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Abstract

Principal component analysis (PCA) is one of the most widely used dimensionality reduction
methods in scientific data analysis. In many applications, for additional interpretability, it is
desirable for the factor loadings to be sparse, that is, we solve PCA with an additional cardi-
nality (`0-norm) constraint. The resulting optimization problem is called the sparse principal
component analysis (SPCA). One popular approach to achieve sparsity is to replace the `0-norm
constraint by an `1-norm constraint. In this paper, we prove that, independent of the data, the
optimal objective function value of the problem with `0 constraint is within a constant factor of
the the optimal objective function value of the problem with `1 constraint. To the best of our
knowledge, this is the first formal relationship established between the `0 and the `1 constraint
version of the problem.
Keywords. `1 regularization, Sparsity, Principal component analysis

1 Introduction

Principal component analysis (PCA). PCA [17] is one of the most widely used dimensionality
reduction methods pervasive in statistics, data science and scientific data analysis [20]. Given a
data matrix Ym×n (with m samples and n features; and each feature is centered to have zero mean),
the task of PCA is to find a direction x ∈ Rn (with ‖x‖2 = 1) such that it maximizes the variance
of a weighted combination of the features, given by: Y v. If A := 1

mY
>Y denotes the sample

covariance matrix of Y , then a principal component (PC) direction can be found by

maxx x>Ax s.t. ‖x‖2 = 1. (1)

A maximizer x̂ of (1) can be computed in polynomial time via a rank one eigendecompostion [12] of
A. The entries of x̂ are known as the factor loadings, and they lead to the first principal component
direction Y x̂, a linear combination of the features with maximal variance. PCA is widely used in
microarray analysis [14, 26], handwritten zip code classification [15], human face recognition [13],
image processing [18], text processing [31], financial analysis [28, 34] among others [27].
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Sparse PCA. An obvious drawback of PCA is that all the entries of x̂ are nonzero, which leads to
the PC direction being a linear combination of all features – this impedes interpretability [5, 21, 36].
In microarray analysis for example, when Y corresponds to the gene-expression measurements for
different samples, it is desirable to obtain a PC direction which involves only a handful of the
features (i.e., genes) for interpretation purposes. In financial applications (where, A denotes the
sample covariance matrix of stock-returns), a sparse subset of stocks that are responsible for driving
the first PC direction may be desirable for interpretation purposes. Thus in many scientific and
industrial applications, for additional interpretability, it is desirable for the factor loadings to be
sparse, i.e., few of the entries in x̂ are nonzero and the rest are zero. This motivates the notion
of a sparse principal component analysis (SPCA) [21, 16], wherein, in addition to maximizing the
variance, one also desires the direction of the first PC to be sparse in the factor loadings. The most
natural optimization formulation of this problem, modifies criterion (1) with an additional sparsity
constraint on x leading to:

maxx x>Ax s.t. ‖x‖2 = 1, ‖x‖0 ≤ k, (2)

where, ‖x‖0 ≤ k allows at most k of the entries in x to be nonzero.
In addition to interpretability, sparsity is a key dimensionality reduction tool needed for mean-

ingful statistical inference. For example, suppose Y is a data matrix that is generated from a spiked
covariance model with Σ = τθθ>+σ2I where, θ ∈ Rn with ‖θ‖2 = 1 and I denotes the identity ma-
trix. Under the classical asymptotic regime, i.e., as the number of samples m→∞ with n fixed, the
first PC direction or the eigenvector of the sample covariance matrix A is consistent [1] (up to sign
changes) for the population version θ. However, when m,n are comparable with m

n → c ∈ (0,∞) as
m→∞ this classical consistency theory breaks down. The sample PC may no longer be consistent
for the population version θ, if τ/σ2 is sufficiently small – see [19] for additional details. In such
situations, additional structure such as sparsity assumptions on θ are called for.

The SPCA problem has received significant attention in the wider statistics community since
1990s [5]; and influential follow-up work by [21, 36, 29, 33, 19], among many others. [22, 24] study
well-grounded nonlinear optimization algorithms based on modifications of the power method for
SPCA-type problems.

Enforcing `1 constraint in place of `0 constraint. Unlike usual PCA, the sparse variant,
Problem (2) is no longer easy to compute—several approaches and computational schemes have been
proposed to address this problem. One of the most popular approaches is to relax the cardinality
constraint ‖v‖0 ≤ k by an `1 aka Lasso [30] constraint, leading to

maxx x>Ax s.t. ‖x‖2 = 1, ‖x‖1 ≤ δ, (3)

for some δ > 0. Criterion (3) was proposed in [21]. Criterion (3) is appealing as it uses a soft version
of sparsity akin to Lasso regression: the `1-constraint on x induces both sparsity and shrinkage in
a continuous fashion via the tuning parameter δ; unlike Problem (2) which produces a discrete set
of solutions for every k ∈ [n]. In addition, the `1-constraint may be suitable when some entries
of x are small (instead of being exactly zero) and the others are large. The papers [32, 2] have
studied minimax optimal properties of the estimator (3) under a spiked covariance model, under
the assumption that the population eigenvector lies in the `1 ball.

Problem (3) is a continuous optimization problem unlike Problem (2) and hence more amenable
to techniques in nonlinear continuous optimization: [21] propose to use a projected gradient method
for Problem (3). Note however that unlike the Lasso version of best-subset selection1 which is

1Best subset selection refers to the task of best explaining a response r ∈ Rm as a linear combination of k features:
min{‖r − Fβ‖22 : ‖β‖0 ≤ k}, where, Fm×n is the data-matrix with m samples and n features.
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convex; Problem (3) is a difficult nonconvex optimization task; and computing optimal solutions
may be difficult. [33] (see also Chapter 8 [16]) argue that developing an iterative scheme towards
optimization of (3) is not straightforward and hence consider a close cousin given by:

maxx,y y>Y x s.t. ‖y‖2 = 1, ‖x‖1 ≤ δ, ‖x‖2 = 1, (4)

where, Y is the data-matrix (recall that A = 1
mY

>Y ). [33, 16] propose a clever alternating
optimization scheme for Problem (4).

Our result: formal relation between enforcing `1 constraint and the `0 constraint.
Unlike the literature on sparse regression, the literature on SPCA treats the `0 and `1 constraints
separately, for example, deriving separate semi-definite programming (SDP) relaxations [8, 34]. To
the best of our knowledge, there is no theoretical results comparing the solutions or the optimal
objective function value of the problems with `0 and `1 constraints.

In the context of SPCA, note that the constraints ‖x‖0 ≤ k and ‖x‖2 ≤ 1 together imply that
‖x‖1 ≤

√
k. Thus, for δ =

√
k, (3) is relaxation of (2). It therefore makes sense to compare (2) and

(3) with δ =
√
k. Henceforth we refer to (3) with δ =

√
k as the `1-relaxation of SPCA.

In this paper we prove that, independent of A, the optimal objective function of SPCA (i.e, (2))
is within a constant factor of the optimal objective function of the `1-relaxation of SPCA (i.e. (3)
with δ =

√
k). Our proof of this result is via a randomized rounding argument, thus yielding a

constant factor approximation algorithm to solve SPCA assuming we have access to the optimal
solution of its `1-relaxation. Moreover, our result holds more generally when x>Ax in the objective
is replaced by any semi-norm. Therefore, instead of maximizing ‖Y x‖22 (which is the same as
maximizing x>Ax), if we maximize ‖Y x‖1 in (2) and (3) with δ =

√
k, the constant factor result

still holds. We note that such `1-norm objectives in the context of PCA has been studied [25].
It is intriguing to compare our result on the role played by `1-constraint in the context of PCA

to the same in the context of best-subsets selection. The pioneering work by Donoho [9], Candes
and Tao [7], and Candes et al. [6], showed that sparse solutions to under-determined system of
equations may be retrieved by replacing the `0-pseudo norm by a `1 norm. However this result
holds only under the assumption that the data matrix satisfies certain conditions such as the
“restricted isometry property”. The noisy version of the problem requires additional assumptions
on the problem data, and for support recovery additional assumptions (such as the irrepresentable
condition) are needed–see for e.g., [35, 4]. Our result on the constant factor approximation; on
the other hand, does not require any assumption on A – and holds universally – making it quite
different from the existing results for `0-`1-equivalence in the context of sparse regression. We do
note however, that the `1-version of the problem for sparse linear regression is a convex optimization
problem; and hence computable in polynomial time – both the problems (2) and (3) are NP-hard.

We finally note here that the paper [11] presented for the first time the simple randomized
algorithm used for our analysis. This algorithm starts with a solution of `1-relaxation of SPCA
(i.e. (3) with δ =

√
k) and randomly rounds it to produce sparsity. Loosely speaking, the result

obtained in [11] is of the following form: While with high probability the additive difference in the
objective function value of `1-relaxation and the objective function value of the randomly obtained
vector is bounded by ε, the expected sparsity of the randomly obtained vector is 200k

ε which is
significantly larger than k. Therefore, this result does not establish a relationship between SPCA
and the `1-relaxation for the same value of k. Our analysis explicitly accounts for the positive
semi-definiteness of A, which is not used in the analysis presented in [11].
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2 Main results

For an integer t ≥ 1, we use [t] to describe the set {1, . . . , t}. Also, we represent the jth unit vector,
the vector of ones, and the vector of zeros in appropriate dimension by ej , 1, and 0, respectively.

Since the square root function is monotonic, note that the objective function in (2) and (3) can
be replaced by

√
x>Ax and the resulting problem has the same set of optimal solutions. We denote√

x>Ax by ‖x‖A.
As mentioned in the previous section, our main result holds for more general objective functions

than that of ‖x‖A. Let φ : Rn → R+ be a semi-norm, i.e., (i) φ is positively-homogenous: φ(λx) =
λφ(x) for all λ ≥ 0, (ii) φ is subadditive: φ(u + v) ≤ φ(u) + φ(v) for all u, v ∈ Rn, (iii) φ is
nonnegative: φ(u) ≥ 0 for all u ∈ Rn, and (iv) φ(0) = 0. Conditions (i) and (ii), imply that φ is a
convex function. Also note that φ(x) = 0 does not imply that x = 0.

Since A is positive semi-definite, it is straightforward to verify that ‖x‖A is semi-norm. We
now present the general version of sparse PCA, which we call as the semi-norm SPCA, and its
`1-relaxation, corresponding to an arbitrary semi-norm φ:

OPT`0 , maxx φ(x)
s.t. ‖x‖2 ≤ 1

‖x‖0 ≤ k,
(Semi-norm SPCA)

OPT`1 , maxx φ(x)
s.t. ‖x‖2 ≤ 1

‖x‖1 ≤
√
k.

(`1-norm relaxation)

In order to convert a solution for the `1-norm relaxation to a solution for Semi-norm SPCA, we
consider the simple randomized rounding procedure of [11]:

Algorithm 1 Randomized rounding of solution of `1-relaxation

1: Input: the optimal solution x to the `1-norm relaxation, and parameters γ ∈ (0, 1), g ∈ R+

2: Let pi = min{s |xi|‖x‖1 , 1}, where s = γ · k
3: Let εi ∈ {0, 1} take the value 1 with probability pi, and the value 0 with probability 1− pi
4: Let the i-th coordinate of the randomly rounded solution be:

Xi =
1

pi
xiεi

5: Output the solution X
g

Our main result is an analysis of this procedure that shows that the `1-norm relaxation is within
a constant factor of the Semi-norm SPCA.

Theorem 1. For any semi-norm φ : Rn → R+ and k ≥ 15, we have that

OPT`0 ≤ OPT`1 ≤ 2.95 ·OPT`0 .

Moreover, with positive probability, the solution X
g output by Algorithm 1 with γ = 0.4051 and

g = 2.996 is feasible for the Semi-norm SPCA problem and satisfies: φ(Xg ) ≥ 1
3.25 OPT`1.

We note that the constants 2.95 and 3.25 can be improved if one considers higher values of the
lower bound on k. Also with a small additional loss to the constant 3.25, the success probability
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of the algorithm can be boosted to an arbitrary constant (by also running the rounding procedure
multiple times).

The high-level idea of the proof is the following: We need to show that with positive probability,
X
g is feasible for the Semi-norm SPCA and has large objective value. Standard concentration
shows that feasibility holds with “large” constant probability. To control the value, notice that the
rounding in unbiased, namely EX = x, and that φ is convex. Thus, the expected objective value
of our unscaled solution is large: Eφ(X) ≥ φ(EX) = φ(x) = OPT`0 (the scaling only introduces
an additional 1

g factor in the bound).
The issue is that, in principle, our solution X could take a very objective large value with

very small probability (and this happening when it is infeasible), and taking very small value with
probability close to 1. To show that this does not happen, we need to control the upper tail of
φ(X) (and with something more effective than Markov’s inequality).

However, it is not clear how to obtain concentration for φ(X) since we cannot control its
“Lipschitzness”; for example, in the special case φ = ‖.‖A, we do not have any assumptions on the
magnitude of the entries of A, and in particular its relationship to OPT`0 .

To handle this issue, we use solely ‖X‖0 and ‖X‖2 to control φ(X). More specifically, we upper
bound the largest possible objective value of a solution with ‖.‖0 = t and ‖.‖2 = w, and show
that it is at most ≈ w

√
t/kOPT`0 (Lemma 5); this provides and upper bound on φ(X) as long as

‖X‖0 ≤ t and ‖X‖2 ≤ w. Then, the we obtain the desired control over the behavior of φ(X) by
employing concentration for ‖.‖0 and ‖.‖2 and carefully integrating over t and w.

A natural question is how good the constant 2.95 presented in Theorem 1 is; we present a lower
bound on this constant.

Theorem 2. There exists a rank one positive-semidefinite matrix A such that with φ = ‖.‖A we
have that

OPT`1 ≥ 1.32 ·OPT`0 .

Since there is a big gap between the upper and lower bounds obtained on the worst-case value
of the multiplicative constant factor, it is an open question which of them is closer to the actual
worst-case bound. In our limited computational experiments, we saw ratios significantly lesser than
1.32, so we speculate that the lower bound of 1.32 is perhaps closer to the actual constant.

3 Proof of Theorem 1

3.1 Preliminaries

In this section we collect a few technical results that will be needed in the sequel. The first is a simple
observation on the arithmetico-geometric series, for which we include a proof for completeness.

Lemma 1.
∑n

t=k te
−t ≤ η(k) , e−k

[
ke2−(k−1)e

(e−1)2

]
.

Proof. Let S :=
∑n

t=k te
−t. Then eS =

∑n
t=k te

−(t−1) and therefore

(e− 1)S = ke−k+1 +

n∑
t=k+1

e−(t−1) − ne−n ≤ ke−k+1 +

∞∑
t=k+1

e−(t−1) ≤ ke−k+1 +
e−k

1− e−1
, (5)

and therefore S ≤ e−k
[
ke2−(k−1)e

(e−1)2

]
.
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We will also need the following conditional layer-cake decomposition, which follows, for instance,
by applying the standard layer-cake decomposition [23] to the law of Z conditioned on Z ≥ t.

Lemma 2 (Layer-cake Decomposition). Let Z be a non-negative random variable. Then for any
t ≥ 0

E[Z | Z ≥ t] Pr(Z ≥ t) = t · Pr(Z ≥ t) +

∫ ∞
t

Pr(Z ≥ α)dα.

Next we present a multiplicative Chernoff (or Poisson-type) bound that has good constants for
our regime (notice the constant 1 in front of t in the exponent) and has a simple form that we can
later integrate over; the proof is standard and is presented in Appendix A.

Lemma 3. Consider independent random variables Z1, Z2, . . . , Zn where Zi ∈ [0, bi]. Letting µi =
EZi, we have

Pr

(∑
i

Zi ≥ t

)
≤ e

∑
i µi(1+(e−2)bi) · e−t.

We will also need the following estimate on Gaussian integrals.

Lemma 4 (Lemma 2, Chapter 7 of [10]). For all x ≥ 0,∫ ∞
x

e−α
2
dα ≤ e−x

2

2x
.

3.2 Value Function with Respect to Right-hand Side

We now bound how much OPT`0 can change as we change the right-hand side of the Semi-norm
SPCA. To make this precise, for t ∈ Z+ and w ≥ 0 we define

OPT`0(t, w) , maxx φ(x)

s.t. ‖x‖2 ≤ w (6)

‖x‖0 ≤ t.

Thus OPT`0(k, 1) is the same as OPT`0 . The main result of this section is the following upper
bound.

Lemma 5 (RHS Changes). Let t ∈ Z+ and w ≥ 0. Then

OPT`0(t, w) ≤

(
w

√⌈
t

k

⌉)
OPT`0 .

To prove this result, we start with the following observation which controls the dependence on
w and follows directly from the positive homogeneity of the functions φ and ‖x‖2.

Proposition 1. For every w ≥ 0, OPT`0(t, w) = w ·OPT`0(t, 1).

The following proposition then controls the dependence on t.

Proposition 2. For every t ≥ k, OPT`0(t, 1) ≤
√⌈

t
k

⌉
OPT`0(k, 1).
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Proof. This essentially follows from subadditivity of φ. More precisely, let x∗ be an optimal solution
corresponding to OPT`0(t, 1), i.e. optimal for (6) with right-hand side w = 1. Since ‖x‖0 ≤ t,

consider a decomposition x∗ = x1 + . . . + xd
t
k
e where each vector xi has ‖xi‖0 ≤ k and they have

disjoint support. By subadditivity of φ we have

OPT`0(t, 1) = φ(x∗) = φ

d tk e∑
i=1

xi

 ≤ d tk e∑
i=1

φ(xi). (7)

But the scaled vector xi

‖xi‖2 is a feasible solution to the optimization problem corresponding to

OPT`0(k, 1), and so using the positive homogeneity of φ we have for each i

φ(xi) = ‖xi‖2φ
(

xi

‖xi‖2

)
≤ ‖xi‖2OPT`0(1, k),

and thus

OPT`0(t, 1) ≤ OPT`0(1, k) ·
d t
k
e∑

i=1

‖xi‖2. (8)

Moreover, by construction the xi’s are orthogonal to each other, and hence

1 = ‖x∗‖22 =

d t
k
e∑

i=1

‖xi‖22.

Using the standard `1-`2 comparison inequality
∑d

i=1 |ai| ≤
√
d·
∑d

i=1 a
2
i , we obtain that

∑d t
k
e

i=1 ‖xi‖2 ≤√
d tke. Substituting this in (8) then concludes the proof.

Proof of Lemma 5. Follows directly by combining Propositions 1 and 2:

OPT`0(t, w) ≤ w ·OPT`0(t, 1) ≤

(
w

√⌈
t

k

⌉)
OPT`0(k, 1).

3.3 Concentration Inequalities for `0-norm

Note that ‖X‖0 =
∑n

i=1 εi is the sum of independent Bernoulli random variables. Moreover, since

εi = 1 with probability pi = min{s |xi|‖x‖1 , 1} and s = γ · k, we have E‖X‖0 =
∑

i∈[n] pi ≤ γk � k;

thus X (and hence the scaled version X
g ) satisfies the sparsity constraint ‖X‖0 ≤ k in expectation.

Moreover, applying Lemma 3 with bi = 1 and µi = pi we obtain the following tail bound.

Lemma 6.
Pr (‖X‖0 ≥ t) ≤ ec1·k−t,

where c1 = (e− 1)γ.

As a consequence, we have the following estimate for the expected value on the tail of ‖X‖0.
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Corollary 1. For all y ≥ 0, ∑
t∈Z+,t≥y

t Pr (‖X‖0 = t) ≤ ec1k−y(y + 1).

Proof. Since the left-hand side equals E[‖X‖0 | ‖X‖0 ≥ y] Pr(‖X‖0 ≥ y), employing the Layer-cake
Decomposition and the lemma above we have∑

t∈Z+,t≥y
t Pr (‖X‖0 = t) = yPr(‖X‖0 ≥ y) +

∫ ∞
α=y

Pr(‖X‖0 ≥ α) dα

≤ ec1k
(
ye−y +

∫ ∞
α=y

e−α dα

)
= ec1k−y(y + 1).

3.4 Concentration inequalities for `2-norm

Now we control the `2-norm ‖X‖2. It is straightforward to verify that E‖X‖2 ≤
√

1
γ + 1 ≈ 1; in

particular, the scaled solution X
g satisfies the restriction ‖Xg ‖2 ≤ 1 in expectation. We use Lemma

3 to give a simple proof of a dimension-free concentration for ‖X‖2 in our setting.2

Lemma 7. We have
Pr(‖X‖2 ≥ t) ≤ c2 · e−t

2
,

where c2 , e
e−1+ 1

γ
+

(e−2)

γ3k .

Proof. Squaring on both sides, equivalently we need to upper bound the probability that
∑

iX
2
i =

‖X‖22 ≥ t2. Notice that the random variable X2
i is in the interval [0, x2i /p

2
i ], and its expectation is

EX2
i =

x2i
pi

. Thus, applying Lemma 3 to (X2
i )i we obtain

Pr (‖X‖2 ≥ t) = Pr

(∑
i

X2
i ≥ t2

)
≤ e

∑
i

x2i
pi

+(e−2)
∑
i

x4i
p3
i . (9)

Using the fact that ‖x‖1 ≤
√
k and ‖x‖2 ≤ 1, we can upper bound the first sum in the exponent

by

n∑
i=1

x2i
pi

=
∑

i:pi=
s|xi|
‖x‖1

x2i
pi

+
∑
i:pi=1

x2i
pi
≤ s‖x‖21 + ‖x‖22 ≤

k

s
+ 1 =

1

γ
+ 1,

where the last inequality uses the definition s = γ · k. The other summation can be upper bounded
similarly as

n∑
i=1

x4i
p3i

=
∑

i:pi=
s|xi|
‖x‖1

x4i
p3i

+
∑
i:pi=1

x4i
p3i
≤ 1

γ3k
+ 1.

Plugging these bounds on inequality (9) concludes the proof.

2More general results of this type with worse constants can be obtained, for instance, via the entropy method, see
Theorem 6.10 of [3].
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As a consequence, we have the following estimate for the expected value on the tail of ‖X‖2.

Corollary 2. For any t ≥ 0, we have∑
w≥t

w Pr (‖X‖2 = w) ≤ c2
(
t+

1

2t

)
e−t

2
.

Proof. Employing the Layer Cake Lemma and Lemma 7 above we have∑
w≥t

wPr(‖X‖2 = w) = E [‖X‖2 | ‖X‖2 ≥ t] · Pr (‖X‖2 ≥ t)

= t · Pr (‖X‖2 ≥ t) +

∫ ∞
t

Pr (‖X‖2 ≥ α) dα

≤ c2
(
t e−t

2
+

∫ ∞
t

e−α
2
dα

)
≤ c2

2t2 + 1

2t
e−t

2
(Lemma 4),

which concludes the proof of the corollary.

3.5 Controlling the Objective Value

As mentioned in the introduction, since φ is convex, Jensen’s inequality gives E(φ(X)) ≥ φ(EX) =

φ(x) = OPT`1 , which is at least OPT`0 (thus, by positive homogeneity Eφ(Xg ) ≥ OPT`0
g ). We break

up this expectation in the cases where the scaled solution X
g is feasible or not for the Semi-norm

SPCA:

OPT`1 ≤ E(φ(X)) = E
[
φ(X)

∣∣∣∣ ‖X‖0 ≤ k, ‖X‖2 ≤ g]Pr(‖X‖0 ≤ k, ‖X‖2 ≤ g)

+ E
[
φ(X)

∣∣∣∣ ‖X‖0 ≥ k + 1 or ‖X‖2 > g

]
Pr(‖X‖0 ≥ k + 1 or ‖X‖2 > g).

(10)

In the next lemma we upper bound the contribution of the second term in the right-hand side,
i.e., the contribution to the value by infeasible scenarios.

Lemma 8. If k ≥ 10 and g > 1, we have

E
[
φ(X)

∣∣∣∣ ‖X‖0 ≥ k + 1 or ‖X‖2 > g

]
· Pr

(
‖X‖0 ≥ k + 1 or ‖X‖2 > g

)
≤ αOPT`0 ,

where α = 3
2
√
k
· c2η(k + 1) +

√
2√
k
· e−(1−c1)k−1(k + 2) + c2 · (g + 1

2g )e−g
2
.

Proof. We first simplify the notation and define

f(t, w) = E
[
φ(X) | ‖X‖0 = t, ‖X‖2 = w

]
p(t, w) = Pr

(
‖X‖0 = t, ‖X‖2 = w

)
p(t) = Pr

(
‖X‖0 = t

)
.
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Thus, we can write the left-hand side of the lemma as

E
[
φ(X)

∣∣ ‖X‖0 ≥ k + 1 or ‖X‖2 > g
]
· Pr

(
‖X‖0 ≥ k + 1 or ‖X‖2 > g

)
=

∑
(t,w) : t≥k+1 or w>g

f(t, w) p(t, w).

Since X only takes finitely many different values, notice that the sum in the right-hand side has
finitely many non-zero terms. To control this sum, we are going to use Lemma 5 to upper bound
f(t, w), and concentration of ‖X‖0 and ‖X‖2 (Lemmas 6 and 7 respectively) to upper bound p(t, w).
However, concentration of ‖X‖0 is only helpful to control the terms with large t, and concentration
of ‖X‖2 to control the terms with large w. To be able to effectively cover all terms, we need a
careful partition of the sum (see Figure 1):∑

(t,w) : t≥k+1 or w>g

f(t, w) p(t, w) ≤
∑

(t,w) : t≥k+1 or w≥g

f(t, w) p(t, w)

≤
∑
t≥k+1

∑
w≥
√
t

f(t, w) p(t, w)

︸ ︷︷ ︸
Sum A.1

+
∑
t≥k+1

∑
w≤
√
t

f(t, w) · p(t, w)

︸ ︷︷ ︸
Sum A.2

+
∑
t≤k

∑
w≥g

f(t, w) p(t, w)︸ ︷︷ ︸
Sum B

(11)

k  k+ 1
t≜||x||0

g

w
≜|

|x
|| 2

w= g
t= k
t= k+ 1
w= √ t
Sum A≜1
Sum A≜2
Sum B

Figure 1: Visual representation of the various sums

We upper bound each of these sums separately.

Sum A.1: We upper bound this term by . η(k)OPT`0 . e−kOPT`0 .
From Lemma 5 we have that for t ≥ k

f(t, w) ≤ w

√⌈
t

k

⌉
OPT`0 ≤ w

√
2t

k
OPT`0 , (12)

and also p(t, w) ≤ Pr(‖X‖2 = w). Thus, fixing t and adding over w ≥
√
t we get

∑
w≥
√
t

f(t, w) p(t, w) ≤ OPT`0

√
2t

k

∑
w≥
√
t

wPr(‖X‖2 = w)

 . (13)
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Using Corollary 2 and the fact t ≥ k+ 1 ≥ 11, the sum inside the bracket on the right-hand side of
(13) is at most c21.05

√
t e−t. Employing this bound on inequality (13) and adding over all t ≥ k+1

we obtain

Sum A.1 ≤

c2√2 · 1.05√
k

·
∑
t≥k+1

te−t

OPT`0 ≤ c2
3

2
√
k
η(k + 1)OPT`0 ,

where the final inequality follows from Lemma 1.

Sum A.2: For w ≤
√
t, and using Lemma 5 we obtain

f(t, w) ≤ t
√

2

k
OPT`0 ,

and thus the sum A.2 can be upper bounded

∑
t≥k+1

∑
w≤
√
t

f(t, w) p(t, w) ≤
√

2

k
OPT`0

∑
t≥k+1

t
∑
w≤
√
t

p(t, w)

≤
√

2

k
OPT`0

∑
t≥k+1

tPr (‖X‖0 = t)

≤
√

2

k
OPT`0 e

c1k−k−1(k + 2) (Corollary 1).

Sum B: For t ≤ k, Lemma 5 gives that f(t, w) ≤ wOPT`0 , and thus sum B can be upper
bounded as∑

t≤k

∑
w≥g

f(t, w) p(t, w) ≤
∑
t≤k

∑
w≥g

wOPT`0 ·p(t, w)

≤ OPT`0

∑
w≥g

wPr (‖X‖2 = w)

≤ c2
(
g +

1

2g

)
e−g

2
OPT`0 (Corollary 2).

Employing these bounds on inequality (11) concludes the proof of the lemma.

3.6 Conclusion of the Proof of Theorem 1

Taking a union bound, the probability that the X
g is feasible is at least

1− Pr(‖X‖0 ≥ k + 1)− Pr(‖X‖2 ≥ g).

One can verify that with the setting γ = 0.44 and g = 2.69, Lemma 6 and 7 imply that this quantity
is strictly positive.

Moreover, combining equation (10) and Lemma 8, and using the fact that X
g is feasible with

non-zero probability, we have:

11



E
[
φ

(
X

g

) ∣∣∣∣ ∥∥∥∥Xg
∥∥∥∥
0

≤ k,
∥∥∥∥Xg

∥∥∥∥
2

≤ 1

]
Pr

(∥∥∥∥Xg
∥∥∥∥
0

≤ k,
∥∥∥∥Xg

∥∥∥∥
2

≤ 1

)
≥ OPT`1 − αOPT`0

g

⇒ E
[
φ

(
X

g

) ∣∣∣∣ ∥∥∥∥Xg
∥∥∥∥
0

≤ k,
∥∥∥∥Xg

∥∥∥∥
2

≤ 1

]
≥ OPT`1 − αOPT`0

g
.

Therefore, there exists a scenario among the ones where X
g is feasible where φ(Xg ) ≥ OPT`1−αOPT`0

g .

Since OPT`0 ≥ φ(Xg ) ≥ OPT`1−αOPT`0
g implies (g + α)OPT`0 ≥ OPT`1 . Verifying that with our

setting of g = 2.69, γ = 0.44, k = 15, we have OPT`0 ≥ 1
2.95OPT`1 concludes the proof of the first

part of the theorem.
To prove the second part of the theorem, similar to the above, if the probability that the

X
g is feasible is positive, then we have that E[φ(Xg )|Xg is feasible] ≥ OPT`1−αOPT`0

g . Thus if the

probability that the X
g is feasible is positive, we obtain that with positive probability, X

g is both

feasible and satisfies φ(Xg ) ≥ 1−α
g OPT`1 (the last inequality follows from OPT`0 ≤ OPT`1).

Setting g = 2.996, γ = 0.4051 for k = 15, we have φ(Xg ) ≥ 1
3.25OPT`1 which concludes the proof of

the second part of the theorem.

4 Proof of Theorem 2

We begin with a simple observation.

Observation 1. Suppose A = (x∗)(x∗)T where x∗ ∈ Rn+, ‖x∗‖2 = 1, and ‖x∗‖1 ≤
√
k, and consider

the problems, Semi-norm SPCA and `1-norm relaxation with objective function φ = ‖.‖A. Then
we have OPT`1 = 1. Moreover, if the coordinates of x∗ are sorted in non-increasing order, then
OPT`0 =

∑k
i=1 x

2
i .

Therefore, in order to find instances where the ratio
OPT`1
OPT`0

is large, we can solve the following

optimization problem:

minx
∑k

i=1 x
2
i

s.t. ‖x‖2 = 1∑n
i=1 xi ≤

√
k

−xi + xi+1 ≤ 0, i = 1, . . . , n− 1
−xn ≤ 0,

(14)

We show that this optimization problem can be reduced to a four variable optimization problem.
In order to do so, note that the above problem is equivalent to the following problem:

minx,a,G,H,C,D G

s.t.
∑k

i=1 x
2
i = G∑n

i=k+1 x
2
i = H

G+H = 1∑k
i=1 xi = C∑n

i=k+1 xi = D

C +D ≤
√
k

x1, . . . , xk ≥ a
xk+1, . . . , xn ≤ a
xk+1, . . . , xn ≥ 0.

(15)

12



In order to solve this problem we first determine some bounds on the new variables a,G,H,C,D.

Proposition 3. Let x, a,G,H,C,D be a feasible solution for (15). Then:

1. a ≥ 0

2. ka ≤ C ≤
√
k

3. 0 ≤ D ≤
√
k − C

4.
D2

n− k︸ ︷︷ ︸
HLower

≤ H ≤
⌊
D

a

⌋
a2 +

(
D −

⌊
D

a

⌋
a

)2

︸ ︷︷ ︸
HUpper

, assuming n− k ≥ bDa c+ 1

5.
C2

k︸︷︷︸
GLower

≤ G ≤ (C − (k − 1)a)2 + (k − 1)a2︸ ︷︷ ︸
GUpper

Proof. Items 1 through 3 follow directly from the constraints in (15).

Item 4. The upper bound comes from maximizing
∑n

i=k+1 x
2
i subject to the condition

∑n
i=k+1 xi =

D, xi ∈ [0, a] for all i ∈ {k + 1, . . . , n} (assuming n − k ≥ bDa c + 1). The lower bound on H is
obtained by minimizing

∑n
i=k+1 x

2
i subject to the condition

∑n
i=k+1 xi = D. Note that the optimal

solution is setting xi = D
n−k for all xi, and under the assumption of n− k ≥ bDa c+ 1 each of these

xi’s is less than of equal to a.

Item 5. The upper bound comes from maximizing
∑k

i=1 x
2
i subject to the condition

∑k
i=1 xi =

C, xi ≥ a for all i ∈ [k]. The lower bound on G is obtained by minimizing
∑k

i=1 x
2
i subject to the

condition
∑n

i=k+1 xi = C.

Proposition 4. Suppose there exists a, C, D satisfying (1), (2), (3) of Proposition 3 such that
GUpper + HUpper ≥ 1. Let G∗ = max{GLower, 1 −HUpper}. Then exists a vector x ∈ Rn+ satisfying
the feasible region of (15) with objective function value equal to G∗.

Proof. Note that since GUpper +HUpper ≥ 1, G∗ = max{GLower, 1−HUpper} is the smallest value in
the interval [GLower, GUpper] such that there exists H∗ ∈ [HLower, HUpper] satisfying G∗ +H∗ = 1.

Via the proof of Proposition 3, there exists a solution xUpper ∈ Rn−k+ satisfying, ‖xUpper‖2 =
HUpper, ‖xUpper‖1 = D, and (xUpper)i ≤ a ∀i ∈ [n − k]. Similarly, there exists a solution xLower ∈
Rn−k+ satisfying, ‖xLower‖2 = HLower, ‖xLower‖1 = D, and (xLower)i ≤ a ∀i ∈ [n− k]. Since ‖ · ‖2 is

a continuous function there is a convex combination of xUpper and xLower, say y ∈ Rn−k+ satisfying
‖y‖2 = H∗, ‖y‖1 = D, and (y)i ≤ a ∀i ∈ [n− k].

Now using the same argument for G, we can obtain z ∈ Rk+ such that ‖z‖2 = G∗, ‖z‖1 = C,
and (z)i ≥ a ∀i ∈ [n − k]. Thus, the augmented vector, (z> y>)> satisfies the feasible region of
(15) with objective function value equal to G∗.

As a consequence of Proposition 4, the optimization problem (14) may be solved by solving the

13



following problem:

minθ,a,C,D θ
s.t. 1√

k
≥ a ≥ 0√

k ≥ C ≥ ka√
k − C ≥ D ≥ 0⌊
D
a

⌋
a2 +

(
D −

⌊
D
a

⌋
a
)2

+ (C − (k − 1)a)2 + (k − 1)a2 ≥ 1

θ ≥ C2

k

θ ≥ 1−
(⌊

D
a

⌋
a2 +

(
D −

⌊
D
a

⌋
a
)2)

(16)

Note in the above problem, we can always set D =
√
k − C. We solved the above problem

numerically (obtaining an upper bound to (15)), by just discretizing in the space of a and C
variables and taking the best feasible point. The result of our numerical experiments is presented
in Figure 2, where the y-axis is the reciprocal of the optimal objective function value of problem
(16), which is OPT`1/OPT`0 . Notice that OPT`1/OPT`0 is increasing with increasing values of
k, but it seems to converge to a value slightly greater than 1.32. It can be verified that k = 10000,
a = 0.005, C = 51, D = 49, θ = 0.755 is a feasible solution for (16), i.e. OPT`1/OPT`0 ≥ 1.324.
This completes the proof of Theorem 2.

0 2000 4000 6000 8000 10000
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1.200
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Figure 2: Result of Problem (16) for varying values of k
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method for sparse principal component analysis. Journal of Machine Learning Research,
11(Feb):517–553, 2010.

[23] Elliott H Lieb and Michael Loss. Analysis, volume 14 of graduate studies in mathematics.
American Mathematical Society, Providence, RI,, 4, 2001.

[24] Ronny Luss and Marc Teboulle. Conditional gradient algorithmsfor rank-one matrix approxi-
mations with a sparsity constraint. SIAM Review, 55(1):65–98, 2013.

[25] Michael McCoy, Joel A Tropp, et al. Two proposals for robust pca using semidefinite pro-
gramming. Electronic Journal of Statistics, 5:1123–1160, 2011.

[26] Jatin Misra, William Schmitt, Daehee Hwang, Li-Li Hsiao, Steve Gullans, George
Stephanopoulos, and Gregory Stephanopoulos. Interactive exploration of microarray gene
expression patterns in a reduced dimensional space. Genome research, 12(7):1112–1120, 2002.

[27] Nikhil Naikal, Allen Y Yang, and S Shankar Sastry. Informative feature selection for object
recognition via sparse PCA. In Computer Vision (ICCV), 2011 IEEE International Conference
on, pages 818–825. IEEE, 2011.

[28] Debashis Paul and Iain M Johnstone. Augmented sparse principal component analysis for high
dimensional data. arXiv preprint arXiv:1202.1242, 2012.

[29] Haipeng Shen and Jianhua Z Huang. Sparse principal component analysis via regularized low
rank matrix approximation. Journal of multivariate analysis, 99(6):1015–1034, 2008.

[30] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B, 58:267–288, 1996.
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Appendix

A Proof of Lemma 3

Using Markov’s inequality and independence we have

Pr

(∑
i

Xi ≥ t

)
= Pr

(
e
∑
iXi ≥ et

)
≤ Ee

∑
iXi

et
=

∏
i EeXi
et

. (17)

But for x ∈ [0, bi] we have ex ≤ 1 + x e
bi−1
bi

; furthermore, ey ≤ 1 + y + (e − 2)y2 for y ∈ [0, 1],

so employing this to bound ebi in the previous inequality we obtain ex ≤ 1 + x(1 + (e − 2)bi).
Therefore,

EeXi ≤ 1 + µi(1 + (e− 2)bi) ≤ eµi(1+(e−2)bi),

where the last inequality follows from 1 + x ≤ ex that holds for all x. Employing this bound on
(17) concludes the proof of the lemma.
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