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CONVERGENCE ANALYSIS OF SAMPLE AVERAGE
APPROXIMATION OF TWO-STAGE STOCHASTIC GENERALIZED
EQUATIONS*

XIAOJUN CHENT, ALEXANDER SHAPIRO?, AND HAILIN SUN$

Abstract. A solution of two-stage stochastic generalized equations is a pair: a first stage
solution which is independent of realization of the random data and a second stage solution which is
a function of random variables. This paper studies convergence of the sample average approximation
of two-stage stochastic nonlinear generalized equations. In particular an exponential rate of the
convergence is shown by using the perturbed partial linearization of functions. Moreover, sufficient
conditions for the existence, uniqueness, continuity and regularity of solutions of two-stage stochastic
generalized equations are presented under an assumption of monotonicity of the involved functions.
These theoretical results are given without assuming relatively complete recourse, and are illustrated
by two-stage stochastic non-cooperative games of two players.
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1. Introduction. Consider the following two-stage Stochastic Generalized
Equations (SGE)

(1.1) 0 € EB[@(z,y(€),§)] + T1(2), z € X,
(1.2) 0€ ¥(z,y(£),8) +T2(y(§),§), forae &€k

Here X C R™ is a nonempty closed convex set, £ : @ — R? is a random vector
defined on a probability space (€2, F,P), whose probability distribution P = Po¢~1! is
supported on set Z := £(Q) C R4, @ : R" xR™xR? — R" and ¥ : R" xR™xR? — R™,
and I'; : R® = R™, Ty : R™ x E = R™ are multifunctions (point-to-set mappings).
We assume throughout the paper that ®(-,-,&) and V(- -, &) are Lipschitz continuous
with Lipschitz modules x¢(§) and kg (§), and y(-) € Y with Y being the space of
measurable functions from = to R™ such that the expected value in (1.1) is well
defined.

Solutions of (1.1)—(1.2) are searched over x € X and y(-) € Y to satisfy the
corresponding inclusions, where the second stage inclusion (1.2) should hold for almost
every (a.e.) realization of £. The first stage decision x is made before observing
realization of the random data vector £ and the second stage decision y(€) is a function
of &.

When the multifunctions I'y and I'; have the following form

Ty(z) :=Ne(z) and Ta(y,§) = Nk (y),
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2 X. CHEN, A. SHAPIRO AND H. SUN

where N (x) is the normal cone to a nonempty closed convex set C C R™ at =z,
and similarly for N (¢)(y), the SGE (1.1)-(1.2) reduce to the two-stage Stochastic
Variational Inequalities (SVI) as in [2, 21]. The two-stage SVI represent first order
optimality conditions for the two-stage stochastic optimization problem [1, 23] and
model several equilibrium problems in stochastic environment [2, 4]. Moreover, if the
sets C and K (€), £ € E, are closed convex cones, then

Ne(z)={z*€C*: 22" =0}, z € C,

where C* = {z* : 2T2* <0, Vo € C} is the (negative) dual of cone C. In that case
the SGE (1.1)—(1.2) reduce to the following two-stage stochastic cone VI

C>z LE[®(x,y(),8)] € -C" zeX,
K(&) > y(&) L ¥(z,y(§),§) € —K7(§), forae {€E.

In particular when C' := R} with C* = —R%, and K(§) := R} with K*(§) =
—R7T for all £ € Z, the SGE (1.1)-(1.2) reduce to the two-stage Stochastic Nonlinear
Complementarity Problem (SNCP):

0 <z LE[®(z,y(£),£)] =20,
0<y(&) L ¥(z,y(§),£) =0, forae eE,

which is a generalization of the two-stage Stochastic Linear Complementarity Problem

(SLCP):

(1.3) 0<z L Az +E[B(&)y(é)] +
(1.4) 0<y(&) L L(E)x+ M(€)y(¢ )+q2( ) >0, forae £€g,

where A€ R"*" B:Z R L[:ZE5R™" M:Z—>R™™ ¢ e R" ¢ :E —
R™. The two-stage SLCP arises from the KKT condition for the two-stage stochastic
linear programmming [2]. Existence of solutions of (1.3)-(1.4) has been studied in [3].
Moreover, the progressive hedging method has been applied to solve (1.3)-(1.4), with
a finite number of realizations of &, in [19].

Most existing studies for two-stage stochastic problems assume relatively complete
recourse, that is, for every x € X and a.e. £ € = the second stage problem has at least
one solution. However, for the SGE (1.1)—(1.2), it could happen that for a certain
first stage decision z € X, the second stage generalized equation

(1.5) 0€ U(x,y, &) +Ta(y, &)

does not have a solution for some ¢ € =. For such  and ¢ the second stage decision
y(€) is not defined. If this happens for £ with positive probability, then the expected
value of the first stage problem is not defined and such x should be avoided.

In this paper, without assuming relatively complete recourse, we study conver-
gence of the Sample Average Approximation (SAA)

N

(1.6) 0eNTY ®(z,y;,&) +Ti(2), z € X,
j=1
(L.7) 0€ ¥(w,y;,&) +Ta(y;, &), =1, N,

of the two-stage SGE (1.1)-(1.2) with y; being a copy of the second stage vector
for € = &7, 5 =1,..,N, where &',...,&" is an independent identically distributed
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TWO-STAGE STOCHASTIC GENERALIZED EQUATIONS 3

(iid) sample of random vector £&. The paper is organized as follows. In section 2 we
investigate almost sure and exponential rate of convergence of solutions of the sample
average approximations of the two-stage SGE. In section 3 convergence analysis of the
mixed two-stage SVI-NCP is presented. In particular we give sufficient conditions for
the existence, uniqueness, continuity and regularity of solutions by using the perturbed
linearization of functions ® and W. Theoretical results, given in sections 2 and 3, are
illustrated by numerical examples, using the Progressive Hedging Method (PHM),
in section 4. It is worth noting that PHM is well-defined for two-stage monotone
SVI without relatively complete recourse. Finally section 5 is devoted to conclusion
remarks.

We use the following notation and terminology throughout the paper. Unless
stated otherwise ||z|| denotes the Euclidean norm of vector z € R". By B := {z :
||lz|| < 1} we denote unit ball in a considered vector space. For two sets A, B C R™
we denote by d(z, B) := infyep ||z — y| distance from a point € R™ to the set B,
d(z,B) = +oo if B is empty, by D(A, B) := sup,c4 d(z, B) the deviation of set A
from the set B, and H(A, B) := max{D(A, B),D(B, A)}. The indicator function of a
set A is defined as T4(z) =0 for x € A and I4(x) = 400 for x € A. By bd(A4), int(A)
and cl(A) we denote the boundary, interior and topological closure of a set A C R™.
By reint(A) we denote the relative interior of a convex set A C R™. A multifunction
(point-to-set mappings) I' : R™ = R™ assigns to a point € R™ a set I'(xz) C R™.
A multifunction T : R® = R™ is said to be closed if x, — z, xf € I'(xy) and
xy — ¥, then z* € T'(x). It is said that a multifunction I' : R™ = R™ is monotone,
if (x—2")T(y—1y') >0, for all z,2/ € R", and y € I'(z), ¥y € I'(z'). Note that
for a nonempty closed convex set C, the normal cone multifunction I'(z) := N¢(z)
is closed and monotone. Note also that the normal cone Ng(z), at * € C, is the
(negative) dual of the tangent cone T¢ (). We use the same notation for £ considered
as a random vector and as a variable £ € R%. Which of these two meanings is used
will be clear from the context.

2. Sample average approximation of the two-stage SGE. In this section
we discuss statistical properties of the first stage solution &y of the SAA problem
(1.6)—(1.7). In particular we investigate conditions ensuring convergence of &y, with
probability one (w.p.1) and exponential, to its counterpart of the true problem (1.1)-
(1.2).

Denote by X the set of x € X such that the second stage generalized equation
(1.5) has a solution for a.e. ¢ € E. The condition of relatively complete recourse
means that X = X. Note that X is a subset of X, and if (z,g(-)) is a solution of
(1.1)—(1.2), then € X. It is possible to formulate the two-stage SGE (1.1)—(1.2) in
the following equivalent way. Let §(x,&) be a solution function of the second stage
problem (1.5) for x € X and & € E, i.e.,

0€ ¥(x,§(x,8),8) + Ta(4(x,£),8), € X, ae. £ EE.
Then the first stage problem becomes
(2.1) 0 € E[®(z,9(x,€),8)] +T1(x), x € X.

If 7 is a solution of (2.1), then (Z, §(Z,-)) is a solution of (1.1)—(1.2). Conversely if
(Z,5(+)) is a solution of (1.1)—(1.2), then Z is a solution of (2.1). Note that problem
(2.1) is a generalized equation which has been studied in the past decades, e.g. [15,
18, 20, 22).

This manuscript is for review purposes only.
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4 X. CHEN, A. SHAPIRO AND H. SUN

It could happen that the second stage problem (1.5) has more than one solution
for some z € X. In that case choice of g(z, &) is somewhat arbitrary. This motivates
the following condition.

ASSUMPTION 2.1. For every (x,§) € X X E, problem (1.5) has a unique solution.

Under Assumption 2.1 the value g(z, &) is uniquely defined for all z € X and € € E,
and the first stage problem (2.1) can be written as the following generalized equation

(2.2) 0€o(x)+T1(z), z € X,
where
(2.3) O(x,€) = D(, §(x,),€) and ¢(z) := E[®(z,&))].

If the SGE have relatively complete recourse, then under Assumption 2.1 the SAA
problem (1.6)—(1.7) can be written as

(2.4) 0€ on(z)+Ti(z), z e X,

where ¢y () := N1 Zjvzl & (x,&7) with ®(z,€) defined in (2.3). Problem (2.4) can
be viewed as the SAA of the first stage problem (2.2). If (Zn,9;~) is a solution of
the SAA problem (1.6)-(1.7), then &y is a solution of (2.4) and gjn = §(Zn,&7),
j = 1,...,N. Note that the SAA problem (1.6)—(1.7) can be considered without
assuming the relatively complete recours, although in that case it could happen that
dn () is not defined for some z € X \ X and solution 2 of (1.6) is not implementable
at the second stage for some realizations of the random vector £. Our aim is the
convergence analysis of the SAA problem (1.6)—(1.7) when sample size N increases.
Denote by 8* the set of solutions of the first stage problem (2.2) and by Sn the
set of solutions of the SAA problem (1.6) (in case of relatively complete recourse, Sy
is the set of solutions of problem (2.4) as well).
e By X(£) we denote the set of z € X such that problem (1.5) has a solution,
and by Xy = ﬂ;v:lé?(ﬁj) the set of « such that problems (1.7) have a solution.
Note that the set X is equal to the intersection of X (), a.e. & € E; ie, X =
Neez\rX (&) for some set T C E such that P(T) = 0. Note also that if the two-stage
SGE have relatively complete recourse, then X'(§) = X for a.e. £ € E.

2.1. Almost sure convergence. Consider the solution §(z,&) of the second
stage problem (1.5). To ensure continuity of g(z,&) in x € X for £ € Z, in addition
to Assumption 2.1, we need the following boundedness condition.

ASSUMPTION 2.2. For every & € Z and x € X (€) there is a neighborhood V of x
and a measurable function v(€) such that ||§(z’,&)|| < v(€) for all 2’ € VN X(E).

LEMMA 2.1. Suppose that Assumptions 2.1 and 2.2 hold, and for every & €
the multifunction Ty (-, &) is closed. Then for every & € E the solution §(x,§) is
continuous function of x € X.

o 11

Proof. The proof is quite standard. We argue by a contradiction. Suppose that
for some z € X and £ € = the solution ¢(-,€) is not continuous at . That is,
there is a sequence xp € X converging to & € X such that yi, := g(x, &) does not
converge to § := §(z,£). Then by the boundedness assumption, by passing to a
subsequence if necessary we can assume that y; converges to a point y* different from
g. Consequently 0 € U(xy, yi, &) + L2(yk, &) and U(xg, yk, &) converges to U(Z, y*,§).
Since I's(+,€) is closed, it follows that 0 € ¥(Z,y*, &) + T2(y*,£). Hence by the
uniqueness assumption, y* =  which gives the required contradiction. 0

This manuscript is for review purposes only.
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TWO-STAGE STOCHASTIC GENERALIZED EQUATIONS 5

Suppose for the moment that in addition to the assumptions of Lemma 2.1, the
SGE have relatively complete recourse. We can apply then general results to verify
consistency of the SAA estimates. Consider function ®(z,¢) defined in (2.3). By
continuity of ®(-,-, &) and §(-, ), we have that ®(-,£) is continuous on X. Assuming
further that there is a compact set X’ C X such that §* C X’ and ||®(z, €)||,cx- is
dominated by an integrable function, we have that the function ¢(z) = E[®(z, £)] is
continuous on X’ and ¢y (z) converges w.p.1 to ¢(z) uniformly on X’. Note that the
boundedness condition of Lemma 2.1 and continuity of ®(-,-,£) imply that &(-,€) is
bounded on X’. Then consistency of SAA solutions follows by [23, Theorem 5.12].
We give below a more general result without the assumption of relatively complete
recourse.

LEMMA 2.2. Suppose that Assumptions 2.1 and 2.2 hold. Then for every § € E
the set X (&) is closed.

Proof. For a given ¢ € Z let o3, € X(£) be a sequence converging to a point Z.
We need to show that € X(£). Let yi be the solution of (1.5) for z = z and &.
Then by Assumption 2.2, there is a neighborhood V of Z and a measurable function
v(&) such that ||yx|| < v(€) when x; € V. Hence by passing to a subsequence we can
assume that y; converges to a point § € R™. Since (-, -, ) is continuous and T's(-, £)
is closed it follows that ¢ is a solution of (1.5) for = #, and hence Z € X (€). |

By saying that a property holds w.p.1 for N large enough we mean that there is
a set X C Q of P-measure zero such that for every w € Q \ 3 there exists a positive
integer N* = N*(w) such that the property holds for all N > N*(w) and w € Q\ X.

_ ASSUMPTION 2.3. For any 0 € (0,1), there exists a compact set =5 C E such that
P(Zs) > 1 — 6 and the multifunction As : X = Ej,

(2.5) As(z) :={£ €55 1w € X(6)},

18 upper semicontinuous.
The following lemma shows this assumption holds under mild conditions.

LEMMA 2.3. Suppose ¥(-,-,-) is continuous, Da(+,-) is closed and Assumption 2.2
holds. Then As(-) is upper semicontinuous.

Proof. Consider the second stage generalized equation (1.2) and any sequence
{(zk, Yy, &)} such that z, € X, & € As(xy) with a corresponding second stage
solution yi and (zy, &) — (x*,€*) € X x E. Since ¥ is continuous w.r.t. (z,y,£) and
Ta(+,-) is closed, we have that under Assumption 2.2, {yx} has accumulation points
and any accumulation point y* satisfies

which implies £* € As(z*). This shows that the multifunction As(-) is closed. Since
=5 is compact, it follows that As(+) is upper semicontinuous. d

Note that in the case when Z is compact, we can set § = 0 and replace Z;5 by Z.

THEOREM 2.4. Suppose that: (1) Assumptions 2.1-2.3 hold, (ii) the multifunctions
T1(-) and Ty(+, &), € € E, are closed, (iii) there is a compact subset X' of X such that
S* C X' and w.p.1 for all N large enough the set Sy is nonempty and is contained
in X', (iv) ||®(z,&)||lsex is dominated by an integrable function, (v) the set X is
nonempty. Let 0y := ]D)()E'N NX,xn X’). Then the following statements hold.

This manuscript is for review purposes only.
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6 X. CHEN, A. SHAPIRO AND H. SUN

(a) oy — 0 and D(Sy,S*) — 0 w.p.1 as N — oo.

(b) In addition assume that: (vi) for any 6 > 0, 7 > 0 and a.e. w € §, there
exist v > 0 and No = No(w) such that for any x € XNX'+~vB and N > Ny,
there exists z, € X N X' such that'

(26) |z —al <7, T(z) CTi(z) + 6B, and [dn(z) — dn(2)] < 6.

Then w.p.1 for N large enough it follows that

@1 DSy <raR (s o) - ox@l)
TEXNX'
where fore >0 and t > 0,
R(e) := inf d(O, o(x) + I‘l(x))7

zeXNX’, d(x,8*)>e

R7(t) == inf{e € R, : R(e) > t}.

Proof. Part (a). Let & = ¢J(w), 5 = 1,..., be the iid sample, defined on the
probability space (€2, F,P), and Xy = Xn(w) be the corresponding feasibility set of
the SAA problem. Consider a point € X’ \ X and its neighborhood V; = & + vB
for some v > 0. We have that probability p := P{¢ € Z : & ¢ X(£)} is positive.
Moreover it follows by Assumption 2.3 that we can choose v > 0 such that probability
P{V; N X(£) =0} is positive. Indeed, for § := p/4 consider the multifunction A;
defined in (2.5). By upper semicontinuity of As we have that for any € > 0 there is

~ > 0 such that for all z € V; it follows that As(x) C As(Z) 4+ eB. That is
Upev, {€ €852 € X(6)}C{€ €5 :2€ X))} +eBC{¢€€=:2€ X(§)} +eB.
It follows that we can choose € > 0 small enough such that

P(Ugev, {€€E5:2€ X(§)}) <1-p/2.

Since § = p/4 we obtain
P(Urev, {{ €210 € X(O}) <1-p/4,

Noting that the event {Vf NX(E) = (7]} is complement of the event { Uzev, {£ € 2
z € X(£)}}, we obtain that P {V; N X (&) =0} > p/4.

Consider the event Ey := {Vg N Xy #+ @} . The complement of this event is E'§, =
{Vi NXy = @}. Since the sample &7, j = 1, ..., is iid, we have

P{VanXy #0} < [Lo, P{VanX(&)#0}
2, (1=P{VanX(&) =0}) < (1-p/4)",

and hence Y} Nv_; P{V:NXy #0} < co. It follows by Borel-Cantelli Lemma that
P (limsupy_,oo En) = 0. That is for all N large enough the events ES; happen w.p.1.
Now for a given &€ > 0 consider the set X. := {x € X' : d(z,X) < e}. Since the set
X'\ X. is compact we can choose a finite number of points z1,...,zx € X'\ A. and

1Recall that ¢ () = ¢nN(z,w) are random functions defined on the probability space (92, F,P).

This manuscript is for review purposes only.



TWO-STAGE STOCHASTIC GENERALIZED EQUATIONS 7

their respective neighborhoods Vi, ..., Vi covering the set X’ \ X such that for all N
large enough the events {Vx N Xx = 0}, k = 1,..., K, happen w.p.1. It follows that
w.p.1 for all N large enough Xy is a subset of X.. This shows that 9y tends to zero
w.p.1l.

To show that D(SN, S8*) — 0 w.p.1 the arguments now basically are deterministic,
ie, Oy and Ty € Sy are viewed as random variables, 0y = Oy (w), Zn = En(w),
defined on the probability space (€2, F,P), and we want to show that d(Zy(w),S*)
tends to zero for all w € € except on a set of P-measure zero. Therefore we consider
sequences 0y and Zy as deterministic, for a particular (fixed) w € Q, and drop
mentioning “w.p.1”. Since 0y — 0, there is Zy € X such that |&ny — Zx] tends
to zero. Note that as an intersection of closed sets, the set X is closed. By the
assumption (iv) and continuity of ®(-,£) we have that ¢x(-) converges w.p.1 to ¢(-)
uniformly on the compact set X N X’ (this is the so-called uniform Law of Large
Numbers, e.g., [23, Theorem 7.48]), i.e., for all w € Q except on a set of P-measure
7ero

sup H¢A5N($) —¢(x)|| = 0, as N — oo.
reXNX

By passing to a subsequence if necessary we can assume that &y converges to a point
a*. Tt follows that Zy — z* and hence ¢ (Zn) — ¢(z*). Thus oy (in) — G(z*).
Since I'; is closed it follows that 0 € ¢(a*) + 'y (z*), i.e., * € §*. This completes the
proof of part (a), and also implies that the set S* is nonempty.

Before proceeding to proof of part (b) we need the following lemma.

LEMMA 2.5. Under the assumptions of Theorem 2.4 it follows that R(0) = 0,
R(e) is nondecreasing on [0,00) and R(g) > 0 for all € > 0.

Proof. We only need to show that R(g) > 0 for all € > 0, the other two properties
are immediate. Note that since the set §* is nonempty and S* € X N X', it follows
that the set X N X’ is nonempty. Assume for a contradiction that R(€) = 0 for some
€ > 0. Since X’ is compact, there exists a sequence {zy} C X N X’ converging to a
point Z such that d(zg,S*) > £ and

len;o d(0, ¢(zx) + Ty (xx)) = 0.

Since T’y is closed and ¢(-) is continuous, it follows that 0 € ¢(Z) +T'1(Z), i.e., T € S*
This contradicts the fact that d(z,S*) > &. This competes the proof. d
Note that it follows that R~1(¢) is nondecreasing on [0, o) and tends to zero as t | 0.

Proof of part (b). Let 6 = R(e)/4. By part (a) and the uniform Law of Large
Numbers, we have w.p.1 that for IV large enough

sup_[[¢(x) — o (2)l| < 6.

rzeXNX’

Then w.p.1 for N large enough such that 0y < €, for any point 2 € Xy N X’ with
d(zz,8*) > € it follows that

d(0, () + T () A A
> d06n(2) £ T1(20) ~ (o) + Ta(a) ) + 1)
> d0.6(z) +T1(z2) ~ Bdw(ze) + T(2e), 6(zz) + T z2)

D(¢n (x) + T (), ¢N(Z:z) + 1 (22))

2 d(O ¢(22) + T1(2)) = [On(22), (22 )| — o (), b (22) |
—D(T1(x), T1(2))
> 46—-0—-90—-6=4,

This manuscript is for review purposes only.



8 X. CHEN, A. SHAPIRO AND H. SUN
which implies x ¢ Sy. Then

d(z,8%) < ||z — 2] +d(2:,8) < T+ R < sup [|o(x) — éN(fE)II) :

zeXNX’
This completes the proof. 0

In case of the relatively complete recourse there is no need for condition (vi) and
the estimate (2.7) holds with 7 = 0. It is interesting to consider how strong condition
(vi) is. In the following remark we show that condition (vi) can also hold without the
assumption of relatively complete recourse under mild conditions.

REMARK 2.1. In condition (vi), the third inequality of (2.6) can be easily verified
when N sufficiently large and @(',f) is Lipschitz continuous with Lipschitz module
kg (§) and E[k4 ()] < oo. In Lemma 2.8 and Theorem 3.7 below, we verify the third
inequality of (2.6) under moderate conditions.

Moreover, in the case when I'y(+) := N (+) with a nonempty polyhedral convex set
C, the first and second inequality of (2.6) holds automatically. Let § = {Fy,--- , Fx}
be the family of all nonempty faces of C' and

K={k: XnX'NF,#0,k=1,--- K}

Then w.p.1 for N sufficiently large, X N X' N F), = 0 for all k ¢ K. Note that for all
ke K, XyNX'NFy # (. Moreover, it is important to note that for all 1 € reint(F})
and 2 € Fy, k € {1,--- ,K}, No(z1) € Ne(xz). Then for any 2 € Xy N X"\ X,
there exists k € K such that = € reint(Fy). To see this, we assume for contradiction
that © € Fy, \ reint(F}) for some k € K and there is no k € K such that = € reint(Fy).
Then there exist some k € {1,--- , K} such that = € reint(F}) (if F}, is singleton, then
reint(F};) = Fj) and k ¢ K. This contradicts that Xy N X' N Fy, = () for all k ¢ K.

Note that H()?N ﬂX',XﬁX’) <oy and oy —» 0as N — co w.p.1. Let 2, =
argmin,c yvnx/nr, ||z — z||. Then No(z) € Neo(z,) and for

TN = max _max min |z — ||,
kEK zeXnNX'NFy, 2EXNX'NEY

we have that 7y — 0 as 0y — 0. Hence (2.6) is verified.

2.2. Exponential rate of convergence. We assume in this section that the
set &* of solutions of the first stage problem is nonempty, and the set X is compact.
The last assumption of compactness of X can be relaxed to assuming that there is
a compact subset X’ of X such w.p.1 Sy C X', and to deal with the set X’ rather
than X. For simplicity of notation we assume directly compactness of X.

Under Assumption 2.2 and by Lemma 2.1, we have that @(x, €), defined in (2.3),
is continuous in x € X. However to investigate the exponential rate of convergence,
we need to verify Lipschitz continuity of ®(-,£). To this end, we assume the Clarke
Differential (CD) regularity property of the second stage generalized equation (1.2).
By 704,y (¥(Z, 7, €)), we denote the projection of the Clarke generalized Jacobian
Oz, ¥ (7,7, &) in R™X™ x R™*™ onto R™*™: the set m,0,,,)¥(7,7,§) consists of
matrices .JJ € R™*™ such that the matrix (S, .J) belongs to d, ¥ (Z,¥,&) for some
S e Rmxm,

DEFINITION 2.6. For £ € Z a solution § of the second stage generalized equation

(1.2) is said to be parametrically CD-regular, at © = & € X(£), if for each J €

ﬂya(x,y)\Il(@y,f_) the solution § of the following SGE is strongly regular

(2.8) 0€¥(z,y,8) +J(y—v)+ T2y, ).
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That is, there exist neighborhoods U of § and V of 0 such that for every n € V the
perturbed (partially) linearized SGE of (2.8)

ne \Il(jaga f) + J(y - g) + Fz(y7§)
has in U a unique solution §z(n), and the mapping n — §z(n) : V — U is Lipschitz
continuous.

ASSUMPTION 2.4. For allT € X and £ € =, there exists a unique, parametrically
CD-regular solution § = §(&,€) of the second stage generalized equation (1.2).

PROPOSITION 2.7. Suppose Assumption 2.4 holds. Then the solution mapping
9(z,§) of the second stage generalized equation (1.2) is a Lipschitz continuous function
of x € X, with Lipschitz constant k(§).

The result is implied directly by [13, Theorem 4] and the compactness of X C X.
Moreover, note that for any z € X, if the generalized equation

0€ Galy) =¥z, 5,8 +J(y— ) +T2(y,§) for which Gz(¥) 20,

has a locally Lipschitz continuous solution function at 0 for § with Lipschitz constant
kG (Z,€). Then by [8, Theorem 1.1], we have

Kz (§) = ke (Z,§)r(§) < oo

is a Lipschitz constant of the second stage solution function g(z, &) at Z.
ASSUMPTION 2.5. The set X is convez, its interior int(X) # 0, and for all § € =
and T € X, the generalized equation

0e Gf(y) = \Il(j,yvf) + J(y - y) + FQ(yag)v for which Gi(g) > 07

has a locally Lipschitz continuous solution function at O for § with Lipschitz constant
ka(Z,€) and there exists a measurable function kg : E — Ry such that, kg(z,£) <

Rol€) and Bl (€ (€)] < .

Under Assumption 2.5, it can be seen that E[j(z, £)] is Lipschitz continuous over
x € X with Lipschitz constant E[R¢(€)rw(£)]. We consider then the first stage (1.1)
of the SGE as the generalized equation (2.2) with the respective second stage solution
Gz, €) (recall definition (2.3) of ®(x,€¢) and ¢(x)).

LEMMA 2.8. Suppose that Assumptions 2.4-2.5 hold, E[ke ()] < 0o and

E[rke(§)Ra(§)rw(€)] < oo.

Then é(x, &) and ¢(x) are Lipschitz continuous over x € X with respective Lipschitz
module

k(&) + ra(§)Ea(§)rw(§) and Elre ()] + Elre ()Fa(§)rw (§)]-

REMARK 2.2. Specifically we study Assumptions 2.2-2.5 in the framework of the
following SGE:

(2.9) 0 € E[®(z,y(£), 9] + Ti(2), v € X,
(2.10) 0 € ¥(z,y(£), &) + Nep (H(z,y,6)), forae {€E,
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where H(z,y,&) : R” x R™ x 2 — R™. Let h(x,y,§) := min{¥(x,y,&), H(x,y,§)}.
Then the second stage VI (2.10) is equivalent to
(2.11) h(z,y,£) =0, fora.e £€E.

For x = Z and £ € E let § be a solution of (2.11), and suppose that each matrix J €
7y Oh(Z, §,€) is nonsingular for a.e. {. Then by Clarke’s Inverse Function Theorem,
there exists a Lipschitz continuous solution function g(x, &) such that §(z,£) = ¢ and
the Lipschitz constant is bounded by ||J~(z,y, &)S(z,y, €)|| for all

(S(z,y,8), J(2,y,8) " € mpyOh(z,y,£).

Then Assumption 2.4 holds. Moreover, if we assume

E[||J7 (2, §(2,€),6)S(z, §(x,€), Ol < o0
for all x € X, then Assumption 2.5 holds.

Now we investigate exponential rate of convergence of the two-stage SAA problem
(1.6)—(1.7) by using a uniform Large Deviations Theorem (cf., [23, 24, 26]). Let

M(t) = E {exp(t[d(z, €) - 6u()]) }

be the moment generating function of the random variable ®;(z,&) — ¢(z), i =
1,...,n, and

M,.(t) = E {exp (t[rs(8) + ra(§)r(6) — Elxa(§) + ra(€)r(€)]]) }-

ASSUMPTION 2.6. For every x € X and i = 1,...,n, the moment generating
functions M:(t) and M, (t) have finite values for all t in a neighborhood of zero.

THEOREM 2.9. Suppose that: (i) Assumptions 2.1, 2.3-2.6 hold, (ii) w.p.1 for N
large enough, S*,Sn are nonempty, (iii) the multifunctions T'1(-) and Ty(+, &), £ € 2,
are closed and monotone. Then the following statements hold.

(a) For sufficiently small € > 0 there exist positive constants ¢ = o(e) and ¢ =

¢(e), independent of N, such that

(2.12) P {sup [6x(0) - 9(0)| > ¢ < ofe)e=.

(b) Assume in addition: (iv) The condition of part (b) in Theorem 2.4 holds and
w.p.1 for N sufficiently large,
(2.13) S*Ncl(bd(X) Nint(Xy)) = 0.
(v) ¢(+) has the following strong monotonicity property for every x* € §*:
(2.14) (x —2") " (d(2) — ¢(a*)) 2 g(||lz — 2™), ¥z € X,

where g : Ry — Ry is such a function that function t(t) := g(7)/7 is mono-
tonically increasing for T > 0.

Then 8* = {a*} is a singleton and for any sufficiently small € > 0, there
exists N sufficiently large such that

(2.15) P {D(S‘N,S*) > s} <o(t7'(e))exp (—Ns(r7'(e))),

where o(-) and <(-) are defined in (2.12), and v=*(g) := inf{r > 0:¢(7r) > ¢}
is the inverse of v(7).
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Proof. Part (a). By Lemma 2.8, because of conditions (i) and (ii) and compactness
of X, we have by [23, Theorem 7.67] that for every i € {1,...,n} and £ > 0 small
enough, there exist positive constants o; = p;(¢) and ¢; = ¢;(¢), independent of N,
such that

P {sup (b)) - 0] 2 € < el

and hence (2.12) follows. B
Part (b). By condition (iv) we have that D(S*, Xy \ X) > 0. Let € be sufficiently
small such that w.p.1 for N sufficiently large,

D(S*, Xy \ X) > 3e.
Note that since X C Xy11 C Xy, D(S*, Xy \ X) is nondecreasing with N — oc.
By Theorem 2.4, part (b), w.p.1 for N sufficiently large such that 7 < e, we have

R (sup (o) — (o)) ) <&

and

D(Sy,S*) < T+ R <Sup ldn (z) — gb(:z:)”) < 2.
rzeX
Since by condition (iv), when N sufficiently large w.p.1, for any point & € v\ X,
D(Z,S*) > 3¢, which implies Sy C X and then

(2.16) D(Sx, 5% <R (sup () — o(0)] ).

In order to use (2.16) to derive an exponential rate of convergence of the SAA esti-
mators we need an upper bound for R™1(¢), or equivalently a lower bound for R(¢).
Note that because of the monotonicity assumptions we have that §* = {z*}.

For x € X and z € T';(x) we have

(@ —a") T ((z) = d(a")) = (z = 2*) T ($2) + 2 = $(z") — 2) < (& —2") T (g(x) + 2),

where the last inequality holds since —¢(z*) € T';(2*) and because of monotonicity
of I'1. It follows that

(2 = 2") " (p(x) = d(")) < [lz — 2™ [ $() + 2],
and since z € I';(x) was arbitrary that

(@ = 2") T (¢(x) = d(a")) < [lo — 27| (0, () + T'1(2)).
Together with (2.14) this implies

d(0,¢(z) +T1(2)) > v(l|lz — 2|)).

It follows that R(g) > t(e), € > 0, and hence

RN <),
where v—!(+) is the inverse of function t(-). Then by (2.12), (2.15) holds. d
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Note that if g(7) := ¢7“ for some constants ¢ > 0 and o > 1, then t=}(t) =
(t/c)*/(@=D_ In particular for a = 2, condition (2.14) assumes strong monotonicity
of ¢(-). Note also that condition (iv) is not needed if the relatively complete recourse
condition holds.

It is interesting to consider how strong condition (2.13) is. Note that when &* C
int(X'), condition (2.13) holds. Moreover, we can also see from the following simple
example that even when S* Nbd(X) # 0, condition (2.13) may still hold.

ExampLE 2.1. Consider a two-stage SLCP
o= (7)1 (6 1) () (Enie)) =0
0= (1) - (4 ame) (19) - () 20 e =

where

1 .
_ TFE+51° Zf t +£ < 100,
o(t:€) { 0, otherwise,

and & follows uniform distribution in [—50,50].

By simple calculation, we have that S* = {(0,0)} and X = [0, 50] x [0, 50]. More-
over, consider an iid samples {€/}N_) with max; & = 49, Xy = [0,51] x [0,51]. Let
X ={x:0<x1,22 <100}. It is easy to observe that although §* = {(0,0)} is at the
boundary of X N X, condition (2.13) still holds.

REMARK 2.3. Tt is also interesting to estimate the required sample size of the
SAA problem for the two-stage SGE. Similar to a discussion in [24, p.410], if there
exists a positive constant o > 0 such that

(2.17) Mi(t) < exp{o?t?/2}, VteR, i=1,..,n,

then it can be verified that I’ (z) > % for all 2 € R, where I%(2) := sup,cgp{zt —

log M!(t)} is the large deviations rate function of random variable d;(x, &) — ¢s(x),
t =1,--- ,n. Note that if ®;(z,&) — ¢;(x) is subgaussian random variable, (2.17)
holds, i = 1, ...,n. Then it can be verified that if

S 32no

N> {ln(n@ﬂ—i—l))—}-ln (i)]

then

P {sup ||¢3N(m) - qf)(x)“ > 5} <,
reX

where II := (O(1)DE[ke(€) + ke (€)r(£)]/e)" and D is the diameter of X. Conse-

quently it follows by (2.16) that if

N> % {ln(n@f{ +1))+1n (Cly)] ,

with 11 := (O(1)DE[ka(€) + ko (£)r(£)]/r71(e))", then we have

P {D(SN,S*) > 5} < a.

In the next section, we will verify the conditions of Theorems 2.4 and 2.9 for the
two-stage SVI-NCP under moderate assumptions.
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3. Two-stage SVI-NCP and its SAA problem. In this section, we inves-
tigate convergence properties of the two-stage SGE (1.1)—(1.2) when ®(z,y,£) and
U(z,y,&) are continuously differentiable w.r.t. (z,y) for a.e. € € Z and I'y(x) :=
Ne(z) and Ta(y) := NRQL (y) with C C R™ being a nonempty, polyhedral, convex set.
That is, we consider the mixed two-stage SVI-NCP

(3.1) 0 € E[®(z,y(£), )] + Ne(x),
0<y(§) L ¥(x,y(§),§) =20, forae €,

and study convergence analysis of its SAA problem

N
(3.3) 0€ N*Zm,y(e’),e’) + Ne(2),
(3.4) 0<y(€) L U(a,y(€),&) >0, j=1,..,N.

We first give some required definitions. Let ) be the space of measurable functions
u: 2 — R™ with finite value of [ [|u(§)||?P(d€) and (-, -) denotes the scalar product in
the Hilbert space R™ x ) equipped with Lo-norm, that is, for z,z € R" and y,u € Y,

(@) i=aTz 4 [ €T u(©P(de).
Consider mapping G : R” x Y — R" x ) defined as

g(xa y()) = (E[CI)(x’ y(§>7 f)]’ \I/(J,‘, y()7 ))

Monotonicity properties of this mapping are defined in the usual way. In particular
the mapping G is said to be strongly monotone if there exists a positive number &
such that for any (x,y(-)), (z,u(-)) € R™ x ), we have

(0 = 6t (o 5y ) ) 2 Rl = 217 + Blly(€) - wOIPD:

DEFINITION 3.1. ([11, Definition 12.1]) The mapping G : R® x Y — R™ x Y is
hemicontinuous on R™ x Y if G is continuous on line segments in R™ x ), i.e., for
every pair of points (x,y(+)), (z,u(-)) € R™ x Y, the following function is continuous

t <g(tx + (1= t)z,ty(-) + (1 — t)u(-), (y(f - i(.))> .

DEFINITION 3.2. ([11, Definition 12.3 (i)]) The mapping G : R" x Y - R" x Y is
coercive if there exists (xo,yo(:)) € R™ x Y such that

<g(x, yC)): (y(? - ﬁ(-)) >

T T EIE i~ % I+ Elly(©l] - oo and (2,y() € B x .

Note that the strong monotonicity of G implies the coerciveness of G, see [11,
Chapter 12]. In section 3.1, we consider the properties in the second stage SNCP.
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14 X. CHEN, A. SHAPIRO AND H. SUN

3.1. Lipschitz properties of the second stage solution mapping. Strong
regularity of VI was investigated in Dontchev and Rockafellar [7]. We apply their
results to the second stage SNCP. Consider a linear VI

(3.5) 0€ Hz+q+ Ny(z),

where U is a closed nonempty, polyhedral, convex subset of RE.

DEFINITION 3.3. [7, Definition 2] The critical face condition is said to hold at
(go, z0) if for any choice of faces Fy and Fy of the critical cone Cy with Fy C Fi,

weF, —F, Huc(F—F)" = u=0,

where critical cone Co = C(zg,vo) := {2’ € Tu(x) : 2/ L vo} with vo = Hzp + qo.

THEOREM 3.4. [7, Theorem 2| The linear variational inequality (3.5) is strongly
regular at (qo,20) if and only if the critical face condition holds at (qo, 20), where zg
is the solution of the linear VI: 0 € Hz + qo + Ny (2).

COROLLARY 3.1. [7, Corollary 1] A sufficient condition for strong regularity of
the linear variational inequality (3.5) at (qo,z0) is that ' Hu > 0 for all vectors
u # 0 in the subspace spanned by the critical cone Cy.

Note that when H is a positive definite matrix, the condition in Corollary 3.1
holds. Then we apply Corollary 3.1 to the two-stage SVI-NCP and consider the
Clarke generalized Jacobian of §(z,&). To this end, we introduce some notations: let

a(g(@,8) ={i: (9(x,€))i > (¥(z,9(x,8),£))i}
B(,8)) ={i: (9(z,€))i = (¥(z,9(x,8),£))i}
(@2, ) ={i: (§(2,8)i < (¥(z,9(x,£),£))i},
qula(x7 y’ 5)
V.U (z,y,8) = | VaUs(x,y,8) | be the Jacobian of ¥(z,y,§) w.r.t. z for given y
Vr\Ij’y(xaya )
and £ and
Vy\Ifw(z,y,E) Vy\I/aﬁ(:E,y,ﬁ) vy\I/a’y( y,§)
\Y (l‘ Y 5) Vy‘I’ﬁa(fE,y,ﬁ) Vy\:[/[jﬁ(x,y,f) vy\Ilﬁ'y(x ag)
Vy\Ilva(x,y,g) vy\I}‘YB(‘rvyvg) vy\IJWV(xv 75)

be the Jacobian of ¥(xz,y,&) war.t. y for given x and &, where the submatrix
Va¥a(z,y,§) is a matrix with elements 0¥;(x,y,£)/0z;, i € o, j € {1,--- ,n} and
the submatrix V,¥aa(2,y,§) is a matrix with elements 0%;(z,y,£)/0y;, i,j € .

ASSUMPTION 3.1. For a.e. £€Z and allz € X NC, ¥(x,-, &) is strongly mono-
tone, that is there exists a positive valued measurable k,(§) such that for ally,u € R™,

<\If(.’1'3,y,f) - \IJ(‘/I"’ u?g)’ Y- u> 2 "iy(g)Hy - u||2

with B[k, (€)] < +00.

Applying Corollary 2.1 in [14] to the second stage of the SVI-NCP, we have the
following lemma.

LEMMA 3.5. Suppose Assumption 3.1 holds and for a fized £ €E, VU(x,yl) is
continuously differentiable w.r.t. (x,y). Then for the fized £ € Z ]
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an unique solution of the second stage NCP (3.2), (b) §i(x,&) is F-differentiable at
z € XNC if and only if B(§(z,§)) is empty and

(ng(j7§))a = —(qu/aa(ﬁj,g(.’f7§)7f))_lv v (SE :&(7 6) f)ﬂ (va(jvg))’Y =0

or

vquﬁ(j’g(jvg)vg) =V \I//ga(:f7y( f) f)(v \I/aa(jag(jvg)’g))ilvx\l/a(i'vg(jv§)7€)

in this case, the F-derivative of §(-,€) at T is given by

(Vo (7,8))a = —(VyWaa (@, §(7,£),£) 7 Vo la(3, (3, €),£),
(Vai(®,€)5 =0, (Vail(®,8))y =

THEOREM 3.6. Let ¥ : R"” x R™ x = — R™ be Lipschitz continuous and contin-
wously differentiable over R™ x R™ for a.e. £ € =. Suppose Assumption 3.1 holds
and ®(z,y, ) is continuously differentiable w.r.t. (x,y) for a.e. £ € E. Then for a.e.
€= and x € X, the following holds.

(a) The second stage SNCP (3.2) has a unique solution §(x,&) which is paramet-

rically CD-regular and the mapping x w— §(x, &) is Lipschitz continuous over
X N X', where X' is a compact subset of R™.
(b) The Clarke Jacobian of §(x,&) w.r.t. x is as follows

03(w,€) = conv { lm V..j(2,€) : V.3(2.€)

= _[I - Doz(g}(z,.f))(I - M(z,y(z,f) ))] a(y(z 5))L(Z y(z 6) 5)}
C COHV{—UJ(M(.’I?,?)(.%f),g))L($7Z)(-’E,g), ) }

where M(z,5,€) = VyU(e,9,€), L(,§(2,€),€) = Val(w,§(z,€),€), T =
(b} "Dy and Uy are defined in (3.9) and (3.10) respectively.

)
Proof. Part (a). Note that by Lemma 3.5 (a), for almost all € € = and every
T € XN X', there exists a unique solution §(Z,&) of the second stage SNCP (3.2).
Moreover, c0n51der the LCP

(3.6) 0<yLlVU(z9¢+V,¥2,5E)H—y) >0,

where § = §(7,€). By the strong monotonicity of ¥(z,-,§), V,¥(Z,7,£) is positive
definite. Then by Corollary 3.1, the LCP (3.6) is strongly regular at §. This implies
the parametrically CD-regular of the second stage SNCP (3.2) with Z at solution 7.
Then the Lipschitz property follows from [13, Theorem 4] and the compactness of X'.

Part (b). For any fixed £, by Part (a), there exists a unique Lipschitz function
(-, &) such that g(z, &) over X which solves

0<yL¥(z,y,¢>0.

Note that §(-, &) is Lipschitz continuous and hence F-differentiable almost every-
where over Bs(Z). Then for any o’ € Bs(Z) such that g(2’, ) is F-differentiable, by
Lemma 3.5 (b), we have S(g(2’,€)) is empty and
(3.7

(Vaii (2, €))a = =(Vy (o', 5(2",€),€))aa(Va¥ (@', §(2",€),6))ar (Vaii(a',€))y =0
or B(4(2',€)) is not empty and

(38) (ng(x/7£)) ( (‘T (xlv )75))aa(v \II( ( 75)’5))047
(V2 (a',€))s =0, (V! 1€))y = 0.
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Let Dy € D be an m-dimensional diagonal matrix with J € J and

1, ifjed
(3.9) (D) '_{ 0, otherwise,

(il' Y, 6) =V \If(il',y,é-) and W(‘r7§> = [I_Da(g}(z,{))(-[_M(xvy7£))]_1Da(3}(m,§))'
Then by (3.7) and (3.8),

Vaij(a',€) = =[I = Doy — M (2", (2", €),€))] Dy L', 92", 6), ),
where L((E,Q(i&f),g) = Vz\Il(m,;t](x,f),f) Let
(3.10) Us(M)=(I—-Dy(I—-M))"*Dy, VJeJ.

By the definition and upper semicontinuity of Clarke generalized Jacobian, we have

0,6 = conv{nmvzy(z §:v (,5)

conv{— UJ( (,y(x €))L ( (’5) f) JEJ}

We complete the proof. ]

N

Under Assumption 3.1, the two-stage SVI-NCP can be reformulated as a single
stage SVI with ®(z,§) = ®(x, §(x,§),§) and ¢(x) = E[®(z, §)] as follows

(3.11) 0 € ¢(z) + Ne(x).
With the results in Theorem 3.6, SVI (3.11) has the following properties. Let

@(1‘7 (5)7 f)
O, y(€),€) = (@(x,f,(s),f))

and VO(zx,y, &) be the Jacobian of ©. Then

_ (A
Vo0 = (L) Mo
where A(%%f) = Vi(b(xay:f)a B(x7ya§) = Vy(b(l‘,y,g), L($7y’§) = vlm(x’y’g)
and M(l’,y,g) - qul(x7y’§)

THEOREM 3.7. Suppose the conditions of Theorem 3.6 hold. Let X' C C be a
compact set, for any £ € 2, Y (&) = {j(x, &) : x € X'} and VO(x,y, &) be the Jacobian
of ©. Assume

(3.12) E[|A(z, §(x,€),€) — Bz, §(x,€), &) M (x,§(x, €), )™ L(z,§(,€), )] < +o00

over X N X'. Then
(a) ®(x,§) is Lipschitz continuous w.r.t. x over X N X' for all § € =.
(b) E[®(x,&)] is Lipschitz continuous w.r.t. x over X N X'.

Proof. Part (a). By the compactness of X’ and Theorem 3.6 (a), Y () is compact
for almost all £ € Z. By the continuity of VO(z,§(x, ), £), we have

Az, §(2,€),€) — Blz, §(x,€),§) M (z,§(x,€),6) "' L(z, §(,€),€)
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is continuous over X’. Then we have

sup, Az, §(,€),€) — Blx, §(z,€), )M (z, §(2,€),6) " Lz, §(x,€), )| < +oo.

Moreover, by Theorem 3.6 (b), the Lipschitz module of ®(x,¢), denote by lipg ()
satisfies

lipg (€)
< SeugllA(ﬂf,ZQ(ﬂ%f)af)—B(ﬂ«"’?)(ﬂiaf)’ﬁ)M(lﬁZ?(ﬂf,f),5)71L($,Z)($7§)a€)||
<  Hoo.
Part (b). it comes from Part (a) and (3.12) directly. 0

3.2. Existence, uniqueness and CD-regularity of the solutions. Consider
the mixed SVI-NCP (3.1)-(3.2) and its one stage reformulation (3.11). If we replace
Assumption 3.1 by the following assumption, we can have stronger results.

ASSUMPTION 3.2. For a.e. £ € 2, O(z,y(&), &) is strongly monotone with param-
eter k(&) at (z,y(-)) € C x Y, where E[x(§)] < +o0.

Note that Assumption 3.1 can be implied by Assumption 3.2 over C' x ).

THEOREM 3.8. Suppose Assumption 3.2 holds over C x Y and ®(z,y,§) and
U(xz,y,£) are continuously differentiable w.r.t. (x,y) for a.e. £ € E. Then

(a) G:CxY — C xY is strongly monotone and hemicontinuous.

(b) For all © and almost all £ € 2, W(x,y(&),&) is strongly monotone and con-
tinuous w.r.t. y(§) € R™.

(¢) The two-stage SVI-NCP (3.1)-(3.2) has a unique solution.

(d) The two-stage SVI-NCP (3.1)-(3.2) has relatively complete recourse, that is
for all x and almost all £ € =, the NCP (3.2) has a unique solution.

Proof. Parts (a) and (b) come from Assumption 3.2 over C'x Y directly. Since the
strong monotonicity of G and ¥ implies the coerciveness of G and ¥, see [11, Chapter
12], by [11, Theorem 12.2 and Lemma 12.2], we have Part (c) and Part (d). |

With the results in sections 3.1 and above, we have the following theorem by only
assume that Assumption 3.2 holds in a neighborhood of Sol* N X’ x ).

THEOREM 3.9. Let Sol* be the solution set of the mized SVI-NCP (3.1)-(3.2).
Suppose (i) there exists a compact set X' such that Sol* N X’ x ) is nonempty, (ii)
Assumption 3.2 holds over Sol*N X' x Y and (iii) the conditions of Theorem 3.7 hold.
Then

(a) For any (x,y(-)) € Sol*, every matriz in ®(x) is positive definite and ® and

¢ are strongly monotone at x.
(b) Any solution z* € S*NX’ of SVI (3.11) is CD-regular and an isolate solution.
(¢) Moreover, if replacing conditions (i) and (ii) by supposing (iv) Assumption 3.2
holds over R™ x ), then SVI (3.11) has a unique solution x* and the solution
is CD-regular.

Proof. Part (a). Note that under Assumption 3.2, for any (z,y(-)) € Sol*, the

matrix
A, 5(6),6) Bz, y(€),6)
(L<x,y<s>,s> M(x,y@),s)) ~ 0

From (ii) of Lemma 2.1 in [3], we have

Az, y(£),&) — Bl,y(8), U (M (z,y(£), §)) L(x, y(£),§) = 0, VJ € J.
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For any T such that (z,§(-)) € Sol*, let Bs(Z) be a small neighborhood of z,
Dy(z) := {2’ : 2’ € Bs(x), y(a',€) is F-differentiable w.r.t. = at z'}
and

D.

3(T) = {2’ : 2’ € Bs(T), B(a',€) is F-differentiable w.r.t. x at z'}.

516 Since ®(z,y,§) is continuously differentiable w.r.t. (z,y), 9(-,§) is F-differentiable
517 w.r.t. x, which implies ®(-,¢) is F-differentiable w.r.t. z. Then Dy(z) C Dg(T).

518 Moreover, since §j(z, &) and ®(x, £) are Lipschitz continuous w.r.t. = over B (Z), they
519  are F-differentiable almost everywhere over Bs(z). Then the measure of Dy (Z)\Dy(Z)

520 is zero. By Theorem 3.6 (b) and the definition of Clarke generalized Jacobian, we
521  have
(3.13)
9, 9(,¢€)
= conv{ lim V, (2, &) : 2’ € D@(JE)}
x' =T
- conv{ lim V,®(z', §(a',€),€) + V, (', j(x, €), )Vaii(a, €) 1 2’ € DQ(E)}
' =T
522
’ = conv{ lim A(2', (2, ),&)
T/ =T
—B(LIJ/, g(xlv g)a g)Ua(Q(z’,E)) (M(J,‘/, :l)(l‘/, 5)7 g))L(xla Q(I/7 5), 5) SRS Dg(j)}
*B(IE, g(z7 5)7 €)UJ(M('I5 Q(I, g)a 5))L(I7 Q(SC, 6)7 5) 1J € j} )
523 where the second equation is from [25, Theorem 4] and the fact that the measure of
524 Dg(T)\Dy(Z) is 0. By (3.13), every matrix in 0, P(z, ) is positive definite. And then
525 @ s strongly monotone which implies ¢ is strongly monotone at z.
526 Part (b). By Corollary 3.1, the linearized SVI
527 0 € Ve (x — x*) + E[®(2*, €)] + Ne(z),
528 s strongly regular for all V,. € d¢(z*) C E[0,®(z*,€)]. Then the NCP (3.11) at z*
529 is CD-regular. Moreover, by the definition of CD regular, z* is a unique solution of
530 the NCP (3.11) over a neighborhood of z*.
531 Part (¢). By Part (a) and Theorem 3.8, NCP (3.11) has a unique solution x*.
532 The CD regular of NCP (3.11) at z* follows from Part (b). |
533 3.3. Convergence analysis of the SAA two-stage SVI-NCP. Consider the

534 two-stage SVI-SNCP (3.1)-(3.2) and its SAA problem (3.3)-(3.4).
We discuss the existence and uniqueness of the solutions of SAA two-stage SVI
(3.3)-(3.4) under Assumption 3.2 over C' x Y firstly. Define

N7 (e y(E), &)

T 1 1
U BTSN

Wiz, y(EN), €N)

THEOREM 3.10. Suppose Assumption 3.2 holds over C x Y and ®(x,y,&) and
U(xz,y,£) are continuously differentiable w.r.t. (x,y) for a.e. £ € E. Then
(a) Gy : C x Y — C x Y which is strongly monotone with N1 Z;\Izl k(€7) and
hemicontinuous.

[S1 IS, B, B
[o2 NG

W W w w
o
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(b) The SAA two-stage SVI (3.3)-(3.4) has a unique solution.
Proof. By Assumption 3.2, we have Parts (a) and (b). |

Then we investigate the almost sure convergence and convergence rate of the
first stage solution Zx of (3.3)-(3.4) to optimal solutions of the true problem by only
supposing Assumption 3.2 holds at a neighborhood of Sol* N X’ x Y.

Note that the normal cone multifunction = — N () is closed. Note also that
function ®(z,£) = ®(z,j(x,€),£), where j(z,£) is a solution of the second stage
problem (3.2). Then the first stage of SAA problem with second stage solution can
be written as

(3.14) (x, %) + Ne(x).

||M2

Under the conditions (i)-(iii) of Theorem 3.9, the two-stage SVI-SNCP (3.1)-
(3.2) and its SAA problem (3.3)-(3.4) satisfy conditions of Theorem 2.4 and with
R™Yt) < L for some positive number ¢ (by Remark 2.1, the strongly monotone of ¢
and the argument in the proof of Part (b), Theorem 2.9 ). Then Theorem 2.4 can be
applied directly.

DEFINITION 3.11. [9, 16] A solution x* of the SVI (3.11) is said to be strongly
stable if for every open neighborhood V of x* such that SOL(C, ¢) NclV = {z*}, there
exist two positive scalars 6 and € such that for every continuous function ¢ satisfying

sup [|¢(z) — d(x)[| < e,

zeCnNclV

the set SOL(C, ¢~5) NV is a singleton; moreover, for another continuous function o
satisfying the same condition as ¢, it holds that

lz — 2’| < 8][[d(x) — d(x)] — [é(a") — S]],
where & and ' are elements in, the sets SOL(C, )NV and SOL(C, )NV, respectively.

THEOREM 3.12. Suppose conditions (i)-(iii) of Theorem 3.9 hold. Let xz* be a
solution of the SVI (3.11) and X' be a compact set such that x* € int(X’). Assume
there exists € > 0 such that for N sufficiently large,

(3.15) 2* ¢ d(bd(X) Nint(Xy N X")).

Then there exist a solution &y of the SAA problem (3.14) and a positive scalar § such
that || &y —x*|] = 0 as N — oo w.p.1 and for N sufficiently large w.p.1

(3.16) [&n — 2| <& sup Hszv( ) = ¢(@)]].

reXNX

Proof. By Theorem 3.9 (b), the SVI (3.11) at z* is CD-regular. By [16, Theorem
3] and [9], z* is a strong stable solution of the SVI (3.11). Note that by Theorem 3.9
(a) and [23, Theorem 7.48], we have

sup_ [|én (z) — ¢(a)]|

rzeXNX’

converges to 0 uniformly. Then by Definition 3.11 and (3.15), there exist two positive
scalars d, € such that for N sufficiently large, w.p.1

sup [|¢n () — ¢(2)|| < min{e, e/}
rzeXNX’
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20 X. CHEN, A. SHAPIRO AND H. SUN

and

lin =2l <6 sup_[on(z) - d(@)ll,
reXNX’

which implies £y € X. ]

Note that Theorem 3.12 guarantees that R~1(¢) < 6t and condition (3.15) is dis-
cussed after Theorem 2.9. Note also that replacing conditions (i) - (ii) and condition
(3.15) by supposing condition (iv) of Theorem 3.9, conclusion (3.16) also holds. More-
over, in this case, by Theorem 3.9 (c¢) and Theorem 3.10, z* and &y are the unique
solutions of the SVI (3.11) and its SAA problem (3.14) respectively.

Then we consider the exponential rate of convergence. Note that under Assump-
tion 3.1, for SAA problem of mixed two-stage SVI-NCP (3.3)-(3.4), Assumptions 2.1,
2.4, 2.5 and condition (iii) in Theorem 2.9 hold. If we replace Assumption 3.1 by
Assumption 3.2 over Sol* N X’ x ), we have the following theorem.

THEOREM 3.13. Let X' C C be a convex compact subset such that Bs(x*) C X'.
Suppose the conditions in Theorem 3.12 and Assumption 2.6 hold. Then for any
e > 0 there exist positive constants 6 > 0 (independent of €), 0 = p(¢) and ¢ = ¢(¢),
independent of N, such that

(8.17) Pr {sup 6 (@) = é(@)] = e} < o(e)e™ ™),
reEX

and

(3.18) Pr{llen —a*|| > ¢} < o(e/8)e N/,

Proof. By Theorem 3.9 (a), Assumption 2.6 and [23, Theorem 7.67], the con-
ditions of Theorem 2.9 (a) hold and then (3.17) holds. Under condition (3.15) in
Theorem 3.12, (3.18) follows from (3.16) and (3.17). |

4. Examples. In this section, we illustrate our theoretical results in the last
sections by a two-stage stochastic non-cooperative game of two players [3, 17]. Let
¢€:Q — Z C R be a random vector, z; € R and ;(-) € ); be the strategy vectors
and policies of the ith player at the first stage and second stage, respectively, where
Y; is a measurable function space from = to R™i, i = 1,2, n = ny +ng, m = mq +ma.
In this two-stage stochastic game, the ith player solves the following optimization
problem:

(4.1) min  0;(z;, 2—;) + B[ (@i, 2—5,y-i(£), §)],

mie[ai,bi]
1
where 6;(z;,x_;) := gx;‘er +qlx; + 2l Py,

(4.2) Yi(xi, v, y—i(§),§) == yie[liI&i)I,lui(E)] i (Yir Tis i, y—i(€), )

is the optimal value function of the recourse action y; at the second stage with

2
Gi(Yir iy v—i,y—i(€), ) = %yiTQi(f)yi +ei(€) Ty + )l Sii (O + i 0:(&)y-i(9),
j=1

ai,b; € R™ [, u; : 2 — R™ are vector valued measurable functions, 1;(£) < u;(§)
for all £ € 2, H; and Q;(§) are symmetric positive definite matrices for a.e £ € &,
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z = (21,22), y(-) = W1(-),92(-), i = zir and y_; = yy, for i’ #i. We use y;(§) to
denote the unique solution of (4.2).

By [10, Theorem 5.3 and Corollary 5.4], ¥;(z;,x_;,y—;(£),&) is continuously dif-
ferentiable w.r.t. x; and

Vo, i@, w5, y-i(£), €) = SEOyi().

Hence the two-stage stochastic game can be formulated as a two-stage linear SVI

—Ve,0i(xi,x_5) —E[Vehi(z, 2_5,y-i(£),6)] € Ny (@),
Vo) ®i (Wi (&), v, v i, y—i(),€) € Npue)uae) i(€))s

for a.e. £ €2,

for i = 1,2, with the following matrix-vector form

(4 3) —Ax — E[B(S)y(f)] - hl € Af[a b]( )
—M(E)y(&) — L&)z —h2(§) € Nugyueyw(§)), forae eg,

A= m) mo= (5 L),

_ (Su(§) S12(8) _ (@1(8) 01(¢)
10= (56 520) ¥0= (39 o)
h1 = (q1,¢2) and ha(§) = (c1(£), c2(€)). Moreover, if there exists a positive continuous
function x(§) such that E[x ( )] < 400 and for a.e. £ € £,

(44)  (2T,u") ( ) < ) OzI1? + lull?), VzeR", ueR™,

the two-stage box constrained SVI (4.3) satisfy Assumption 3.2. By the Schur com-
plement condition for positive definiteness [12], a sufficient condition for (4.4) is

where

4Hy — (Py+ Py )H; '(Py + P,) s positive definite
and for some k1 > 0 and a.e. £ € Z|
Amin (M (€) +M(€) T = (B(€) + L&) T )(A+AT)"H(B(E) + L&) ")) = k1 >0,

where Apin (V) is the smallest eigenvalue of V' € R™*™,

Under condition (4.4), by Corollary 3.1 and Theorem 3.8, the conditions in The-
orem 2.9 hold for (4.3). To see this, we only need to show condition (vi) of Theorem
2.9 holds for (4.3). Consider the second stage VI of (4.3) for fixed £ and x, by the
proof of [6, Lemma 2.1], we have

:l)(.%‘,f) - g(xlvg) = _<I - D(.’I,‘,.’L‘/7f) + D(m,x’,f)M(f))_lD(x, xl,f)L(f)(.T - x/)7
which implies
(4.5) 029(2,€) C {=(I = D+ DM(€)) ' DL(€) : D € Dy},
where D(x,z’,€) is a diagonal matrix with diagonal elements
0, if (g)(m,ﬁ))z - Zi(xag)v (g(xlvf))z - Zi(xlvf) € [u1(§)7 OO),
d: — Ov if (22(33,5))1 - Zi(x’§)7 (Q(Ilvg))z - Zi(xlvf) € (—OO, ll(é)],
v 1, if (Q("Lf))l - Zi(x7§)7 (g(l’/7£))1 - Zi(x/7£) € (ll(§)7ul(§))a

(§(2.6)i=(3(a"£): :
Gt =@ e =g otherwise,
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Zi(I,g) = (M(f)g}(a:,ﬁ) + L(f)x + hQ(E))ia d’i € [07 1}7 1= la , M, Dy is a set of
diagonal matrices in R™*™ with the diagonal elements in [0, 1]. Then we consider the
one stage SVI with g(z, &) as follows

(4.6) — Az = E[B(§)j(2,8)] — h1 € Njap()-

By using the similar arguments as in the proof of Theorem 3.9 and (4.5), every
elements of the Clarke Jacobian of Az + E[B(&)y(x,£)] + h1 is a positive definite
matrix. Then (4.6) is strong monotone and hence condition (vi) of Theorem 2.9
holds. In what follows, we verify the convergence results in Theorem 2.9 numerically.

Let {¢/}N, be an iid sample of random variable £. Then the SAA problem of
(4.3) is

wn AT X ELBEWE) - € NMay(@) ,
—M(&)y(&?) — L&) — ha(§?) € /\[[l(gj),u(gj)] (y(¢)), 7=1,...,N.

PHM converges to a solution of (4.7) if condition (4.4) holds.

ALGORITHM 4.1 (PHM). Choose r > 0 and initial points z° € R", 1:(; =2% e R",
y? e R™ andw;} eR” j=1,---,N such that %E;V:NU? =0. Let v =0.

Step 1. For j=1,--- | N, solve the box constrained VI
—Az; — B(€)y; —h1 —wf —r(z; — ) € Nay(z)),
—M(&)y; — L(&)xj — ha(&) —r(y; —y%) € Nues)yueiy(¥i)s
and obtain a solution (37,97), j =1,---,N.

Step 2. Let T = %Zj\le 4. Forj=1,--- N, set

(4.8)

x?“ =zt y;-’“ =97, w}-’“ = wy +7(
A B(E)
(&) ME) |
inite, that is, (4.8) has a unique solution for each j, even for some z and &’ the second
stage problem

& — i),

Note that PHM is well-defined if ( I > ,j=1,--- N are positive semidef-

~M(&)y — L(&)x — ha(€7) € Nuen) uiei) ()
has no solution.

4.1. Generation of matrices satisfying condition (4.4). We generate ma-
trices A, B(§), L(§), M (&) by the following procedure. Randomly generate a symmet-
ric positive definite matrix H; € R™*™  matrices P, € R™"*"2 Py ¢ R™2*"  Set,
Hy = 3(P| + P)H{ ' (P1 + P)) + al,,,, where a is a positive number. Randomly
generate matrices with entries within [—1, 1]:

gll S lexnl, Slz S lexn2’ 521 S Rm2><n17

522 S Rm2><n27 01 S leme’ 02 € R™M2xm1

Randomly generate two symmetric matrices Q1 € R™>*™ and Q5 € R™2X™2 whose
diagonal entries are greater than m — 1 4 «, off-diagonal entries are in [—1, 1], respec-
tively.

Generate an iid sample {¢7}, € [0,1]'% x [~1,1]'% of random variable £ € R*
following uniformly distribution over = = [0, 1]!% x [—1,1]1%. Set

S11(€) = &/ Si1, S12(€) = 3512, S21(€) = €}So1,
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S22(8) = €152, 01(€) = €04, 05(8) = €0y,
(n +m)?
)\min (A + AT)

Set B(&7), L(£7), M(£7) as in (4.3).
The matrices generated by this procedure satisfy condition (4.4). Indeed, since Hy

and 4H, — (P, + PY)H{ (P, + P{) are positive definite, by the Schur complement
condition for positive definiteness [12], A + AT is symmetric positive definite, and

(n+m)?

My, Q2(6) = Q2+ (& + m) ma-

Q1(6) = Q1 + (& +

thus A is positive definite. Moreover, since the matrix M = (gl 81> is diagonal
2 2

dominance with positive diagonal entries M;; > m — 1 + , it is positive definite and
the eigenvalues M + M7 are greater than 2a. Hence, for any y € R™, we have

y (M(&) + M) = (BT + L())(A+ AT)TH(B(&) + L))y

(n+m)? 2 1 BT 4+ L 2,012 > 92 2
m)\lyﬂ *mﬂ( " + L) Nyl® = 2alyl*,

> (2a+
where we use ||B(6)T + L(&)||? < [|B(&)T + L(¢)||? < (m + n)?. Using the Schur
complement condition for positive definiteness [12] again, we obtain condition (4.4).
Finally, we generate the box constraints, hy and ho(-). For the first stage, the
lower bound is set as a = 01,, and the upper bound of the box constraints b is
randomly generated from [1,50]%. For the second stage, we set 1(£) = (1 + &)l and
uw(€) = (1 + &0)u, where 1,, € R" is a vector with all elements 1, [ is randomly
generated from [0,1]'° and @ is randomly generated from [3,50]'°. Moreover, the
vector h; is randomly generated from [—5,5]% and ha(€) = (€11, -+ ,€20) is a random
vector following uniform distribution over [—1, 1]*°.

4.2. Numerical results. For each sample size of N = 10, 50, 250, 1250, 2250,
we randomly generate 20 test problems and solve the box-constrained VI in Step 1 of
PHM by the homotopy-smoothing method [5]. We stop the iteration when

N
) 1 o .
(4.9) res := ||z — mid(z — Ax — i JE:l B(&)§(z,&) — hi,a,b)|| <1072,

or the iterations reach 5000, where mid(-) denotes the componentwise median opera-
tor, §(z,£7) is the solution of the second stage box constrained VI with x and ¢7.

Parameters for the numerical tests are chosen as follows: ny = ny = 3,m; =
me = 5, = 1 and maximize iteration number is 5000.

Figures 1 shows the convergence tendency of 1, 2, x3, 4, x5 and zg respectively.
Note that since we use the homotopy-smoothing method to solve the box-constrained
VI in Step 1 of PHM and the stop criterion is 107, x5 is not always feasible. However,
[a; — 2]+ + [1; — b))y <107° i =1,...,6, which is related to the stopping criterion
of the homotopy-smoothing method.

We use V7 j =1,...,3000,¢t =1,...,5 to denote the computed solutions with
sample size N; for the j-th test problem shown in Figure 1. Then we computer the
mean, variance and 95% confidence interval (CI) of the corresponding res defined in
(4.9) with x = 2N+ by using a new set of 20 randomly generated test problems with
sample size N = 3000 for computing §(x™Vt7,£7),5 = 1,...,3000,t = 1,...,5. We
can see that the average of the mean, variance and width of 95% CI of res in Table 1
decrease as the sample size increases.
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025 ! 0 - N 205 } L
| |
0.2 | 2r | ¥
I N I
0.15 - 1.95 + , . . .
10 50 250 1250 2250 10 50 250 1250 2250
Sample size N Sample size N
Fic. 1. Convergence of x1 - xg
N; =10 N2 = 50 N3z = 250 N4 = 1250 Ny = 2250
mean 0.22449 0.13753 0.04820 0.02885 0.02500
variance 0.01984 0.00605 0.00118 0.00023 0.00016
95% CI [0.2158, 0.2332] [0.1349, 0.1402] [0.0477, 0.0487] [0.0287, 0.0290] [0.0249, 0.0251]

TABLE 1
Mean, variance and 95% confidence interval (CI) of res

5. Conclusion remarks. Without assuming relatively complete recourse, we
prove the convergence of the SAA problem (1.6)-(1.7) of the two-stage SGE (1.1)—(1.2)
in Theorem 2.4, and show the exponential rate of the convergence in Theorem 2.9.
When the two-stage SGE (1.1)—(1.2) has relatively complete recourse, Assumption 2.3,
conditions (v)-(vi) in Theorem 2.4 and condition (iv) in Theorem 2.9 hold.

In section 3, we present sufficient conditions for the existence, uniqueness, conti-
nuity and regularity of solutions of the two-stage SVI-NCP (3.1)—(3.2) by using the
perturbed linearization of functions ® and ¥ and then show the almost sure conver-
gence and exponential convergence of its SAA problem (3.3)-(3.4). Numerical exam-
ples in section 4 satisfy all conditions of Theorem 2.9 and we show the convergence
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of SAA method numerically.
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