be chosen to be small? Results for
a very ill-conditioned convex nonsmooth function f̂ devised by Nesterov
[Nes16] suggest that the answer is yes. The function is defined by

f̂(x) = max{|x1|, |xi − 2xi−1|, i = 2, ..., n}.

Let x̂1 = 1, x̂i = 2x̂i−1 + 1, i = 2, ..., n. Then f̂(x̂) = 1 = f̂(1) although
‖x̂‖∞ ≈ 2n and ‖1‖∞ = 1, so the level sets of f̂ are very ill conditioned.
The minimizer is x = 0 with f̂(x) = 0. Figure 6 shows function values
computed by applying five different methods to minimize f̂ with n = 100.
The five methods are: the subgradient method with tk = 1/k, a square-
summable but not summable sequence that guarantees convergence; the
gradient method using the Armijo-Wolfe bracketing line search of Section 3;
the limited memory BFGS method [NW06] with 5 and 10 updates respec-
tively (using “scaling”); and the full BFGS method [NW06, LO13]; the
BFGS variants also use the same Armijo-Wolfe line search.4 The top and

4In our implementation, we made no attempt to determine whether f̂ is differentiable
at a given point or not. This is essentially impossible in floating point arithmetic, but as
noted earlier, the gradient is defined at randomly generated points with probability one;
there is no reason to suppose that any of the methods tested will generate points where
f̂ is not differentiable, except in the limit, and hence the “subgradient” method actually
reduces to the gradient method with tk = 1/k. See [LO13] for further discussion.
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bottom plots in Figure 6 show the results when the Armijo parameter c1

is set to 0.1 and to 10−6 respectively. The Wolfe parameter was set to 0.5
in both cases. These values were chosen to satisfy the usual requirement
that 0 < c1 < c2 < 1, while still ensuring that c1 is not so tiny that it is
effectively zero in floating point arithmetic. All function values generated
by the methods are shown, including those evaluated in the line search. The
same initial point, generated randomly, was used for all methods; the results
using other initial points were similar.

For this particular example, we see that, in terms of reduction of the
function value within a given number of evaluations, the gradient method
with the Armijo-Wolfe line search when the Armijo parameter is set to
10−6 performs better than using the subgradient method’s predetermined
sequence tk = 1/k, but that this is not the case when the Armijo parameter
is set to 0.1. The smaller value allows the gradient method to take steps
with tk = 1 early in the iteration, leading to rapid progress, while the
larger value forces shorter steps, quickly leading to stagnation. Eventually,
even the small Armijo parameter requires many steps in the line search —
one can see that on the right side of the lower figure, at least 8 function
values per iteration are required. One should not read too much into the
results for one example, but the most obvious observation from Figure 6
is that the full BFGS and limited memory BFGS methods are much more
effective than the gradient or subgradient methods. This distinction becomes
far more dramatic if we run the methods for more iterations: BFGS is
typically able to reduce f̂ to about 10−12 in about 5000 function evaluations,
while the gradient and subgradient methods fail to reduce f̂ below 10−1

in the same number of function evaluations. The limited memory BFGS
methods consistently perform better than the gradient/subgradient methods
but worse than full BFGS. The value of the Armijo parameter c1 has little
effect on the BFGS variants.

These results are consistent with substantial prior experience with ap-
plying the full BFGS method to nonsmooth problems, both convex and
nonconvex [LO13, CMO17, GLO17, GL18]. However, although the BFGS
method requires far fewer operations per iteration than bundle methods or
gradient sampling, it is still not practical when n is large. Hence, the at-
traction of limited-memory BFGS which, like the gradient and subgradient
methods, requires only O(n) operations per iteration. In a subsequent pa-
per, we will investigate under what conditions the limited-memory BFGS
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Figure 6: Comparison of five methods for minimizing Nesterov’s ill-conditioned convex
nonsmooth function f̂ . The subgradient method (blue crosses) uses tk = 1/k. The
gradient, limited-memory BFGS (with 5 and 10 updates respectively) and full BFGS
methods (red circles, green squares, magenta diamonds and black dots) all use the Armijo-
Wolfe bracketing line search. All function evaluations are shown. Top: Armijo parameter
c1 = 0.1. Bottom: Armijo parameter c1 = 10−6.
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method applied to the function f studied in this paper might generate iter-
ates that converge to a non-optimal point, and, more generally, how reliable
a choice it is for nonsmooth optimization.
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