Noname manuscript No.
(will be inserted by the editor)

A projection algorithm based on KKT conditions for convex
quadratic semidefinite programming with nonnegative constraints

Xiaokai. Chang - Jianchao Bai : Sanyang. Liu - Zhao
Deng

Received: date / Accepted: date

Abstract The dual form of convex quadratic semidefinite programming (CQSDP) problem, with nonnega-
tive constraints, is a 4-block separable convex optimization problem. It is known that, the directly extended
4-block alternating direction method of multipliers (ADMM4d) is very efficient to solve the dual, but its
convergence is not guaranteed. In this paper, we reformulate the dual as a 3-block convex programming by
introducing an extra variable, so as to design a parallel modified 3-block ADMM with larger step size that
can exceed the conventional upper bound of (1 4+ /5)/2. We show that the proposed 3-block ADMM is
equivalent to a projection algorithm with two operators projecting onto the positive semidefinite and non-
negative matrix cones respectively. The global convergence and non-ergodic convergence rate o(1/(k + 1))
are established by using a fixed-point argument and the non-expansion property of the projection operators.
Numerical experiments on the various classes of CQSDP problems illustrate that our proposed algorithm
performs better than ADMM4d with the aggressive step size of 1.618.
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1 Introduction

We consider the following convex quadratic semidefinite programming (CQSDP) with nonnegative con-
straints on the matrix variable:

min %<X,QD(X)>+<C,X>
st. A(X)=b, (1)
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where S7 denotes the symmetric and positive semi-definite matrices cone in the space of n x n symmetric
matrices S, endowed with the standard trace inner product (-,-) and its induced norm ||-||. C € §", b € R™
are given data. N is a closed convex set and

N"={X €8" X >0}.

The operator A : S™ — R™ is linear, and its adjoint with respect to the standard inner product in §™ and
R™ is denoted by A*. ¢ : 8™ — S™ is a given self-adjoint positive semidefinite linear operator, for instance,
©(X) = BXBT for a given positive-definite matrix B € 8", ¢(X) = Bo X for B € N™ (“0” denotes the
Hardamard product of two matrices and ¢(X) = LgXB for B € ST.

Let D" = S? NN, named as the doubly nonnegative cone in [1], its dual cone is S + N™. Thus the
dual of problem (1) can be formulated as in [2,3]:

min (W, g() ~ by

st. —pW)+A(y)+Z+S=C, (2)
WeS", yeR™, ZeS8t, SeN™.

And the Karush-Kuhn-Tuck (KKT) conditions for problem (1) and its dual (2) can be written as follows:

A(X) =b, o(W ) (X),
W)+ A" (y)+Z+ 5 =
XeSjﬁ,ZeSjﬁ,( ,Z>
X eN™ SeN™ (X,S)

)

¢,
; 3)
0.

By interior-point methods scheme, Toh et al. [4,5,6] proposed inexact primal-dual path following algo-
rithm for solving the CQSDP problems without nonnegative constraints. To handle the CQSDP problems
beyond moderate scale can be a challenging task using the interior-point methods, due to the extremely
high computational cost per iteration or the inherent ill-conditioning of the linear systems governing the
search directions. In addition, there are many methods proposed for solving some special CQSDP problems,
see [8,9,10,11,12,13]. Of these methods, ADMM-type algorithms by dealing with the dual reveal excellent
numerical results.

Due to the constraints on the doubly nonnegative cone, it is difficult to solve the primal problem (1)
directly. In this paper, we pay attention to the dual (2) for its separable structure, which can be expressed
in the form of the following convex optimization with four separate blocks in the objective function and a
coupling linear equation constraint:

LW, (W)~ 6Ty + 855 (2) + 0 (5)

st. —pW)+A*(y)+2Z2+5=C, (4)

min

where d¢(Y) is the indicator function over a given set C such that §¢c(Y) =0if Y € C and 400 otherwise.
Let o > 0 be given. The augmented Lagrangian function for (4) reads as

SOV, (V) = BTy + G52 (7) + 8 (5)
HX, —p(W) + A*(y) + Z + S - C)
+2) = W) + A () + Z+5 - CI, o)

Le(W,y, 2,8, X) =
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where (W,y,Z,5,X) € 8" x R" x 8% x N™ x §™. For a chosen initial point, the directly extended 4-block
ADMM (ADMM4d) for (4) consists of the iterations:

W < g min £, (W, 25, 8, X)
i — afgyfg]}gi Lo Wk y Zk Sk XF),
gkl _ arg ngsni £U(Wk+1)yk+1’ Z, Sk’Xk)’ (6)
Gh+1l arg srél/i\?n £U(Wk+1,yk+17 Zk-&-l’ S, Xk)’

XKL = XF 70 (—p(WETY) 4 A% (yFH) + 261 4 5k ) |

where 7 > 0, e.g., 7 € (0, 1+T\/5)7 is a constant that controls the step size in (6). If choosing 7 > 1, the step

size of updating the Lagrange multiplier is enlarged, and it is usually beneficial to induce faster convergence.

The direct extension of the classic ADMM to the case of the multi-block convex optimization problem
is not necessarily convergent from [15,16], though it often performs very well in practice. With o being small
enough, the convergence of ADMM4d was obtained in [17] for a special 4-block problem with two objective
functions being strongly convex. Furthermore, it shown that, the convergence can not be guaranteed only
requiring one strongly convex function, by giving a concrete example in [17]. Thus, even for the simplest
case with (W) = W (the objective function (W, W) is strongly convex), ADMM4d (6) is not necessarily
convergent to solve problem (4).

Generally, there exists two types of methods to develop ADMM’s variants, aiming to guarantee con-
vergence and preserve the numerical advantages of the directly extended ADMM. One method is to add a
simple correction step, for example, a convergent alternating direction method with a Gaussian back sub-
stitution (ADM-G) proposed by He et al. in [18,19], in which each iteration consists of a forward procedure
(ADM procedure) and a backward procedure (Gaussian back substitution procedure), the correction step is
completely free from step-size computing and its step size is bounded away from zero for all iterates. The
other is to employ a simple proximal for solving each subproblem inexactly, which has been suggested by
many researchers, see [3,9,21,22,23]. In addition, many modified ADMM-based algorithms were introduced
in [24,25,20,28].

More recently, by leveraging on the inexact block symmetric Gauss-Seidel (sGS) decomposition tech-
nique, Chen, Sun and Toh [21] had employed the dual approach by proposing an efficient inexact ADMM-type
first-oder method (the sGSimsPADMM) for solving problem (2). Furthermore, based on the inexact sGS de-
composition technique and the semismooth Newton-CG algorithm, Li, Sun and Toh proposed a two-phase
proximal augmented Lagrangian method for convex quadratic semidefinite programming, named QSDPNAL
[2]. It extended the ideas from SDPNAL [26] and SDPNAL+ [27] for the linear SDP problems to the QSDP
problems.

By making full use of the KKT conditions, Chang et al. [28] presented a modified ADMM to solve the
dual of the CQSDP problem in standard form (without nonnegative constraints), which is an extension of
the method proposed by Wen et al. [36]. This modified ADMM can always skip the subproblems with respect
to the block-variable W, which will save both the computational cost and the memory for variable storage
at each iteration. Inspired by the success of modified ADMM [28] as well as aforementioned work on the
ADMM-based methods, we present a projection method by modifying 3-block ADMM to solve an equivalent
of the KKT system (3). The main contributions of this paper are as follows:

— (1). By introducing an auxiliary variable, we reformulate the 4-block separable convex problem (4) as a
3-block separable convex problem, and apply the directly extended 3-block ADMM (ADMM3d) to this
reformulation. Based on the iterative scheme of ADMMS3d, we testify the KKT system (3) is equivalent
to an equation system having two projection operators onto the positive semidefinite and nonnegative
matrix cones respectively.

— (2). We propose a projection method for solving this equation system. Essentially, the proposed method
can be explained as a parallel 3-block ADMM with larger step size (can be greater than (1 ++/5)/2),
and does not have to solve the subproblem with variable W exactly. Skipping the calculation of W can
save O(n?) for some operators ¢, while the cost is only about O(n?) for computing the auxiliary variable



4 Xjaokai. Chang et al.

introduced, see Section 3.3. This confirms that at least our methods require less computation than the
existing ADMM ([3,18,32] in one iteration.

— (3). The global convergence of the proposed method as well as its non-ergodic o(1/(k + 1)) convergence
rate are established to a KKT point by using a fixed-point argument and the projection operator’s non-
expansion, when the condition on the penalty parameter is satisfied. The numerical experiments show
that, our proposed algorithm performs better than ADM-G and ADMM4d with the aggressive step-length
of 1.618.

The rest of this paper is organized as follows. Some preliminary results are provided in Section 2.
We reformulate the dual (2) as a 3-block convex optimization problem, and introduce how to solve the
subproblems from ADMM3d in Section 3. The projection method based on the KKT conditions (3) is
presented in Subsection 4. The convergence of the proposed method is analysed in Section 5. Section 6 is
devoted to the implementation and numerical experiments to solve the CQSDP problems generated randomly.
Finally, the paper is summarized in Section 7.

2 Preliminaries

Most of the definitions and notations used in this paper are standard and can be found in [29]. Throughout,
{2 is an arbitrary finite dimensional real Euclidean space with inner product (-, -) and its induced norm || - ||.
A single-valued mapping G : 2 — (2 is called SB-cocoercive (or S-inverse-strongly monotone), for a certain
constant 8 > 0, if 4G is firmly nonexpansive, i.e.,

(G(2) - G(a"),x —a’) 2 BlIG(x) - G()|?, V2’ € 2.

Let ¢ be a self-adjoint non zero positive semidefinite linear operator, we use Apax(¢) to denote its largest
eigenvalue, then ¢ is m—cocoercive.

Let I'h(£2) be the class of proper lower semicontinuous convex functions from 2 to (—oo, +00]. For any
f € I(£2), the subdifferential mapping df of f is then maximal monotone and

Teap(z) = (2 + Uaf)*l(:z:) = argmin {f(z) + %Hx - z||2} , Vzen,

where Z : {2 — (2 is the identity operator.
For a given closed convex C, d¢ is closed proper convex function and J,as,(x) = H¢(z), i.e. the metric
projection of x onto C, and

9oc(z) = Ne(x) :={z| (2,2’ —x) <0 Vz' €C},

which is a closed convex cone.
We will denote by Fix T the set of fixed points of operator T, i.e., Fix T := {z* € Q|z* = T («*)}.

3 Reformulation of (2) and Directly Extended 3-Block ADMM.

Firstly, we make the following assumptions.

Assumption 1 (i). For the CQSDP problem (1), there exists a feasible solution X € S such that
AX)=b, XeS8,, XeN™ (7)

i1). For the dual problem (2), there exists a feasible solution (W,y,Z,S) € 8" x R™ x 8% x N such
(i)
that

—p(W)+A*(y)+Z+S5=C, ZeS8',, SeN™ (8)
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It is known from convex analysis (e.g, Corollary 5.3.6 in [33]) that under Assumption 1, the strong
duality for (1) and (2) holds and the KKT conditions (3) have solutions.

Assumption 2 The linear operator A is surjective.

Under Assumption 2, the operator AA* is invertible, then the solution of the subproblem with variable
y can be well-defined for ADMMA4d.
3.1 3-block Convex Optimization Reformulation

By introducing an auxiliary variable X, we can rewrite (1) equivalently as

min %(X,@(X)) +{(C, X)
st. X —X=0,AX)=b, (9)

Xes", XeN.

X
Defining U = (5(>, (9) can be simplied as:

min  0(U)
st. HU)=b, UeSxN", (10)
where §(U) = (X, ¢(X)) + (C, X), and

By setting

and

(
ceo-(50)(2)- (7).
H*(S,y) = (_II/(()*) (i) _ (S—F_.%g(y))’

then the dual of problem (10) can be reformulated as
min  f(W) +9(Z,U) + h(S,y)
st. F*(W)+G"(Z,U)+H*(S,y) = C. (12)

Actually, it is equivalent to (4).
Notice that from Assumption 2 and the definition of H, we can obtain the following results easily.
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Lemma 1 Under Assumption 2, then we have
(i). HH* is invertible.
(ii). the inverse of HH* can be computed by:

_ 17 4+ LA (AA) LA —A* (AA*) 1
* 1 _ 2 2
(HH ) - < _(AA*)flA Z(AA*)fl > . (13)
Specially, for the operator A = diag, we have AA* =Z, and
T+ iAA-A
oy = (AT (14)

From Lemma 1, the solution of the subproblem with variable (S,y) can be well-defined for using AD-
MM3d to (12). Additionally, reformulation (12) has many advantages for designing efficiency ADMM-based
algorithm, for instance, the subproblem with variable (S,y) or (Z,U) can be implemented in parallel and
that with variable W can be skipped, the convergence rate of the proposed ADMM can be analysed in
non-ergodic case, different with the existing multi-block ADMM, see Section 4 and 5.

3.2 ADMM3d for Solving (12)

Recall that the augmented lagrangian function of the problem (12) has the following form:

Lo(W,(2,U),(S,y),X) = f(W >+g<ZU)+h<Sy>

<X FHW) + 6*(Z, U)+H(S,y)—é>+
SIFrw >+9*<z,U>+H*<S,y>—é||2, (15)
X1

where W € 8", (Z,U) € 8t x N, (S,y) € 8" x R and X = ) (X1,X5 € 8"), 0 > 0 is a penalty

X
parameter. Then, the iterative scheme of ADMM3d for solving (12) reads as:

Wk = arg IIllIl L, ( (ZF, UM, (Sk,yk),)?k), (16)

k+1 , k+1\ _ : k+1 k k vk
(5" y )farg(syy)gl‘;gmmﬁa(w (24U, (8,9). K*). a7
Zk+1 k+1y : ~ k+1 7 kE+1 k41 )’Zk 1
(008 —arg | min Lo (WETL(Z,0), (814, X)), (18)
XM = XF 4 ro(F*(W) + G (Z,U) + H*(S,y) — O), (19)

where 7 € (0, 1+2‘/5).

Now, we label L',AU(VV7 Y, 2,5, X) as L., and solve these subproblems (17)-(18). From the first-order
optimality condition of problem (17), we have

o (Xi—o(e(W)-2Z+0) L[S 0\
V(S,y)ﬁg—H( Xo + oU +oHH y) )~

By Lemma 1, we have

() -ooer (5Bt (). o
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and can compute S¥t1 = ¢g(Wh+L ZF UF XF XF) where

1 1 1 1 1
0s(W, Z,U, X1, Xz) 1= —5 Q- (UXI — (W) + 2 - c) +59+ (ng + U) — CATAA) D), (21)

and
Q =T-M, Q. =T+ M, M=A(AA)'A. (22)
It is easy to check that the four operators A, M, Q. and Q_ satisfy the following properties:

Lemma 2 (i) M*=M, Q_*=0Q_, Q,."=0Q,.
(). MM =M, Q_"Q =9, Q,."Q_=Q_.
(1) MA* = A*, AM=A, AQ_ =0, Q_A*=0, AQ, =24, Q. A* =2A4*.

In addition, it is from Assumption 2 that, we can obtain y**! = ¢, (W*+L Zk UF XF XE) where

1 1 1
6y (W, Z,U, X1, X3) = —(AA) "1 A (le — (W) +Z-C+—Xp+ U) +2-(AA) b (23)

Similarly, according to the first-order optimality conditions of problem (18), let

B, (W54, X1) == —— X, + (W) = § — A°(4) + C, (24)
d)VU (S7 XQ) =S5 - §X27 (25)

compute Vi = ¢y, (WHHL GFHL yF+1 XF) and VET = ¢y, (S5, X5), then we can get UF ! = Ty (V)
and ZF+1 = Hgi (V;H) in parallel. By the projection operator’s properties, the following properties are easy
to obtain by direct computation.

Lemma 3 Suppose that {Z*+1, UM XFHL XEPIY are generated by (16)-(19) with T = 1, then we have
(i) VT =zt LxPH Zite st Xt e st (2R X =0;
(7/&) VI§€+1 — Uk+1 —U%X§+17 Uk+1 c Nn’ X§+1 eNn7 <Uk+1,X§+1> - 0.

3.3 Solving the Subproblem (16) with Variable W.

In this section, we introduce how to solve the subproblem (16) efficiently, though it is not necessarily for
designing our algorithm. The main objective is to show what our algorithm skips and how to get W**1 for
other ADMM-based methods in our numerical experiments.

Since the first-order optimality condition of (16) has the form

Vwle =0 (W =X, +0o(W)—Z—8—A*(y) +C) =0, (26)

the structure of ¢ is important for computing W**+!. For the simplest ¢(WW) = W as used in the least squares
SDP problem [11,13], we can compute W**! with easy from

1

Wk+1:
1+o0

(XF +0(ZF + S8+ A% (yF) — O)), (27)
because (W) = 0 if only if W = 0.

However, it is not the case for all the operators ¢. If (W) = as used in [2], for a given matrix
B € St, the operator ¢ may not be invertible, then the equation ¢ (W) = 0 has many solutions. Although
we actually do not need W explicitly in each iterations, only ¢(W) is needed, but it is generally not easy
to obtain (W) from (26), which will cost O(n?) flops for some operators ¢. Next, we will introduce how to
get p(WETL) effectively from (26).

BW+WB
2
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For the problems with (W) = BWEWE e suppose that the eigenvalue decomposition is B = PAPT,
where A = diag(\) and A = (Aq,---, A,)" is the vector of eigenvalues of B. Then, we have ¢ = B*B, where
B(X) = Ho (PTXP), B*(Y) = P(H o Y)PT and H;; = /232 which implies BB* = H o Ho. Thus we
can obtain the inverse of Z + oBB* by

(Z+0oBB*)™" = Ho,

with PAIU = ﬁ By [34, Lemma 4] and setting = = f[o, we have
ij
(Z+op)™' =(Z+oBB)™*
=TI —oB(Z+0oBB)'B

=7 —-oB*ZB.
Thus, ¢(W) can be computed efficiently by
e(W)=(Z—-0B*ZB)p (X1 +0(Z+ S+ A"(y) — C)). (28)

For the problems with (W) = BW BT if the eigenvalue decomposition of B is PAPT, where A =
diag()\) and A = (A1, ---, \,)7T is the vector of eigenvalues of B. We can still write ¢ = B*B, where B(X) =
Ho (PTXP), B*(Y) = P(HoY)PT but H;; = \/\;);. By using the same idea as above, (W) can be
computed efficiently by (28).

Suppose that the eigenvalue decomposition of B = PAPT is already computed, which is performed only
once and needs 9n3 flops by the symmetric QR algorithm. If B is a low rank matrix, computing ¢(W) can
be very cheap as the matrix H is sparse, else if B is a positive definite matrix (not an identity matrix),
computing B(X) = H o (PTXP) and B*(Y) = P(H o Y)PT needs at least 8n® flops to get (W) at each
iteration.

4 Projection Method

In this section, we define following operators by the metric projection:

Psy (V) i= (Msy (V), Hsp(V) = V), (29)
Pae(V) i= (I (V), Ty (V) = V), (30)
P(V) = (Psy(V), Px=(V)), (31)

for any matrix V' € S™. By these operators and the iterative scheme (16)-(19), we show the equivalence of
the KKT system (3) to an equation system. Then, a projection method for solving the equation system is
presented.

In addition, we define a set

K={W,Z,U X1,X2) | WeS&S",ZeS}, UeN" X, €8, X,€8"}, (32)

which will simplify our analysis.

4.1 Properties

By Moreau decomposition [35] and two operators Psr (-) and Py« () defined above, we now present the most
important conclusion on the KKT system (3) in the following theorem. Based on this conclusion, we propose
the projection method to obtain a KKT point.
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Theorem 1 (i) For any (W, Z,U, X1, X3) € K satisfying the following system

SD(W> = @(X1)7 S = ¢S(W Z7 U7 X17X2)a y= d)y(W Za U7X17X2)7
(Z’ éX1> = P'Si o ¢V2(VV7 S7y7X1>7 <U7 %XQ) = 7D./\/'"' O¢VU(S7X2);

where the operators ¢s, ¢y, ¢v, and ¢y, are defined in (21), (23), (24) and (25), then (W,y,Z,S,X1) is a
solution of the KKT system (3), namely,

A(Xl) = b7 QO(W) = (IO(X1>7
W)+ A*(y) +Z+ S =C,
X1 GSZ,Z, Z eS8t <Z,X1> =0,

X1 eN™ SeN™, <S,X1> =0.

(i) If the point (W,y, Z, S, X) satisfies the KKT system (3), by setting X1 = Xo = X and U = S, then
(W, Z,U, X1, X5) € K is a solution of the system (33).

(33)

(34)

Proof. (i) By (Z, %Xl) = Psy o ¢v, (W, S,y, X1), we have
X1e8t, ZeS8t, (Z,X1)=0,
and ¢v, (W, S,y, X1) = Z — L X;. With the definition of ¢y, (W, S,y, X1) in (24), we obtain
W)+ A*(y) + Z+ 5 =C. (35)
Notice that from y = ¢, (W, Z,U, X1, X3) and W = X, we deduce that

1 1 1

1 1 1
=-A (Xl—S—A*(y)+X2+U> +2=b. (36)
o o o
On the other hand, it follows from Lemma 2 and (21), we have
1 1
A(S) = A(;Xz +U)— ;b. (37)

Substituting (37) into (36), we have A(X;) = b.
In addition, since (U, %Xg) = Ppm 0 ¢y, (S, X2) and ¢y, (S, X2) = S — %Xg, we have S = U, which
implies

Xy GNH, SEN”, <S,X2>:O.
It is follows from S = ¢s(W, Z,U, X1, X2) and (35), that
1 1 1 1 1
S=--0_ <X1 -S5- A*(y)> + -9 (Xz + S) - —M(Xy)
2 o 2 o o

1/1 1 1 1 1 1
=_ (X1 — S — A*(y) — =Xy — 5) + =M (Xl -S-A"(y)+-Xa+ S - 2X1>
2\o o 2 o o o

1 1
= — (X2 = X1) + —M (X2 — X1) + 5,
20 20
which means Xy = X;. Thus, X; € N, S € N, (5, X;) = 0. Finally, note that (W) = ¢(X1), we obtain

(34).
(ii) By (3) and S = U, we have

1
¢VZ(VV’ Say7X1) =Z - ;X17

1 1
by (S, Xa) =8 — =Xp = U — = Xo.
ag ag
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Using Moreau decomposition and X; = X3 = X, it is not difficult to obtain (Z, %Xl) = 73331_ opy, (W, S,y, X1)
and (U, 1 X5) = Pum 0 ¢y, (S, X2). In addition, from (23) we have

6, (W, Z,U, X1, X) = —(AA") 1A (in _ Aty - S+ %XQ + s) 4 2%(,4,4*)—119
— (AAY)A <1X ~ A + 1x) 4ot a4
g ag ag

— (AAY) AL (y) — (AA*)‘IA(gX) + 2§(AA*)-1b

=Y
and
1 1 * 1 1 1 * *\—1
¢s(W, Z,U, X1, Xa) = _§Q_ X1 —A(y)—S)+=9+ [ —Xo+ 85| — A (AA") " (b)
o 2 o o

_ 1o (Ix_ 1o, (L L A

= QQ_ <0X S) + 2Q+ <0X+S> UA (AA*)7 (D)

=5+ mx) - Laraan e

o o

=5.

This completes our proof. ([

From Theorem 1, we can deduce the following relation:

(W,y,Z,S,X) is a KKT point. % (W, Z,U, X1, X5) satisfies the system (33),

which implies that the system (33) is nonempty from Assumption 1. The most important thing is that
o(W) = ¢(X1) in the system (33), which gives us a confidence to believe that, we don’t have to solve the
subproblem with variable W exactly, even not have to compute ¢(W), but a KKT point of problem (1) and
its dual (2) can be obtained as long as we can get a solution of the system (33). Therefore, we will in the
next section design a projection method for solving the system (33).

4.2 Projection Method
Now, we define the following notations to simplify our analysis,
1 1 1 1 1 1
=(Z,-X1,U,=X,), v =(2ZF =Xk U =XV, w = (2", =X5,U", =X}).
w(0102)w(01 02)w(01 0_2)

Since (W) = p(X7) in the system (33), we can remove the item (W), and replace (W) with p(X7)
in the definition of ¢g, ¢,, ¢v, and ¢y, e.g.,

ds(w) = =39 ((GI —¢)(X1) + 2= C) + 304 (5 X2+ U) — S A"(AA) (D),
py(w) = —(AA)TTA(IT - ) (X1)+ Z - C+ 1 X, + U) +21(AA4%)7 b,
¢Vz(57an1) = _(%I - @)(Xl) -5- A*(y) + C7

Pvy (S, X2) =8 — %Xz.

Accordingly, (W) = ¢(X;) can be left out, then we can rewrite the system (33) as

S = (ZSS(’LU), y = (by(w)a
(Z7%X1):P810¢VZ(57?J’X1)3 (39)
U, %Xg) = Pprn 0 oy, (S, X2).

(38)
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Furthermore, we will use the following notations,

vz(w) = dv, (ds(w), ¢y(w), X1), vu(w) = ¢y, (ds(w), X2), v(w) = (vz(w), vu(w)), (40)
TJ={w | ZeS},UeN" X, €S8, X,€8"}. (41)

By these notations, the system (39) can be expressed as
w="Pov(w)= (7331 ovz(w), Pamo ’UU(’LU)> , (42)

its solution set can be viewed as the set of fixed points of operator Pov, i.e., Fix Pov := {w* € J|w* = P ov(w*)}.
From Assumption 1 and Theorem 1, we have Fix P o v # (), so we can design our projection method as
follows.

Algorithm 1 (Projection Method for solving the system (39))

Step 0. Let o € (0, #I(@)) and p € (O, 2 — %”(“’)) be given parameters. Choose w® € 7, set k = 0.
Step 1. Compute
S = gs(wh),  y*H =g, (w");
Step 2. Project
@ = [Py 0 v, (S YL XE), Pa o by, (S5, X)) (43)
Step 3. Generalize
whtt = (1 = p)w® 4 pa*.
Set £k =k + 1, and go to Step 1.

Remark 1 By (42), we have @* = P o v(w*), and our projection method above is a Krasnosel’skii-Mann
algorithm with

wht = (1 — p)w® + pP o v(w"),
forany p € (0, 2— %T(WU The parameter p is similar to the relazation factor in the generalized Douglas-

Rachford operator splitting [30]. Notice that 1 < 2— %”(‘p) < 2, it can numerically accelerate our projection
method for p > 1.

Remark 2 From the ADMM perspective, the projection method can be explained as a modified 3-block AD-
MM with larger step size p and a correction step for correcting (Z,U):

k+1 _ k+1
w = X}

(S =arg min £, (WEHL(Z8,0%),(8,y), £*)
(S,y)eS xR™

(280 =g min Lo (WL (Z,0), (85,55, X))
JU)ESEXNT

Xvk-f—l )?k + pa’(f*(Wk+1) + g*(Zk’ U'k) +H*(Sk+1,yk+1) . é)’

Correction step
(ZFL UMY = (1= p)(Z%,U*) + p(Z",UF).

Remark 3 Restricting o € (0, %(@)) is to guarantee the convergence of our projection method, which is

significantly larger than the range o € (0, W) shown in [17] for ADMMSd, where vec(p(X)) = Pvec(X).
For some problems with @ having a larger eigenvalue, the restriction of o on a small interval may hinder its
effective adjustment according the progress of algorithm, and then reduce the convergence speed.
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Remark 4 The projection method with p = 1 is not a classic 2-block ADMM, although its computational
procedure is (S,y) — (Z,U) — (X1, Xs) when o(WF) is set to be p(X¥). The reason is that, X in our
projection method plays a dual role: the Lagrangian multiplier and the variable of the first block.

Remark 5 If o =0, problem (1) is the SDP problem with nonnegative constraints and its dual reformulation
(12) will be a 2-block convexr optimization problem. In this case, our projection method is a classic 2-block
ADMM but the step size can close to 2, it is convergent for any o > 0.

5 Convergence Analysis

In this section, we explore the properties of operators v, P ov and vo P, and then establish the convergence
of our projection method.

Lemma 4 [36] For any V, V* € ST,
(i) |Psr (V) = Psy (V)II? < |V = V*|?, with equality holding if only if

T T
(s (V) (s (V) = V") =0 and (Isy (V) = V) Iy (V*) =0.

(ii). |Prarn (V) = Pprn (V*)||2 < ||V — V*||2, with equality holding if only if
(ITnn (V)" (I (V) = V) =0 and  (ITnn (V) = V)" Iy (V*) = 0.

Lemma 5 For any w,w* € J, then we have

vzl) = vz(w) = =30 ((CT- (X1 = XD)) + 502 - 27)

%Q (i X, — X3) (U—U*)), (45)
wiw) —uut) = 30 (GZ- 9 - XD) - J0-(2 - 2

52 (i )+ Q. (U U, (46)

Proof. Using the definition of ¢g and ¢, in (38), we deduce that

6w) = 6y(0) = ~(AA) A (T - )Xy - XD) + (2~ 2))

1
+(AA") A (U(X2X§)+(UU*)> , (47)
() = os(w) = —30- (T - )0 - X1) + (2~ 27))
1
+50 (Soa-xp+w-v). (4)
Together with the definition of ¢y, and ¢y, in (38), it is not difficult to get the results. O
Lemma 6 Suppose that ¢ # 0, for any o > 0 such that o < - so) , then
1 2P
-7 —-p)(X < |[|—-X 4
[Gz-o0| <|2x] (19)

with equality holding if and only if o(X) = 0.
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Proof. Recall that ¢ is a self-adjoint positive semidefinite linear operator, we have

2 2

(CT-o)(X)

2
~(x.Co-m).
o
It follows from o < ﬁ that fI ¢ is positive definite, then 2 Zp— ©? is positive semidefinite. Namely,
((X), (2o —¢*)(X)) 20,50 |(3Z — ) (X)|I* < [|7X]*.
If the equality in (49) holds, (X, (2¢ — 2)(X)> = 0, which implies p(X) = 0. O

Lemma 7 For any w,w* € J, we have

(i).
[v(w) = v(w*)[[5 < [Jw — w3 (50)

(ii). If the equality in (50) holds, and w* € Fiz P owv then

vz (w) = —éxl +7 (51)
’UU(’U)) = —%XQ + U. (52)

Proof. (i). Since for any matrix A, B, ||A||% + ||B||% = 3(|A+ B||% + |A — B||%), by Lemma 5 we infer that

vz (w) — vz (w*)
vy (w) — vy (w”)

[o(w) — v(w*)||% =

= % (02 (w) = vz(w")) + (vu(w) = vy (w*)) |7 + % (02 (w) = vz(w")) = (vu(w) = vy (w*))|F

ST - XD+ S (K- X))

F

2

;W«wZﬂ+WUwQ—Q

F

150z 27— U - U

From the definition of M and Q_, the spectral radius of the operator M and Q_ is no more than 1 and
MQ_ =0, then

2

% HM((Z SN+ (U-U)) - Q. ((;I— P)(X1 — X7) + %(Xz - Xé‘))

F
1 . a2 o L1 o L |
< SIZ = 2+ U=V + 5 [GT - 9)(X = X7) + = (X — X3) (5)
o o P
If the equality above holds, that is,
ZT-M)((Z2-2")+U-U")) =0, (54)

M((GT =)0 - XD) 4 (% X)) = (55)
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Thus,

lo(w) = v(w")| 7

1 * * 1 * *
<50z =2 =W =UME+ 512 =2 + (U= U]z
oo xn+ Lo x|
2|0 LA ! o 2 2 F
2
%12 * (12 1 1 * 1 *
=12 = 2[4 10 = Ul + 5 | (T - )0 - XD+ 506 - X5)
F
1 S(B 2
* 12 * (12 * *
<lz- 2 i 1o - v+ |Gz - o - x|+ 2o -x (56)
g F g F
If the equality in (56) holds, that is,
1 . 1 .
(;I—<P)(X1—X1)=;(X2—X2)- (57)
For any o € (0, m), it follows from Lemma 6 that
1 > 2
[Gz-oen-xn)| <] ion-x (58)
g F F
with equality holding if and only if
(X1 — X7) =0, (59)

which implies (17 — ¢)(X; — X7) = 1(X; — X7{). Thus, we deduce

2 2

* * * 1 *
o) = o)} <12 = 271+ 10 = U1+ 06 - )

+ Hi(Xl - X7)

F F

2
= [lw = w5

(ii). If the equality in (50) holds, it also holds in (53), (56) and (58), so we have the conditions (54),
(55), (57) and (59). Substituting these conditions into the results of Lemma 5, we have

vz(w) —vz(w”)

— 30 (GT-9)00 - XD+ 206 - X)) + 5042 - 2°) - 30 W - 1),

1

5 (GT- P - XD+ 20 - Xp)) +(2- 2°),

= (X - XD)+ (2~ 2°)

1 1
(lxiz)(Lxez),
ag g

By using w* € Fix P o v and the proof of Lemma 3, we get vz(w*) = —%Xf + Z*. Therefore, the equality
vz(w) — vz(w*) = (—éXl +Z) — (—%X{ + Z*) implies vz(w) = —%Xl + Z. Similarly, we can obtain
vy (w) = =1 X5 + U when the equality in (50) holds. The proof is finished. O

Theorem 2 For the sequence {w"} generated by Algorithm 1 with p = 1, we have

l* = w| [

i = HPov(wk) —Pouv(w") |i < Hwk —w*

where w* € Fix Pow,
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Proof. It follows from Remark 1 and Lemma 4 that,
= = [P o w(w®) = Pov(w")|[;

_ || Psy ovz(w") = Psy o vz (w*)
P 0 vy (W) = Parm 0 vy (w*)

F
2
vz(wh) — vz (w")
vy (wh) — vy (w*) ||
112
= Hv(wk) —o(w )HF
By Lemma 7, we can obtain the results. (]

Theorem 2 show that the operator P o v is quasinonexpansive. Next, we will further explore that the
operator P o v is a-averaged with coefficient
2 1

= T (5-1). (60)

for o € (0, m)

Theorem 3 For the operators v and P defined in (40) and (42), we have
(i) voP=L"1oT oL with L= —0T and
T=1—TJog+ Tonk©(2Tog—T—0V0o0T,y), (61)

where KK = {U € 8" x S"|H(U) = b}.
(2). Pow is a-averaged.

Proof. (i). For the sequence {w*} generated by Algorithm 1 with p = 1, we have
By —ovg(wh)
ToLov(w®)y="T (J’UU(wk))
_ —oVET 4 X I 2X [T 4+ o VAT — a(p(WHH) 4 O)
—O'V[;H_l +X§>+1 K 2X§+l —|—0’V[§)+1

_ —oZk+1 I X{Hl _ O'(QO(W]CJFI) — Zk+1l C)
=\ _opyktt K XA+ | gk :

Note that N
I (U)=U —H* (HH*) " (HU —b), V UecS"xS",

then, by using (20) we can deduce

ToLov(wh) = (—aZk“) N (X{“Jrl —o(p(WkH) — ZF+1 L O) 4 o SF+2 aA*(yk+2))

Uk XIH 4 gUk+1 L g gk
B Xf“ — (W) + O) + 0852 + g A* (y*12)
( >
= —ov(whtl)

= —ovoPouv(wh).

By £L=—0Z,wehavevoP =L"10T oL.
(2). Note that V@ is m—cocoercivm it follows from [31, Proposition 2.1] that T is a-averaged. Then,
vo P is a-averaged from (i). Since P is invertible, we have Pov =PoL 1 oT o Lo P~} which implies Pow

is a-averaged too. O
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It follows from [29, Proposition 5.15] and [38, Theorem 1], the convergence result for Algorithm 1 is
stated in the following theorem.

2
? Amaz (S")
{wk} is generated by Algorithm 1. Then the following results hold:

(i). For any w* € Fiz P ov, {|[wkTt — w*||} is monotonically nonincreasing.

(i1). The fized-point residual sequence {||P ov(w*) —wk||} is monotonically nonincreasing and converges
to 0.

(iii). The sequence {w*} converges to some point w* € Fiz P ov.

a2 0 *p2
. Tﬂw —w™||
(iv). |Pov(w) — wk||? < & p)k+1 and ||P o v(wk) — w*||? = o(ril).

Theorem 4 Under Assumptions 1 and 2, for any o € (0 ) and p € (0, é), assume the sequence

Theorem 4 shows that, the sequence {w*} generated by Algorithm 1 is convergent to a solution w* of
the system (39). Therefore, by Theorem 1 we can obtain a KKT point (W*, Z* y*, §* X*) with

e(W*) =p(X"), X*=X{, S*=U" and y" = ¢,(w"),

where ¢, is defined as in (38). Since the simplest choice of W is X satisfying (W) = ¢p(X), so we set
Wk = X*¥ = X¥ in the following numerical experiments.

6 Numerical experiments

In this section, we report the numerical performance of our projection method for the CQSDP problems
generated randomly in MATLAB R2013B. We denote the random number generator by seed for generating
data again in MATLAB. All experiments are performed on an Intel(R) Core(TM) i5-4590 CPU@ 3.30 GHz
PC with 8GB of RAM running on 64-bit Windows operating system.

6.1 Doubly non-negative CQSDP problems

In our numerical experiments, we test two types of doubly non-negative CQSDP problems. One is that with
(X) = BXEEB for a given matrix B € S7. So in this case, Apaz(¢) = Amaz(B). The matrix B is a random
symmetric positive semidefinite matrix, generated by temp=randn(n,r); B=temp*temp’; We set r = 10,
i.e., rank(B)=10 as in [3]. The other is with (X ) = X, as for least squares semidefinite programming in
[13,14], then Apaz(p) = 1.

In this paper, we test the problems arising from the relaxation of maximum stable set problems and
a binary integer nonconvex quadratic (BIQ) programming. The instances are considered as in [3], [32], and
[37]. For instance, we construct QSDP-BIQ problem sets based on the formulation in [3] as follows:

min 1<X,g0(X)> +(Q, Xo) + (¢, x)

2
st. diag(Xo) —x =0, a=1, (62)
X = (X;Jm> eSS, Xecn
!t «a

The test data for Q and c¢ are taken from Biq Mac Library maintained by Wiegele, which is available at
http://bigmac.uni-klu.ac.at/bigmaclib.html. In the same sprit, we construct test problems QSDP-BIQ and
QSDP-6, .
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6.2 Numerical results

In this section, we report the numerical results obtained by our projection method, ADM-G and ADMM4d
in solving various instances of the random CQSDP problems with nonnegative constraints.

In order to compare with ADM-G (o = 0.99) and ADMM4d (7 = 1.618) for solving 4-block dual (2),
we measure the accuracy of the approximate optimal solution (W, y, Z,S, X) (with W = X) by using the
following relative residual:

¢ :=max {pinf, dinf, pdsr, por=, dosy, donn, Oxz, dxs} (63)
where
. JAX) — b : [C+o(X)—Z - AWl
pinf = ———— dinf = , (64)
1+ (]| L+l
(s (—X)| [ Lnr (=X |
Posy = —— s PoNT = e (65)
* L+ [X| 1+ X
sy (—Z)| [ nr (=S
ddsn = —F—— | dopn = —————, (66)
" 1+ Z] 1+ 5]l
. |x,2)| (x.5)] o
XZ = T o XS = T v Lo
1L+ X[[+11Z] L+l X[+ (1Sl
Additionally, we compute the relative gap by
|pobj — dobj|

9 1+ |pobj| + |dobj|’

where pobj = (X, (X)) + (C, X) and dobj = —3 (X, o(X)) + bTy.

We choose the initial point X = X§ = A*(AA*)~1(b), and Z° = U® = 0. We terminate all the solvers
when § < 1075 with the maximum number of iterations set at 25000.

The penalty parameter o is dynamically adjusted according to the progress of the algorithms, but
it satisfies 0 < 0 < m for our projection method from the discussion in Section 5. Thus, we set

Omaz = 60#&9@) (€0 is a constant, e.g., ¢ = 0.999.) and opin = 1079 for our projection method. In
our numerical experiments, we use the same adjustment strategy for our projection method, ADM-G and
ADMM4d to solve all the tested problems, but o,z = 10% and 6,5, = 1076 for ADM-G and ADMM4d. The
key idea for adjusting o is to balance the progress of primal and dual feasibilities: 1, = max{pinf, psn, DA}
and 1y = max{dinf, dsn, dpr}. For details, see Appendix 1.

The initial o for our projection method is chosen to be 1072 X 0,,4,. For ADM-G and ADMM4d, we
set 09 = 1. We use o to denote the penalty parameter at k-th iteration, set

2

1 ‘th
=n— with ap = ———,
Pr nak b 4— Uk)\mam (90)

where ) € (0, 1) since pi, < aik Generally, the larger n can produce better results, so we set n = 0.95 in this
paper. Figure 1 shows the evolutions of p; with respect to iterations for the problems “thetad”, “bel00.1”
and “gkald”, from the results shown we see that the step size p; (and relaxation factor) is always greater
than 1.85 in spite of fluctuating with respect to oy.

The detailed numerical results are reported in the tables 1-4. Figures 2 and 3 show the performance
profiles in terms of the number of iterations and computing time for all the problems tested with p(X) =
BXAXB and ¢(X) = X, respectively.

Recall that a point (z,y) is in the performance profiles curve of a method if and only if it can solve
(100y)% of all the tested problems no slower than = times of any other methods. We may observe that, our
project method takes the least number of iterations and computational time for the majority of the tested
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Fig. 1 Evolutions of p; with respect to iterations.
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Fig. 2 Performance profiles (iteration and time) of our projection method, ADMM4d and ADM-G for the CQSDP problems
with ¢(X) = ZXEXE (Tables 1-2).

problems. The main reason behind the efficiency of our projection method, we think, is lager step size (can
be greater than (1 + 1/5)/2) and skipping the computation of W**!. In addition, our project method and
ADMM4d outperform ADM-G in terms of iteration and computational time, even though the convergence
of ADMM4d can not be guaranteed.
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Fig. 3 Performance profiles (iteration and time) of our projection method, ADMM4d and ADM-G for the CQSDP problems
with ¢(X) = X (Tables 3-4).

7 Conclusion

In this paper, we presented a projection method based on the KKT condition for solving the CQSDP
problems with nonnegative constraints, and establish its global convergence and o(ﬁ) convergence rate. At

each iteration, our projection method does not have to solve the subproblem with variable W, compared to
the existing multi-block ADMM ([3,21] for solving (4) and (12). Numerical experiments on various large scale
QSDPs have demonstrated the efficiency of our proposed ADMM in finding medium accuracy solutions.
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Appendix 1 Details on the adjusting of o.

The key idea for adjusting o is to balance the progress of primal and dual feasibilities:

eta_l=max{pinf, psy, pyn}, eta_2=max{dinf, dsn, dy~}.

Let

theta=max {pinf, dinf, pdgi, PO, d5si, doarm, dxz, Oxs},

gamma=0.5; sigma_max=0,,,, and sigma_min=oc,,;,.
the adjusting of o is expressed as following:

dtmp=eta_1/eta_2;

if iter<=21; h=3;
elseif iter<=61; h=6;
elseif iter<=121; h=50;
else h=100;
end
if theta<le-5; gamma=0.8;
elseif theta<le-3; gamma=0.6;
end
it_pinf = 0;
it_dinf = 0;
if dtmp<=0.8

it_pinf = it_pinf+l;it_dinf = O;
if it_pinf>h
sigma = min((1/gamma)*sigma,sigma_max); it_pinf=0;
end
else if dtmp>1.25
it_dinf = it_dinf+1;it_pinf = O;
if it_dinf>h
sigma = max(gamma*sigma,sigma_min); it_dinf = 0;
end
end
end
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Table 1 The performance of our projection method, ADMM4d and ADM-G on the CQSDP problems with ¢(X) = w
(seed = 1). In the table, “PM” and “4d” stands for our projection method and ADMM4d, respectively.

iteration 0 dg time (second)
problem  mpz  ns | ADM-G | 4d | PM ADM-G | 4d | PM ADM-G | 4d | PM ADM-G | 4d | PM
bqp50-1 51 51 3176 | 2602 | 2262 9.99e-7 | 9.95e-7 | 9.97e-7 | 2.10e-7 | 9.93e-8 | 3.46e-7 23.5]11.0 9.3
bqp50-2 51 51 3918 | 3100 | 3077 9.98e-7 | 1.00e-6 | 9.94e-7 7.24e-7 | 9.77e-7 | 4.90e-7 57.1]23.4129.3
bqp50-3 51 51 2100 | 1611 | 1268 9.93e-7 | 9.97e-7 | 9.91e-7 1.78e-6 | 1.64e-6 | 8.89e-7 40.9 | 17.8 | 17.6
bgp50-4 51 51 2643 | 2197 | 1812 9.98e-7 | 9.98e-7 | 9.96e-7 1.83e-7 | 5.04e-7 | 4.42e-7 53.0 | 27.4 | 22.9
bagp50-5 51 51 1695 | 1367 | 797 9.98e-7 | 9.94e-7 | 9.98e-7 1.41e-6 | 2.76e-6 | 2.62e-7 33.2117.6 | 10.5
bagp50-6 51 51 2125 | 1690 | 1326 9.73e-7 | 9.95e-7 | 9.96e-7 | 9.32e-7 | 1.12e-6 | 7.83e-7 42.0 | 23.1 | 18.6
bgp50-7 51 51 1924 | 1486 | 1020 9.98e-7 | 9.90e-7 | 9.93e-7 | 5.28e-8 | 7.48e-7 | 3.48e-7 43.1 ] 20.7 | 13.2
bgp50-8 51 51 2395 | 2108 | 1521 9.96e-7 | 9.96e-7 | 9.93e-7 | 2.28e-8 | 7.30e-8 | 3.28e-7 48.3 | 31.1 | 20.8
bgp50-9 51 51 2097 | 1664 | 1106 9.97e-7 | 9.94e-7 | 9.99e-7 | 6.92e-7 | 1.21e-6 | 6.63e-7 43.0 | 24.8 | 16.1
bqp50-10 51 51 2538 | 2094 | 1919 9.97e-7 | 9.99e-7 | 9.86e-7 | 8.18e-8 | 5.65e-8 | 2.19e-8 55.8 | 33.9 | 28.4
bgp100-1 101 101 3550 | 3171 | 1879 9.99e-7 | 1.00e-6 | 9.98e-7 1.07e-7 | 7.39e-9 | 1.73e-8 92.1 | 69.8 | 36.1

bgp100-2 101 101 7794 | 6106 | 6652 1.00e-6 | 1.00e-6 | 1.00e-6 | 6.69e-7 | 7.50e-7 | 5.28e-7 | 216.3 | 141.1 | 129.0
bgp100-3 101 101 3337 | 3036 | 2291 9.99e-7 | 9.99e-7 | 9.97e-7 | 2.95e-7 | 5.34e-7 | 3.96e-7 85.1 | 62.4 | 45.6
bqgp100-4 101 101 2869 | 2365 | 1647 9.92e-7 | 9.93e-7 | 9.97e-7 | 7.37e-7 | 8.53e-7 | 4.13e-7 76.8 | 50.0 | 30.6
bgp100-5 101 101 4215 | 3418 | 3026 9.99e-7 | 9.98e-7 | 9.99e-7 | 2.26e-7 | 4.51e-7 | 3.82e-7 133.5 [ 73.4 [ 56.6
bgp100-6 101 101 2957 | 2606 | 2053 9.98e-7 | 9.96e-7 | 9.99e-7 | 1.83e-6 | 1.82e-6 | 1.25e-6 82.0 | 57.0 | 39.1
bqp100-7 101 101 3250 | 2597 | 2044 9.87e-7 | 9.95e-7 | 9.95e-7 | 7.19e-7 | 1.05e-6 | 4.68e-7 95.3 | 56.5 | 39.8
bqp100-8 101 101 5029 | 4562 | 2957 9.99e-7 | 9.99e-7 | 9.99e-7 | 3.87e-7 | 2.21e-7 | 3.27e-7 139.6 | 100.9 | 56.1
bgp100-9 101 101 6221 | 5160 | 5409 9.99e-7 | 9.99e-7 | 9.99e-7 | 7.29e-7 | 7.11e-7 | 5.60e-7 | 179.6 | 118.2 | 102.7
bgp100-10 101 101 4627 | 4043 | 3763 1.00e-6 | 9.99e-7 | 9.99e-7 | 9.36e-7 | 8.47e-7 | 6.24e-7 129.2 | 93.5 | 72.3
bgp250-1 251 251 8252 | 6536 | 6309 9.99e-7 | 1.00e-6 | 1.00e-6 1.82e-6 | 1.44e-6 | 9.31e-7 | 503.5 | 428.4 | 297.2
bqp250-2 251 251 7448 | 5362 | 4742 9.96e-7 | 9.97e-7 | 9.98e-7 | 1.17e-6 | 9.38e-7 | 3.52e-7 | 450.2 | 341.7 | 221.8
bgp250-3 251 251 7954 | 5828 | 5649 9.94e-7 | 1.00e-6 | 9.99e-7 | 7.58e-7 | 3.89e-7 | 1.81e-7 | 477.4 | 382.5 | 265.6
bqp250-4 251 251 6593 | 5354 | 4872 1.00e-6 | 9.97e-7 | 9.98e-7 | 4.65e-7 | 2.18e-7 | 2.31e-7 | 387.6 | 349.0 | 231.4
bqp250-5 251 251 10301 | 7513 | 8915 1.00e-6 | 1.00e-6 | 1.00e-6 | 9.75e-7 | 9.20e-7 | 5.48e-7 | 597.7 | 517.1 | 275.5
bqp250-6 251 251 5781 | 4826 | 4466 9.98e-7 | 9.99e-7 | 9.99e-7 | 2.21e-7 | 3.74e-7 | 4.37e-7 | 346.7 | 310.1 | 205.1
bgp250-7 251 251 8950 | 6942 | 7758 1.00e-6 | 9.99e-7 | 1.00e-6 | 6.74e-7 | 5.83e-7 | 3.17e-7 | 531.9 | 465.0 | 367.7
bgp250-8 251 251 8135 | 6616 | 6841 9.99e-7 | 9.99e-7 | 9.99e-7 | 5.50e-7 | 5.14e-7 | 2.96e-7 | 490.0 | 443.3 | 325.9
bgp250-9 251 251 8058 | 5724 | 5346 9.94e-7 | 9.94e-7 | 9.99e-7 | 6.67e-7 | 1.22e-6 | 6.38e-7 | 482.6 | 371.7 | 256.2
bqp250-10 251 251 8342 | 6584 | 6747 1.00e-6 | 1.00e-6 | 9.99e-7 | 7.37e-7 | 7.54e-7 | 3.80e-7 | 502.0 | 444.3 | 321.7
bel00.1 101 101 3164 | 2688 | 1906 9.99e-7 | 9.73e-7 | 9.99e-7 | 5.54e-7 | 7.27e-7 | 1.97e-7 40.6 | 49.5 | 9.3
bel00.2 101 101 2985 | 2766 | 1788 9.96e-7 | 9.97e-7 | 9.97e-7 | 2.24e-7 | 8.21e-8 | 3.97e-9 63.2 ] 59.2 | 11.7
bel00.3 101 101 4889 | 4245 | 3341 1.00e-6 | 1.00e-6 | 9.97e-7 | 5.99e-8 | 2.85e-8 | 7.18e-8 121.3 | 95.5 | 38.4
bel00.4 101 101 3270 | 3022 | 2294 9.98e-7 | 1.00e-6 | 9.98e-7 | 5.83e-9 | 1.69e-7 | 2.97e-7 85.1 | 66.7 | 32.9
bel00.5 101 101 2607 | 2430 | 1530 9.94e-7 | 9.99e-7 | 9.94e-7 | 3.77e-7 | 3.17e-7 | 3.52e-7 67.5 | 52.4 | 25.1
bel00.6 101 101 2812 | 2434 | 1555 9.94e-7 | 9.96e-7 | 9.99e-7 | 1.93e-6 | 8.31e-7 | 5.05e-7 72.7 | 51.9 | 25.5
bel00.7 101 101 3144 | 2459 | 1675 9.99e-7 | 9.89e-7 | 9.94e-7 | 4.74e-7 | 2.39e-7 | 2.25e-7 82.8 | 51.6 | 28.9
bel00.8 101 101 2808 | 2375 | 1556 9.96e-7 | 9.97e-7 | 9.96e-7 | 8.76e-8 | 4.77e-7 | 3.67e-7 71.3]49.8 | 28.4
bel00.9 101 101 3131 | 2862 | 2252 9.98e-7 | 9.98e-7 | 9.98e-7 | 2.32e-7 | 1.05e-7 | 3.01e-7 82.5 | 63.5 | 43.0
bel00.10 101 101 2681 | 2318 | 1520 9.99e-7 | 9.95e-7 | 9.97e-7 | 1.14e-6 | 3.55e-7 | 3.91e-7 70.9 | 47.1 | 27.5
bel20.8.1 121 121 3382 | 2556 | 2051 9.79e-7 | 9.99e-7 | 9.97e-7 | 1.13e-6 | 7.05e-7 | 6.92e-7 103.1 | 64.6 | 45.9
bel20.8.2 121 121 3347 | 2847 | 2032 9.99e-7 | 9.99e-7 | 9.98e-7 | 4.57e-7 | 6.20e-7 | 2.79e-7 98.2 | 73.7 | 46.6
bel20.8.3 121 121 4987 | 4323 | 3882 1.00e-6 | 9.99e-7 | 1.00e-6 | 4.05e-7 | 1.68e-7 | 1.34e-7 140.5 | 114.5 | 84.5
bel20.8.4 121 121 3492 | 3150 | 2078 1.00e-6 | 1.00e-6 | 9.96e-7 | 9.67e-8 | 3.16e-8 | 7.02e-8 101.4 | 79.3 | 44.1
bel20.8.5 121 121 3800 | 3015 | 2433 9.85e-7 | 1.00e-6 | 9.97e-7 | 7.70e-7 | 1.08e-6 | 5.61e-7 119.0 | 76.9 [ 50.7
bel20.8.6 121 121 3114 | 2476 | 1599 9.99e-7 | 9.90e-7 | 9.99e-7 | 2.62e-7 | 4.73e-7 | 3.95e-7 92.6 | 62.2 | 36.7
bel20.8.7 121 121 3894 | 3289 | 2742 9.97e-7 | 9.96e-7 | 9.98e-7 | 9.35e-7 | 1.21e-6 | 5.97e-7 117.1 | 82.3 | 59.6
bel20.8.8 121 121 3726 | 3036 | 2546 9.99e-7 | 9.75e-7 | 9.99e-7 | 9.17e-7 | 6.45e-7 | 4.11e-7 111.2 | 77.5 | 51.2
bel20.8.9 121 121 3274 | 2720 | 1916 9.97e-7 | 9.97e-7 | 9.96e-7 | 8.64e-7 | 6.38e-7 | 5.61e-7 106.6 | 73.2 | 40.1
bel20.8.10 121 121 3869 | 3182 | 2454 9.98e-7 | 9.99e-7 | 9.98e-7 | 3.84e-7 | 2.47e-7 | 4.15e-7 115.3 | 84.9 | 50.7
be250.1 251 251 7779 | 6260 | 5359 1.00e-6 | 1.00e-6 | 9.99e-7 | 7.69e-7 | 6.15e-7 | 1.22e-6 | 413.4 | 347.8 | 176.3
be250.2 251 251 8175 | 6783 | 5330 1.00e-6 | 1.00e-6 | 9.99e-7 | 4.25e-7 | 4.25e-7 | 8.33e-7 | 528.2 | 421.9 | 244.2
be250.3 251 251 7202 | 5812 | 4887 9.99e-7 | 1.00e-6 | 1.00e-6 1.33e-6 | 9.03e-7 | 1.65e-6 | 457.2 | 366.1 | 229.9
be250.4 251 251 9835 | 7909 | 6769 1.00e-6 | 1.00e-6 | 1.00e-6 | 2.79e-7 | 3.60e-7 | 9.32e-7 | 630.0 | 488.8 | 313.5
be250.5 251 251 6622 | 5179 | 4339 9.92e-7 | 9.99e-7 | 9.99e-7 | 5.50e-7 | 4.61e-7 | 1.34e-6 | 421.0 | 317.6 | 201.2
be250.6 251 251 6761 | 5100 | 4164 1.00e-6 | 9.99e-7 | 1.00e-6 1.25e-6 | 8.03e-7 | 5.01e-7 | 426.5 | 316.4 | 208.9
be250.7 251 251 7588 | 6190 | 4776 1.00e-6 | 1.00e-6 | 1.00e-6 | 6.07e-9 | 2.64e-7 | 9.04e-7 | 476.1 | 387.7 | 225.2
be250.8 251 251 9334 | 7917 | 6776 9.99e-7 | 1.00e-6 | 1.00e-6 | 4.44e-7 | 3.79e-7 | 8.33e-7 | 573.5 | 503.4 | 314.4
be250.9 251 251 7572 | 6458 | 5451 9.99e-7 | 9.99e-7 | 1.00e-6 1.34e-6 | 9.96e-7 | 2.47e-6 | 458.1 | 404.8 | 253.8
be250.10 251 251 8245 | 7116 | 6484 9.99e-7 | 1.00e-6 | 1.00e-6 | 6.18e-7 | 8.72e-7 | 2.11e-6 | 499.1 | 445.9 | 302.8
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Table 2 The performance of our projection method, ADMM4d and ADM-G on the CQSDP problems with ¢(X) = w
(seed = 1). In the table, “PM” and “4d” stands for our projection method and ADMM4d, respectively.

iteration i) dg time (second)
problem mpg ng ADM-G | 4d | PM ADM-G | 4d | PM ADM-G | 4d | PM ADM-G | 4d | PM
thetad 1949 200 574 | 494 | 342 9.90e-7 | 9.93e-7 | 9.49e-7 8.88e-7 | 1.51e-6 | 1.15e-6 6.816.0]3.1
thetad2 5986 200 397 | 335 | 515 9.90e-7 | 9.85e-7 | 9.83e-7 | 6.68e-7 | 6.87e-7 | 3.96e-7 7.2]6.1]4.6
theta6 4375 300 448 | 389 | 444 9.47e-7 | 9.75e-7 | 9.88e-7 | 1.41e-6 | 1.78e-6 | 2.34e-6 26.5 | 23.0 | 9.2
theta62 13390 300 437 | 415 | 511 9.79e-7 | 9.87e-7 | 9.77e-7 | 8.63e-7 | 9.64e-7 | 6.71e-7 30.7 | 31.8 | 19.4
theta8 7905 400 518 | 478 | 461 9.92e-7 | 9.87e-7 | 8.95e-7 | 3.82e-7 | 4.60e-7 | 8.48e-7 70.7 | 76.4 | 39.5
theta82 23872 400 463 | 392 | 460 9.88e-7 | 9.83e-7 | 9.83e-7 | 1.26e-6 | 1.30e-6 | 1.01e-6 70.9 | 70.5 | 47.2
thetalO 12470 500 613 | 553 | 477 9.95e-7 | 9.88e-7 | 8.38e-7 | 3.75e-7 | 4.87e-7 | 7.10e-7 146.4 [ 151.6 [ 78.3
thetal02 37467 500 487 | 459 | 485 8.88e-7 | 9.87e-7 | 9.92e-7 1.01e-6 | 1.43e-6 | 1.08e-6 122.3 | 138.3 | 88.4
thetal03 62516 500 479 | 463 | 553 9.80e-7 | 9.88e-7 | 9.93e-7 1.85e-6 | 2.05e-6 | 1.22e-6 130.1 | 134.4 | 102.4
thetal04 87254 500 510 | 493 | 585 9.84e-7 | 9.87e-7 | 9.95e-7 | 2.50e-6 | 2.56e-6 | 2.08e-6 135.6 | 144.9 | 103.5
MANN-a27 703 378 1735 | 1308 | 700 9.95e-7 | 9.89e-7 | 9.85e-7 | 1.41e-7 | 6.60e-7 | 4.91e-7 199.0 | 152.8 | 17.2
san200-0.7-1 5971 200 2363 | 1939 | 2639 9.52e-7 | 9.91e-7 | 9.98e-7 | 2.45e-6 | 3.96e-6 | 2.46e-6 116.7 | 86.7 | 41.5
sanr200-0.7 6033 200 376 | 321 | 513 9.90e-7 | 9.85e-7 | 9.89e-7 | 7.79e-7 | 8.28e-7 | 5.42e-7 17.9 ] 15.0 | 10.7
c-fat200-1 18367 200 989 | 801 | 644 9.98e-7 | 9.95e-7 | 9.91e-7 | 1.00e-6 | 1.12e-6 | 8.35e-7 50.6 | 36.8 | 14.6
brock200-1 5067 200 390 | 327 | 495 9.82e-7 | 9.74e-7 | 9.80e-7 | 5.05e-7 | 6.17e-7 | 4.03e-7 18.7 ] 15.6 | 12.9
brock200-4 6812 200 392 | 373 | 471 9.81e-7 | 9.81e-7 | 9.94e-7 1.10e-6 | 1.16e-6 | 8.25e-7 19.3 | 18.0 | 12.1
brock400-1 20078 400 468 | 393 | 460 9.89e-7 | 9.81e-7 | 9.93e-7 | 1.07e-6 | 1.15e-6 | 1.00e-6 75.5 | 70.6 | 38.4
kellerd 5101 171 1338 | 994 | 873 9.91e-7 | 9.98e-7 | 9.96e-7 | 2.14e-7 | 3.14e-7 | 2.35e-7 59.0 | 42.1 | 20.9
p-hat300-1 33918 300 1207 | 980 | 1023 1.00e-6 | 9.98e-7 | 9.98e-7 | 1.54e-6 | 1.48e-6 | 1.18e-6 110.1 | 99.9 | 56.7
1dc.128 1472 128 1255 | 1010 | 847 9.98e-7 | 9.99¢-7 | 9.95e-7 | 1.16e-6 | 1.28e-6 | 8.88e-7 36.9 | 28.2 | 15.8
let.128 673 128 7141 | 5834 | 4576 1.00e-6 | 1.00e-6 | 1.00e-6 | 7.59e-7 | 8.46e-7 | 1.15e-6 216.8 | 176.7 | 96.6
1tc.128 513 128 5579 | 4353 | 2822 9.99e-7 | 1.00e-6 | 1.00e-6 1.05e-6 | 1.09e-6 | 1.67e-6 165.4 | 121.0 | 62.0
1zc.128 1128 128 586 | 413 | 717 9.99¢-7 | 9.93e-7 | 9.96e-7 4.47e-7 | 5.85e-8 | 8.36e-7 16.8 | 11.2 | 14.2
1dc.256 3840 256 2286 | 1870 | 1510 1.00e-6 | 9.99e-7 | 9.99e-7 1.10e-6 | 1.16e-6 | 1.51e-6 148.4 | 135.4 | 72.7
let.256 1665 256 6425 | 5133 | 4250 1.00e-6 | 1.00e-6 | 1.00e-6 | 4.32e-7 | 6.69e-7 | 1.77e-6 423.0 | 387.3 | 214.9
1tc.256 1313 256 7636 | 6094 | 5283 1.00e-6 | 1.00e-6 | 9.78e-7 | 4.05e-7 | 2.20e-7 | 8.98e-7 512.4 | 458.4 | 272.4
1zc.256 2817 256 2627 | 2008 | 1553 9.99e-7 | 9.99e-7 | 9.99e-7 | 1.19e-7 | 1.96e-7 | 4.05e-7 175.9 | 151.7 | 80.7
gkald 101 101 4262 | 3663 | 3849 1.00e-6 | 9.98e-7 | 1.00e-6 | 1.04e-7 | 1.48e-7 | 8.09e-8 48.2 1 27.3 | 23.1
gkale 201 201 7881 | 7158 | 7228 1.00e-6 | 1.00e-6 | 9.99e-7 | 5.15e-7 | 7.00e-7 | 5.54e-7 329.7 [ 252.5 [ 210.5
gkalf 501 501 12629 | 10311 | 11511 9.99e-7 | 1.00e-6 | 1.00e-6 1.23e-6 | 1.32e-6 | 6.96e-7 2925.4 | 2723.4 | 1897.5
gka2d 101 101 2834 | 2261 | 1939 9.95e-7 | 1.00e-6 | 9.99e-7 1.25e-6 | 1.13e-6 | 8.31e-7 74.7 ] 45.1 | 32.6
gka2e 201 201 7167 | 5652 | 6123 9.99¢-7 | 1.00e-6 | 9.99e-7 8.39e-7 | 5.96e-7 | 3.75e-7 322.4 | 370.7 | 196.4
gka2f 501 501 12074 | 9720 | 10596 9.95e-7 | 1.00e-6 | 1.00e-6 | 1.14e-6 | 7.36e-7 | 6.09e-7 | 2754.9 | 2486.0 | 1706.0
gka3d 101 101 4292 | 3456 | 2880 9.98e-7 | 1.00e-6 | 1.00e-6 | 7.66e-7 | 5.58e-7 | 5.95e-7 111.1 | 80.4 | 50.7
gka3e 201 201 5513 | 4695 | 4388 9.99e-7 | 9.97e-7 | 9.99e-7 | 3.48e-7 | 1.22e-6 | 5.77e-7 246.5 | 201.1 | 143.7
gka3f 501 501 12001 | 9996 | 9425 9.96e-7 | 9.99e-7 | 9.99e-7 | 1.66e-6 | 4.48e-7 | 6.13e-7 | 2793.1 | 2616.8 | 1512.5
gkadd 101 101 3463 [ 3037 | 2264 9.95e-7 | 1.00e-6 | 9.99e-7 | 8.38e-7 | 7.32e-7 | 4.36e-7 97.5 [ 61.9 | 41.7
gkade 201 201 6908 | 5457 | 5692 9.99e-7 | 9.92e-7 | 9.99e-7 | 9.90e-7 | 8.09e-7 | 6.68e-7 313.2 | 258.6 | 189.1
gkadf 501 501 12679 | 9744 | 9366 1.00e-6 | 9.98e-7 | 9.99e-7 4.77e-7 | 1.45e-6 | 3.52e-7 2993.1 | 2669.6 | 1480.2
gkabd 101 101 4637 | 3854 | 3104 9.99e-7 | 9.99¢-7 | 9.99¢e-7 | 6.91e-7 | 6.81e-7 | 1.96e-7 119.6 | 86.3 | 54.4
gkabe 201 201 5310 | 4385 | 4328 9.99e-7 | 1.00e-6 | 1.00e-6 | 6.01e-7 | 5.17e-7 | 3.45e-7 241.4 ] 189.3 | 143.5
gkabf 501 501 9823 | 9659 | 9751 9.99e-7 | 9.99e-7 | 1.00e-6 | 5.99e-6 | 1.25e-6 | 3.60e-7 | 2856.3 | 2557.7 | 1569.5
gka6b 71 71 1182 | 983 | 1834 9.98e-7 | 9.96e-7 | 9.99e-7 | 5.99e-6 | 7.49e-6 | 1.39e-5 6.5]48]7.1
gka6d 101 101 3406 | 2619 | 2426 1.00e-6 | 1.00e-6 | 9.98e-7 | 7.98e-7 | 8.84e-7 | 6.07e-7 54.6 | 28.0 | 25.2
gka7b 81 81 425 [ 389 [ 522 9.83e-7 | 9.89e-7 | 9.93e-7 | 5.98e-6 | 5.62e-6 | 1.36e-5 7.815.716.0
gka7d 101 101 2829 | 2339 | 1678 1.00e-6 | 9.99e-7 | 9.99e-7 | 3.15e-7 | 5.08e-7 | 3.05e-7 63.9 | 41.3 | 25.0
gka8b 91 91 1236 | 1192 | 1762 9.98e-7 | 9.95e-7 | 1.00e-6 2.05e-5 | 2.41e-6 | 4.82e-5 27.2]123.7]26.9
gka8d 101 101 3082 | 2720 | 1828 9.98e-7 | 1.00e-6 | 9.98e-7 | 5.82e-8 | 1.47e-7 | 5.81e-9 76.8 | 57.0 | 32.2
gka9b 101 101 2894 | 2148 | 3476 9.99e-7 | 1.00e-6 | 9.99e-7 | 1.73e-5 | 1.61e-5 | 3.23e-5 68.9 | 50.1 | 58.1
gka9d 101 101 3280 | 2720 | 1737 9.98e-7 | 9.97e-7 | 9.97e-7 | 3.38e-7 | 3.47e-7 | 1.12e-7 82.8 | 62.7 | 31.8
gkalOb 126 126 2571 | 2226 | 3279 1.00e-6 | 1.00e-6 | 1.00e-6 | 2.96e-5 | 2.65e-5 | 5.09e-5 67.8 | 61.6 | 64.9
gkalOd 101 101 4059 | 3555 | 2974 9.99e-7 | 1.00e-6 | 1.00e-6 | 5.14e-7 | 4.28e-7 | 4.08e-7 104.5 [ 81.2 [ 54.5
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Table 3 The performance of our projection method, ADMM4d and ADM-G on the CQSDP problems with ¢(X) =

(seed = 1). In the table, “PM” and “4d” stands for our projection method and ADMM4d, respectively.

X

iteration 4 dg time (second)
problem mg ns 4d | PM 4d | PM 4d | PM 4d | PM
bqp50-1 51 51 2068 | 1668 | 2087 1.00e-6 | 9.99¢-7 | 1.00e-6 2.58e-7 | 5.73e-7 | 1.35e-7 10.5 | 13.3 | 7.8
bqp50-2 51 51 2184 | 1859 | 1941 1.00e-6 | 9.99e-7 | 9.98e-7 4.74e-7 | 4.87e-7 | 1.29e-6 19.4 | 24.7 | 12.5
bqp50-3 51 51 1672 | 1282 | 1188 9.98e-7 | 9.96e-7 | 9.97e-7 8.41e-7 | 3.52e-7 | 1.98e-7 20.0 | 18.3 | 11.5
bqp50-4 51 51 1186 | 795 | 802 9.38e-7 | 9.53e-7 | 9.55e-7 3.39e-7 | 1.99e-7 | 5.32e-7 16.6 | 11.1 | 7.9
bagp50-5 51 51 1530 | 1179 | 1285 9.98e-7 | 9.96e-7 | 9.92e-7 | 4.31e-7 | 3.03e-7 | 2.94e-7 22.7|17.7 | 14.9
bagp50-6 51 51 2735 | 2276 | 2882 9.99e-7 | 9.98e-7 | 9.99e-7 1.49e-8 | 7.00e-8 | 6.78e-8 46.6 | 34.5 | 36.3
bqgp50-7 51 51 1236 | 895 | 933 9.93e-7 | 9.75e-7 | 9.98e-7 7.08e-7 | 3.06e-7 | 1.26e-7 21.9|13.4 | 12.6
bqp50-8 51 51 1264 | 953 | 875 9.94e-7 | 9.87e-7 | 9.95e-7 3.72e-7 | 3.21e-7 | 6.34e-7 22.7|15.1 | 11.6
bqp50-9 51 51 1196 | 871 | 765 9.79e-7 | 9.64e-7 | 1.00e-6 7.66e-8 | 2.45e-7 | 4.25e-7 23.5 | 12.7 ] 9.8
bqp50-10 51 51 1046 | 808 | 857 9.76e-7 | 9.86e-7 | 9.99e-7 8.48e-8 | 3.42e-7 | 3.02e-8 20.2 | 12.9 | 11.5
bqp100-1 101 101 1484 | 1084 | 974 9.86e-7 | 9.94e-7 | 9.98e-7 1.54e-6 | 7.14e-7 | 1.91e-6 36.2 | 22.5 | 17.5
bqp100-2 101 101 1976 | 1728 | 1474 9.98e-7 | 9.97e-7 | 9.97e-7 7.88e-8 | 2.60e-8 | 2.12e-7 50.8 | 35.3 | 26.7
bqp100-3 101 101 1822 | 1297 | 1176 9.95e-7 | 9.98e-7 | 9.93e-7 1.50e-6 | 2.08e-6 | 1.70e-6 45.3 | 25.2 | 22.1
bqp100-4 101 101 2388 | 1918 | 1778 9.96e-7 | 1.00e-6 | 9.98e-7 1.78e-7 | 1.81e-7 | 6.82e-7 61.0 | 37.2 | 32.2
bqp100-5 101 101 24341 1934 | 1634 9.96e-7 | 9.97e-7 | 9.96e-7 3.65e-7 | 6.34e-7 | 1.48e-6 62.8 | 38.8 | 30.3
bqp100-6 101 101 2336 | 1912 | 1584 9.98e-7 | 9.99¢-7 | 9.98e-7 6.32e-7 | 2.67e-7 | 4.72e-7 58.4 | 39.9 | 29.5
bqp100-7 101 101 1703 | 1167 | 1036 9.98e-7 | 9.96e-7 | 9.96e-7 9.20e-7 | 8.12e-8 | 9.06e-7 41.6 | 24.1 | 18.9
bqp100-8 101 101 2405 | 1853 | 2099 9.96e-7 | 9.99e-7 | 1.00e-6 6.46e-7 | 4.71e-7 | 2.05e-9 60.3 | 38.6 | 40.6
bqp100-9 101 101 3052 | 2748 | 2653 9.93e-7 | 1.00e-6 | 9.93e-7 6.61e-7 | 2.68e-7 | 9.24e-7 74.7 | 55.4 | 50.5
bgp100-10 101 101 2396 | 1984 | 1664 9.99e-7 | 9.98e-7 | 9.98e-7 6.36e-7 | 6.56e-7 | 2.93e-7 58.5 | 40.6 | 30.7
bqp250-1 251 251 3349 | 2598 | 2148 1.00e-6 | 9.98e-7 | 9.99e-7 1.52e-6 | 7.23e-7 | 2.00e-6 173.7 | 121.8 | 98.2
bqp250-2 251 251 3576 | 2751 | 2335 9.93e-7 | 1.00e-6 | 9.99e-7 1.05e-6 | 1.18e-6 | 1.33e-6 178.5 [ 126.7 [ 111.2
bqp250-3 251 251 3423 | 2626 | 2076 9.99e-7 | 9.97e-7 | 9.97e-7 5.07e-7 | 1.08e-6 | 1.81e-6 171.5]122.0 ] 96.1
bqp250-4 251 251 3187 | 2406 | 1864 9.96e-7 | 1.00e-6 | 9.96e-7 1.37e-6 | 1.57e-6 | 1.36e-6 161.6 | 114.8 | 83.3
bqp250-5 251 251 4186 | 3137 | 3136 9.99e-7 | 9.99e-7 | 9.99e-7 9.44e-7 | 9.50e-7 | 9.17e-7 210.1 | 145.1 | 143.9
bqp250-6 251 251 3044 | 2396 | 1914 9.97e-7 | 9.96e-7 | 9.96e-7 1.02e-6 | 1.62e-6 | 2.72e-6 155.4 | 111.6 | 87.5
bqp250-7 251 251 3446 | 2637 | 1960 9.97e-7 | 9.94e-7 | 9.96e-7 2.42e-7 | 8.63e-7 | 2.17e-6 177.0 | 126.1 | 91.5
bqp250-8 251 251 3001 | 2256 | 1847 9.98e-7 | 9.96e-7 | 9.97e-7 | 4.15e-7 | 8.46e-7 | 1.00e-6 149.7 | 107.4 | 84.7
bqp250-9 251 251 3398 | 2547 | 1984 1.00e-6 | 1.00e-6 | 9.95e-7 | 4.17e-7 | 6.05e-7 | 2.32e-6 174.4 | 123.7 | 87.6
bqp250-10 251 251 3108 | 2433 | 1883 9.96e-7 | 9.96e-7 | 9.99e-7 6.52e-7 | 1.01e-6 | 2.14e-6 161.3 | 117.5 | 83.5
bel00.1 101 101 2489 | 1858 | 2018 9.98e-7 | 9.96e-7 | 1.00e-6 4.13e-7 | 8.70e-7 | 6.45e-7 16.9 | 19.1 | 12.6
bel00.2 101 101 3436 | 2598 | 2071 9.98e-7 | 1.00e-6 | 9.97e-7 7.04e-7 | 8.52e-7 | 9.03e-7 47.2 1 49.2 | 30.1
bel00.3 101 101 2205 | 1716 | 1317 9.99e-7 | 9.98e-7 | 9.93e-7 7.06e-7 | 8.55e-7 | 6.23e-7 40.2 | 35.4 | 22.1
bel00.4 101 101 2075 | 1566 | 1484 9.99e-7 | 9.97e-7 | 9.99e-7 8.19e-8 | 1.75e-7 | 2.94e-7 41.7 | 30.2 | 25.8
bel00.5 101 101 2250 | 1728 | 1601 1.00e-6 | 9.98e-7 | 9.99e-7 7.35e-7 | 5.10e-7 | 9.83e-8 49.2 | 36.1 | 28.2
bel00.6 101 101 1937 | 1509 | 1699 1.00e-6 | 9.96e-7 | 1.00e-6 1.28e-7 | 2.24e-7 | 7.07e-7 42.5 | 31.0 | 31.6
bel00.7 101 101 2059 | 1505 | 1335 9.99e-7 | 9.95e-7 | 9.98e-7 8.04e-7 | 1.56e-6 | 1.25e-6 45.4 1 29.4 | 24.6
bel00.8 101 101 2015 | 1443 | 1207 9.92e-7 | 9.97¢-7 | 1.00e-6 3.25e-7 | 7.88e-8 | 1.54e-7 44.6 | 30.3 | 21.7
bel00.9 101 101 1833 | 1407 | 1484 9.95e-7 | 9.95e-7 | 9.95e-7 6.53e-7 | 8.63e-7 | 1.35e-6 40.9 | 29.0 | 28.0
bel00.10 101 101 1676 | 1274 | 1254 1.00e-6 | 9.98e-7 | 9.91e-7 7.95e-7 | 7.29e-7 | 6.95e-8 38.6 | 25.1 | 22.6
bel20.8.1 121 121 2010 | 1479 | 1366 9.95e-7 | 9.90e-7 | 9.99e-7 5.66e-7 | 8.62e-7 | 1.65e-8 16.4 | 33.7 | 24.2
bel20.8.2 121 121 2437 | 1723 | 1817 9.99e-7 | 9.97e-7 | 9.97e-7 2.98e-7 | 5.87e-7 | 5.65e-7 41.5 | 38.9 | 33.0
bel20.8.3 121 121 2376 | 1859 | 1567 9.96e-7 | 9.98e-7 | 9.99e-7 2.68e-7 | 5.13e-8 | 2.10e-8 49.6 | 41.5 | 29.1
bel20.8.4 121 121 2174 | 1617 | 1477 1.00e-6 | 9.94e-7 | 9.96e-7 | 4.52e-7 | 8.92e-7 | 6.53e-7 51.1 | 36.4 | 28.1
bel20.8.5 121 121 2247 | 1670 | 1678 9.95e-7 | 9.93e-7 | 9.99e-7 6.41e-7 | 5.99e-7 | 3.38e-7 54.6 | 38.1 | 33.4
bel20.8.6 121 121 1965 | 1524 | 1368 9.91e-7 | 9.97e-7 | 9.95e-7 9.60e-7 | 1.32¢-6 | 1.96e-8 47.3 1 33.7 | 27.4
bel20.8.7 121 121 2394 | 1683 | 1480 9.75e-7 | 9.93e-7 | 9.81e-7 4.43e-7 | 5.57e-7 | 1.58e-7 62.6 | 37.2 | 29.9
bel20.8.8 121 121 2175 | 1557 | 1366 9.97e-7 | 9.92e-7 | 9.99e-7 2.29e-7 | 1.29e-7 | 1.97e-7 56.3 | 35.0 | 26.6
bel20.8.9 121 121 1972 | 1496 | 1296 9.92e-7 | 9.92e-7 | 1.00e-6 7.83e-7 | 9.07e-7 | 7.65e-7 49.7 | 35.1 | 27.1
bel20.8.10 121 121 2301 | 1738 | 1532 1.00e-6 | 9.95e-7 | 9.97e-7 8.41e-7 | 8.30e-7 | 1.59e-6 61.7 | 38.1 | 30.6
be250.1 251 251 2632 | 1955 | 1754 9.97e-7 | 1.00e-6 | 9.98e-7 1.09e-6 | 1.03e-6 | 1.93e-6 131.5 | 43.7 | 43.1
be250.2 251 251 2872 | 2235 | 2472 9.99e-7 | 9.99e-7 | 9.94e-7 5.06e-7 | 4.80e-7 | 3.31e-7 144.7 | 87.1 | 99.2
be250.3 251 251 2283 | 1603 | 1510 9.78e-7 | 9.91e-7 | 9.99e-7 4.03e-7 | 7.85e-7 | 2.90e-6 111.2 ] 70.9 | 60.9
be250.4 251 251 2318 | 1655 | 1593 9.90e-7 | 9.97e-7 | 9.94e-7 3.87e-7 | 3.26e-8 | 2.58e-6 116.2 | 76.9 | 67.6
be250.5 251 251 2117 | 1550 | 1555 9.96e-7 | 1.00e-6 | 9.94e-7 1.32e-7 | 4.40e-7 | 2.52¢-6 101.5 | 72.8 | 64.3
be250.6 251 251 2243 | 1604 | 1525 1.00e-6 | 9.98e-7 | 9.92e-7 | 4.02e-8 | 4.19e-7 | 2.20e-6 109.4 | 77.7 | 64.8
be250.7 251 251 2224 ]| 1613 | 1568 1.00e-6 | 9.96e-7 | 9.95e-7 1.42e-7 | 5.85e-8 | 2.79e-6 108.9 | 77.5 | 68.2
be250.8 251 251 2335 | 1594 | 1512 9.96e-7 | 9.84e-7 | 1.00e-6 4.21e-7 | 5.32e-7 | 2.28e-6 113.4 | 73.0 | 67.8
be250.9 251 251 2698 | 2130 | 1931 1.00e-6 | 1.00e-6 | 1.00e-6 8.26e-7 | 1.47e-7 | 5.47e-7 131.8 | 101.0 | 84.9
be250.10 251 251 2348 | 1709 | 1573 9.99e-7 | 1.00e-6 | 9.95e-7 1.20e-6 | 2.09e-7 | 2.62e-6 113.579.2 ] 70.6
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Table 4 The performance of our projection method, ADMM4d and ADM-G on the CQSDP problems with ¢(X) = X
(seed = 1). In the table, “PM” and “4d” stands for our projection method and ADMM4d, respectively.

iteration 0 dg time (second)
problem meg ns 4d | PM 4d | PM 4d | PM 4d | PM
thetad 1949 200 596 | 523 | 402 9.99e-7 | 9.90e-7 | 9.91e-7 9.72e-7 | 1.48e-6 | 1.50e-6 6.2]4.7]| 3.6
thetad2 5986 200 510 | 459 | 461 9.97e-7 | 9.97e-7 | 9.91e-7 3.41e-7 | 9.38e-7 | 5.34e-7 5.6 4.6]4.1
theta6 4375 300 567 | 516 | 452 9.97e-7 | 9.93e-7 | 8.82e-7 1.25e-6 | 1.32e-6 | 8.74e-7 15.6 | 15.0 | 8.4
theta62 13390 300 440 | 414 | 513 9.81e-7 | 9.88e-7 | 9.91e-7 9.38e-7 | 1.28e-6 | 8.33e-7 18.7 1 16.9 | 15.0
theta8 7905 400 688 | 598 | 462 9.83e-7 | 1.00e-6 | 7.75e-7 4.28e-7 | 1.00e-6 | 4.22e-7 51.4 | 47.6 | 28.9
theta82 23872 400 485 | 393 | 490 9.84e-7 | 9.76e-7 | 9.99e-7 7.84e-7 | 1.48e-6 | 1.02e-6 43.4 ] 37.6 | 38.5
thetalO 12470 500 607 | 632 | 530 8.06e-7 | 9.98e-7 | 7.48e-7 6.05e-7 | 1.08e-6 | 5.57e-7 86.8 | 95.7 | 69.6
thetal02 37467 500 573 | 469 | 518 9.95e-7 | 9.83e-7 | 9.95e-7 1.53e-6 | 1.61e-6 | 9.54e-7 90.8 | 74.0 | 75.8
thetal03 62516 500 482 | 463 | 679 9.31e-7 | 9.91e-7 | 9.85e-7 1.79e-6 | 2.16e-6 | 2.56e-6 82.2 | 74.1 | 102.3
thetal04 87254 500 511 | 495 | 896 9.99e-7 | 9.87e-7 | 9.89e-7 2.57e-6 | 2.65e-6 | 3.75e-6 92.7 | 79.0 | 127.7
MANN-a27 703 378 1284 | 697 | 2564 9.13e-7 | 9.74e-7 | 9.55e-7 2.41e-6 | 2.11e-6 | 1.58e-6 89.4 | 47.3 | 166.2
san200-0.7-1 5971 200 2551 | 2029 | 3564 | 9.97e-7 | 8.57e-7 | 9.94e-7 1.97e-6 | 2.11e-6 | 6.61e-6 102.8 | 72.5 | 122.8
sanr200-0.7 6033 200 478 | 440 | 509 9.82e-7 | 9.76e-7 | 9.86e-7 9.44e-7 | 9.88e-7 | 6.19e-7 19.2 ] 15.2 | 16.7
c-fat200-1 18367 200 1015 [ 987 [ 970 9.91e-7 | 9.91e-7 | 9.86e-7 2.91e-7 | 2.20e-7 | 1.63e-7 39.1 | 29.8 | 26.0
brock200-1 5067 200 489 | 413 | 474 9.84e-7 | 9.90e-7 | 9.95e-7 7.96e-7 | 8.33e-7 | 3.89e-7 21.5 ] 14.9 | 15.9
brock200-4 6812 200 409 | 382 | 560 9.88e-7 | 9.94e-7 | 9.78e-7 1.09e-6 | 1.21e-6 | 1.08e-6 18.2 | 12.4 | 17.8
brock400-1 20078 400 570 | 473 | 387 9.87e-7 | 9.87e-7 | 9.92e-7 6.55e-7 | 1.29e-6 | 6.72e-7 62.5 | 52.1 | 39.2
keller4 5101 171 819 | 724 | 794 9.94e-7 | 9.96e-7 | 9.93e-7 4.66e-7 | 5.57e-7 | 5.22e-7 25.3119.4]19.5
p-hat300-1 33918 300 1184 | 946 | 1237 9.99e-7 | 1.00e-6 | 9.86e-7 1.45e-6 | 1.44e-6 | 1.66e-6 80.9 | 58.8 | 72.7
1dc.128 1472 128 1129 | 855 | 786 9.88e-7 | 9.92e-7 | 9.93e-7 3.41e-7 | 2.98e-6 | 8.59e-7 29.7 | 18.4 | 15.7
let.128 673 128 1279 | 1239 | 997 9.90e-7 | 9.96e-7 | 9.99¢e-7 | 2.72E-10 | 1.26e-7 | 2.55e-7 31.9 ] 26.7 | 19.0
1tc.128 513 128 1041 [ 928 | 1161 9.79e-7 | 9.34e-7 | 9.98e-7 2.43e-6 | 4.36e-7 | 3.92e-6 27.1120.3 | 24.5
1zc.128 1128 128 272 | 251 | 321 9.65e-7 | 8.51e-7 | 7.37e-7 2.46e-6 | 1.54e-6 | 4.47¢-8 6.9]54]|5.8
1dc.256 3840 256 2583 | 2331 | 1722 1.00e-6 | 9.98e-7 | 9.96e-7 3.95e-6 | 3.92e-6 | 4.26e-6 130.2 | 102.9 | 70.1
let.256 1665 256 2781 | 3755 | 1614 | 9.99e-7 | 1.00e-6 | 9.99e-7 5.85e-7 | 5.02e-7 | 7.86e-7 133.9 | 176.1 | 61.6
1tc.256 1313 256 5263 | 4018 | 2997 1.00e-6 | 1.00e-6 | 9.99e-7 1.52e-6 | 1.68e-6 | 1.36e-6 254.1 | 171.1 | 119.7
1zc.256 2817 256 295 | 250 | 307 9.22e-7 | 9.01e-7 | 9.49e-7 1.73e-6 | 9.48e-7 | 9.18e-7 13.4 9.1 ] 10.6
gkald 101 101 1356 | 1074 | 953 9.90e-7 | 9.96e-7 | 9.98e-7 2.02e-7 | 3.85e-7 | 8.48e-7 30.96.0]4.7
gkale 201 201 2565 | 1946 | 1881 9.97e-7 | 1.00e-6 | 1.00e-6 1.11e-6 | 7.63e-7 | 1.06e-6 91.8 [ 35.8 | 27.8
gkalf 501 501 3222 | 2454 | 2177 1.00e-6 | 9.95e-7 | 9.99e-7 2.04e-7 | 1.43e-6 | 3.11e-6 479.5 | 299.6 | 290.6
gka2d 101 101 1339 | 953 | 855 9.90e-7 | 9.77e-7 | 9.96e-7 4.62e-7 | 5.26e-7 | 1.38e-6 31.6 | 15.7 | 15.3
gka2e 201 201 2328 | 1743 | 1434 9.98e-7 | 9.94e-7 | 9.94e-7 8.47e-7 | 7.39e-7 | 6.16e-7 91.6 | 52.0 | 45.8
gka2f 501 501 4937 | 3907 | 3063 | 9.95e-7 | 1.00e-6 | 9.99e-7 9.45e-7 | 2.03e-7 | 6.75e-7 766.3 | 532.5 | 445.3
gka3d 101 101 2339 | 1944 | 1877 | 9.77e-7 | 9.93e-7 | 9.65e-7 3.14e-7 | 2.90e-7 | 3.86e-7 55.1 | 33.6 | 33.9
gka3e 201 201 3458 | 2785 | 2477 | 9.98e-7 | 9.97e-7 | 9.99e-7 7.81e-7 | 9.36e-7 | 2.80e-7 133.2 | 88.5 | 79.0
gka3f 501 501 6603 | 5240 | 4600 | 9.99e-7 | 9.99e-7 | 9.99e-7 1.08e-6 | 9.29e-7 | 7.40e-7 1009.6 | 741.2 | 678.9
gkadd 101 101 1747 | 1200 | 1184 9.94e-7 | 9.95e-7 | 9.99e-7 7.67e-7 | 4.85e-7 | 9.53e-7 39.3[21.1]21.1
gkade 201 201 2993 | 2328 | 1729 | 9.87e-7 | 9.89e-7 | 9.95e-7 8.91e-8 | 8.71e-7 | 1.56e-6 110.0 | 70.1 | 53.6
gkadf 501 501 6225 | 5246 | 4244 1.00e-6 | 9.99e-7 | 9.98e-7 8.99e-7 | 1.57e-6 | 1.85e-6 962.8 | 752.6 | 618.2
gkabd 101 101 1775 | 1159 | 1117 | 9.74e-7 | 9.99e-7 | 9.91e-7 7.41e-7 | 4.86e-9 | 1.21e-6 42.9 | 20.1 | 20.4
gkabe 201 201 3624 | 2781 | 2599 | 9.97e-7 | 9.99e-7 | 9.98e-7 7.16e-7 | 6.03e-7 | 7.11e-7 132.8 | 86.1 | 81.2
gkabf 501 501 6598 | 5522 | 4783 | 9.96e-7 | 1.00e-6 | 9.98e-7 1.02e-6 | 1.53e-6 | 1.62e-6 982.1 | 794.6 | 677.6
gka6b 71 71 784 | 789 | 968 9.95e-7 | 9.90e-7 | 9.96e-7 1.99e-5 | 2.29e-5 | 4.73e-5 15.3 | 3.5 | 14.5
gka6d 101 101 1889 [ 1375 | 1156 | 9.97e-7 [ 9.92e-7 | 9.97e-7 3.05e-7 | 6.49e-7 | 1.97e-7 45.0 | 10.5 | 21.0
gka7b 81 81 799 [ 671 [ 955 9.98e-7 | 9.94e-7 | 9.94e-7 1.23e-5 | 1.33e-5 | 2.82e-5 16.5 [ 7.7 ] 14.7
gka7d 101 101 1711 | 1273 | 1196 | 9.98e-7 | 9.95e-7 | 9.97e-7 5.38e-7 | 8.34e-7 | 5.01e-7 39.5119.4 | 20.7
gka8b 91 91 922 | 795 | 1335 9.98e-7 | 9.95e-7 | 9.94e-7 2.72e-5 | 2.72e-5 | 5.46e-5 19.9 | 12.9 | 20.9
gka8d 101 101 1873 | 1367 | 1284 | 9.94e-7 | 9.58e-7 | 9.97e-7 7.97e-7 | 1.33e-6 | 5.78e-7 44.1123.4]23.3
gka9b 101 101 851 | 751 | 1313 9.97e-7 | 9.95e-7 | 9.96e-7 1.54e-5 | 1.64e-5 | 2.63e-5 19.1 ] 13.3 | 24.4
gka9d 101 101 1713 | 1293 | 1215 | 9.87e-7 | 9.72e-7 | 9.95e-7 5.08e-7 | 1.85e-7 | 1.06e-7 41.0 | 24.6 | 21.4
gkalOb 126 126 | 3619 | 2319 | 4351 1.00e-6 | 1.00e-6 | 1.00e-6 4.62e-5 | 4.98e-5 | 1.12e-4 93.9 | 47.2 | 86.7
gkalOd 101 101 2257 | 1697 | 1519 1.00e-6 | 9.97e-7 | 1.00e-6 7.17e-7 | 3.03e-7 | 1.01e-6 56.9 | 33.2 | 27.4
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