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“Active-set complexity” of proximal gradient

How long does it take to find the sparsity pattern?
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Abstract Proximal gradient methods have been found to be highly effec-
tive for solving minimization problems with non-negative constraints or `1-
regularization. Under suitable nondegeneracy conditions, it is known that these
algorithms identify the optimal sparsity pattern for these types of problems
in a finite number of iterations. However, it is not known how many itera-
tions this may take. We introduce the notion of the “active-set complexity”,
which in these cases is the number of iterations before an algorithm is guaran-
teed to have identified the final sparsity pattern. We further give a bound on
the active-set complexity of proximal gradient methods in the common case
of minimizing the sum of a strongly-convex smooth function and a separable
convex non-smooth function.
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Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie
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1 Motivation

We consider the problem

minimize
x∈IRn

f(x) + g(x), (1)

where f is µ-strongly convex and the gradient ∇f is L-Lipschitz continuous.
We assume that g is a separable function,

g(x) =

n∑
i=1

gi(xi),

and each gi only needs to be a proper convex and lower semi-continuous func-
tion (it may be non-smooth or infinite at some xi). In machine learning, a com-
mon choice of f is the squared error f(x) = 1

2‖Ax− b‖
2 (or an `2-regularized

variant to guarantee strong-convexity). The squared error is often paired with
a scaled absolute value function gi(xi) = λ|xi| to yield a sparsity-encouraging
`1-regularization term. This is commonly known as the LASSO problem [24].
The gi can alternatively enforce bound constraints (e.g., the dual problem in
support vector machine optimization [9]), such as the xi must be non-negative,
by defining gi(xi) to be an indicator function that is zero if the constraints are
satisfied and ∞ otherwise.

One of most widely-used methods for minimizing functions of this form
is the proximal gradient (PG) method [16,1,20,3], which uses an iteration
update given by

xk+1 = prox 1
L g

(
xk − 1

L
∇f(xk)

)
,

where the proximal operator is defined as

prox 1
L g

(x) = argmin
y

1

2
‖y − x‖2 +

1

L
g(y).

When the proximal gradient method is applied with non-negative constraints
or `1-regularization, an interesting property of the method is that the iterations
xk will match the sparsity pattern of the solution x∗ for all sufficiently large k
(under a mild technical condition). Thus, after a finite number of iterations the
algorithm “identifies” the final set of non-zero variables. This is useful if we are
only using the algorithm to find the sparsity pattern, since it means we do not
need to run the algorithm to convergence. It is also useful in designing faster
algorithms (for example, see [14,10,6] for non-negativity constrained problems
and [25,23,11]) for `1-regularized problems). After we have identified the set of
non-zero variables we could switch to a more sophisticated solver like Newton’s
method applied to the non-zero variables. In any case, we should expect the
algorithm to converge faster after identifying the final sparsity pattern, since
it will effectively be optimizing over a lower-dimensional subspace.

The idea of finitely identifying the set of non-zero variables dates back at
least 40 years to the work of Bertsekas [2] who showed that the projected
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gradient method identifies the sparsity pattern in a finite number of iterations
when using non-negative constraints (and suggests we could then switch to
a superlinearly convergent unconstrained optimizer). Subsequent works have
shown that finite identification occurs in much more general settings including
cases where g is non-separable, where f may not be convex, and even where the
constraints may not be convex [7,26,13,12]. The active-set identification prop-
erty has also been shown for other algorithms like certain coordinate descent
and stochastic gradient methods [18,27,15].

Although these prior works show that the active-set identification must
happen after some finite number of iterations, they only show that this hap-
pens asymptotically. In this work, we introduce the notion of the “active-set
complexity” of an algorithm, which we define as the number of iterations re-
quired before an algorithm is guaranteed to have reached the active-set. We
further give bounds, under the assumptions above and the standard nondegen-
eracy condition, on the active-set complexity of the proximal gradient method.
We are only aware of one previous work giving such bounds, the work of Liang
et al. who included a bound on the active-set complexity of the proximal gradi-
ent method [17, Proposition 3.6]. Unlike this work, their result does not evoke
strong-convexity. Instead, their work applies an inclusion condition on the lo-
cal subdifferential of the regularization term that ours does not require. By
focusing on the strongly-convex case (which is common in machine learning
due to the use of regularization), we obtain a simpler analysis and a much
tighter bound than in this previous work. Specifically, both rates depend on
the “distance to the subdifferential boundary”, but in our analysis this term
only appears inside of a logarithm rather than outside of it.

2 Notation and assumptions

We assume that f is µ-strongly convex so that for some µ > 0, we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2, for all x, y ∈ IRn.

Further, we assume that its gradient ∇f is L-Lipschitz continuous, meaning
that

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖, for all x, y ∈ IRn. (2)

By our separability assumption on g, the subdifferential of g is simply the
concatenation of the subdifferentials of each gi. Further, the subdifferential of
each individual gi at any xi ∈ IR is defined by

∂gi(xi) = {v ∈ IR : gi(y) ≥ gi(xi) + v · (y − xi), for all y ∈ dom gi},

which implies that the subdifferential of each gi is just an interval on the
real line. In particular, the interior of the subdifferential of each gi at a non-
differentiable point xi can be written as an open interval,

int ∂gi(xi) ≡ (li, ui), (3)
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where li ∈ IR ∪ {−∞} and ui ∈ IR ∪ {∞} (the ∞ values occur if xi is at its
lower or upper bound, respectively).

As in existing literature on active-set identification [13], we require the
nondegeneracy condition that −∇f(x∗) must be in the “relative interior” of
the subdifferential of g at the solution x∗. For simplicity, we present the non-
degeneracy condition for the special case of (1).

Assumption 1 We assume that x∗ is a nondegenerate solution for problem
(1), where x∗ is nondegenerate if and only if{
−∇if(x∗)=∇ig(x∗i ) if ∂gi(x

∗
i ) is a singleton (gi smooth at x∗i )

−∇if(x∗)∈ int ∂gi(x
∗
i ) if ∂gi(x

∗
i ) is not a singleton (gi non-smooth at x∗i ).

Under this assumption, we ensure that −∇f(x∗) is in the “relative interior”
(see [5, Section 2.1.3]) of the subdifferential of g at the solution x∗. In the case
of non-negative constraints, this requires that ∇if(x∗) > 0 for all variables i
that are zero at the solution (x∗i = 0). For `1-regularization, this requires that
|∇if(x∗)| < λ for all variables i that are zero at the solution, which is again a
strict complementarity condition [11].1

Definition 1 The active-set Z for a separable g is defined as

Z = {i : ∂gi(x
∗
i ) is not a singleton}.

By the above definition and recalling the interior of the subdifferential of gi
as defined in (3), the set Z includes indices i where x∗i is equal to the lower
bound on xi, is equal to the upper bound on xi, or occurs at a non-smooth
value of gi. In the case of non-negative constraints and `1-regularization under
Assumption 1, Z is the set of non-zero variables at the solution. Formally, the
active-set identification property for this problem is that for all sufficiently large
k we have that xki = x∗i for all i ∈ Z. An important quantity in our analysis
is the minimum distance to the nearest boundary of the subdifferential (3)
among indices i ∈ Z. This quantity is given by

δ = min
i∈Z
{min{−∇if(x∗)− li, ui +∇if(x∗)}} . (4)

3 Finite-time active-set identification

In this section we show that the PG method identifies the active-set of (1) in a
finite number of iterations. Although this result follows from the more general
results in the literature, by focusing on (1) and the case of strong-convexity
we give a substantially simpler proof that will allow us to easily bound the
active-set iteration complexity of the method.

Before proceeding to our main contributions, we state the linear conver-
gence rate of the proximal gradient method to the (unique) solution x∗.

1 Note that |∇if(x∗)| ≤ λ for all i with x∗i = 0 follows from the optimality conditions, so
this assumption simply rules out the case where |∇if(x∗i )| = λ.
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Theorem 1 [22, Prop. 3] Consider problem (1), where f is µ-strongly con-
vex with L-Lipschitz continuous gradient, and the gi are proper convex and
lower semi-continuous. Then for every iteration k ≥ 1 of the proximal gradi-
ent method, we have

‖xk − x∗‖ ≤
(

1− 1

κ

)k
‖x0 − x∗‖, (5)

where κ := L/µ is the condition number of f .

Next, we state the finite active-set identification result. Our argument es-
sentially states that ‖xk − x∗‖ is eventually always less then δ/2L, where δ is
defined as in (4), and at this point the algorithm always sets xki to x∗i for all
i ∈ Z.

Lemma 1 Consider problem (1), where f is µ-strongly convex with L-Lipschitz
continuous gradient, and the gi are proper convex and lower semi-continuous.
Let Assumption 1 hold for the solution x∗. Then for any proximal gradient
method with a step-size of 1/L, there exists a k̄ such that for all k > k̄ we have
xki = x∗i for all i ∈ Z.

Proof By the definition of the proximal gradient step and the separability of
g, for all i we have

xk+1
i ∈ argmin

y

{
1

2

∣∣∣∣y − (xki − 1

L
∇if(xk)

)∣∣∣∣2 +
1

L
gi(y)

}
.

This problem is strongly-convex, and its unique solution satisfies

0 ∈ y − xki +
1

L
∇if(xk) +

1

L
∂gi(y),

or equivalently that

L(xki − y)−∇if(xk) ∈ ∂gi(y). (6)

By Theorem 1, there exists a minimum finite iterate k̄ such that ‖xk̄ − x∗‖ ≤
δ/2L. Since |xki − x∗i | ≤ ‖xk − x∗‖, this implies that for all k ≥ k̄ we have

−δ/2L ≤ xki − x∗i ≤ δ/2L, for all i. (7)

Further, the Lipschitz continuity of ∇f in (2) implies that we also have

|∇if(xk)−∇if(x∗)| ≤ ‖∇f(xk)−∇f(x∗)‖
≤ L‖xk − x∗‖
≤ δ/2,

which implies that

−δ/2−∇if(x∗) ≤ −∇if(xk) ≤ δ/2−∇if(x∗). (8)
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To complete the proof it is sufficient to show that for any k ≥ k̄ and i ∈ Z
that y = x∗i satisfies (6). Since the solution to (6) is unique, this will imply
the desired result. We first show that the left-side is less than the upper limit
ui of the interval ∂gi(x

∗
i ),

L(xki − x∗i )−∇if(xk) ≤ δ/2−∇if(xk) (right-side of (7))

≤ δ −∇if(x∗) (right-side of (8))

≤ (ui +∇if(x∗))−∇if(x∗) (definition of δ, (4))

≤ ui.

We can use the left-sides of (7) and (8) and an analogous sequence of inequali-
ties to show that L(xki − x∗i ) − ∇if(xk) ≥ li, implying that x∗i solves (6). ut

4 Active-set complexity

The active-set identification property shown in the previous section could also
be shown using the more sophisticated tools used in related works [7,13].
However, an appealing aspect of the simple argument above is that it is clear
how to bound the active-set complexity of the method. We formalize this in
the following result.

Corollary 1 Consider problem (1), where f is µ-strongly convex with L-
Lipschitz continuous gradient, and the gi are proper convex and lower semi-
continuous. Let Assumption 1 hold for the solution x∗. Then the proximal
gradient method with a step-size of 1/L identifies the active-set after at most
κ log(2L‖x0 − x∗‖/δ) iterations.

Proof Using Theorem 1 and (1− 1/κ)k ≤ exp(−k/κ), we have

‖xk − x∗‖ ≤ exp(−k/κ)‖x0 − x∗‖.

The proof of Lemma 1 shows that the active-set identification occurs whenever
the inequality ‖xk − x∗‖ ≤ δ/2L is satisfied. For this to be satisfied, it is
sufficient to have

exp(−k/κ)‖x0 − x∗‖ ≤ δ

2L
.

Taking the log of both sides and solving for k gives the result. ut

It is interesting to note that this bound only depends logarithmically on
1/δ, and that if δ is quite large we can expect to identify the active-set very
quickly. This O(log(1/δ)) dependence is in contrast to the previous result of
Liang et al. who give a bound of the form O(1/

∑n
i=1 δ

2
i ) where δi is the

distance of ∇if to the boundary of the subdifferential ∂gi at x∗ [17, Propo-
sition 3.6]. Thus, our bound will typically be tighter as it only depends log-
arithmically on the single smallest δi (though we make the extra assumption
of strong-convexity). In Section 1, we considered two specific cases of problem
(1), for which we can define δ:
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1. If the gi enforce non-negativity constraints, then δ = mini∈Z ∇if(x∗).
2. If g is a scaled `1-regularizer, then δ = λ−maxi∈Z |∇if(x∗)|.

In the first case we identify the non-zero variables after κ log(2L‖x0 −
x∗‖/mini∈Z ∇if(x∗)) iterations. If the minimum gradient over the active-set
at the solution δ is zero, then we may approach the active-set through the
interior of the constraint and the active-set may never be identified (this is the
purpose of the nondegeneracy condition). Similarly, for `1-regularization this
result also gives an upper bound on how long it takes to identify the sparsity
pattern.

Above we have bounded the number of iterations before xki = x∗i for all
i ∈ Z. However, in the non-negative and L1-regularized applications we might
also be interested in the number of iterations before we always have xki 6= 0 for
all i 6∈ Z. More generally, the number of iterations before xki for i 6∈ Z are not
located at non-smooth or boundary values. It is straightforward to bound this
quantity. Let ∆ = mini6∈Z{|xni − x∗i |} where xni is the nearest non-smooth or
boundary value along dimension i. Since (5) shows that the proximal-gradient
method contracts the distance to x∗, it cannot set values xki for i 6∈ Z to
non-smooth or boundary values once ‖xk − x∗‖ ≤ ∆. It follows from (5) that
κ log(‖x0 − x∗‖/∆) iterations are needed for the values i 6∈ Z to only occur at
smooth/non-boundary values.

5 General step-size

The previous sections considered a step-size of 1/L. In this section we extend
our results to handle general constant step-sizes, which leads to a smaller
active-set complexity if we use a larger step-size depending on µ. To do this,
we require the following result, which states the generalized convergence rate
bound for the proximal gradient method. This result matches the known rate
of the gradient method with a constant step-size for solving strictly-convex
quadratic problems [4, §1.3], and the rate of the projected-gradient algorithm
with a constant step-size for minimizing strictly-convex quadratic functions
over convex sets [4, §2.3].

Theorem 2 Consider problem (1), where f is µ-strongly convex with L-Lipschitz
continuous gradient, and g is proper convex and lower semi-continuous. Then
for every iteration k ≥ 1 of the proximal gradient method with a constant
step-size α > 0, we have

‖xk − x∗‖ ≤ Q(α)k‖x0 − x∗‖, (9)

where Q(α) := max{|1− αL|, |1− αµ|}.

We give the proof in the Appendix. Theorem 1 is a special case of Theo-
rem 2 since Q(1/L) = 1 − µ/L. Further, Theorem 2 gives a faster rate if we
minimize Q in terms of α to give α = 2/(L+ µ), which yields a faster rate of

Q

(
2

L+ µ

)
= 1− 2µ

L+ µ
=
L− µ
L+ µ

.
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This faster convergence rate for the proximal gradient method may be of in-
dependent interest in other settings, and we note that this result does not
require g to be separable. We also note that, although the theorem is true for
any positive α, it is only interesting for α < 2/L since for α ≥ 2/L it does not
imply convergence.

Lemma 2 Consider problem (1), where f is µ-strongly convex with L-Lipschitz
continuous gradient, and the gi are proper convex and lower semi-continuous.
Let Assumption 1 hold for the solution x∗. Then for any proximal gradient
method with a constant step-size 0 < α < 2/L, there exists a k̄ such that for
all k > k̄ we have xki = x∗i for all i ∈ Z.

We give the proof Lemma 2 in the Appendix, which shows that we identify
the active-set when ‖xk − x∗‖ ≤ δα/3 is satisfied. Using this result, we prove
the following active-set complexity result for proximal gradient methods when
using a general fixed step-size (the proof is once again found in the Appendix).

Corollary 2 Consider problem (1), where f is µ-strongly convex with L-
Lipschitz continuous gradient (for µ < L), and the gi are proper convex
and lower semi-continuous. Let Assumption 1 hold for the solution x∗. Then
for any proximal gradient method with a constant step-size α, such that 0 <
α < 2/L, the active-set will be identified after at most 1

log(1/Q(α)) log(3||x0 −
x∗||/(δα)) iterations.

Finally, we note that as part of a subsequent work we have analyzed the
active-set complexity of block coordinate descent methods [21]. The argument
in that case is similar to the argument presented here. The main modification
needed to handle coordinate-wise updates is that we must use a coordinate
selection strategy that guarantees that we eventually select all i ∈ Z that are
not at their optimal values for some finite k ≥ k̄.

Acknowledgements The authors would like to express their thanks to the anonymous
referees for their valuable feedback.

Appendix

Proof of Theorem 2. For any α > 0, by the non-expansiveness of the proximal
operator [8, Lem 2.4] and the fact that x∗ is a fixed point of the proximal
gradient update for any α > 0, we have

‖xk+1 − x∗‖2

= ‖proxαg(x
k − α∇f(xk))− proxαg(x

k − α∇f(x∗))‖2

≤ ‖(xk − α∇f(xk))− (x∗ − α∇f(x∗))‖2

= ‖xk − x∗ − α(∇f(xk)−∇f(x∗))‖2

= ‖xk − x∗‖2 − 2α〈∇f(xk)−∇f(x∗), xk − x∗〉+ α2‖∇f(xk)−∇f(x∗)‖2.
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By the L-Lipschitz continuity of ∇f and the µ-strong convexity of f , we
have [19, Thm 2.1.12]

〈∇f(xk)−∇f(x∗), xk−x∗〉 ≥ 1

L+ µ
‖∇f(xk)−∇f(x∗)‖2 +

Lµ

L+ µ
‖xk−x∗‖2,

which yields

‖xk+1−x∗‖2 ≤
(

1− 2αLµ

L+ µ

)
‖xk−x∗‖2+α

(
α− 2

L+ µ

)
‖∇f(xk)−∇f(x∗)‖2.

Further, by the µ-strong convexity of f , we have for any x, y ∈ IRn [19, Thm
2.1.17],

〈∇f(x)−∇f(y)〉 ≥ µ‖x− y‖2,

which by Cauchy-Schwartz gives

‖∇f(x)−∇f(y)‖ ≥ µ‖x− y‖.

Combining this with the L-Lipschitz continuity condition in (2) shows that
µ ≤ L. Therefore, for any β ∈ IR (positive or negative) we have

β‖∇f(x)−∇f(y)‖2 ≤ max{βL2, βµ2}‖x− y‖2.

Thus, for β :=
(
α− 2

L+µ

)
, we have

‖xk+1 − x∗‖2

≤
(

1− 2αLµ

L+ µ

)
‖xk − x∗‖2 + αmax

{
L2β, µ2β

}
‖xk − x∗‖2

= max

{(
1− 2αLµ

L+ µ

)
+ αL2β,

(
1− 2αLµ

L+ µ

)
+ αµ2β

}
‖xk − x∗‖2

= max

{
1− 2αL(L+ µ)

L+ µ
+ α2L2, 1− 2αµ(L+ µ)

L+ µ
+ α2µ2

}
‖xk − x∗‖2

= max
{

(1− αL)2, (1− αµ)2
}
‖xk − x∗‖2

= Q(α)2‖xk − x∗‖2.

Taking the square root and applying it repeatedly, we obtain our result. ut

Proof of Lemma 2. By the definition of the proximal gradient step and the
separability of g, for all i we have

xk+1
i ∈ argmin

y

{
1

2

∣∣y − (xki − α∇if(xk)
)∣∣2 + αgi(y)

}
.

This problem is strongly-convex with a unique solution that satisfies

1

α
(xki − y)−∇if(xk) ∈ ∂gi(y). (10)
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By Theorem 2 and α < 2/L, there exists a minimum finite iterate k̄ such that
‖xk̄ − x∗‖ ≤ δα/3. Following similar steps as in Lemma 1, this implies that

−δα/3 ≤ xki − x∗i ≤ δα/3, for all i, (11)

and by the Lipschitz continuity of ∇f , we also have

−δαL/3−∇if(x∗) ≤ −∇if(xk) ≤ δαL/3−∇if(x∗). (12)

To complete the proof it is sufficient to show that for any k ≥ k̄ and i ∈ Z that
y = x∗i satisfies (10). We first show that the left-side is less than the upper
limit ui of the interval ∂gi(x

∗
i ),

1

α
(xki − x∗i )−∇if(xk) ≤ δ/3−∇if(xk) (right-side of (11))

≤ δ(1 + αL)/3−∇if(x∗) (right-side of (12))

≤ δ −∇if(x∗) (upper bound on α)

≤ (ui +∇if(x∗))−∇if(x∗) (definition of δ, (4))

≤ ui.

Using the left-sides of (11) and (12), and an analogous sequence of inequalities,
we can show that 1

α (xki − x∗i ) − ∇if(xk) ≥ li, implying that x∗i solves (10).
Since the solution to (10) is unique, this implies the desired result. ut

Proof of Corollary 2. By Theorem 2, we know that the proximal gradient
method achieves the following linear convergence rate,

‖xk+1 − x∗‖ ≤ Q(α)k‖x0 − x∗‖.

The proof of Lemma 2 shows that the active-set identification occurs whenever
the inequality ‖xk − x∗‖ ≤ δα/3 is satisfied. Thus, we want

Q(α)k‖x0 − x∗‖ ≤ δα

3
.

Taking the log of both sides, we obtain

k log (Q(α)) + log
(
‖x0 − x∗‖

)
≤ log

(
δα

3

)
.

Noting that 0 < Q(α) < 1 so log(Q(α)) < 0, we can rearrange to obtain

k ≥ 1

log (Q(α))
log

(
δα

3‖x0 − x∗‖

)
=

1

log(1/Q(α))
log

(
3‖x0 − x∗‖

δα

)
.

ut
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