A projection algorithm based on KKT conditions for convex quadratic semidefinite programming with nonnegative constraints

Xiaokai. Chang $\,\cdot\,$ Jianchao Bai $\,\cdot\,$ Sanyang. Liu $\,\cdot\,$ Zhao Deng

Received: date / Accepted: date

Abstract The dual form of convex quadratic semidefinite programming (CQSDP) problem, with nonnegative constraints, is a 4-block separable convex optimization problem. It is known that, the directly extended 4-block alternating direction method of multipliers (ADMM4d) is very efficient to solve the dual, but its convergence is not guaranteed. In this paper, we reformulate the dual as a 3-block convex programming by introducing an extra variable, so as to design a parallel modified 3-block ADMM with larger step size that can exceed the conventional upper bound of $(1 + \sqrt{5})/2$. We show that the proposed 3-block ADMM is equivalent to a projection algorithm with two operators projecting onto the positive semidefinite and nonnegative matrix cones respectively. The global convergence and non-ergodic convergence rate o(1/(k + 1))are established by using a fixed-point argument and the non-expansion property of the projection operators. Numerical experiments on the various classes of CQSDP problems illustrate that our proposed algorithm performs better than ADMM4d with the aggressive step size of 1.618.

Keywords Quadratic semidefinite programming \cdot Nonnegative constraints \cdot Alternating direction method of multipliers \cdot Projection \cdot Convergence analysis

Mathematics Subject Classification (2000) $90C25 \cdot 90C22 \cdot 65K05 \cdot 47H05 \cdot 47H10$

1 Introduction

We consider the following convex quadratic semidefinite programming (CQSDP) with nonnegative constraints on the matrix variable:

$$\min \quad \frac{1}{2} \langle X, \varphi(X) \rangle + \langle C, X \rangle$$

$$s.t. \quad \mathcal{A}(X) = b, \qquad (1)$$

$$X \in \mathcal{S}^n_+, \quad X \in \mathcal{N}^n,$$

Xiaokai. Chang, Corresponding Author

Jianchao Bai

Sanyang Liu

School of Mathematics and Statistics, Xidian University, Xi'an 710071, P. R. China. E-mail: liusanyang@126.com

Zhao Deng

School of Mathematics and Statistics, Xidian University, Xi'an 710071, P. R. China. E-mail: dengzhao2016@163.com

College of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China. E-mail: xkchang@lut.cn

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, P.R. China E-mail: bjc1987@163.com

where S^n_+ denotes the symmetric and positive semi-definite matrices cone in the space of $n \times n$ symmetric matrices S^n , endowed with the standard trace inner product $\langle \cdot, \cdot \rangle$ and its induced norm $\|\cdot\|$. $C \in S^n$, $b \in \mathbb{R}^m$ are given data. \mathcal{N}^n is a closed convex set and

$$\mathcal{N}^n = \{ X \in \mathcal{S}^n | X \ge 0 \}.$$

The operator $\mathcal{A}: \mathcal{S}^n \to \mathbb{R}^m$ is linear, and its adjoint with respect to the standard inner product in \mathcal{S}^n and \mathbb{R}^m is denoted by \mathcal{A}^* . $\varphi: \mathcal{S}^n \to \mathcal{S}^n$ is a given self-adjoint positive semidefinite linear operator, for instance, $\varphi(X) = BXB^T$ for a given positive-definite matrix $B \in \mathcal{S}^n$, $\varphi(X) = B \circ X$ for $B \in \mathcal{N}^n$ (" \circ " denotes the Hardamard product of two matrices and $\varphi(X) = \frac{BX+XB}{2}$ for $B \in \mathcal{S}^n_+$.

Let $\mathcal{D}^n = \mathcal{S}^n_+ \cap \mathcal{N}^n$, named as the doubly nonnegative cone in [1], its dual cone is $\mathcal{S}^n_+ + \mathcal{N}^n$. Thus the dual of problem (1) can be formulated as in [2,3]:

$$\min \quad \frac{1}{2} \langle W, \varphi(W) \rangle - b^T y$$

s.t.
$$-\varphi(W) + \mathcal{A}^*(y) + Z + S = C,$$

$$W \in \mathcal{S}^n, \ y \in \mathbb{R}^m, \ Z \in \mathcal{S}^n_+, \ S \in \mathcal{N}^n.$$
 (2)

And the Karush-Kuhn-Tuck (KKT) conditions for problem (1) and its dual (2) can be written as follows:

$$\begin{array}{l}
\mathcal{A}(X) = b, \ \varphi(W) = \varphi(X), \\
-\varphi(W) + \mathcal{A}^*(y) + Z + S = C, \\
X \in \mathcal{S}^n_+, \ Z \in \mathcal{S}^n_+, \ \langle X, Z \rangle = 0, \\
X \in \mathcal{N}^n, \ S \in \mathcal{N}^n, \ \langle X, S \rangle = 0.
\end{array}$$
(3)

By interior-point methods scheme, Toh et al. [4,5,6] proposed inexact primal-dual path following algorithm for solving the CQSDP problems without nonnegative constraints. To handle the CQSDP problems beyond moderate scale can be a challenging task using the interior-point methods, due to the extremely high computational cost per iteration or the inherent ill-conditioning of the linear systems governing the search directions. In addition, there are many methods proposed for solving some special CQSDP problems, see [8,9,10,11,12,13]. Of these methods, ADMM-type algorithms by dealing with the dual reveal excellent numerical results.

Due to the constraints on the doubly nonnegative cone, it is difficult to solve the primal problem (1) directly. In this paper, we pay attention to the dual (2) for its separable structure, which can be expressed in the form of the following convex optimization with four separate blocks in the objective function and a coupling linear equation constraint:

$$\min \quad \frac{1}{2} \langle W, \varphi(W) \rangle - b^T y + \delta_{\mathcal{S}^n_+}(Z) + \delta_{\mathcal{N}^n}(S)$$

s.t.
$$-\varphi(W) + \mathcal{A}^*(y) + Z + S = C, \qquad (4)$$

where $\delta_{\mathcal{C}}(Y)$ is the indicator function over a given set \mathcal{C} such that $\delta_{\mathcal{C}}(Y) = 0$ if $Y \in \mathcal{C}$ and $+\infty$ otherwise.

Let $\sigma > 0$ be given. The augmented Lagrangian function for (4) reads as

$$\mathcal{L}_{\sigma}(W, y, Z, S, X) = \frac{1}{2} \langle W, \varphi(W) \rangle - b^{T} y + \delta_{\mathcal{S}^{n}_{+}}(Z) + \delta_{\mathcal{N}^{n}}(S) + \langle X, -\varphi(W) + \mathcal{A}^{*}(y) + Z + S - C \rangle + \frac{\sigma}{2} \| -\varphi(W) + \mathcal{A}^{*}(y) + Z + S - C \|^{2},$$
(5)

where $(W, y, Z, S, X) \in S^n \times \mathbb{R}^n \times S^n_+ \times \mathcal{N}^n \times S^n$. For a chosen initial point, the directly extended 4-block ADMM (ADMM4d) for (4) consists of the iterations:

$$W^{k+1} = \arg\min_{W \in S^{n}} \mathcal{L}_{\sigma}(W, y^{k}, Z^{k}, S^{k}, X^{k}),$$

$$y^{k+1} = \arg\min_{y \in \mathbb{R}^{n}} \mathcal{L}_{\sigma}(W^{k+1}, y, Z^{k}, S^{k}, X^{k}),$$

$$Z^{k+1} = \arg\min_{Z \in S^{n}_{+}} \mathcal{L}_{\sigma}(W^{k+1}, y^{k+1}, Z, S^{k}, X^{k}),$$

$$S^{k+1} = \arg\min_{S \in \mathcal{N}^{n}} \mathcal{L}_{\sigma}(W^{k+1}, y^{k+1}, Z^{k+1}, S, X^{k}),$$

$$X^{k+1} = X^{k} + \tau\sigma \left(-\varphi(W^{k+1}) + \mathcal{A}^{*}(y^{k+1}) + Z^{k+1} + S^{k+1} - C\right),$$

$$\left.\right\}$$

$$(6)$$

where $\tau > 0$, e.g., $\tau \in (0, \frac{1+\sqrt{5}}{2})$, is a constant that controls the step size in (6). If choosing $\tau > 1$, the step size of updating the Lagrange multiplier is enlarged, and it is usually beneficial to induce faster convergence.

The direct extension of the classic ADMM to the case of the multi-block convex optimization problem is not necessarily convergent from [15,16], though it often performs very well in practice. With σ being small enough, the convergence of ADMM4d was obtained in [17] for a special 4-block problem with two objective functions being strongly convex. Furthermore, it shown that, the convergence can not be guaranteed only requiring one strongly convex function, by giving a concrete example in [17]. Thus, even for the simplest case with $\varphi(W) = W$ (the objective function $\frac{1}{2}\langle W, W \rangle$ is strongly convex), ADMM4d (6) is not necessarily convergent to solve problem (4).

Generally, there exists two types of methods to develop ADMM's variants, aiming to guarantee convergence and preserve the numerical advantages of the directly extended ADMM. One method is to add a simple correction step, for example, a convergent alternating direction method with a Gaussian back substitution (ADM-G) proposed by He et al. in [18,19], in which each iteration consists of a forward procedure (ADM procedure) and a backward procedure (Gaussian back substitution procedure), the correction step is completely free from step-size computing and its step size is bounded away from zero for all iterates. The other is to employ a simple proximal for solving each subproblem inexactly, which has been suggested by many researchers, see [3,9,21,22,23]. In addition, many modified ADMM-based algorithms were introduced in [24,25,20,28].

More recently, by leveraging on the inexact block symmetric Gauss-Seidel (sGS) decomposition technique, Chen, Sun and Toh [21] had employed the dual approach by proposing an efficient inexact ADMM-type first-oder method (the sGSimsPADMM) for solving problem (2). Furthermore, based on the inexact sGS decomposition technique and the semismooth Newton-CG algorithm, Li, Sun and Toh proposed a two-phase proximal augmented Lagrangian method for convex quadratic semidefinite programming, named QSDPNAL [2]. It extended the ideas from SDPNAL [26] and SDPNAL+ [27] for the linear SDP problems to the QSDP problems.

By making full use of the KKT conditions, Chang et al. [28] presented a modified ADMM to solve the dual of the CQSDP problem in standard form (without nonnegative constraints), which is an extension of the method proposed by Wen et al. [36]. This modified ADMM can always skip the subproblems with respect to the block-variable W, which will save both the computational cost and the memory for variable storage at each iteration. Inspired by the success of modified ADMM [28] as well as aforementioned work on the ADMM-based methods, we present a projection method by modifying 3-block ADMM to solve an equivalent of the KKT system (3). The main contributions of this paper are as follows:

- (1). By introducing an auxiliary variable, we reformulate the 4-block separable convex problem (4) as a 3-block separable convex problem, and apply the directly extended 3-block ADMM (ADMM3d) to this reformulation. Based on the iterative scheme of ADMM3d, we testify the KKT system (3) is equivalent to an equation system having two projection operators onto the positive semidefinite and nonnegative matrix cones respectively.
- (2). We propose a projection method for solving this equation system. Essentially, the proposed method can be explained as a parallel 3-block ADMM with larger step size (can be greater than $(1 + \sqrt{5})/2$), and does not have to solve the subproblem with variable W exactly. Skipping the calculation of W can save $\mathcal{O}(n^3)$ for some operators φ , while the cost is only about $\mathcal{O}(n^2)$ for computing the auxiliary variable

introduced, see Section 3.3. This confirms that at least our methods require less computation than the existing ADMM [3, 18, 32] in one iteration.

(3). The global convergence of the proposed method as well as its non-ergodic o(1/(k+1)) convergence rate are established to a KKT point by using a fixed-point argument and the projection operator's nonexpansion, when the condition on the penalty parameter is satisfied. The numerical experiments show that, our proposed algorithm performs better than ADM-G and ADMM4d with the aggressive step-length of 1.618.

The rest of this paper is organized as follows. Some preliminary results are provided in Section 2. We reformulate the dual (2) as a 3-block convex optimization problem, and introduce how to solve the subproblems from ADMM3d in Section 3. The projection method based on the KKT conditions (3) is presented in Subsection 4. The convergence of the proposed method is analysed in Section 5. Section 6 is devoted to the implementation and numerical experiments to solve the CQSDP problems generated randomly. Finally, the paper is summarized in Section 7.

2 Preliminaries

Most of the definitions and notations used in this paper are standard and can be found in [29]. Throughout, Ω is an arbitrary finite dimensional real Euclidean space with inner product $\langle \cdot, \cdot \rangle$ and its induced norm $\|\cdot\|$. A single-valued mapping $\mathcal{G}: \Omega \to \Omega$ is called β -cocoercive (or β -inverse-strongly monotone), for a certain constant $\beta > 0$, if $\beta \mathcal{G}$ is firmly nonexpansive, i.e.,

$$\langle \mathcal{G}(x) - \mathcal{G}(x'), x - x' \rangle \ge \beta \| \mathcal{G}(x) - \mathcal{G}(x') \|^2, \quad \forall x, x' \in \Omega.$$

Let φ be a self-adjoint non zero positive semidefinite linear operator, we use $\lambda_{\max}(\varphi)$ to denote its largest eigenvalue, then φ is $\frac{1}{\lambda_{\max}(\varphi)}$ -cocoercive. Let $\Gamma_0(\Omega)$ be the class of proper lower semicontinuous convex functions from Ω to $(-\infty, +\infty]$. For any

 $f \in \Gamma_0(\Omega)$, the subdifferential mapping ∂f of f is then maximal monotone and

$$\mathcal{J}_{\sigma\partial f}(x) = (\mathcal{I} + \sigma\partial f)^{-1}(x) = \operatorname*{argmin}_{z} \left\{ f(z) + \frac{1}{2\sigma} \|x - z\|^2 \right\}, \quad \forall x \in \Omega,$$

where $\mathcal{I}: \Omega \rightarrow \Omega$ is the identity operator.

For a given closed convex \mathcal{C} , $\delta_{\mathcal{C}}$ is closed proper convex function and $\mathcal{J}_{\sigma\partial\delta_{\mathcal{C}}}(x) = \Pi_{\mathcal{C}}(x)$, i.e. the metric projection of x onto \mathcal{C} , and

$$\partial \delta_{\mathcal{C}}(x) = \mathcal{N}_{\mathcal{C}}(x) := \{ z \, | \, \langle z, x' - x \rangle \le 0 \, \, \forall x' \in \mathcal{C} \},\$$

which is a closed convex cone.

We will denote by Fix \mathcal{T} the set of fixed points of operator \mathcal{T} , i.e., Fix $\mathcal{T} := \{x^* \in \Omega | x^* = \mathcal{T}(x^*)\}$.

3 Reformulation of (2) and Directly Extended 3-Block ADMM.

Firstly, we make the following assumptions.

Assumption 1 (i). For the CQSDP problem (1), there exists a feasible solution $X \in S^n_+$ such that

$$\mathcal{A}(X) = b, \quad X \in \mathcal{S}_{++}^n, \quad X \in \mathcal{N}^n.$$
(7)

(ii). For the dual problem (2), there exists a feasible solution $(W, y, Z, S) \in \mathcal{S}^n \times \mathbb{R}^m \times \mathcal{S}^n_+ \times \mathcal{N}^n$ such that

$$-\varphi(W) + \mathcal{A}^*(y) + Z + S = C, \quad Z \in \mathcal{S}^n_{++}, \quad S \in \mathcal{N}^n.$$
(8)

It is known from convex analysis (e.g, Corollary 5.3.6 in [33]) that under Assumption 1, the strong duality for (1) and (2) holds and the KKT conditions (3) have solutions.

Assumption 2 The linear operator \mathcal{A} is surjective.

Under Assumption 2, the operator \mathcal{AA}^* is invertible, then the solution of the subproblem with variable y can be well-defined for ADMM4d.

3.1 3-block Convex Optimization Reformulation

By introducing an auxiliary variable \widetilde{X} , we can rewrite (1) equivalently as

min
$$\frac{1}{2}\langle X, \varphi(X) \rangle + \langle C, X \rangle$$

s.t. $X - \widetilde{X} = 0, \mathcal{A}(X) = b,$ (9)
 $X \in \mathcal{S}^n_+, \quad \widetilde{X} \in \mathcal{N}.$

Defining $U = \begin{pmatrix} X \\ \widetilde{X} \end{pmatrix}$, (9) can be simplied as:

$$\min \quad \theta(U)$$

s.t. $\mathcal{H}(U) = \widetilde{b}, \quad U \in \mathcal{S}^n_+ \times \mathcal{N}^n,$ (10)

where $\theta(U) = \frac{1}{2} \langle X, \varphi(X) \rangle + \langle C, X \rangle$, and

$$\mathcal{H} = \begin{pmatrix} \mathcal{I} & -\mathcal{I} \\ \mathcal{A} & 0 \end{pmatrix}, \quad \tilde{b} = \begin{pmatrix} 0 \\ b \end{pmatrix}. \tag{11}$$

By setting

$$\begin{split} f(W) &:= \frac{1}{2} \left\langle \begin{pmatrix} \varphi(W) \\ 0 \end{pmatrix}, \begin{pmatrix} W \\ 0 \end{pmatrix} \right\rangle = \frac{1}{2} \langle W, \varphi(W) \rangle, \\ g(Z, U) &:= \delta_{\mathcal{S}^n_+}(Z) + \delta_{\mathcal{N}^n}(U), \\ h(S, y) &:= \left\langle \begin{pmatrix} 0 \\ -b \end{pmatrix}, \begin{pmatrix} S \\ y \end{pmatrix} \right\rangle = \langle 0, S \rangle - b^T y, \end{split}$$

and

$$\begin{split} \mathcal{F}^*(W) &:= \begin{pmatrix} -\varphi & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} W \\ 0 \end{pmatrix} = \begin{pmatrix} -\varphi(W) \\ 0 \end{pmatrix}, \\ \mathcal{G}^*(Z,U) &:= \begin{pmatrix} \mathcal{I} & 0 \\ 0 & \mathcal{I} \end{pmatrix} \begin{pmatrix} Z \\ U \end{pmatrix} = \begin{pmatrix} Z \\ U \end{pmatrix}, \\ \mathcal{H}^*(S,y) &:= \begin{pmatrix} \mathcal{I} & \mathcal{A}^* \\ -\mathcal{I} & 0 \end{pmatrix} \begin{pmatrix} S \\ y \end{pmatrix} = \begin{pmatrix} S + \mathcal{A}^*(y) \\ -S \end{pmatrix} \\ \tilde{C} &:= \begin{pmatrix} C \\ 0 \end{pmatrix}, \end{split}$$

then the dual of problem (10) can be reformulated as

min
$$f(W) + g(Z, U) + h(S, y)$$

s.t. $\mathcal{F}^*(W) + \mathcal{G}^*(Z, U) + \mathcal{H}^*(S, y) = \widetilde{C}.$ (12)

Actually, it is equivalent to (4).

Notice that from Assumption 2 and the definition of \mathcal{H} , we can obtain the following results easily.

Lemma 1 Under Assumption 2, then we have

(i). \mathcal{HH}^* is invertible.

(ii). the inverse of \mathcal{HH}^* can be computed by:

$$(\mathcal{H}\mathcal{H}^*)^{-1} = \begin{pmatrix} \frac{1}{2}\mathcal{I} + \frac{1}{2}\mathcal{A}^*(\mathcal{A}\mathcal{A}^*)^{-1}\mathcal{A} - \mathcal{A}^*(\mathcal{A}\mathcal{A}^*)^{-1} \\ -(\mathcal{A}\mathcal{A}^*)^{-1}\mathcal{A} & 2(\mathcal{A}\mathcal{A}^*)^{-1} \end{pmatrix}.$$
 (13)

Specially, for the operator $\mathcal{A} = diag$, we have $\mathcal{A}\mathcal{A}^* = \mathcal{I}$, and

$$(\mathcal{H}\mathcal{H}^*)^{-1} = \begin{pmatrix} \frac{1}{2}\mathcal{I} + \frac{1}{2}\mathcal{A}^*\mathcal{A} - \mathcal{A}^*\\ -\mathcal{A} & 2\mathcal{I} \end{pmatrix}.$$
 (14)

From Lemma 1, the solution of the subproblem with variable (S, y) can be well-defined for using AD-MM3d to (12). Additionally, reformulation (12) has many advantages for designing efficiency ADMM-based algorithm, for instance, the subproblem with variable (S, y) or (Z, U) can be implemented in parallel and that with variable W can be skipped, the convergence rate of the proposed ADMM can be analysed in non-ergodic case, different with the existing multi-block ADMM, see Section 4 and 5.

3.2 ADMM3d for Solving (12)

Recall that the augmented lagrangian function of the problem (12) has the following form:

$$\widehat{\mathcal{L}}_{\sigma}(W,(Z,U),(S,y),\widehat{X}) = f(W) + g(Z,U) + h(S,y) + \left\langle \widehat{X}, \mathcal{F}^{*}(W) + \mathcal{G}^{*}(Z,U) + \mathcal{H}^{*}(S,y) - \widetilde{C} \right\rangle + \frac{\sigma}{2} \|\mathcal{F}^{*}(W) + \mathcal{G}^{*}(Z,U) + \mathcal{H}^{*}(S,y) - \widetilde{C} \|^{2},$$
(15)

where $W \in S^n$, $(Z, U) \in S^n_+ \times \mathcal{N}^n$, $(S, y) \in S^n \times \mathbb{R}^n$ and $\widehat{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ $(X_1, X_2 \in S^n)$, $\sigma > 0$ is a penalty parameter. Then, the iterative scheme of ADMM3d for solving (12) reads as:

$$W^{k+1} = \arg\min_{W\in\mathcal{S}^n} \widehat{\mathcal{L}}_{\sigma} \left(W, (Z^k, U^k), (S^k, y^k), \widehat{X}^k \right),$$
(16)

$$(S^{k+1}, y^{k+1}) = \arg\min_{(S,y)\in\mathcal{S}^n\times\mathbb{R}^m} \widehat{\mathcal{L}}_{\sigma}\left(W^{k+1}, (Z^k, U^k), (S,y), \widehat{X}^k\right),\tag{17}$$

$$(Z^{k+1}, U^{k+1}) = \arg\min_{(Z,U)\in\mathcal{S}_{+}^{n}\times\mathcal{N}^{n}} \widehat{\mathcal{L}}_{\sigma}\left(W^{k+1}, (Z,U), (S^{k+1}, y^{k+1}), \widehat{X}^{k}\right),$$
(18)

$$\widehat{X}^{k+1} = \widehat{X}^k + \tau \sigma(\mathcal{F}^*(W) + \mathcal{G}^*(Z, U) + \mathcal{H}^*(S, y) - \widetilde{C}),$$
(19)

where $\tau \in (0, \frac{1+\sqrt{5}}{2})$.

Now, we label $\widehat{\mathcal{L}}_{\sigma}(W, y, Z, S, X)$ as $\widehat{\mathcal{L}}_{\sigma}$, and solve these subproblems (17)-(18). From the first-order optimality condition of problem (17), we have

$$\nabla_{(S,y)}\widehat{\mathcal{L}}_{\sigma} = \mathcal{H}\left(\begin{array}{c} X_1 - \sigma(\varphi(W) - Z + C) \\ X_2 + \sigma U \end{array}\right) + \sigma \mathcal{H}\mathcal{H}^*\left(\begin{array}{c} S \\ y \end{array}\right) - \left(\begin{array}{c} 0 \\ b \end{array}\right) = 0.$$

By Lemma 1, we have

$$\begin{pmatrix} S\\ y \end{pmatrix} = -(\mathcal{H}\mathcal{H}^*)^{-1}\mathcal{H}\begin{pmatrix} \frac{1}{\sigma}X_1 - \varphi(W) + Z - C\\ \frac{1}{\sigma}X_2 + U \end{pmatrix} + \frac{1}{\sigma}(\mathcal{H}\mathcal{H}^*)^{-1}\begin{pmatrix} 0\\ b \end{pmatrix},$$
(20)

and can compute $S^{k+1} = \phi_S(W^{k+1}, Z^k, U^k, X_1^k, X_2^k)$, where

$$\phi_S(W, Z, U, X_1, X_2) := -\frac{1}{2}\mathcal{Q}_{-}\left(\frac{1}{\sigma}X_1 - \varphi(W) + Z - C\right) + \frac{1}{2}\mathcal{Q}_{+}\left(\frac{1}{\sigma}X_2 + U\right) - \frac{1}{\sigma}\mathcal{A}^*(\mathcal{A}\mathcal{A}^*)^{-1}(b), \quad (21)$$

and

 $Q_{-} = \mathcal{I} - \mathcal{M}, \quad Q_{+} = \mathcal{I} + \mathcal{M}, \quad \mathcal{M} = \mathcal{A}^{*} (\mathcal{A}\mathcal{A}^{*})^{-1} \mathcal{A}.$ (22)

It is easy to check that the four operators \mathcal{A} , \mathcal{M} , \mathcal{Q}_+ and \mathcal{Q}_- satisfy the following properties:

Lemma 2 (i). $\mathcal{M}^* = \mathcal{M}, \ \mathcal{Q}_-^* = \mathcal{Q}_-, \ \mathcal{Q}_+^* = \mathcal{Q}_+.$ (ii). $\mathcal{M}^*\mathcal{M} = \mathcal{M}, \ \mathcal{Q}_-^*\mathcal{Q}_- = \mathcal{Q}_-, \ \mathcal{Q}_+^*\mathcal{Q}_- = \mathcal{Q}_-.$ (iii). $\mathcal{M}\mathcal{A}^* = \mathcal{A}^*, \ \mathcal{A}\mathcal{M} = \mathcal{A}, \ \mathcal{A}\mathcal{Q}_- = 0, \ \mathcal{Q}_-\mathcal{A}^* = 0, \ \mathcal{A}\mathcal{Q}_+ = 2\mathcal{A}, \ \mathcal{Q}_+\mathcal{A}^* = 2\mathcal{A}^*.$

In addition, it is from Assumption 2 that, we can obtain $y^{k+1} = \phi_u(W^{k+1}, Z^k, U^k, X_1^k, X_2^k)$, where

$$\phi_y(W, Z, U, X_1, X_2) := -(\mathcal{A}\mathcal{A}^*)^{-1}\mathcal{A}\left(\frac{1}{\sigma}X_1 - \varphi(W) + Z - C + \frac{1}{\sigma}X_2 + U\right) + 2\frac{1}{\sigma}(\mathcal{A}\mathcal{A}^*)^{-1}b.$$
(23)

Similarly, according to the first-order optimality conditions of problem (18), let

$$\phi_{V_Z}(W, S, y, X_1) := -\frac{1}{\sigma} X_1 + \varphi(W) - S - \mathcal{A}^*(y) + C,$$
(24)

$$\phi_{V_U}(S, X_2) := S - \frac{1}{\sigma} X_2, \tag{25}$$

compute $V_Z^{k+1} = \phi_{V_Z}(W^{k+1}, S^{k+1}, y^{k+1}, X_1^k)$ and $V_U^{k+1} = \phi_{V_U}(S^{k+1}, X_2^k)$, then we can get $U^{k+1} = \prod_{\mathcal{N}^n} (V_U^{k+1})$ and $Z^{k+1} = \prod_{\mathcal{S}^n_+} (V_Z^{k+1})$ in parallel. By the projection operator's properties, the following properties are easy to obtain by direct computation.

 $\begin{array}{l} \textbf{Lemma 3} \ Suppose \ that \ \{Z^{k+1}, U^{k+1}, X_1^{k+1}, X_2^{k+1}\} \ are \ generated \ by \ (16)-(19) \ with \ \tau=1, \ then \ we \ have \ (i). \ V_Z^{k+1}=Z^{k+1}-\frac{1}{\sigma}X_1^{k+1}, \ \ Z^{k+1}\in \mathcal{S}_+^n, \ \ X_1^{k+1}\in \mathcal{S}_+^n, \ \ \langle Z^{k+1}, X_1^{k+1}\rangle=0; \ (ii). \ V_U^{k+1}=U^{k+1}-\frac{1}{\sigma}X_2^{k+1}, \ \ U^{k+1}\in \mathcal{N}^n, \ \ X_2^{k+1}\in \mathcal{N}^n, \ \ \langle U^{k+1}, X_2^{k+1}\rangle=0. \end{array}$

3.3 Solving the Subproblem (16) with Variable W.

In this section, we introduce how to solve the subproblem (16) efficiently, though it is not necessarily for designing our algorithm. The main objective is to show what our algorithm skips and how to get W^{k+1} for other ADMM-based methods in our numerical experiments.

Since the first-order optimality condition of (16) has the form

$$\nabla_W \widehat{\mathcal{L}}_{\sigma} = \varphi \left(W - X_1 + \sigma \varphi(W) - Z - S - \mathcal{A}^*(y) + C \right) = 0, \tag{26}$$

the structure of φ is important for computing W^{k+1} . For the simplest $\varphi(W) = W$ as used in the least squares SDP problem [11, 13], we can compute W^{k+1} with easy from

$$W^{k+1} = \frac{1}{1+\sigma} (X_1^k + \sigma (Z^k + S^k + \mathcal{A}^*(y^k) - C)),$$
(27)

because $\varphi(W) = 0$ if only if W = 0.

However, it is not the case for all the operators φ . If $\varphi(W) = \frac{BW+WB}{2}$ as used in [2], for a given matrix $B \in S^n_+$, the operator φ may not be invertible, then the equation $\varphi(W) = 0$ has many solutions. Although we actually do not need W explicitly in each iterations, only $\varphi(W)$ is needed, but it is generally not easy to obtain $\varphi(W)$ from (26), which will cost $\mathcal{O}(n^3)$ flops for some operators φ . Next, we will introduce how to get $\varphi(W^{k+1})$ effectively from (26).

For the problems with $\varphi(W) = \frac{BW + WB}{2}$, we suppose that the eigenvalue decomposition is $B = PAP^T$, where $\Lambda = \operatorname{diag}(\lambda)$ and $\lambda = (\lambda_1, \dots, \lambda_n)^T$ is the vector of eigenvalues of B. Then, we have $\varphi = \mathcal{B}^*\mathcal{B}$, where $\mathcal{B}(X) = H \circ (P^T X P), \ \mathcal{B}^*(Y) = P(H \circ Y)P^T$ and $H_{ij} = \sqrt{\frac{\lambda_i + \lambda_j}{2}}$, which implies $\mathcal{BB}^* = H \circ H \circ$. Thus we can obtain the inverse of $\mathcal{I} + \sigma \mathcal{BB}^*$ by

$$(\mathcal{I} + \sigma \mathcal{B} \mathcal{B}^*)^{-1} = \widehat{H} \circ.$$

with $\widehat{H}_{ij} = \frac{1}{1+\sigma H_{ij}^2}$. By [34, Lemma 4] and setting $\Xi = \widehat{H} \circ$, we have

$$(\mathcal{I} + \sigma \varphi)^{-1} = (\mathcal{I} + \sigma \mathcal{B}^* \mathcal{B})^{-1}$$
$$= \mathcal{I} - \sigma \mathcal{B}^* (\mathcal{I} + \sigma \mathcal{B} \mathcal{B}^*)^{-1} \mathcal{B}$$
$$= \mathcal{I} - \sigma \mathcal{B}^* \Xi \mathcal{B}.$$

Thus, $\varphi(W)$ can be computed efficiently by

$$\varphi(W) = (\mathcal{I} - \sigma \mathcal{B}^* \Xi \mathcal{B}) \varphi \left(X_1 + \sigma (Z + S + \mathcal{A}^*(y) - C) \right).$$
(28)

For the problems with $\varphi(W) = BWB^T$, if the eigenvalue decomposition of B is PAP^T , where $A = \operatorname{diag}(\lambda)$ and $\lambda = (\lambda_1, \dots, \lambda_n)^T$ is the vector of eigenvalues of B. We can still write $\varphi = \mathcal{B}^*\mathcal{B}$, where $\mathcal{B}(X) = H \circ (P^T X P)$, $\mathcal{B}^*(Y) = P(H \circ Y)P^T$ but $H_{ij} = \sqrt{\lambda_i \lambda_j}$. By using the same idea as above, $\varphi(W)$ can be computed efficiently by (28).

Suppose that the eigenvalue decomposition of $B = P\Lambda P^T$ is already computed, which is performed only once and needs $9n^3$ flops by the symmetric QR algorithm. If B is a low rank matrix, computing $\varphi(W)$ can be very cheap as the matrix H is sparse, else if B is a positive definite matrix (not an identity matrix), computing $\mathcal{B}(X) = H \circ (P^T X P)$ and $\mathcal{B}^*(Y) = P(H \circ Y)P^T$ needs at least $8n^3$ flops to get $\varphi(W)$ at each iteration.

4 Projection Method

In this section, we define following operators by the metric projection:

$$\mathcal{P}_{\mathcal{S}^n_+}(V) := \left(\Pi_{\mathcal{S}^n_+}(V), \quad \Pi_{\mathcal{S}^n_+}(V) - V\right),\tag{29}$$

$$\mathcal{P}_{\mathcal{N}^n}(V) := (\Pi_{\mathcal{N}^n}(V), \quad \Pi_{\mathcal{N}^n}(V) - V), \qquad (30)$$

$$\mathcal{P}(V) := (\mathcal{P}_{\mathcal{S}^n_+}(V), \quad \mathcal{P}_{\mathcal{N}^n}(V)), \tag{31}$$

for any matrix $V \in S^n$. By these operators and the iterative scheme (16)-(19), we show the equivalence of the KKT system (3) to an equation system. Then, a projection method for solving the equation system is presented.

In addition, we define a set

$$\mathcal{K} = \left\{ (W, Z, U, X_1, X_2) \mid W \in \mathcal{S}^n, Z \in \mathcal{S}^n_+, U \in \mathcal{N}^n, X_1 \in \mathcal{S}^n, X_2 \in \mathcal{S}^n \right\},\tag{32}$$

which will simplify our analysis.

4.1 Properties

By Moreau decomposition [35] and two operators $\mathcal{P}_{\mathcal{S}^n_+}(\cdot)$ and $\mathcal{P}_{\mathcal{N}^n}(\cdot)$ defined above, we now present the most important conclusion on the KKT system (3) in the following theorem. Based on this conclusion, we propose the projection method to obtain a KKT point.

Theorem 1 (i) For any $(W, Z, U, X_1, X_2) \in \mathcal{K}$ satisfying the following system

$$\varphi(W) = \varphi(X_1), \ S = \phi_S(W, Z, U, X_1, X_2), \ y = \phi_y(W, Z, U, X_1, X_2), \\ (Z, \frac{1}{\sigma}X_1) = \mathcal{P}_{\mathcal{S}^n_{\perp}} \circ \phi_{V_Z}(W, S, y, X_1), \ (U, \frac{1}{\sigma}X_2) = \mathcal{P}_{\mathcal{N}^n} \circ \phi_{V_U}(S, X_2),$$

$$(33)$$

where the operators ϕ_S , ϕ_y , ϕ_{V_Z} and ϕ_{V_U} are defined in (21), (23), (24) and (25), then (W, y, Z, S, X_1) is a solution of the KKT system (3), namely,

$$\begin{array}{l}
\left. \mathcal{A}(X_1) = b, \ \varphi(W) = \varphi(X_1), \\
-\varphi(W) + \mathcal{A}^*(y) + Z + S = C, \\
X_1 \in \mathcal{S}^n_+, \ Z \in \mathcal{S}^n_+, \ \langle Z, X_1 \rangle = 0, \\
X_1 \in \mathcal{N}^n, \ S \in \mathcal{N}^n, \ \langle S, X_1 \rangle = 0. \end{array} \right\}$$
(34)

(ii) If the point (W, y, Z, S, X) satisfies the KKT system (3), by setting $X_1 = X_2 = X$ and U = S, then $(W, Z, U, X_1, X_2) \in \mathcal{K}$ is a solution of the system (33).

Proof. (i) By $(Z, \frac{1}{\sigma}X_1) = \mathcal{P}_{\mathcal{S}^n_+} \circ \phi_{V_Z}(W, S, y, X_1)$, we have

$$X_1 \in \mathcal{S}^n_+, \ Z \in \mathcal{S}^n_+, \ \langle Z, X_1 \rangle = 0$$

and $\phi_{V_Z}(W, S, y, X_1) = Z - \frac{1}{\sigma}X_1$. With the definition of $\phi_{V_Z}(W, S, y, X_1)$ in (24), we obtain

$$-\varphi(W) + \mathcal{A}^*(y) + Z + S = C.$$
(35)

Notice that from $y = \phi_y(W, Z, U, X_1, X_2)$ and $W = X_1$, we deduce that

$$(\mathcal{A}\mathcal{A}^*)y = -\mathcal{A}\left(\frac{1}{\sigma}X_1 - \varphi(W) + Z - C + \frac{1}{\sigma}X_2 + U\right) + 2\frac{1}{\sigma}b$$
$$= -\mathcal{A}\left(\frac{1}{\sigma}X_1 - S - \mathcal{A}^*(y) + \frac{1}{\sigma}X_2 + U\right) + 2\frac{1}{\sigma}b.$$
(36)

On the other hand, it follows from Lemma 2 and (21), we have

$$\mathcal{A}(S) = \mathcal{A}(\frac{1}{\sigma}X_2 + U) - \frac{1}{\sigma}b.$$
(37)

Substituting (37) into (36), we have $\mathcal{A}(X_1) = b$.

In addition, since $(U, \frac{1}{\sigma}X_2) = \mathcal{P}_{\mathcal{N}^n} \circ \phi_{V_U}(S, X_2)$ and $\phi_{V_U}(S, X_2) = S - \frac{1}{\sigma}X_2$, we have S = U, which implies

$$X_2 \in \mathcal{N}^n, \ S \in \mathcal{N}^n, \ \langle S, X_2 \rangle = 0.$$

It is follows from $S = \phi_S(W, Z, U, X_1, X_2)$ and (35), that

$$S = -\frac{1}{2}\mathcal{Q}_{-}\left(\frac{1}{\sigma}X_{1} - S - \mathcal{A}^{*}(y)\right) + \frac{1}{2}\mathcal{Q}_{+}\left(\frac{1}{\sigma}X_{2} + S\right) - \frac{1}{\sigma}\mathcal{M}(X_{1})$$

$$= -\frac{1}{2}\left(\frac{1}{\sigma}X_{1} - S - \mathcal{A}^{*}(y) - \frac{1}{\sigma}X_{2} - S\right) + \frac{1}{2}\mathcal{M}\left(\frac{1}{\sigma}X_{1} - S - \mathcal{A}^{*}(y) + \frac{1}{\sigma}X_{2} + S - 2\frac{1}{\sigma}X_{1}\right)$$

$$= \frac{1}{2\sigma}\left(X_{2} - X_{1}\right) + \frac{1}{2\sigma}\mathcal{M}\left(X_{2} - X_{1}\right) + S,$$

which means $X_2 = X_1$. Thus, $X_1 \in \mathcal{N}^n$, $S \in \mathcal{N}^n$, $\langle S, X_1 \rangle = 0$. Finally, note that $\varphi(W) = \varphi(X_1)$, we obtain (34).

(ii) By (3) and S = U, we have

$$\phi_{V_Z}(W, S, y, X_1) = Z - \frac{1}{\sigma} X_1,$$

$$\phi_{V_U}(S, X_2) = S - \frac{1}{\sigma} X_2 = U - \frac{1}{\sigma} X_2.$$

Using Moreau decomposition and $X_1 = X_2 = X$, it is not difficult to obtain $(Z, \frac{1}{\sigma}X_1) = \mathcal{P}_{\mathcal{S}^n_+} \circ \phi_{V_Z}(W, S, y, X_1)$ and $(U, \frac{1}{\sigma}X_2) = \mathcal{P}_{\mathcal{N}^n} \circ \phi_{V_U}(S, X_2)$. In addition, from (23) we have

$$\phi_y(W, Z, U, X_1, X_2) = -(\mathcal{A}\mathcal{A}^*)^{-1}\mathcal{A}\left(\frac{1}{\sigma}X_1 - \mathcal{A}^*(y) - S + \frac{1}{\sigma}X_2 + S\right) + 2\frac{1}{\sigma}(\mathcal{A}\mathcal{A}^*)^{-1}b$$
$$= -(\mathcal{A}\mathcal{A}^*)^{-1}\mathcal{A}\left(\frac{1}{\sigma}X - \mathcal{A}^*(y) + \frac{1}{\sigma}X\right) + 2\frac{1}{\sigma}(\mathcal{A}\mathcal{A}^*)^{-1}b$$
$$= (\mathcal{A}\mathcal{A}^*)^{-1}\mathcal{A}\mathcal{A}^*(y) - (\mathcal{A}\mathcal{A}^*)^{-1}\mathcal{A}(\frac{2}{\sigma}X) + 2\frac{1}{\sigma}(\mathcal{A}\mathcal{A}^*)^{-1}b$$
$$= y$$

and

$$\begin{split} \phi_S(W, Z, U, X_1, X_2) &= -\frac{1}{2} \mathcal{Q}_- \left(\frac{1}{\sigma} X_1 - \mathcal{A}^*(y) - S \right) + \frac{1}{2} \mathcal{Q}_+ \left(\frac{1}{\sigma} X_2 + S \right) - \frac{1}{\sigma} \mathcal{A}^*(\mathcal{A}\mathcal{A}^*)^{-1}(b) \\ &= -\frac{1}{2} \mathcal{Q}_- \left(\frac{1}{\sigma} X - S \right) + \frac{1}{2} \mathcal{Q}_+ \left(\frac{1}{\sigma} X + S \right) - \frac{1}{\sigma} \mathcal{A}^*(\mathcal{A}\mathcal{A}^*)^{-1}(b) \\ &= S + \frac{1}{\sigma} \mathcal{M}(X) - \frac{1}{\sigma} \mathcal{A}^*(\mathcal{A}\mathcal{A}^*)^{-1}(b) \\ &= S. \end{split}$$

This completes our proof.

From Theorem 1, we can deduce the following relation:

$$(W, y, Z, S, X)$$
 is a KKT point. $\overleftrightarrow{U=S}_{X_1=X_2=X}$ (W, Z, U, X_1, X_2) satisfies the system (33),

which implies that the system (33) is nonempty from Assumption 1. The most important thing is that $\varphi(W) = \varphi(X_1)$ in the system (33), which gives us a confidence to believe that, we don't have to solve the subproblem with variable W exactly, even not have to compute $\varphi(W)$, but a KKT point of problem (1) and its dual (2) can be obtained as long as we can get a solution of the system (33). Therefore, we will in the next section design a projection method for solving the system (33).

4.2 Projection Method

Now, we define the following notations to simplify our analysis,

$$w = (Z, \frac{1}{\sigma}X_1, U, \frac{1}{\sigma}X_2), \quad w^k = (Z^k, \frac{1}{\sigma}X_1^k, U^k, \frac{1}{\sigma}X_2^k), \quad w^* = (Z^*, \frac{1}{\sigma}X_1^*, U^*, \frac{1}{\sigma}X_2^*).$$

Since $\varphi(W) = \varphi(X_1)$ in the system (33), we can remove the item $\varphi(W)$, and replace $\varphi(W)$ with $\varphi(X_1)$ in the definition of ϕ_S , ϕ_y , ϕ_{V_z} and ϕ_{V_U} , e.g.,

$$\begin{cases}
\phi_{S}(w) = -\frac{1}{2}\mathcal{Q}_{-}\left(\left(\frac{1}{\sigma}\mathcal{I} - \varphi\right)(X_{1}) + Z - C\right) + \frac{1}{2}\mathcal{Q}_{+}\left(\frac{1}{\sigma}X_{2} + U\right) - \frac{1}{\sigma}\mathcal{A}^{*}(\mathcal{A}\mathcal{A}^{*})^{-1}(b), \\
\phi_{y}(w) = -(\mathcal{A}\mathcal{A}^{*})^{-1}\mathcal{A}\left(\left(\frac{1}{\sigma}\mathcal{I} - \varphi\right)(X_{1}) + Z - C + \frac{1}{\sigma}X_{2} + U\right) + 2\frac{1}{\sigma}(\mathcal{A}\mathcal{A}^{*})^{-1}b, \\
\phi_{V_{Z}}(S, y, X_{1}) = -\left(\frac{1}{\sigma}\mathcal{I} - \varphi\right)(X_{1}) - S - \mathcal{A}^{*}(y) + C, \\
\phi_{V_{U}}(S, X_{2}) = S - \frac{1}{\sigma}X_{2}.
\end{cases}$$
(38)

Accordingly, $\varphi(W) = \varphi(X_1)$ can be left out, then we can rewrite the system (33) as

$$\begin{cases}
S = \phi_S(w), \ y = \phi_y(w), \\
(Z, \frac{1}{\sigma}X_1) = \mathcal{P}_{\mathcal{S}^n_+} \circ \phi_{V_Z}(S, y, X_1), \\
(U, \frac{1}{\sigma}X_2) = \mathcal{P}_{\mathcal{N}^n} \circ \phi_{V_U}(S, X_2).
\end{cases}$$
(39)

Furthermore, we will use the following notations,

$$v_Z(w) = \phi_{V_Z}(\phi_S(w), \phi_y(w), X_1), \quad v_U(w) = \phi_{V_U}(\phi_S(w), X_2), \quad v(w) = (v_Z(w), \quad v_U(w)), \tag{40}$$

$$\mathcal{J} = \left\{ w \mid Z \in \mathcal{S}_{+}^{n}, U \in \mathcal{N}^{n}, X_{1} \in \mathcal{S}^{n}, X_{2} \in \mathcal{S}^{n} \right\}.$$

$$\tag{41}$$

By these notations, the system (39) can be expressed as

$$w = \mathcal{P} \circ v(w) = \left(\mathcal{P}_{\mathcal{S}^n_+} \circ v_Z(w), \quad \mathcal{P}_{\mathcal{N}^n} \circ v_U(w)\right),\tag{42}$$

its solution set can be viewed as the set of fixed points of operator $\mathcal{P} \circ v$, i.e., Fix $\mathcal{P} \circ v := \{w^* \in \mathcal{J} | w^* = \mathcal{P} \circ v(w^*)\}$. From Assumption 1 and Theorem 1, we have Fix $\mathcal{P} \circ v \neq \emptyset$, so we can design our projection method as follows.

Algorithm 1 (Projection Method for solving the system (39))

Step 0. Let $\sigma \in (0, \frac{2}{\lambda_{max}(\varphi)})$ and $\rho \in \left(0, 2 - \frac{\sigma \lambda_{max}(\varphi)}{2}\right)$ be given parameters. Choose $w^0 \in \mathcal{J}$, set k = 0. Step 1. Compute

$$S^{k+1} = \phi_S(w^k), \quad y^{k+1} = \phi_y(w^k);$$

Step 2. Project

$$\widetilde{w}^{k} = \left[\mathcal{P}_{\mathcal{S}^{n}_{+}} \circ \phi_{V_{Z}}(S^{k+1}, y^{k+1}, X^{k}_{1}), \quad \mathcal{P}_{\mathcal{N}^{n}} \circ \phi_{V_{U}}(S^{k+1}, X^{k}_{2}) \right].$$
(43)

Step 3. Generalize

$$w^{k+1} = (1-\rho)w^k + \rho \widetilde{w}^k$$

Set k = k + 1, and go to Step 1.

Remark 1 By (42), we have $\widetilde{w}^k = \mathcal{P} \circ v(w^k)$, and our projection method above is a Krasnosel'skii-Mann algorithm with

$$w^{k+1} = (1-\rho)w^k + \rho \mathcal{P} \circ v(w^k),$$

for any $\rho \in \left(0, 2 - \frac{\sigma \lambda_{max}(\varphi)}{2}\right)$. The parameter ρ is similar to the relaxation factor in the generalized Douglas-Rachford operator splitting [30]. Notice that $1 < 2 - \frac{\sigma \lambda_{max}(\varphi)}{2} < 2$, it can numerically accelerate our projection method for $\rho > 1$.

Remark 2 From the ADMM perspective, the projection method can be explained as a modified 3-block AD-MM with larger step size ρ and a correction step for correcting (Z, U):

$$\begin{aligned}
W^{k+1} &= X_1^{k+1} \\
(S^{k+1}, y^{k+1}) &= \arg \min_{(S,y)\in \mathcal{S}^n \times \mathbb{R}^m} \hat{\mathcal{L}}_{\sigma} \left(W^{k+1}, (Z^k, U^k), (S, y), \hat{X}^k \right), \\
(\tilde{Z}^k, \tilde{U}^k) &= \arg \min_{(Z,U)\in \mathcal{S}^n_n \times \mathcal{N}^n} \hat{\mathcal{L}}_{\sigma} \left(W^{k+1}, (Z, U), (S^{k+1}, y^{k+1}), \hat{X}^k \right), \\
\hat{X}^{k+1} &= \hat{X}^k + \rho \sigma (\mathcal{F}^*(W^{k+1}) + \mathcal{G}^*(\tilde{Z}^k, \tilde{U}^k) + \mathcal{H}^*(S^{k+1}, y^{k+1}) - \tilde{C}), \\
Correction step \\
(Z^{k+1}, U^{k+1}) &= (1 - \rho)(Z^k, U^k) + \rho(\tilde{Z}^k, \tilde{U}^k).
\end{aligned}$$
(44)

Remark 3 Restricting $\sigma \in (0, \frac{2}{\lambda_{max}(\varphi)})$ is to guarantee the convergence of our projection method, which is significantly larger than the range $\sigma \in (0, \frac{2}{5\|\Phi^T\Phi\|})$ shown in [17] for ADMM3d, where $vec(\varphi(X)) = \Phi vec(X)$. For some problems with Φ having a larger eigenvalue, the restriction of σ on a small interval may hinder its effective adjustment according the progress of algorithm, and then reduce the convergence speed.

Remark 4 The projection method with $\rho = 1$ is not a classic 2-block ADMM, although its computational procedure is $(S, y) \rightarrow (Z, U) \rightarrow (X_1, X_2)$ when $\varphi(W^k)$ is set to be $\varphi(X_1^k)$. The reason is that, X_1 in our projection method plays a dual role: the Lagrangian multiplier and the variable of the first block.

Remark 5 If $\varphi = 0$, problem (1) is the SDP problem with nonnegative constraints and its dual reformulation (12) will be a 2-block convex optimization problem. In this case, our projection method is a classic 2-block ADMM but the step size can close to 2, it is convergent for any $\sigma > 0$.

5 Convergence Analysis

In this section, we explore the properties of operators $v, \mathcal{P} \circ v$ and $v \circ \mathcal{P}$, and then establish the convergence of our projection method.

Lemma 4 [36] For any $V, V^* \in S^n_+$, (i). $\|\mathcal{P}_{\mathcal{S}^n_+}(V) - \mathcal{P}_{\mathcal{S}^n_+}(V^*)\|^2 \leq \|V - V^*\|^2$, with equality holding if only if $\left(\Pi_{\mathcal{S}^n_+}(V)\right)^T \left(\Pi_{\mathcal{S}^n_+}(V^*) - V^*\right) = 0$ and $\left(\Pi_{\mathcal{S}^n_+}(V) - V\right)^T \Pi_{\mathcal{S}^n_+}(V^*) = 0.$

(ii). $\|\mathcal{P}_{\mathcal{N}^n}(V) - \mathcal{P}_{\mathcal{N}^n}(V^*)\|^2 \le \|V - V^*\|^2$, with equality holding if only if

$$(\Pi_{\mathcal{N}^n}(V))^T (\Pi_{\mathcal{N}^n}(V^*) - V^*) = 0 \quad and \quad (\Pi_{\mathcal{N}^n}(V) - V)^T \Pi_{\mathcal{N}^n}(V^*) = 0$$

Lemma 5 For any $w, w^* \in \mathcal{J}$, then we have

$$v_{Z}(w) - v_{Z}(w^{*}) = -\frac{1}{2}\mathcal{Q}_{-}\left(\left(\frac{1}{\sigma}\mathcal{I} - \varphi\right)(X_{1} - X_{1}^{*})\right) + \frac{1}{2}\mathcal{Q}_{+}(Z - Z^{*}) -\frac{1}{2}\mathcal{Q}_{-}\left(\frac{1}{\sigma}(X_{2} - X_{2}^{*}) + (U - U^{*})\right),$$
(45)

$$v_U(w) - v_U(w^*) = -\frac{1}{2}\mathcal{Q}_{-}\left(\left(\frac{1}{\sigma}\mathcal{I} - \varphi\right)(X_1 - X_1^*)\right) - \frac{1}{2}\mathcal{Q}_{-}(Z - Z^*) - \frac{1}{2}\mathcal{Q}_{-}\left(\frac{1}{\sigma}(X_2 - X_2^*)\right) + \frac{1}{2}\mathcal{Q}_{+}(U - U^*).$$
(46)

Proof. Using the definition of ϕ_S and ϕ_y in (38), we deduce that

$$\phi_{y}(w) - \phi_{y}(w^{*}) = -(\mathcal{A}\mathcal{A}^{*})^{-1}\mathcal{A}\left(\left(\frac{1}{\sigma}\mathcal{I} - \varphi\right)(X_{1} - X_{1}^{*}) + (Z - Z^{*})\right) + (\mathcal{A}\mathcal{A}^{*})^{-1}\mathcal{A}\left(\frac{1}{\sigma}(X_{2} - X_{2}^{*}) + (U - U^{*})\right),$$
(47)

$$\phi_{S}(w) - \phi_{S}(w^{*}) = -\frac{1}{2}\mathcal{Q}_{-}\left(\left(\frac{1}{\sigma}\mathcal{I} - \varphi\right)(X_{1} - X_{1}^{*}) + (Z - Z^{*})\right) + \frac{1}{2}\mathcal{Q}_{+}\left(\frac{1}{\sigma}(X_{2} - X_{2}^{*}) + (U - U^{*})\right).$$
(48)

Together with the definition of ϕ_{V_Z} and ϕ_{V_U} in (38), it is not difficult to get the results.

Lemma 6 Suppose that $\varphi \neq 0$, for any $\sigma > 0$ such that $\sigma < \frac{2}{\lambda_{max}(\varphi)}$, then

$$\left\| \left(\frac{1}{\sigma} \mathcal{I} - \varphi\right)(X) \right\|^2 \le \left\| \frac{1}{\sigma} X \right\|^2,\tag{49}$$

with equality holding if and only if $\varphi(X) = 0$.

Proof. Recall that φ is a self-adjoint positive semidefinite linear operator, we have

$$\left\| \left(\frac{1}{\sigma}\mathcal{I} - \varphi\right)(X) \right\|^2 = \left\| \frac{1}{\sigma}X \right\|^2 - \left\langle X, \left(\frac{2}{\sigma}\varphi - \varphi^2\right)(X) \right\rangle.$$

It follows from $\sigma < \frac{2}{\lambda_{max}(\varphi)}$ that $\frac{2}{\sigma}\mathcal{I} - \varphi$ is positive definite, then $\frac{2}{\sigma}\varphi - \varphi^2$ is positive semidefinite. Namely, $\langle (X), (\frac{2}{\sigma}\varphi - \varphi^2)(X) \rangle \ge 0$, so $\|(\frac{1}{\sigma}\mathcal{I} - \varphi)(X)\|^2 \le \|\frac{1}{\sigma}X\|^2$. If the equality in (49) holds, $\langle X, (\frac{2}{\sigma}\varphi - \varphi^2)(X) \rangle = 0$, which implies $\varphi(X) = 0$.

Lemma 7 For any $w, w^* \in \mathcal{J}$, we have

(i).

$$\|v(w) - v(w^*)\|_F^2 \le \|w - w^*\|_F^2.$$
(50)

(ii). If the equality in (50) holds, and $w^* \in Fix \mathcal{P} \circ v$ then

$$v_Z(w) = -\frac{1}{\sigma}X_1 + Z,\tag{51}$$

$$v_U(w) = -\frac{1}{\sigma}X_2 + U. \tag{52}$$

Proof. (i). Since for any matrix $A, B, ||A||_F^2 + ||B||_F^2 = \frac{1}{2}(||A + B||_F^2 + ||A - B||_F^2)$, by Lemma 5 we infer that

$$\begin{aligned} \|v(w) - v(w^*)\|_F^2 &= \left\| \begin{array}{l} v_Z(w) - v_Z(w^*) \\ v_U(w) - v_U(w^*) \end{array} \right\|_F^2 \\ &= \frac{1}{2} \left\| (v_Z(w) - v_Z(w^*)) + (v_U(w) - v_U(w^*)) \right\|_F^2 + \frac{1}{2} \left\| (v_Z(w) - v_Z(w^*)) - (v_U(w) - v_U(w^*)) \right\|_F^2 \\ &= \frac{1}{2} \left\| \mathcal{M}((Z - Z^*) + (U - U^*)) - \mathcal{Q}_- \left(\left(\frac{1}{\sigma} \mathcal{I} - \varphi \right) (X_1 - X_1^*) + \frac{1}{\sigma} (X_2 - X_2^*) \right) \right\|_F^2 \\ &+ \frac{1}{2} \left\| (Z - Z^*) - (U - U^*) \right\|_F^2. \end{aligned}$$

From the definition of \mathcal{M} and \mathcal{Q}_{-} , the spectral radius of the operator \mathcal{M} and \mathcal{Q}_{-} is no more than 1 and $\mathcal{MQ}_{-}=0$, then

$$\frac{1}{2} \left\| \mathcal{M}((Z - Z^*) + (U - U^*)) - \mathcal{Q}_{-} \left(\left(\frac{1}{\sigma} \mathcal{I} - \varphi \right) (X_1 - X_1^*) + \frac{1}{\sigma} (X_2 - X_2^*) \right) \right\|_F^2 \\
\leq \frac{1}{2} \left\| (Z - Z^*) + (U - U^*) \right\|_F^2 + \frac{1}{2} \left\| \left(\frac{1}{\sigma} \mathcal{I} - \varphi \right) (X_1 - X_1^*) + \frac{1}{\sigma} (X_2 - X_2^*) \right\|_F^2.$$
(53)

If the equality above holds, that is,

$$(\mathcal{I} - \mathcal{M})((Z - Z^*) + (U - U^*)) = 0,$$
(54)

$$\mathcal{M}\left(\left(\frac{1}{\sigma}\mathcal{I}-\varphi\right)(X_1-X_1^*)+\frac{1}{\sigma}(X_2-X_2^*)\right)=0.$$
(55)

Thus,

$$\begin{aligned} \|v(w) - v(w^*)\|_F^2 \\ &\leq \frac{1}{2} \left\| (Z - Z^*) - (U - U^*) \right\|_F^2 + \frac{1}{2} \left\| (Z - Z^*) + (U - U^*) \right\|_F^2 \\ &\quad + \frac{1}{2} \left\| (\frac{1}{\sigma} \mathcal{I} - \varphi) (X_1 - X_1^*) + \frac{1}{\sigma} (X_2 - X_2^*) \right\|_F^2 \\ &= \|Z - Z^*\|_F^2 + \|U - U^*\|_F^2 + \frac{1}{2} \left\| (\frac{1}{\sigma} \mathcal{I} - \varphi) (X_1 - X_1^*) + \frac{1}{\sigma} (X_2 - X_2^*) \right\|_F^2 \\ &\leq \|Z - Z^*\|_F^2 + \|U - U^*\|_F^2 + \left\| (\frac{1}{\sigma} \mathcal{I} - \varphi) (X_1 - X_1^*) \right\|_F^2 + \left\| \frac{1}{\sigma} (X_2 - X_2^*) \right\|_F^2. \end{aligned}$$
(56)

If the equality in (56) holds, that is,

$$\left(\frac{1}{\sigma}\mathcal{I} - \varphi\right)(X_1 - X_1^*) = \frac{1}{\sigma}(X_2 - X_2^*).$$
(57)

For any $\sigma \in (0, \frac{2}{\lambda_{max}(\varphi)})$, it follows from Lemma 6 that

$$\left\| \left(\frac{1}{\sigma} \mathcal{I} - \varphi\right) (X_1 - X_1^*) \right\|_F^2 \le \left\| \frac{1}{\sigma} (X_1 - X_1^*) \right\|_F^2$$
(58)

with equality holding if and only if

$$\varphi(X_1 - X_1^*) = 0, \tag{59}$$

which implies $\left(\frac{1}{\sigma}\mathcal{I} - \varphi\right)(X_1 - X_1^*) = \frac{1}{\sigma}(X_1 - X_1^*)$. Thus, we deduce

$$\|v(w) - v(w^*)\|_F^2 \le \|Z - Z^*\|_F^2 + \|U - U^*\|_F^2 + \left\|\frac{1}{\sigma}(X_2 - X_2^*)\right\|_F^2 + \left\|\frac{1}{\sigma}(X_1 - X_1^*)\right\|_F^2$$
$$= \|w - w^*\|_F^2.$$

(ii). If the equality in (50) holds, it also holds in (53), (56) and (58), so we have the conditions (54), (55), (57) and (59). Substituting these conditions into the results of Lemma 5, we have

$$v_{Z}(w) - v_{Z}(w^{*})$$

$$= -\frac{1}{2}Q_{-}\left(\left(\frac{1}{\sigma}\mathcal{I} - \varphi\right)(X_{1} - X_{1}^{*}) + \frac{1}{\sigma}(X_{2} - X_{2}^{*})\right) + \frac{1}{2}Q_{+}(Z - Z^{*}) - \frac{1}{2}Q_{-}(U - U^{*}),$$

$$= -\frac{1}{2}\left(\left(\frac{1}{\sigma}\mathcal{I} - \varphi\right)(X_{1} - X_{1}^{*}) + \frac{1}{\sigma}(X_{2} - X_{2}^{*})\right) + (Z - Z^{*}),$$

$$= -\frac{1}{\sigma}(X_{1} - X_{1}^{*}) + (Z - Z^{*})$$

$$= \left(-\frac{1}{\sigma}X_{1} + Z\right) - \left(-\frac{1}{\sigma}X_{1}^{*} + Z^{*}\right).$$

By using $w^* \in \text{Fix } \mathcal{P} \circ v$ and the proof of Lemma 3, we get $v_Z(w^*) = -\frac{1}{\sigma}X_1^* + Z^*$. Therefore, the equality $v_Z(w) - v_Z(w^*) = \left(-\frac{1}{\sigma}X_1 + Z\right) - \left(-\frac{1}{\sigma}X_1^* + Z^*\right)$ implies $v_Z(w) = -\frac{1}{\sigma}X_1 + Z$. Similarly, we can obtain $v_U(w) = -\frac{1}{\sigma}X_2 + U$ when the equality in (50) holds. The proof is finished.

Theorem 2 For the sequence $\{w^k\}$ generated by Algorithm 1 with $\rho = 1$, we have

$$\|w^{k+1} - w^*\|_F^2 = \|\mathcal{P} \circ v(w^k) - \mathcal{P} \circ v(w^*)\|_F^2 \le \|w^k - w^*\|_F^2$$

where $w^* \in Fix \mathcal{P} \circ v$,

Proof. It follows from Remark 1 and Lemma 4 that,

$$\begin{split} \left\| w^{k+1} - w^* \right\|_F^2 &= \left\| \mathcal{P} \circ v(w^k) - \mathcal{P} \circ v(w^*) \right\|_F^2 \\ &= \left\| \left. \begin{array}{c} \mathcal{P}_{\mathcal{S}_+^n} \circ v_Z(w^k) - \mathcal{P}_{\mathcal{S}_+^n} \circ v_Z(w^*) \\ \mathcal{P}_{\mathcal{N}^n} \circ v_U(w^k) - \mathcal{P}_{\mathcal{N}^n} \circ v_U(w^*) \\ &\leq \left\| \left. \begin{array}{c} v_Z(w^k) - v_Z(w^*) \\ v_U(w^k) - v_U(w^*) \\ \end{array} \right\|_F^2 \\ &= \left\| v(w^k) - v(w^*) \right\|_F^2. \end{split}$$

By Lemma 7, we can obtain the results.

Theorem 2 show that the operator $\mathcal{P} \circ v$ is quasinonexpansive. Next, we will further explore that the operator $\mathcal{P} \circ v$ is α -averaged with coefficient

$$\alpha := \frac{2}{4 - \sigma \lambda_{max}(\varphi)} \in (\frac{1}{2}, 1), \tag{60}$$

for $\sigma \in (0, \frac{2}{\lambda_{max}(\varphi)})$.

Theorem 3 For the operators
$$v$$
 and \mathcal{P} defined in (40) and (42), we have
(i). $v \circ \mathcal{P} = \mathcal{L}^{-1} \circ \mathcal{T} \circ \mathcal{L}$ with $\mathcal{L} = -\sigma \mathcal{I}$ and

$$\mathcal{T} = \mathcal{I} - \mathcal{J}_{\sigma g} + \mathcal{J}_{\sigma \mathcal{N}_{\mathcal{K}}} \circ \left(2\mathcal{J}_{\sigma g} - \mathcal{I} - \sigma \nabla \theta \circ \mathcal{J}_{\sigma g}\right), \tag{61}$$

where $\mathcal{K} = \{ U \in \mathcal{S}^n \times \mathcal{S}^n | \mathcal{H}(U) = \tilde{b} \}.$ (2). $\mathcal{P} \circ v$ is α -averaged.

Proof. (i). For the sequence $\{w^k\}$ generated by Algorithm 1 with $\rho = 1$, we have

$$\begin{aligned} \mathcal{T} \circ \mathcal{L} \circ v(w^{k}) &= \mathcal{T} \begin{pmatrix} -\sigma v_{Z}(w^{k}) \\ -\sigma v_{U}(w^{k}) \end{pmatrix} \\ &= \begin{pmatrix} -\sigma V_{Z}^{k+1} + X_{1}^{k+1} \\ -\sigma V_{U}^{k+1} + X_{2}^{k+1} \end{pmatrix} + \varPi_{\mathcal{K}} \begin{pmatrix} 2X_{1}^{k+1} + \sigma V_{Z}^{k+1} - \sigma(\varphi(W^{k+1}) + C) \\ 2X_{2}^{k+1} + \sigma V_{U}^{k+1} \end{pmatrix} \\ &= \begin{pmatrix} -\sigma Z^{k+1} \\ -\sigma U^{k+1} \end{pmatrix} + \varPi_{\mathcal{K}} \begin{pmatrix} X_{1}^{k+1} - \sigma(\varphi(W^{k+1}) - Z^{k+1} + C) \\ X_{2}^{k+1} + \sigma U^{k+1} \end{pmatrix}. \end{aligned}$$

Note that

$$\Pi_{\mathcal{K}}(U) = U - \mathcal{H}^*(\mathcal{H}\mathcal{H}^*)^{-1}(\mathcal{H}U - b), \quad \forall \ U \in \mathcal{S}^n \times \mathcal{S}^n$$

then, by using (20) we can deduce

$$\begin{split} \mathcal{T} \circ \mathcal{L} \circ v(w^{k}) &= \begin{pmatrix} -\sigma Z^{k+1} \\ -\sigma U^{k+1} \end{pmatrix} + \begin{pmatrix} X_{1}^{k+1} - \sigma(\varphi(W^{k+1}) - Z^{k+1} + C) + \sigma S^{k+2} + \sigma \mathcal{A}^{*}(y^{k+2}) \\ X_{2}^{k+1} + \sigma U^{k+1} - \sigma S^{k+2} \end{pmatrix} \\ &= \begin{pmatrix} X_{1}^{k+1} - \sigma(\varphi(W^{k+1}) + C) + \sigma S^{k+2} + \sigma \mathcal{A}^{*}(y^{k+2}) \\ X_{2}^{k+1} - \sigma S^{k+2} \end{pmatrix} \\ &= -\sigma v(w^{k+1}) \\ &= -\sigma v \circ \mathcal{P} \circ v(w^{k}). \end{split}$$

By $\mathcal{L} = -\sigma \mathcal{I}$, we have $v \circ \mathcal{P} = \mathcal{L}^{-1} \circ \mathcal{T} \circ \mathcal{L}$. (2). Note that $\nabla \theta$ is $\frac{1}{\lambda_{max}(\varphi)}$ -cocoercive, it follows from [31, Proposition 2.1] that \mathcal{T} is α -averaged. Then, $v \circ \mathcal{P}$ is α -averaged from (i). Since \mathcal{P} is invertible, we have $\mathcal{P} \circ v = \mathcal{P} \circ \mathcal{L}^{-1} \circ \mathcal{T} \circ \mathcal{L} \circ \mathcal{P}^{-1}$, which implies $\mathcal{P} \circ v$ is α -averaged too.

It follows from [29, Proposition 5.15] and [38, Theorem 1], the convergence result for Algorithm 1 is stated in the following theorem.

Theorem 4 Under Assumptions 1 and 2, for any $\sigma \in (0, \frac{2}{\lambda_{max}(\varphi)})$ and $\rho \in (0, \frac{1}{\alpha})$, assume the sequence $\{w^k\}$ is generated by Algorithm 1. Then the following results hold:

(i). For any $w^* \in Fix \mathcal{P} \circ v$, $\{\|w^{k+1} - w^*\|\}$ is monotonically nonincreasing.

(ii). The fixed-point residual sequence $\{\|\mathcal{P} \circ v(w^k) - w^k\|\}$ is monotonically nonincreasing and converges to 0.

(iii). The sequence $\{w^k\}$ converges to some point $w^* \in Fix \mathcal{P} \circ v$.

$$(iv). \ \|\mathcal{P} \circ v(w^k) - w^k\|^2 \le \frac{\frac{\alpha^2}{\rho(\alpha-\rho)} \|w^0 - w^*\|^2}{k+1} \ and \ \|\mathcal{P} \circ v(w^k) - w^k\|^2 = o(\frac{1}{k+1}).$$

Theorem 4 shows that, the sequence $\{w^k\}$ generated by Algorithm 1 is convergent to a solution w^* of the system (39). Therefore, by Theorem 1 we can obtain a KKT point $(W^*, Z^*, y^*, S^*, X^*)$ with

$$\varphi(W^*) = \varphi(X^*), \quad X^* = X_1^*, \quad S^* = U^* \text{ and } y^* = \phi_y(w^*),$$

where ϕ_y is defined as in (38). Since the simplest choice of W is X satisfying $\varphi(W) = \varphi(X)$, so we set $W^k = X^k = X_1^k$ in the following numerical experiments.

6 Numerical experiments

In this section, we report the numerical performance of our projection method for the CQSDP problems generated randomly in MATLAB R2013B. We denote the random number generator by *seed* for generating data again in MATLAB. All experiments are performed on an Intel(R) Core(TM) i5-4590 CPU@ 3.30 GHz PC with 8GB of RAM running on 64-bit Windows operating system.

6.1 Doubly non-negative CQSDP problems

In our numerical experiments, we test two types of doubly non-negative CQSDP problems. One is that with $\varphi(X) = \frac{BX+XB}{2}$ for a given matrix $B \in S^n_+$. So in this case, $\lambda_{max}(\varphi) = \lambda_{max}(B)$. The matrix B is a random symmetric positive semidefinite matrix, generated by temp=randn(n,r); B=temp*temp'; We set r = 10, i.e., rank(B)=10 as in [3]. The other is with $\varphi(X) = X$, as for least squares semidefinite programming in [13,14], then $\lambda_{max}(\varphi) = 1$.

In this paper, we test the problems arising from the relaxation of maximum stable set problems and a binary integer nonconvex quadratic (BIQ) programming. The instances are considered as in [3], [32], and [37]. For instance, we construct QSDP-BIQ problem sets based on the formulation in [3] as follows:

$$\min \quad \frac{1}{2} \langle X, \varphi(X) \rangle + \langle Q, X_0 \rangle + \langle c, x \rangle$$

s.t.
$$\operatorname{diag}(X_0) - x = 0, \ \alpha = 1,$$

$$X = \begin{pmatrix} X_0 & x \\ x^T & \alpha \end{pmatrix} \in \mathcal{S}^n_+, \quad X \in \mathcal{C}^n.$$
 (62)

The test data for Q and c are taken from Biq Mac Library maintained by Wiegele, which is available at http://biqmac.uni-klu.ac.at/biqmaclib.html. In the same sprit, we construct test problems QSDP-BIQ and QSDP- θ_+ .

6.2 Numerical results

In this section, we report the numerical results obtained by our projection method, ADM-G and ADMM4d in solving various instances of the random CQSDP problems with nonnegative constraints.

In order to compare with ADM-G ($\alpha = 0.99$) and ADMM4d ($\tau = 1.618$) for solving 4-block dual (2), we measure the accuracy of the approximate optimal solution (W, y, Z, S, X) (with W = X) by using the following relative residual:

$$\delta := \max \{ \text{pinf, dinf, } p\delta_{\mathcal{S}^n_{\perp}}, \ p\delta_{\mathcal{N}^n}, \ d\delta_{\mathcal{S}^n_{\perp}}, \ \delta_{XZ}, \ \delta_{XS} \},$$
(63)

where

$$pinf = \frac{\|\mathcal{A}(X) - b\|}{1 + \|b\|}, \qquad dinf = \frac{\|C + \varphi(X) - Z - \mathcal{A}^*(y)\|}{1 + \|C\|}, \qquad (64)$$

$$p\delta_{\mathcal{S}^{n}_{+}} = \frac{\|\Pi_{\mathcal{S}^{n}_{+}}(-X)\|}{1+\|X\|}, \qquad p\delta_{\mathcal{N}^{n}} = \frac{\|\Pi_{\mathcal{N}^{n}}(-X)\|}{1+\|X\|}, \tag{65}$$

$$d\delta_{\mathcal{S}^{n}_{+}} = \frac{\|\Pi_{\mathcal{S}^{n}_{+}}(-Z)\|}{1+\|Z\|}, \qquad d\delta_{\mathcal{N}^{n}} = \frac{\|\Pi_{\mathcal{N}^{n}}(-S)\|}{1+\|S\|}, \tag{66}$$

$$\delta_{XZ} = \frac{|\langle X, Z \rangle|}{1 + ||X|| + ||Z||}, \qquad \delta_{XS} = \frac{|\langle X, S \rangle|}{1 + ||X|| + ||S||}.$$
(67)

Additionally, we compute the relative gap by

$$\delta_g = \frac{|\text{pobj} - \text{dobj}|}{1 + |\text{pobj}| + |\text{dobj}|},$$

where $\text{pobj} = \frac{1}{2} \langle X, \varphi(X) \rangle + \langle C, X \rangle$ and $\text{dobj} = -\frac{1}{2} \langle X, \varphi(X) \rangle + b^T y$. We choose the initial point $X_1^0 = X_2^0 = \mathcal{A}^*(\mathcal{A}\mathcal{A}^*)^{-1}(b)$, and $Z^0 = U^0 = 0$. We terminate all the solvers when $\delta < 10^{-6}$ with the maximum number of iterations set at 25000.

The penalty parameter σ is dynamically adjusted according to the progress of the algorithms, but it satisfies $0 < \sigma < \frac{2}{\lambda_{max}(\varphi)}$ for our projection method from the discussion in Section 5. Thus, we set $\sigma_{max} = \epsilon_0 \frac{2}{\lambda_{max}(\varphi)}$ (ϵ_0 is a constant, e.g., $\epsilon_0 = 0.999$.) and $\sigma_{min} = 10^{-6}$ for our projection method. In our numerical experiments, we use the same adjustment strategy for our projection method, ADM-G and ADMM4d to solve all the tested problems, but $\sigma_{max} = 10^6$ and $\sigma_{min} = 10^{-6}$ for ADM-G and ADMM4d. The key idea for adjusting σ is to balance the progress of primal and dual feasibilities: $\eta_p = \max\{\text{pinf}, p_{S^n_{\perp}}, p_{\mathcal{N}^n}\}$ and $\eta_d = \max\{\dim f, \ d_{\mathcal{S}^n_{\perp}}, \ d_{\mathcal{N}^n}\}$. For details, see Appendix 1.

The initial σ_0 for our projection method is chosen to be $10^{-2} \times \sigma_{max}$. For ADM-G and ADMM4d, we set $\sigma_0 = 1$. We use σ_k to denote the penalty parameter at k-th iteration, set

$$\rho_k = \eta \frac{1}{\alpha_k} \quad \text{with} \quad \alpha_k = \frac{2}{4 - \sigma_k \lambda_{max}(\varphi)},$$

where $\eta \in (0,1)$ since $\rho_k < \frac{1}{\alpha_k}$. Generally, the larger η can produce better results, so we set $\eta = 0.95$ in this paper. Figure 1 shows the evolutions of ρ_k with respect to iterations for the problems "theta4", "be100.1" and "gka1d", from the results shown we see that the step size ρ_k (and relaxation factor) is always greater than 1.85 in spite of fluctuating with respect to σ_k .

The detailed numerical results are reported in the tables 1-4. Figures 2 and 3 show the performance profiles in terms of the number of iterations and computing time for all the problems tested with $\varphi(X) =$ $\frac{BX+XB}{2}$ and $\varphi(X) = X$, respectively.

Recall that a point (x, y) is in the performance profiles curve of a method if and only if it can solve (100y)% of all the tested problems no slower than x times of any other methods. We may observe that, our project method takes the least number of iterations and computational time for the majority of the tested

Fig. 1 Evolutions of ρ_k with respect to iterations.

Fig. 2 Performance profiles (iteration and time) of our projection method, ADMM4d and ADM-G for the CQSDP problems with $\varphi(X) = \frac{BX + XB}{2}$ (Tables 1-2).

problems. The main reason behind the efficiency of our projection method, we think, is lager step size (can be greater than $(1 + \sqrt{5})/2$) and skipping the computation of W^{k+1} . In addition, our project method and ADMM4d outperform ADM-G in terms of iteration and computational time, even though the convergence of ADMM4d can not be guaranteed.

Fig. 3 Performance profiles (iteration and time) of our projection method, ADMM4d and ADM-G for the CQSDP problems with $\varphi(X) = X$ (Tables 3-4).

7 Conclusion

In this paper, we presented a projection method based on the KKT condition for solving the CQSDP problems with nonnegative constraints, and establish its global convergence and $o(\frac{1}{k+1})$ convergence rate. At each iteration, our projection method does not have to solve the subproblem with variable W, compared to the existing multi-block ADMM [3,21] for solving (4) and (12). Numerical experiments on various large scale QSDPs have demonstrated the efficiency of our proposed ADMM in finding medium accuracy solutions.

References

- 1. Thomas D., Florian J., On the stable solution of large scale problems over the doubly nonnegative cone, Math. Program., Ser. A (2014) 146:299-323
- 2. Li X., Sun D., Toh K.-C., QSDPNAL: a two-phase augmented Lagrangian method for convex quadratic semidefinite programming. Mathematical Programming Computation, 2018:1-41.
- Li X., Sun D., Toh K.C., A Schur Complement Based Semi-Proximal ADMM for Convex Quadratic Conic Programming and Extensions, Math. Program. (2014) 1-41.
- 4. Toh K.-C., Tutuncu R. H., Todd M. J., Inexact primal-dual path- following algorithms for a special class of convex quadratic SDP and related problems, Pac. J. Optim. 3 (2007) 135-164.
- Toh K.-C., An inexact primal-dual path-following algorithm for convex quadratic SDP, Math. Program. 112 (2008) 221-254.
 Li L., Toh K.-C., A polynomial-time inexact primal-dual infeasible path-following algorithm for convex quadratic SDP, Pac.
- J. Optim. 7(2011) 43-61.
- Jiang K., Sun D., Toh K.-C., An inexact accelerated proximal gradient method for large scale linearly constrained convex SDP, SIAM J. Optim. 22 (2012) 1042-1064.
- Sun J., Zhang S., A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs, EUR. J. Oper. Res. 207(2010)1210-1220.
- Chang, X., Liu, S., A 2-block semi-proximal ADMM for solving the H-weighted nearest correlation matrix problem, Optimization, 2017, 66(1):1-16
- 10. Lin H., An inexact spectral bundle method for convex quadratic semidefinite programming, Comput. Optim. Appl. 53 (2012) 45-89.
- 11. Qi H., Sun D., An augmented Lagrangian dual approach for the *H*-weighted nearest correlation matrix problem, IMA J. Numer. Anal. 31 (2011) 491-511.
- 12. Boyd S., Xiao L., Least-squares covariance matrix adjustment, SIAM J. Matrix Anal. Appl. 27 (2005) 532-546.
- Li G., Ma A. K. C., Pong T. K., Robust least square semidefinite programming with applications, Comput. Optim. Appl. 58 (2014) 347-379.
- 14. Gao Y., Sun D., Calibrating least squares semidefinite programming with equality and inequality constraints. SIAM J. Matrix Anal. Appl. 31(3), 1432-1457[J]. SIAM Journal on Matrix Analysis & Applications, 2009, 31(3):1432-1457.
- Chen C., He B., Ye Y., Yuan X., The direct extension of admm for multi-block convex minimization problems is not necessarily convergent, Mathe. Program. Series A, (2014) 1-23.

- 16. He B., Tao M., Yuan X., Alternating direction method with gaussian back substitution for separable convex programming, SIAM J. Optim. 22 (2012) 313-340.
- 17. Tao M., Yuan X, Convergence analysis of the direct extension of ADMM for multiple-block separable convex minimization, arXiv:1609.07221 (2016)
- He B., Tao M., Yuan X., Alternating direction method with Gaussian back substitution for separable convex programming, SIAM Journal on Optimization, 22, 313-340, 2012
- 19. He B., Yuan X., A class of ADMM-based algorithms for multi-block separable convex programming, manuscript, 2015;
- Chang X., Liu S., Zhao P., Li X., Convergent prediction-correction-based ADMM for multi-block separable convex programming. Journal of Computational and Applied Mathematics, 335:270C288, 2018.
- 21. Chen L., Sun D., Toh K.-C., An efficient inexact symmetric Gauss-Seidel based majorized ADMM for high-dimensional convex composite conic programming, Math. Program., (2017) 161:237-270.
- 22. He B., Liao L., Han D., Yang H., A new inexact alternating direction method for monotone variational inequalities, Math. Program. 92 (2002) 103-118.
- 23. Bai J., Li J., Xu F., Generalized symmetric ADMM for separable convex optimization. Computational Optimization & Applications, 2018, 70(1):129-170.
- 24. He B., Tao M., Yuan X., A splitting method for separable convex programming, IMA Journal of Numerical Analysis, 35(1), 394-426, 2015;
- Wang W., Hong M., Ma S., Luo Z., Solving multiple-block separable convex minimization problems using two-block alternating direction method of multipliers, Pacific J. Optim., 11(2015): 645-667
- Zhao W., Sun D., Toh K.-C., A Newton-CG augmented Lagrangian method for semidefinite programming, SIAM Journal on Optimization, 20 (2010), pp. 1737-1765.
- 27. Yang L., Sun D., Toh K.-C., SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints, Math. Prog. Comp.
- Chang X., Liu S., Li X., Modified alternating direction method of multipliers for convex quadratic semidefinite programming, Neurocomputing, 2016,214:575-586
- 29. Bauschke H.H., Combettes P.L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer-Verlag, New York, 2011
- 30. Lions P.L., Mercier B., Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)
- 31. Davis D., Yin W., A Three-Operator Splitting Scheme and its Optimization Applications, UCLA CAM Report 15-13, 2015.
- Sun D., Toh K.-C., Yang L., A convergent 3-block semi-proximal alternating direction method of multipliers for conic programming with 4-type of constraints, SIAM J. Optim. 25 (2015) 882-915.
- 33. Borwein J.M., Lewis A.S., Convex Analysis and Nonlinear Optimization: Theory and Examples, vol. 3. Springer, Berlin (2006)
- 34. Wen Z., Yin W., A Feasible Method for Optimization with Orthogonality Constraints, Math. Program. vol. 142(1-2), pp. 397-434, 2013.
- 35. Hiriart-Urruty J.-B., Lemaréchal C., Convex analysis and minimization algorithms. I. Fundamentals. In: Grundlehren der Mathematischen Wissenschaften. Fundamental Principles of Mathematical Sciences, vol. 305. Springer, Berlin (1993)
- Wen Z., Goldfarb D., Yin W., Alternating direction augmented Lagrangian methods for semidefinite programming, Math. Prog. Comp. 2 (2010) 203-230.
- 37. Monteiro R., Ortiz C., Svaiter B., A first-order block-decomposition method for solving two-easy-block structured semidefinite programs, Mathematical Programming Computation, (2013), pp. 1-48.
- 38. Davis D., Yin, W., Convergence rate analysis of several splitting schemes. arXiv: 1406.4834v2 (2014)

```
Appendix 1 Details on the adjusting of \sigma.
     The key idea for adjusting \sigma is to balance the progress of primal and dual feasibilities:
      eta_1=max{pinf, p_{\mathcal{S}_{\perp}^n}, p_{\mathcal{N}^n}}, eta_2=max{dinf, d_{\mathcal{S}_{\perp}^n}, d_{\mathcal{N}^n}}.
     Let
      theta=max {pinf, dinf, p\delta_{\mathcal{S}^n_+}, p\delta_{\mathcal{N}^n}, d\delta_{\mathcal{S}^n_+}, d\delta_{\mathcal{N}^n}, \delta_{XZ}, \delta_{XS}},
      gamma=0.5; sigma_max=\sigma_{max} and sigma_min=\sigma_{min}.
the adjusting of \sigma is expressed as following:
      dtmp=eta_1/eta_2;
      if iter<=21;</pre>
                                    h=3;
          elseif iter<=61;</pre>
                                    h=6;
          elseif iter<=121; h=50;</pre>
          else
                                    h=100;
      end
     if
                 theta<1e-5;
                                    gamma=0.8;
                 theta<1e-3;
                                    gamma=0.6;
     elseif
     end
     it_pinf = 0;
     it_dinf = 0;
     if dtmp<=0.8
         it_pinf = it_pinf+1;it_dinf = 0;
             if it_pinf>h
                 sigma = min((1/gamma)*sigma,sigma_max); it_pinf=0;
             end
     else if dtmp>1.25
                it_dinf = it_dinf+1;it_pinf = 0;
                   if it_dinf>h
                        sigma = max(gamma*sigma,sigma_min); it_dinf = 0;
                   end
             end
      end
```

				iteration	δ	δ_	time (second)
	problem	mE	na	ADM-C 4d PM	ADM-G 4d PM	$\Delta DM_{-}G \downarrow 4d \downarrow PM$	$ADM-G \downarrow 4d \downarrow PM$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bap50.1	51	51	$3176 \pm 2602 \pm 2262$	100007 00507 00707	2 100 7 0 030 8 3 460 7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bqp50-1 bqp50-2	51	51	3018 3100 3077	9.980.7 1.000.6 9.940.7		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bqp50-2	51	51	2100 1611 1268		1.240-1 9.110-1 4.300-1	
$ \begin{array}{c} \begin{tabular}{l=0} \\ begin{tabular}{l=0} \\ begin{tabular$	bqp50-3	51	51	2100 1011 1200 2642 2107 1812	0.080.7 0.080.7 0.060.7	1.76e-0 $1.04e-0$ $0.03e-1$	<u>40.9</u> 17.0 17.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bqp50-4	51	51	2043 2197 1012 1605 1267 707	9.986-7 9.986-7 9.906-7	1.63e-7 5.04e-7 4.42e-7	$33.0 \ 27.4 \ 22.9$
$ \begin{array}{c} \begin{tabular}{l=0} \\ begin{tabular}{l=0} \\ begin{tabular$	bqp50-5	51	51	2125 1600 1226	9.986-7 9.946-7 9.986-7	1.41e-0 2.70e-0 2.02e-7	
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	bqp50-0	51	51	2123 1090 1320	9.75e-7 9.95e-7 9.90e-7	9.520-7 1.120-0 7.650-7	42.0 23.1 18.0
$ \begin{array}{c} \mbox{d} \mbo$	bqp50-7	51	51	1924 1460 1020	9.986-7 9.906-7 9.936-7	3.200-0 7.400-7 3.400-7	43.1 20.7 13.2
$\begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	bqp50-8	51	51	2393 2108 1321	9.90e-7 9.90e-7 9.93e-7	2.286-8 7.306-8 3.286-7	48.3 31.1 20.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bqp50-9	51	51	2097 1004 1100	9.976-7 9.946-7 9.996-7	0.92e-7 1.21e-0 0.03e-7	43.0 24.8 10.1
$\begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	bqp50-10	101	101	2550 2171 1979	9.976-7 9.996-7 9.806-7	0.16e-8 0.05e-8 2.19e-8 1.07e 7 7 20e 0 1.72e 8	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	bqp100-1	101	101	7704 6106 6652	9.99e-7 1.00e-0 9.98e-7	1.07e-7 7.39e-9 1.75e-8	92.1 09.8 30.1
Opplobe3 101 033 0305 2424 9384-7 9384-7 2384-7 8384-7 8384-7 76.8 76.7 77.9 77.9 77.8 76.7 77.9 77.8 77.7 77.7 77.7 77.7 77.7 77.7 77.7	bqp100-2	101	101	2227 2026 2001		2.050.7 5.240.7 2.060.7	210.3 141.1 129.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bqp100-3	101	101	2860 2365 1647		7 370 7 8 530 7 4 130 7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bqp100-4	101	101	4215 3418 3026		2260.7 4.510.7 3.820.7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bqp100-5	101	101	2957 2606 2053	$9.99e^{-7}$ $9.96e^{-7}$ $9.99e^{-7}$	$1.83e_{-6}$ $1.82e_{-6}$ $1.25e_{-6}$	82.0 57.0 39.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bqp100-0	101	101	2351 2000 2000 2000 3250 3250 3507 3044	9.56-7 9.56-7 9.55-7	7 100 7 1 050 6 4 680 7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bqp100-7	101	101	5020 4562 2057		3 870 7 2 210 7 3 270 7	33.3 30.3 35.8 130.6 100.9 56.1 130.6 100.9 56.1 100.9 56.1 100.9 56.1 100.9 100
$ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	bqp100-8	101	101	6221 + 5160 + 5409	$9.99e^{-7}$ $9.99e^{-7}$ $9.99e^{-7}$	7 29e-7 7 11e-7 5 60e-7	139.0 100.9 30.1 179.6 118.2 102.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bap100-10	101	101		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$9.36e_7 8.47e_7 6.24e_7$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} c_{12} c_{12} c_{12} c_{13} c_$	hap250-1	251	251	8252 6536 6300	$9.99e_7 1.00e_6 1.00e_6$	$1.82e_{-6} 1.44e_{-6} 0.24e_{-7}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} c_{12} c_{12} c_{23} c_$	bap250-1	251	251	7448 5369 4749	$9.96e_7$ 9.97 e_7 0.08 e_7	1.020^{-0} 1.440^{-0} 3.310^{-7} $1.17e_6$ $9.38e_7$ $3.52e_7$	450 2 341 7 991 8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	bqp250-2	251	251	7954 5828 5649	$9.94e_7 1.00e_6 9.90e_7$	7 58e-7 3 89e-7 1 81e-7	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	bqp250-5	251	251	6593 5354 4872	$1.00e-6 \mid 9.97e-7 \mid 9.98e-7$	4.65e-7 2.18e-7 2.31e-7	
$ \begin{array}{c} bqp250-6 \\ bqp250-6 \\ cdot 251 \\ cdo$	bqp250-4	251	251	10301 7513 8915	1.00e-6 1.00e-6 1.00e-6	9.75e-7 9.20e-7 5.48e-7	
$ \begin{array}{c} bq_{2} 250-7 \\ bq_{2} 250-7 \\ cdot 251 \\ cdot 2$	bqp250-6	251	251	5781 4826 4466	$9.98e_7$ $9.99e_7$ $9.99e_7$	$2.21e_{-}7$ $3.74e_{-}7$ $4.37e_{-}7$	346.7 310.1 205.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bqp250-0	251	251	8950 6942 7758	1 00e-6 9 99e-7 1 00e-6	6 74e-7 5 83e-7 3 17e-7	5319 4650 3677
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bqp250-8	251	251	8135 6616 6841	$9.99e_7 9.99e_7 9.99e_7$	$550e_7$ $514e_7$ $296e_7$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bqp250-9	251	251	8058 5724 5346	9 94e-7 9 94e-7 9 99e-7	6.67e-7 1.22e-6 6.38e-7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bap250-10	251	251	8342 6584 6747	1.00e-6 1.00e-6 9.99e-7	7.37e-7 7.54e-7 3.80e-7	502.0 444.3 321.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be100.1	101	101	$3164 \mid 2688 \mid 1906$	9.99e-7 9.73e-7 9.99e-7	5.54e-7 7.27e-7 1.97e-7	40.6 49.5 9.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be100.2	101	101	2985 2766 1788	9.96e-7 9.97e-7 9.97e-7	2.24e-7 8.21e-8 3.97e-9	63.2 59.2 11.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be100.3	101	101	4889 4245 3341	1.00e-6 1.00e-6 9.97e-7	5.99e-8 2.85e-8 7.18e-8	121.3 95.5 38.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be100.4	101	101	3270 3022 2294	9.98e-7 1.00e-6 9.98e-7	5.83e-9 1.69e-7 2.97e-7	85.1 66.7 32.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be100.5	101	101	$2607 \mid 2430 \mid 1530$	9.94e-7 9.99e-7 9.94e-7	3.77e-7 3.17e-7 3.52e-7	67.5 52.4 25.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be100.6	101	101	2812 2434 1555	9.94e-7 9.96e-7 9.99e-7	1.93e-6 8.31e-7 5.05e-7	72.7 51.9 25.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be100.7	101	101	3144 2459 1675	9.99e-7 9.89e-7 9.94e-7	4.74e-7 2.39e-7 2.25e-7	82.8 51.6 28.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be100.8	101	101	2808 2375 1556	9.96e-7 9.97e-7 9.96e-7	8.76e-8 4.77e-7 3.67e-7	71.3 49.8 28.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be100.9	101	101	3131 2862 2252	9.98e-7 9.98e-7 9.98e-7	2.32e-7 1.05e-7 3.01e-7	82.5 63.5 43.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be100.10	101	101	2681 2318 1520	9.99e-7 9.95e-7 9.97e-7	1.14e-6 3.55e-7 3.91e-7	70.9 47.1 27.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be120.8.1	121	121	3382 2556 2051	9.79e-7 9.99e-7 9.97e-7	1.13e-6 7.05e-7 6.92e-7	103.1 64.6 45.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be120.8.2	121	121	3347 2847 2032	9.99e-7 9.99e-7 9.98e-7	4.57e-7 6.20e-7 2.79e-7	98.2 73.7 46.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be120.8.3	121	121	4987 4323 3882	1.00e-6 9.99e-7 1.00e-6	4.05e-7 1.68e-7 1.34e-7	140.5 114.5 84.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be120.8.4	121	121	3492 3150 2078	1.00e-6 1.00e-6 9.96e-7	9.67e-8 3.16e-8 7.02e-8	101.4 79.3 44.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be120.8.5	121	121	3800 3015 2433	9.85e-7 1.00e-6 9.97e-7	7.70e-7 1.08e-6 5.61e-7	119.0 76.9 50.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be120.8.6	121	121	3114 2476 1599	9.99e-7 9.90e-7 9.99e-7	2.62e-7 4.73e-7 3.95e-7	92.6 62.2 36.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be120.8.7	121	121	3894 3289 2742	9.97e-7 9.96e-7 9.98e-7	9.35e-7 1.21e-6 5.97e-7	117.1 82.3 59.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be120.8.8	121	121	3726 3036 2546	9.99e-7 9.75e-7 9.99e-7	9.17e-7 6.45e-7 4.11e-7	111.2 77.5 51.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be120.8.9	121	121	3274 2720 1916	9.97e-7 9.97e-7 9.96e-7	8.64e-7 6.38e-7 5.61e-7	106.6 73.2 40.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be120.8.10	121	121	3869 3182 2454	9.98e-7 9.99e-7 9.98e-7	3.84e-7 2.47e-7 4.15e-7	115.3 84.9 50.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be250.1	251	251	$7779 \mid 6260 \mid 5359$	1.00e-6 1.00e-6 9.99e-7	7.69e-7 6.15e-7 1.22e-6	413.4 347.8 176.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be250.2	251	251	8175 6783 5330	1.00e-6 1.00e-6 9.99e-7	4.25e-7 4.25e-7 8.33e-7	528.2 421.9 244.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be250.3	251	251	7202 5812 4887	9.99e-7 1.00e-6 1.00e-6	1.33e-6 9.03e-7 1.65e-6	457.2 366.1 229.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be250.4	251	251	9835 7909 6769	1.00e-6 1.00e-6 1.00e-6	2.79e-7 3.60e-7 9.32e-7	630.0 488.8 313.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be250.5	251	251	6622 5179 4339	9.92e-7 9.99e-7 9.99e-7	5.50e-7 4.61e-7 1.34e-6	421.0 317.6 201.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be250.6	251	251	6761 5100 4164	1.00e-6 9.99e-7 1.00e-6	1.25e-6 8.03e-7 5.01e-7	426.5 316.4 208.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	be250.7	251	251	$7588 \mid 6190 \mid 4776$	1.00e-6 1.00e-6 1.00e-6	6.07e-9 2.64e-7 9.04e-7	476.1 387.7 225.2
be250.9 251 7572 6458 5451 9.99e-7 9.99e-7 1.00e-6 1.34e-6 9.96e-7 2.47e-6 458.1 404.8 253.8 be250.10 251 251 8245 7116 6484 9.99e-7 1.00e-6 6.18e-7 8.72e-7 2.11e-6 499.1 445.9 302.8	be250.8	251	251	9334 7917 6776	9.99e-7 1.00e-6 1.00e-6	4.44e-7 3.79e-7 8.33e-7	573.5 503.4 314.4
be250.10 251 251 8245 7116 6484 9.99e-7 1.00e-6 1.00e-6 6.18e-7 8.72e-7 2.11e-6 499.1 445.9 302.8	be250.9	251	251	7572 6458 5451	9.99e-7 9.99e-7 1.00e-6	1.34e-6 9.96e-7 2.47e-6	458.1 404.8 253.8
	be250.10	251	251	8245 7116 6484	9.99e-7 1.00e-6 1.00e-6	6.18e-7 8.72e-7 2.11e-6	499.1 445.9 302.8

Table 1 The performance of our projection method, ADMM4d and ADM-G on the CQSDP problems with $\varphi(X) = \frac{BX+XB}{2}$ (seed = 1). In the table, "PM" and "4d" stands for our projection method and ADMM4d, respectively.

			iteration	δ	δ_g	time (second)
problem	m_E	n_S	ADM-G 4d PM	ADM-G 4d PM	ADM-G 4d PM	ADM-G 4d PM
theta4	1949	200	574 494 342	9.90e-7 9.93e-7 9.49e-7	8.88e-7 1.51e-6 1.15e-6	6.8 6.0 3.1
theta42	5986	200	397 335 515	9.90e-7 9.85e-7 9.83e-7	6.68e-7 6.87e-7 3.96e-7	7.2 6.1 4.6
theta6	4375	300	448 389 444	9.47e-7 9.75e-7 9.88e-7	1.41e-6 1.78e-6 2.34e-6	26.5 23.0 9.2
theta62	13390	300	437 415 511	9.79e-7 9.87e-7 9.77e-7	8.63e-7 9.64e-7 6.71e-7	30.7 31.8 19.4
theta8	7905	400	518 478 461	9.92e-7 9.87e-7 8.95e-7	3.82e-7 4.60e-7 8.48e-7	70.7 76.4 39.5
theta82	23872	400	463 392 460	9.88e-7 9.83e-7 9.83e-7	1.26e-6 1.30e-6 1.01e-6	70.9 70.5 47.2
theta10	12470	500	613 553 477	9.95e-7 9.88e-7 8.38e-7	3.75e-7 4.87e-7 7.10e-7	146.4 151.6 78.3
theta102	37467	500	487 459 485	8.88e-7 9.87e-7 9.92e-7	1.01e-6 1.43e-6 1.08e-6	122.3 138.3 88.4
theta103	62516	500	479 463 553	9.80e-7 9.88e-7 9.93e-7	1.85e-6 2.05e-6 1.22e-6	130.1 134.4 102.4
theta104	87254	500	510 493 585	9.84e-7 9.87e-7 9.95e-7	2.50e-6 2.56e-6 2.08e-6	135.6 144.9 103.5
MANN-a27	703	378	1735 1308 700	9.95e-7 9.89e-7 9.85e-7	1.41e-7 6.60e-7 4.91e-7	199.0 152.8 17.2
san200-0.7-1	5971	200	2363 1939 2639	9.52e-7 9.91e-7 9.98e-7	2.45e-6 3.96e-6 2.46e-6	116.7 86.7 41.5
sanr200-0.7	6033	200	376 321 513	9.90e-7 9.85e-7 9.89e-7	7.79e-7 8.28e-7 5.42e-7	17.9 15.0 10.7
c-fat200-1	18367	200	989 801 644	9.98e-7 9.95e-7 9.91e-7	1.00e-6 1.12e-6 8.35e-7	50.6 36.8 14.6
brock200-1	5067	200	390 327 495	9.82e-7 9.74e-7 9.80e-7	5.05e-7 6.17e-7 4.03e-7	18.7 15.6 12.9
brock200-4	6812	200	392 373 471	9.81e-7 9.81e-7 9.94e-7	1.10e-6 1.16e-6 8.25e-7	19.3 18.0 12.1
brock400-1	20078	400	468 393 460	9.89e-7 9.81e-7 9.93e-7	1.07e-6 1.15e-6 1.00e-6	75.5 70.6 38.4
keller4	5101	171	1338 994 873	9.91e-7 9.98e-7 9.96e-7	2.14e-7 3.14e-7 2.35e-7	59.0 42.1 20.9
p-hat300-1	33918	300	1207 980 1023	1.00e-6 9.98e-7 9.98e-7	1.54e-6 1.48e-6 1.18e-6	110.1 99.9 56.7
1dc.128	1472	128	1255 1010 847	9.98e-7 9.99e-7 9.95e-7	1.16e-6 1.28e-6 8.88e-7	36.9 28.2 15.8
1et.128	673	128	7141 5834 4576	1.00e-6 1.00e-6 1.00e-6	7.59e-7 8.46e-7 1.15e-6	216.8 176.7 96.6
1tc.128	513	128	5579 4353 2822	9.99e-7 1.00e-6 1.00e-6	1.05e-6 1.09e-6 1.67e-6	165.4 121.0 62.0
1zc.128	1128	128	586 413 717	9.99e-7 9.93e-7 9.96e-7	4.47e-7 5.85e-8 8.36e-7	16.8 11.2 14.2
1dc.256	3840	256	2286 1870 1510	1.00e-6 9.99e-7 9.99e-7	1.10e-6 1.16e-6 1.51e-6	148.4 135.4 72.7
1et.256	1665	256	6425 5133 4250	1.00e-6 1.00e-6 1.00e-6	4.32e-7 6.69e-7 1.77e-6	423.0 387.3 214.9
1tc.256	1313	256	$7636 \mid 6094 \mid 5283$	1.00e-6 1.00e-6 9.78e-7	4.05e-7 2.20e-7 8.98e-7	$512.4 \mid 458.4 \mid 272.4$
1zc.256	2817	256	2627 2008 1553	9.99e-7 9.99e-7 9.99e-7	1.19e-7 1.96e-7 4.05e-7	175.9 151.7 80.7
gka1d	101	101	4262 3663 3849	1.00e-6 9.98e-7 1.00e-6	1.04e-7 1.48e-7 8.09e-8	48.2 27.3 23.1
gkale	201	201	7881 7158 7228	1.00e-6 1.00e-6 9.99e-7	5.15e-7 7.00e-7 5.54e-7	329.7 252.5 210.5
gkalf	501	501	12629 10311 11511	9.99e-7 1.00e-6 1.00e-6	1.23e-6 1.32e-6 6.96e-7	2925.4 2723.4 1897.5
gka2d	101	101	2834 2261 1939	9.95e-7 1.00e-6 9.99e-7	1.25e-6 1.13e-6 8.31e-7	74.7 45.1 32.6
gka2e	201	201	12074 0720 10506	9.99e-7 1.00e-6 9.99e-7	8.39e-7 5.96e-7 5.75e-7	322.4 370.7 190.4
gKa21	101	101	12074 9720 10390	9.95e-7 1.00e-0 1.00e-0	7.66 7 5 59 7 5 05 7	111 1 20 4 50 7
gkaou gkaou	201	201	4292 3450 2880 5512 4605 4288	9.986-7 1.006-0 1.006-0	2 480 7 1 220 6 5 770 7	246.5 + 201.1 + 142.7
gka3e gka3f	501	501		9.996-7 9.976-7 9.996-7	1.660.6 4.480.7 6.130.7	240.3 201.1 143.7
gka4d	101	101	3463 3037 2264	9.9567 1.006 9.9967	8 380 7 7 320 7 4 360 7	
gka4u gka4u	201	201	6008 5457 5602	9.996-7 1.006-0 9.996-7	0.000 7 8 000 7 6 680 7	
gka40 gka4f	501	501	12679 9744 9366	$1.00e_{-6}$ 9.98e_7 9.99e_7	3.50e-1 $3.05e-1$ $0.05e-1$	2993.1 2669.6 1480.2
gka5d	101	101	4637 3854 3104	$999e_7 999e_7 999e_7 999e_7$	6 91e-7 6 81e-7 1 96e-7	119.6 86.3 54.4
gka5e	201	201	5310 4385 4328	9.99e-7 1.00e-6 1.00e-6	6.01e-7 5.17e-7 3.45e-7	
gka5f	501	501	9823 9659 9751	9.99e-7 9.99e-7 1.00e-6	5.99e-6 1.25e-6 3.60e-7	2856.3 2557.7 1569.5
gka6b	71	71	1182 983 1834	9.98e-7 9.96e-7 9.99e-7	5.99e-6 7.49e-6 1.39e-5	6.5 4.8 7.1
gka6d	101	101	3406 2619 2426	1.00e-6 1.00e-6 9.98e-7	7.98e-7 8.84e-7 6.07e-7	54.6 28.0 25.2
gka7b	81	81	425 389 522	9.83e-7 9.89e-7 9.93e-7	5.98e-6 5.62e-6 1.36e-5	7.8 5.7 6.0
gka7d	101	101	2829 2339 1678	1.00e-6 9.99e-7 9.99e-7	3.15e-7 5.08e-7 3.05e-7	63.9 41.3 25.0
gka8b	91	91	1236 1192 1762	9.98e-7 9.95e-7 1.00e-6	2.05e-5 2.41e-6 4.82e-5	27.2 23.7 26.9
gka8d	101	101	3082 2720 1828	9.98e-7 1.00e-6 9.98e-7	5.82e-8 1.47e-7 5.81e-9	76.8 57.0 32.2
gka9b	101	101	2894 2148 3476	9.99e-7 1.00e-6 9.99e-7	1.73e-5 1.61e-5 3.23e-5	68.9 50.1 58.1
gka9d	101	101	3280 2720 1737	9.98e-7 9.97e-7 9.97e-7	3.38e-7 3.47e-7 1.12e-7	82.8 62.7 31.8
gka10b	126	126	2571 2226 3279	1.00e-6 1.00e-6 1.00e-6	2.96e-5 2.65e-5 5.09e-5	$67.8 \mid 61.6 \mid 64.9$
gka10d	101	101	4059 3555 2974	9.99e-7 1.00e-6 1.00e-6	5.14e-7 4.28e-7 4.08e-7	$104.5 \mid 81.2 \mid 54.5$

Table 2 The performance of our projection method, ADMM4d and ADM-G on the CQSDP problems with $\varphi(X) = \frac{BX + XB}{2}$ (seed = 1). In the table, "PM" and "4d" stands for our projection method and ADMM4d, respectively.

			iteration	δ	δα	time (second)
problem	mE	na		Ad PM	$d \downarrow PM$	
bap50-1	51	51	$2068 \mid 1668 \mid 2087$	100_{-6} 999 $_{-7}$ 100 $_{-6}$		
bqp50-1	51	51	2000 1000 2001	1.000-0 9.000-7 9.000-0		10.0 10.0 10.0 1.0
bqp50-2	51	51	1679 1999 1199	0.080.7 0.060.7 0.070.7	<u>4.146-7</u> <u>4.076-7</u> <u>1.296-0</u>	
bqp50-3	51	51	1072 1282 1188 1186 705 802	9.986-7 9.906-7 9.976-7	2 200 7 1 000 7 5 220 7	
bqp50-4	51	51	1180 793 802 1520 1170 1285	9.38e-7 9.35e-7 9.35e-7	<u>3.39e-7</u> <u>1.99e-7</u> <u>3.32e-7</u>	10.0 11.1 1.9
bqp50-5	51	51	1000 1179 1200	9.986-7 9.906-7 9.926-7	4.51e-7 5.05e-7 2.94e-7	
bqp50-6	51	51	1026 005 022	9.996-7 9.966-7 9.996-7	1.49e-8 7.00e-8 0.78e-8	40.0 34.3 30.3
bqp50-7	51	51 E1	1230 893 933	9.936-7 9.756-7 9.986-7	7.08e-7 3.00e-7 1.20e-7	21.9 15.4 12.0
bqp50-8	51	51	1204 955 875	9.94e-7 9.87e-7 9.95e-7	5.72e-7 5.21e-7 0.34e-7	
bqp50-9	51	51	1196 871 765	9.79e-7 9.64e-7 1.00e-6	(.00e-8 2.45e-7 4.25e-7	
bqp50-10	01 101	01 101		9.76e-7 9.86e-7 9.99e-7	8.48e-8 3.42e-7 3.02e-8	
bqp100-1	101	101	1484 1084 974	9.86e-7 9.94e-7 9.98e-7	1.54e-6 (.14e-7 1.91e-6	30.2 22.3 17.3
bqp100-2	101	101	1970 1728 1474	9.98e-7 9.97e-7 9.97e-7	1.88e-8 2.00e-8 2.12e-7	
bqp100-3	101	101	1822 1297 1170	9.95e-7 9.98e-7 9.93e-7	1.50e-6 2.08e-6 1.70e-6	
bqp100-4	101	101	2388 1918 1778	9.96e-7 1.00e-6 9.98e-7	1.78e-7 1.81e-7 0.82e-7	01.0 37.2 32.2
bqp100-5	101	101	2434 1934 1634	9.96e-7 9.97e-7 9.96e-7	3.65e-7 6.34e-7 1.48e-6	62.8 38.8 30.3
bqp100-6	101	101	2336 1912 1584	9.98e-7 9.99e-7 9.98e-7	6.32e-7 2.67e-7 4.72e-7	58.4 39.9 29.5
bqp100-7	101	101	1703 1167 1036	9.98e-7 9.96e-7 9.96e-7	9.20e-7 8.12e-8 9.06e-7	
bqp100-8	101	101	2405 1853 2099	9.96e-7 9.99e-7 1.00e-6	6.46e-7 4.71e-7 2.05e-9	60.3 38.6 40.6
bqp100-9	101	101	3052 2748 2653	9.93e-7 1.00e-6 9.93e-7	0.01e-7 2.08e-7 9.24e-7	
bqp100-10	101	101	2396 1984 1664	9.996-7 9.986-7 9.986-7	0.366-7 0.566-7 2.936-7	
bqp250-1	251	251	3349 2598 2148	1.00e-6 9.98e-7 9.99e-7	1.52e-6 7.23e-7 2.00e-6	
bqp250-2	251	251	3576 2751 2335	9.93e-7 1.00e-6 9.99e-7	1.05e-6 1.18e-6 1.33e-6	
bqp250-3	251	251	3423 2626 2076	9.99e-7 9.97e-7 9.97e-7	5.07e-7 1.08e-6 1.81e-6	
bqp250-4	251	251	3187 2406 1864	9.96e-7 1.00e-6 9.96e-7	1.37e-6 1.57e-6 1.36e-6	161.6 114.8 83.3
bqp250-5	251	251	4186 3137 3136	9.99e-7 9.99e-7 9.99e-7	9.44e-7 9.50e-7 9.17e-7	210.1 145.1 143.9
bqp250-6	251	251	3044 2396 1914	9.97e-7 9.96e-7 9.96e-7	1.02e-6 1.62e-6 2.72e-6	155.4 111.6 87.5
bqp250-7	251	251	3446 2637 1960	9.97e-7 9.94e-7 9.96e-7	2.42e-7 8.63e-7 2.17e-6	177.0 126.1 91.5
bqp250-8	251	251	3001 2256 1847	9.98e-7 9.96e-7 9.97e-7	4.15e-7 8.46e-7 1.00e-6	149.7 107.4 84.7
bqp250-9	251	251	3398 2547 1984	1.00e-6 1.00e-6 9.95e-7	4.17e-7 6.05e-7 2.32e-6	174.4 123.7 87.6
bqp250-10	251	251	3108 2433 1883	9.96e-7 9.96e-7 9.99e-7	6.52e-7 1.01e-6 2.14e-6	161.3 117.5 83.5
be100.1	101	101	2489 1858 2018	9.98e-7 9.96e-7 1.00e-6	4.13e-7 8.70e-7 6.45e-7	16.9 19.1 12.6
be100.2	101	101	3436 2598 2071	9.98e-7 1.00e-6 9.97e-7	7.04e-7 8.52e-7 9.03e-7	47.2 49.2 30.1
be100.3	101	101	2205 1716 1317	9.99e-7 9.98e-7 9.93e-7	7.06e-7 8.55e-7 6.23e-7	40.2 35.4 22.1
be100.4	101	101	2075 1566 1484	9.99e-7 9.97e-7 9.99e-7	8.19e-8 1.75e-7 2.94e-7	41.7 30.2 25.8
be100.5	101	101	2250 1728 1601	1.00e-6 9.98e-7 9.99e-7	7.35e-7 5.10e-7 9.83e-8	49.2 36.1 28.2
be100.6	101	101	1937 1509 1699	1.00e-6 9.96e-7 1.00e-6	1.28e-7 2.24e-7 7.07e-7	42.5 31.0 31.6
be100.7	101	101	2059 1505 1335	9.99e-7 9.95e-7 9.98e-7	8.04e-7 1.56e-6 1.25e-6	45.4 29.4 24.6
be100.8	101	101	2015 1443 1207	9.92e-7 9.97e-7 1.00e-6	3.25e-7 7.88e-8 1.54e-7	44.6 30.3 21.7
be100.9	101	101	1833 1407 1484	9.95e-7 9.95e-7 9.95e-7	6.53e-7 8.63e-7 1.35e-6	40.9 29.0 28.0
be100.10	101	101	1676 1274 1254	1.00e-6 9.98e-7 9.91e-7	7.95e-7 7.29e-7 6.95e-8	38.6 25.1 22.6
be120.8.1	121	121	2010 1479 1366	9.95e-7 9.90e-7 9.99e-7	5.66e-7 8.62e-7 1.65e-8	16.4 33.7 24.2
be120.8.2	121	121	2437 1723 1817	9.99e-7 9.97e-7 9.97e-7	2.98e-7 5.87e-7 5.65e-7	41.5 38.9 33.0
be120.8.3	121	121	2376 1859 1567	9.96e-7 9.98e-7 9.99e-7	2.68e-7 5.13e-8 2.10e-8	49.6 41.5 29.1
be120.8.4	121	121	2174 1617 1477	1.00e-6 9.94e-7 9.96e-7	4.52e-7 8.92e-7 6.53e-7	51.1 36.4 28.1
be120.8.5	121	121	2247 1670 1678	9.95e-7 9.93e-7 9.99e-7	6.41e-7 5.99e-7 3.38e-7	54.6 38.1 33.4
be120.8.6	121	121	1965 1524 1368	9.91e-7 9.97e-7 9.95e-7	9.60e-7 1.32e-6 1.96e-8	47.3 33.7 27.4
be120.8.7	121	121	2394 1683 1480	9.75e-7 9.93e-7 9.81e-7	4.43e-7 5.57e-7 1.58e-7	62.6 37.2 29.9
be120.8.8	121	121	2175 1557 1366	9.97e-7 9.92e-7 9.99e-7	2.29e-7 1.29e-7 1.97e-7	56.3 35.0 26.6
be120.8.9	121	121	1972 1496 1296	9.92e-7 9.92e-7 1.00e-6	7.83e-7 9.07e-7 7.65e-7	49.7 35.1 27.1
be120.8.10	121	121	2301 1738 1532	1.00e-6 9.95e-7 9.97e-7	8.41e-7 8.30e-7 1.59e-6	61.7 38.1 30.6
be250.1	251	251	2632 1955 1754	9.97e-7 1.00e-6 9.98e-7	1.09e-6 1.03e-6 1.93e-6	131.5 43.7 43.1
be250.2	251	251	2872 2235 2472	9.99e-7 9.99e-7 9.94e-7	5.06e-7 4.80e-7 3.31e-7	144.7 87.1 99.2
be250.3	251	251	2283 1603 1510	9.78e-7 9.91e-7 9.99e-7	4.03e-7 7.85e-7 2.90e-6	111.2 70.9 60.9
be250.4	251	251	2318 1655 1593	9.90e-7 9.97e-7 9.94e-7	3.87e-7 3.26e-8 2.58e-6	116.2 76.9 67.6
be250.5	251	251	2117 1550 1555	9.96e-7 1.00e-6 9.94e-7	1.32e-7 4.40e-7 2.52e-6	101.5 72.8 64.3
be250.6	251	251	2243 1604 1525	1.00e-6 9.98e-7 9.92e-7	4.02e-8 4.19e-7 2.20e-6	109.4 77.7 64.8
be250.7	251	251	$2224 \mid 16\overline{13} \mid 15\overline{68}$	1.00e-6 9.96e-7 9.95e-7	1.42e-7 5.85e-8 2.79e-6	108.9 77.5 68.2
be250.8	251	251	2335 1594 1512	9.96e-7 9.84e-7 1.00e-6	4.21e-7 5.32e-7 2.28e-6	113.4 73.0 67.8
be250.9	251	251	2698 2130 1931	$1.00e-6 \mid 1.00e-6 \mid 1.00e-6$	8.26e-7 1.47e-7 5.47e-7	131.8 101.0 84.9
be250.10	251	251	2348 1709 1573	9.99e-7 1.00e-6 9.95e-7	1.20e-6 2.09e-7 2.62e-6	113.5 79.2 70.6

Table 3 The performance of our projection method, ADMM4d and ADM-G on the CQSDP problems with $\varphi(X) = X$ (*seed* = 1). In the table, "PM" and "4d" stands for our projection method and ADMM4d, respectively.

			iteration	δ	δ_g	time (second)
problem	m_E	n_S	4d PM	$4d \mid PM$	$4d \mid PM$	$4d \mid PM$
theta4	1949	200	596 523 402	9.99e-7 9.90e-7 9.91e-7	9.72e-7 1.48e-6 1.50e-6	$6.2 \mid 4.7 \mid 3.6$
theta42	5986	200	510 459 461	9.97e-7 9.97e-7 9.91e-7	3.41e-7 9.38e-7 5.34e-7	$5.6 \mid 4.6 \mid 4.1$
theta6	4375	300	567 516 452	9.97e-7 9.93e-7 8.82e-7	1.25e-6 1.32e-6 8.74e-7	15.6 15.0 8.4
theta62	13390	300	440 414 513	9.81e-7 9.88e-7 9.91e-7	9.38e-7 1.28e-6 8.33e-7	18.7 16.9 15.0
theta8	7905	400	688 598 462	9.83e-7 1.00e-6 7.75e-7	4.28e-7 1.00e-6 4.22e-7	51.4 47.6 28.9
theta82	23872	400	485 393 490	9.84e-7 9.76e-7 9.99e-7	7.84e-7 1.48e-6 1.02e-6	43.4 37.6 38.5
theta10	12470	500	607 632 530	8.06e-7 9.98e-7 7.48e-7	6.05e-7 1.08e-6 5.57e-7	86.8 95.7 69.6
theta102	37467	500	573 469 518	9.95e-7 9.83e-7 9.95e-7	1.53e-6 1.61e-6 9.54e-7	90.8 74.0 75.8
theta103	62516	500	482 463 679	9.31e-7 9.91e-7 9.85e-7	1.79e-6 2.16e-6 2.56e-6	82.2 74.1 102.3
theta104	87254	500	511 495 896	9.99e-7 9.87e-7 9.89e-7	2.57e-6 2.65e-6 3.75e-6	92.7 79.0 127.7
MANN-a27	703	378	1284 697 2564	9.13e-7 9.74e-7 9.55e-7	2.41e-6 2.11e-6 1.58e-6	89.4 47.3 166.2
san200-0.7-1	5971	200	2551 2029 3564	9.97e-7 8.57e-7 9.94e-7	1.97e-6 2.11e-6 6.61e-6	102.8 72.5 122.8
sanr200-0.7	6033	200	478 440 509	9.82e-7 9.76e-7 9.86e-7	9.44e-7 9.88e-7 6.19e-7	
c-fat200-1	18367	200	1015 987 970	9.91e-7 9.91e-7 9.86e-7	2.91e-7 2.20e-7 1.63e-7	39.1 29.8 26.0
brock200-1	5067	200		9.84e-7 9.90e-7 9.95e-7	7 96e-7 8 33e-7 3 89e-7	
brock200-1	6812	200	409 382 560	9.880-7 9.940-7 9.780-7	$1.09e_{-6} 1.21e_{-6} 1.08e_{-6}$	18.2 12.4 17.8
brock400-1	20078	400	$570 \mid 473 \mid 387$	9.870-7 9.870-7 9.920-7	$655e_7$ 1 29 e_6 6 72 e_7	625 521 302
biock+00-1	5101	171	<u>810 724 704</u>	0.040.7 0.060.7 0.020.7	4.660.7 5.570.7 5.220.7	
p het200 1	22019	200		9.94e-7 9.90e-7 9.93e-7	4.00e-7 5.57e-7 5.22e-7	25.5 19.4 19.5
1da 128	1479	128	1104 940 1237	9.996-7 1.006-0 9.806-7		
146.120	672	120	1129 000 100	9.886-7 9.926-7 9.936-7	3.41e-7 2.98e-0 8.59e-7	29.7 18.4 15.7
14:120	512	120	1279 1239 997 1041 028 1161	9.90e-7 9.90e-7 9.99e-7	2.72E-10 1.20e-7 2.00e-7 2.0	31.9 20.7 19.0
110.120	1190	120	1041 926 1101 979 951 991	9.796-7 9.346-7 9.986-7	2.43e-0 $4.30e-1$ $3.92e-0$	
12C.126	2840	120		9.05e-7 8.51e-7 7.57e-7	2.40e-0 $1.54e-0$ $4.47e-0$	0.9 5.4 5.8
100.200	3840	256		1.00e-6 9.98e-7 9.96e-7	3.95e-6 3.92e-6 4.26e-6	130.2 102.9 70.1
1et.256	1005	256	2781 3755 1614	9.99e-7 1.00e-6 9.99e-7	5.85e-7 5.02e-7 7.86e-7	
1tc.256	1313	256	5263 4018 2997	1.00e-6 1.00e-6 9.99e-7	1.52e-6 1.68e-6 1.36e-6	254.1 171.1 119.7
1zc.256	2817	256	295 250 307	9.22e-7 9.01e-7 9.49e-7	1.73e-6 9.48e-7 9.18e-7	13.4 9.1 10.6
gkald	101	101	1356 1074 953	9.90e-7 9.96e-7 9.98e-7	2.02e-7 3.85e-7 8.48e-7	30.9 6.0 4.7
gkale	201	201	2565 1946 1881	9.97e-7 1.00e-6 1.00e-6	1.11e-6 7.63e-7 1.06e-6	91.8 35.8 27.8
gkalt	501	501	3222 2454 2177	1.00e-6 9.95e-7 9.99e-7	2.04e-7 1.43e-6 3.11e-6	479.5 299.6 290.6
gka2d	101	101	1339 953 855	9.90e-7 9.77e-7 9.96e-7	4.62e-7 5.26e-7 1.38e-6	31.6 15.7 15.3
gka2e	201	201	2328 1743 1434	9.98e-7 9.94e-7 9.94e-7	8.47e-7 7.39e-7 6.16e-7	91.6 52.0 45.8
gka2f	501	501	4937 3907 3063	9.95e-7 1.00e-6 9.99e-7	9.45e-7 2.03e-7 6.75e-7	766.3 532.5 445.3
gka3d	101	101	2339 1944 1877	9.77e-7 9.93e-7 9.65e-7	3.14e-7 2.90e-7 3.86e-7	55.1 33.6 33.9
gka3e	201	201	3458 2785 2477	9.98e-7 9.97e-7 9.99e-7	7.81e-7 9.36e-7 2.80e-7	133.2 88.5 79.0
gka3f	501	501	6603 5240 4600	9.99e-7 9.99e-7 9.99e-7	1.08e-6 9.29e-7 7.40e-7	$1009.6 \mid 741.2 \mid 678.9$
gka4d	101	101	1747 1200 1184	9.94e-7 9.95e-7 9.99e-7	7.67e-7 4.85e-7 9.53e-7	39.3 21.1 21.1
gka4e	201	201	2993 2328 1729	9.87e-7 9.89e-7 9.95e-7	8.91e-8 8.71e-7 1.56e-6	110.0 70.1 53.6
gka4f	501	501	6225 5246 4244	1.00e-6 9.99e-7 9.98e-7	8.99e-7 1.57e-6 1.85e-6	962.8 752.6 618.2
gka5d	101	101	1775 1159 1117	9.74e-7 9.99e-7 9.91e-7	7.41e-7 4.86e-9 1.21e-6	42.9 20.1 20.4
gka5e	201	201	3624 2781 2599	9.97e-7 9.99e-7 9.98e-7	7.16e-7 6.03e-7 7.11e-7	132.8 86.1 81.2
gka5f	501	501	6598 5522 4783	9.96e-7 1.00e-6 9.98e-7	1.02e-6 1.53e-6 1.62e-6	982.1 794.6 677.6
gka6b	71	71	784 789 968	9.95e-7 9.90e-7 9.96e-7	1.99e-5 2.29e-5 4.73e-5	15.3 3.5 14.5
gka6d	101	101	1889 1375 1156	9.97e-7 9.92e-7 9.97e-7	3.05e-7 6.49e-7 1.97e-7	45.0 10.5 21.0
gka7b	81	81	799 671 955	9.98e-7 9.94e-7 9.94e-7	1.23e-5 1.33e-5 2.82e-5	16.5 7.7 14.7
gka7d	101	101	1711 1273 1196	9.98e-7 9.95e-7 9.97e-7	5.38e-7 8.34e-7 5.01e-7	39.5 19.4 20.7
gka8b	91	91	922 795 1335	9.98e-7 9.95e-7 9.94e-7	2.72e-5 2.72e-5 5.46e-5	19.9 12.9 20.9
gka8d	101	101	1873 1367 1284	9.94e-7 9.58e-7 9.97e-7	7.97e-7 1.33e-6 5.78e-7	44.1 23.4 23.3
gka9b	101	101	851 751 1313	9.97e-7 9.95e-7 9.96e-7	1.54e-5 1.64e-5 2.63e-5	19.1 13.3 24.4
gka9d	101	101	1713 1293 1215	9.87e-7 9.72e-7 9.95e-7	5.08e-7 1.85e-7 1.06e-7	41.0 24.6 21.4
gka10b	126	126	3619 2319 4351	1.00e-6 1.00e-6 1.00e-6	4.62e-5 4.98e-5 1.12e-4	93.9 47.2 86.7
gka10d	101	101	2257 1697 1519	1.00e-6 9.97e-7 1.00e-6	7.17e-7 3.03e-7 1.01e-6	56.9 33.2 27.4
0 • •						

Table 4 The performance of our projection method, ADMM4d and ADM-G on the CQSDP problems with $\varphi(X) = X$ (*seed* = 1). In the table, "PM" and "4d" stands for our projection method and ADMM4d, respectively.