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1 Introduction

Let f : D — R be a function defined on some set D in the real n-dimensional space
R™. Then one can define the usual optimization problem of finding the minimal value
of the function f over the feasible set D. For brevity, we write this problem as

min — f(x), (1)

zeD

its solution set is denoted by D* and the optimal value of the function by f*, i.e.

[ = inf f(z).

Let us first consider the well known class of smooth convex optimization problems,
where the set D is supposed to be convex and closed and the function f is supposed to
be convex and smooth. This class of problems is one of the most investigated and many
iterative methods were proposed for their solution. During rather long time, the ef-
forts were concentrated on developing more powerful and rapidly convergent methods,
such as Newton and interior point type ones, which admit complex transformations
at each iteration, but attain high accuracy of approximations. However, new signifi-
cant areas of applications related to data mining and processing as well as allocation
decisions in information and telecommunication networks and related systems, where
large dimensionality and inexact data together with congestion effects and scattered
necessary information are typical, force us to utilize methods whose iteration computa-
tion expenses and accuracy requirements are rather low, i.e., they do not utilize matrix
transformations at all. Therefore, the well known first or even zero order methods with
comparatively slow convergence may appear very useful here.

Let us turn to the conditional gradient method (CGM for short), which is one of
the oldest methods applied to the above problem. It was first suggested in [1] for the
case when the goal function is quadratic and further was developed by many authors;
see e.g. [2, 3, 4, 5]. We recall that the main idea of this method consists in linearization
of the goal function. That is, given the current iterate ¥ € D, one finds some solution
y* of the problem

min = (f'(a*), ) @

and defines p* = y¥ — 2% as a descent direction at z¥. Taking a suitable step-size

e € (0,1], one sets 2%+ = 2% + \p* and so on.

During rather long time, this method was not considered as very efficient due to
its relatively slow convergence, but it also became very popular recently. In fact, its
auxiliary linearized problems of form (2) appear simpler essentially than the quadratic
ones of the most other methods. Next, it usually yields so-called sparse approximations
of a solution with few non-zero components; see e.g. [6, 7]. These properties are very
significant for the new applications indicated above. We observe that many efforts
were directed to enhance the usual (CGM); see e.g. [8, 9, 7, 10, 11] and the references



therein. The most popular way consists in developing versions that attain more rapid
convergence. At the same time, we can create more efficient methods via reduction of
the implementation costs at each iteration with preserving all the useful properties of
the initial method.

In this paper, we will follow the second way. First of all, being based on the ap-
proach in [12], we suggest a new adaptive step-size procedure in (CGM) without any
line-search. Our new step-size procedure admits different changes of the step-size and
wide variety of implementation rules, not only decrease as in [12]. It does not utilize a
priori information such as Lipschitz constants and does not insist on the strict descent
at each iteration, but takes into account behavior of the iteration sequence, unlike the
well known divergent series rule. Moreover, the Lipschitz continuity of the gradient of
the goal function is not necessary for its convergence. Afterwards, we introduce spe-
cial threshold control and tolerances in order to avoid exact solution of the direction
finding subproblem (2) at each iteration. We establish a complexity estimate for this
method, which appears equivalent to the convergence rate of the custom (CGM). Fur-
thermore, we propose a version that combines both the modifications and show that it
possesses strengthened convergence properties with respect to the first modification of
(CGM) without line-search. Preliminary results of computational experiments confirm
efficiency of all the proposed modifications.

2 Properties of the usual conditional gradient method

We will take the following set of basic assumptions for problem (1).

(H) D is a nonempty, convex, closed, and bounded subset of R", f : R" — R is a
smooth function on the set D.

Together with problem (1), we will consider the following variational inequality (VI
for short): Find a point z* € D such that

(f'(z*),x —x*) >0 VreD. (3)

We denote by D° the solution set of VI (3).
We recall that a differentiable function ¢ : R®™ — R is called pseudo-convex on a set
D C R if for each pair of points x,y € D we have

(@), y—2) >0 = o(y) > ().

It is well known that that the class of convex functions is strictly contained in the
class of pseudo-convex functions. For instance, the function In¢ is concave and pseudo-
convex on Ry = {t | t > 0}, but it is clearly non-convex. VI (3) can be used as an
optimality condition for problem (1) so that solutions of VI (3) are called stationary
points of (1).

Lemma 1 [13, Theorems 5.5 and 9.12] Let (H) hold.
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(1) FEach solution of problem (1) solves VI (3).
(11) If f is pseudo-convez, then each solution of VI (8) solves problem (1).

The boundedness of D guarantees that problem (1) has a solution, moreover, D* is

a compact set, which will be also convex if f is pseudo-convex. Given a point x € D
we define the auxiliary problem

in — (f : 4

min — (f'(2),y) (4)

We denote by Z(z) the solution set of problem (4), thus defining the set-valued mapping

x +— Z(x). Observe that the set Z(z) is always non-empty, convex, and compact. Also,

let

pla) = max(f'(z),2 ~ ).

Given a set V' C R™, a set-valued mapping u — Q(u) is said to be closed on a set
V, if for each pair of sequences {u*} — u, {¢*} — ¢ such that u* € V and ¢* € Q(u"),
we have ¢ € Q(u).

Lemma 2 [13, Lemma 6.3] Let (H) hold. Then the mapping x — Z(x) is closed on
D.

Lemma 3 [13, Lemma 6.4] Let (H) hold. Then the following assertions are equiva-
lent:

(i) =* € DY;
(ii) z* € Z(z*);
(iii) (f'(z*),x* —2*) =0 for z* € Z(a*) and z* € D.
The above properties are very useful for substantiation of various (CGM) type
methods. Following [4], we now describe the usual (CGM) with the Armijo step-size

rule for a more clear comparison with the new methods. Here and below, Z. denotes
the set of non-negative integers.

Method (CGM).
Step 0: Choose a point z° € D, numbers 3 € (0,1) and 6 € (0,1). Set k = 0.
Step 1: Find a point y* € Z(z¥), set d* = y* — z*. If (f'(2*), d*) = 0, stop.
Step 2: Determine m as the smallest number in Z, such that

fa® +omd*) < f(a) + pom(f (%), d%), ()

set A\, = 0™, 281 = 2F 4+ \yd¥, k= k + 1, and go to Step 1.

Clearly, termination of the method yields a point of D°. For this reason, we will
consider only the non-trivial case where the sequence {z*} is infinite. We give the basic
convergence result of the above method.



Proposition 1 (e.g. [13, Theorems 6.12 and 9.12]) Let (H) hold, the sequence {z*}
be generated by (CGM). Then:

(i) The linesearch procedure in Step 2 is always finite.

(ii) The sequence {x*} has limit points, all these limit points belong to the set D°.

(i) If f is pseudo-convex, then all the limit points of the sequence {z*} belong to
the set D*, besides,

lim f(z*) = f*. (6)
k—o00
We can in principle take the exact one-dimensional minimization rule instead of
the current Armijo rule in (5), but it is not so suitable for implementation. Next, if
the gradient of the function f is Lipschitz continuous on D with some constant L > 0,
ie., ||f'(y) = f(x)]| < L|ly — z|| for any vectors = and y, one can give bounds for the
step-size and obtain the convergence rate.

Proposition 2 (/2, Theorem 6.1] and [3, Chapter III, Theorem 1.7]) Suppose that the
assumptions in (H) are fulfilled, the function f is convez, the gradient of the function
f is Lipschitz continuous on D with some constant L > 0, a sequence {x*} is generated
by (CGM) where the step-size Ay, is chosen by the formula

A, = min{1, 0o}, 0 = —(f’(a:k),dk>/||dk||2, 0, € [9’,«9”], 0 >0,0" <2/L.
Then these exists some constant C < +00 such that
fz®*)—f*<C/k fork=0,1,... (7)

This version reduces the computational expenses essentially due to the absence
of the line-search, but requires the evaluation of the Lipschitz constant. However,
utilization of its inexact estimates usually leads to slow convergence. This is also the
case for the known divergent series rule (see e.g. [14])

D =00, Y A <oo, A€ (0,1), k=0,1,2,...,
k=0 k=0

and for similar rules, which do not evaluate the information about the problem along
the current iterates.

3 A simple adaptive step-size without line-search

We now describe a modification of the (CGM), which involves a simple adaptive step-
size procedure without line-search. Moreover, it does not require any a priori informa-
tion about the problem.

Method (CGMS).



Step 0: Choose a point 2° € D, numbers 8 € (0,1) and a sequence {7;} — 0,
70 € (0,1). Set k =0, I =0, choose a number Ay € (0, 79).

Step 1: Find a point y* € Z(2%), set d* = y* — 2%, If (f'(«*),d*) = 0, stop.

Step 2: Set x*+1 = 2k + \pdF. If

FE™) < f(2®) + BA(S (), dY), (8)

take Ap11 € [Ap, 7). Otherwise set X, = min{\y, 741}, I = 1 + 1 and take \pyq €
(0, Xyyq]. Set k =k + 1 and go to Step 1.

Again, termination of the method yields a point of D due to Lemma 3. Hence, we
will consider only the case where the sequence {z*} is infinite.

Theorem 1 Let the assumptions in (H) be fulfilled. Then:

(i) The sequence {x*} has a limit point, which belongs to the set D°.

(ii) If f is pseudo-convex, then all the limit points of the sequence {x*} belong to
the set D*, besides, (6) holds.

Proof. First we note that both the sequences {z*} and {y*} belong to the bounded
set D and hence have limit points. Let us consider two possible cases.

Case 1: The number of changes of the index [ is finite.
Then we have A\, > X > 0 for k large enough, hence (8) gives

Fa™) < fah) + BN S ("), dY)

for k large enough. Since f(z¥) > f* > —oo, we must have

lim f(2%) = p 9)
and
Jim (f'(a), d") = 0. (10)

Let 2’ be an arbitrary limit point of the sequence {z*}. Taking a subsequence if
necessary we have the corresponding limit point 3’ of the sequence {y*}, i.e.

lim z* = 2’ and lim y* =9/
5—00 S5—00

From (10) we now have

<f/(x/)’y/ . x/> — 07
but the mapping x — Z(x) is closed due to Lemma 2, hence ' € Z(2'). From Lemma
3 it follows that 2’ € D°. Hence, in this case all the limit points of the sequence {z*}
belong to the set D°. Therefore, assertion (i) is true. If f is pseudo-convex, then
D° = D* due to Lemma 1, which gives p = f* in (9) and (6). We conclude that
assertion (ii) is also true.



Case 2: The number of changes of the index | is infinite.
Then there exists an infinite subsequence of indices {k;} such that

Fla + Ngd™) = f(a™) = famT) = fla™) > B (f/(@"), dY),

or equivalently,
Flaf 4 N d™) — f(a)

> B(f' (™), d"); (11)
Ay
besides,
)\kl € (077—1]7 )\k’l-‘rl € (077—l+1]7
and
lim T — 0.
5—00

Let Z be an arbitrary limit point of this subsequence {z*'}. Taking a subsequence
if necessary we can choose the corresponding limit point § of the subsequence {y*}.
Without loss of generality we can suppose that

lim 2" = z and lim ¢* = 7.
l—00 l—00

Since \g, — 0 as [ — +o0, taking the limit [ — 400 in relation (11) we obtain
<f,(i')7g - ‘(i’> > B(f,(i')ag - Zi’>,

- (f'(@).5—7) > 0.

By Lemma 2 we have § € Z(7), but from Lemma 3 it now follows that z € D°.
Therefore, assertion (i) is true. If f is pseudo-convex, then D° = D* due to Lemma
1. It follows that all these limit points of the subsequence {z*} belong to the set D*.
Since 1 = xkt + N, d¥ | A, — 0, and the sequence {d*} is bounded, the limit points
of the subsequences {2*} and {z¥*!} coincide and all they belong to the set D*.

For any index k we define the index m(k) as follows:

m(k) = max{j | j <k, (@) = f@7™) > A (@), 7)),

i.e. j is the closest to k but not greater index from the subsequence {x**1}. This
means that j = k if f(z*) — f(2*71) > BA\_1(f'(2*71),d* ). By definition, we have

fla) < fam®). (12)

Let now 2’ be an arbitrary limit point of the sequence {z*}, i.e. lim z's = 2’. Create
S5—00

f(z™®)) but all the limit points of the sequence {z™)} belong to the set D* since

the corresponding infinite subsequence {z™*)}. From (12) we have f* < f(a%) <
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it is contained in the sequence {z¥*1}. Choose any limit point z” of {#(*)}. Then,
taking a subsequence if necessary we obtain

fr<f@) < f@”) =1

therefore 2/ € D*. This means that all the limit points of the sequence {z*} belong to
the set D* and that (6) holds true. We conclude that assertion (ii) is also true. O

It should be observed that (CGMS) follows the approach in [12], but the step-size
procedure in (CGMS) admits wide variety of implementation rules in comparison with
those in [12], where only the strict decrease is indicated for possible changes of the step-
size. Even the simplest implementation rule of (CGMS), where Ay = max{\;, 7} if
(8) holds and A\gy; = min{ g, 741} otherwise, admits the increase of Aryq, which
prevents from the too small step-size. Such a modification seems especially significant
for the case where the computation of the goal function value is rather expensive.

4 Inexact solution of the direction finding subprob-
lem

It was noticed in Section 1 that the auxiliary direction finding subproblem (2) in (CGM)
is simpler essentially than the quadratic ones in the projection based methods. Nev-
ertheless, its exact solution may also be expensive. If the feasible set D is a general
polyhedron with many vertices, one has to apply a special algorithm at each iteration.
Then, the method with approximate solution of subproblem (2) may appear more ef-
ficient. There exist several versions of such methods; see e.g. [3, 14]. We observe that
all these versions involve evaluation of the accuracy of a solution of subproblem (2),
which must tend to zero. In this section, we intend to present some other version of
this modification of (CGM), which is based on inserting tolerances and some threshold
control of the descent property. We observe that this approach was first suggested for
the bi-coordinate descent method in [15]. In [16], it was applied in a generalized con-
ditional gradient method for optimization problems on Cartesian product sets, where
the corresponding partial auxiliary problems in subspaces are still to be solved exactly.
We now describe the general inexact (CGM) with the same Armijo step-size rule.

Method (CGMI).
Initialization: Choose a point w® € D, numbers 3 € (0,1), # € (0,1), and a positive
sequence {0,} — 0. Set p = 1.

Step 0: Set k=0, 2° = wP~!.

Step 1: Find a point z* € D such that

(f'(@"h), 2" = 2%) > 4, (13)
If p(a*) < &, set w? =z, p=p+1 and go to Step 0. (Restart)
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Step 2: Set d¥ = z* — 2, determine m as the smallest number in Z, such that
fa® +0md) < f(a*) + pom(f'(a"),d"), (14)

set A\, = 0™, 2" = 2% 4 \pd*, k = k + 1 and go to Step 1.

Thus, the method has a two-level structure where each outer iteration (stage) p
contains some number of inner iterations in k with the fixed tolerance 9,. Completing
each stage, that is marked as restart, leads to decrease of its value. Observe that only
the restart situation requires the exact solution of the auxiliary subproblem (2). In all
the other cases, we can take z* € D as an arbitrary suitable point (say a vertex of D)
within condition (13).

By (13), we have

(f'(z*),d") < =6, < 0

in (14). It follows that
F@) = f@h) < BA(F/ (@), d) < —BNid,. (15)
We first justify the linesearch.

Lemma 4 Let the assumptions in (H) be fulfilled. Then the linesearch procedure in
Step 2 of (CGMI) is always finite.

Proof. If we suppose that the linesearch procedure is infinite, then (14) does not hold
and

07" (f(a* +0md") — f(z*)) > B(f' ("), d"),
for m — oo. Hence, by taking the limit we have (f'(z*),d*) > B(f'(z*),d"), hence
(f'(z*),d*) > 0, a contradiction with (13). O

We show that each stage is well defined.

Proposition 3 Let the assumptions in (H) be fulfilled. Then the number of iterations
at each stage p is finite.

Proof. Fix any p and suppose that the sequence {z*} is infinite. By (15), we have
f* < f(a*) and f(a**1) < f(2*) — Bo,Ak, hence

lim Ay = 0.

k—o0
Both the sequences {z*} and {2*} belong to the bounded set D and hence have limit
points. Without loss of generality, we can suppose that some subsequence {2*:} con-
verges to a point Z and the corresponding subsequence {z¥:} converges to a point Z.
Due to (13) we have

(f'(2),5 — 7) = lim (f'(a™), y™ —a™) < -4, (16)

S§—00



However, (14) does not hold for the step-size A\;/0. Setting k = k, gives

(A, /O)7H(f (™ + (N, /0)d™) = f(a*) > B{f (o), d*),

hence, by taking the limit s — co we obtain

(@ 5-7) = lim {0 /0)7 (F + O /) — f2*)))
> B(f(2).5 - ),

ie., (1 —=p)(f(z),y —x) >0, which is a contradiction with (16). O

We are ready to prove convergence of the whole method.

Theorem 2 Let the assumptions in (H) be fulfilled. Then:

(1) The number of changes of index k at each stage p is finite.

(11) The sequence {wP} generated by method (CGMI) has limit points, all these limit
points belong to D°.

(111) If f is pseudo-convez, then all the limit points of the sequence {wP} belong to
the set D*, besides,

lim f(w?) = f°; (7)
p—o0

Proof. Assertion (i) has been obtained in Proposition 3. By construction, the sequence

{wP} is bounded, hence it has limit points. Moreover, f* < f(wP™) < f(wP), hence

lim f(w?) = p. (18)

pP—o0

For each p and any point u? € Z(wP) it holds that
(f (wP), w” —uP) < 6. (19)

Fix this sequence {uf}. It is also bounded and must have limit points. Take an
arbitrary limit point @ of {w?}. Then, without loss of generality we can suppose that

u = lim v”* and w = lim w"t,
t—o0 t—o0
for some subsequences {u”*} and {wP*}. Taking the limit ¢ — oo in (19) with p = py,
we obtain
(f'(w),w —u) = tlim (f (wP), wP — uPt) <O0.
—00

By Lemma 2 we have 4 € Z(w), hence (f'(w),w — ) = 0 and w € D° due to Lemma
3. This means that all the limit points of {u”} belong to D°. This gives assertion (ii).
If f is pseudo-convex, then DY = D* due to Lemma 1, which gives y = f* in (18) and
(17). We conclude that assertion (iii) is true. O
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It was observed in Section 2 that the usual (CGM) attains the convergence rate
O(1/k) under the additional assumptions that the function f is convex and its gradient
is Lipschitz continuous; see Proposition 2 and formula (7). This means that the total
number of iterations N(g) that is necessary for attaining some prescribed accuracy
e > 0 for the gap value A(x) = f(x) — f* is estimated as follows:

N(e) < C/e, where 0 < C < 0. (20)

We can try to obtain a similar estimate for (CGMI) with the proper specialization. In
fact, if the gradient of the function f is Lipschitz continuous on D with some constant
L > 0, we can take the well known property of such functions

fly) < f@) +(f'(x),y — x) + 0.5L)ly — x|
see [3, Chapter III, Lemma 1.2]. Then, at Step 2 we have
F@® +2d") = f(2®) < A[(f(2%), d*) + 0.5LA|d|°] < BA(f'(2*), d"),

if X < =21 — B)(f'(«),d*)/(L||d"||*). Next, (f'(z*),d*) < =6, at stage p, besides,
|d*|| < p £ DiamD < oco. If we simply take A\, = A§; with A € (0, A] and

X = 21— 8)/(Lp?),

then
F® + \ed®) < F(2%) + BA(S(aF), d), (21)

as desired; cf. (14). This means that we can drop the line-search procedure in Step
2. We call this modification (CGMIL). Obviously, the assertions of Proposition 3 and
Theorem 2 remain true for this version.

As (CGMIL) has a two-level structure with each stage containing a finite number
of inner iterations, it is more suitable to derive its complexity estimate, which gives the
total amount of work of the method. Given a starting point w® and a number £ > 0,
we define the complexity of the method, denoted by N (¢), as the total number of inner
iterations at p(e) stages such that p(e) is the maximal number p with A(w?) > ¢,
hence,

p(e)
N < SN, (22)

where N, denotes the total number of iterations at stage p. We have to estimate the
right-hand side of (22).

Theorem 3 Let a sequence {w'} be generated by (CGMIL) with the rule:
5p:I/p(S(),p:0,1,...; VE(O,l),5Q>O. (23)
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Suppose that the assumptions in (H) be fulfilled and also that the function f is convex
and its gradient is Lipschitz continuous with constant L. Then the method has the
complexity estimate

N(E) < Conl(3o/2) — 1)/(1— ),
where Cy = p*L/(23(1 — 8)dy).

Proof. From (21) and (13) we have
FEF) < fah) = BMd, = f(*) = BAGY,
at any fixed stage p. It follows from the definition of X that
Ny < (Fwr ™) = F)/(BM2) < LAWY /(28(1 - B)52). (24)
By the convexity of f, for some x* € D* we have
A(w?) = f(?) - f(z*) < ('), u? — 27) < 6.
Using this estimate in (24) gives
N, < 910, 1/(28(1 — B)82).
From (23) it now follows that
Ny < PPLuJ(28(1 — A)oow) = Cr 7,
On the other side, since ¢ < A(wP) < 4§, = dpv/?, we have
Pl < do /€.

Combining both the inequalities in (22), we obtain

p(e)
N(E) <Gy vl =Cwe™ -1)/(1-v)
< Cly(_(éo/g) -1)/(1—-v).

O

We observe that the above estimate is the same as in (20), which corresponds to
the usual (CGM) under the same assumptions.
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5 A parametric inexact method without line-search

In this section, we describe the combined method, which involves both the inexact
solution of the auxiliary direction finding subproblem (2) due to special parametric
threshold control of the descent property and the simple adaptive step-size rule without
line-search.

Method (CGMIS).
Initialization: Choose a point w® € D, numbers $ € (0,1), § € (0,1), and a positive
sequence {0,} — 0. Set p = 1.

Step 0: Choose a sequence {7,,} — 0, 9, € (0,1). Set k =0, =0, 2° = wP™?,
choose a number Ay € (0, 79,).

Step 1: Find a point z* € D such that

(f'(@"), " = 28) > 6, (25)

If u(a*) < 6, set w? =z p=p+ 1 and go to Step 0. (Restart)
Step 2: Set dF = 2F — ok oF 1 = 2k 4 N\ dF. If

FEMY) < F(R) + BA(S(aF), ), (26)
take A\py1 € [Ap, 7). Otherwise set N, = min{\y, 741}, [ = [+ 1 and take Ay €
(0, Xyyq]. Set k =k + 1 and go to Step 1.

Again, each outer iteration (stage) p contains some number of inner iterations in k
with the fixed tolerance 9,. Completing each stage, that is marked as restart, leads to
decrease of its value. Note that the choice of the parameters {7;,} can be in principle
independent for each stage p.

By (25), we again have

(f'(z%),d") < =6, < 0

in (26). It follows that
F) = £(2*) < BAF (@), d°) < =B, (27)
We show that each stage is well defined.

Proposition 4 Let the assumptions in (H) be fulfilled. Then the number of iterations
at each stage p is finite.

Proof. Fix any p and suppose that the sequence {z*} is infinite. Then the number of
changes of index [ is also infinite. In fact, otherwise we have A\, > A > 0 for k large
enough, hence (27) gives

f* < f@") < fa®) — BN, — —oc ast — oo,
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for k large enough, which is a contradiction. Therefore, there exists an infinite subse-
quence of indices {k;} such that

Fla + Ngd™) = f(a™) = famT) = fa™) > B (' ("), d%),

or equivalently,
Flaf 4 N\ d™) — f(a)
Ak

where d* = 2z — z* . Besides, it holds that

> B(f'(z"),d"), (28)

1

My € (0,715), A1 € (0, Tiga ),
where
lim 7, = 0.
=00 Lp

Both the sequences {z*} and {z*} belong to the bounded set D and hence have limit
points. Without loss of generality, we can suppose that the subsequence {z*} converges
to a point Z and the corresponding subsequence {z*} converges to a point z. Due to
(25) we have

(F(2),2 = 7) = lim (f(a}1), 25 — ah) < =5, (29)

At the same time, taking the limit [ — oo in (28), we obtain

(f(@),z-2) = lim {N(f@@™ + (W /0)d") = fa™))}

=00
> Bf(2),z—2),
ie., (1 =75){(f(z),z—z) >0, which is a contradiction with (29). O

We are ready to prove convergence of the whole method. Although it is similar to
Theorem 2, we give the full proof for more clarity.

Theorem 4 Let the assumptions in (H) be fulfilled. Then:

(1) The number of changes of index k at each stage p is finite.

(i) The sequence {wP} generated by method (CGMIS) has limit points, all these
limit points belong to D°.

(111) If f is pseudo-convex, then all the limit points of the sequence {wP} belong to
the set D*, besides, (17) holds.

Proof. Assertion (i) has been obtained in Proposition 4. By construction, the sequence
{wP} is bounded, hence it has limit points. For each p and any point w? € Z(w?) it
holds that

(' (wP), w? —uP) < 6. (30)

14



Fix this sequence {uP}. It is also bounded and must have limit points. Take an
arbitrary limit point w of {w?}. Then, without loss of generality we can suppose that

u = lim v”* and w = lim w"*,
t—o0 t—o0
for some subsequences {u”*} and {w?*}. Taking the limit ¢ — oo in (30) with p = py,
we obtain
<f/(ﬂ)), w — ﬂ> = tllIIl <f,(wpt)v wh — upt> <0.
—00

By Lemma 2 we have u € Z(w), hence (f'(w),w — ) = 0 and w € D° due to Lemma
3. This means that all the limit points of {u”} belong to D°. This gives assertion (ii).
If f is pseudo-convex, then D° = D* due to Lemma 1, which gives (17). We conclude
that assertion (iii) is true. O

Comparing Theorems 1 and 4, we observe that the joint modifications enable us to
attain strengthened convergence properties for (CGMIS) with respect to (CGMS) in
the non-convex case.

In this paper, we describe modifications for the basic conditional gradient method.
Obviously, the same modifications can be applied to most of the gradient type smooth
optimization methods.

6 Computational experiments

In order to check the performance of the proposed methods we carried out compu-
tational experiments. We compared (CGM), (CGMS), (CGMI), and (CGMIS) with
respect to (1) for different dimensionality. They were implemented in Delphi with dou-
ble precision arithmetic. The main goal was to compare the number of iterations (it),
the total number of calculations of the goal function value (kf), and the total number
of calculations of partial derivatives of f (kg) for attaining the same accuracy € = 0.1
with respect to the gap function p(x). We chose the rule §,41 = v, with v = 0.5 for
(CGMI) and (CGMIS). For (CGMS) and (CGMIS), we simply set A\g11 = Mg if (8)
(respectively, (26)) holds, and Ay = oA, with o = 0.9 otherwise. Next, in the case of
restart in (CGMIS) we took \g = 79, = A/, where \; was the current step-size from
the previous stage. We set § = 6 = 0.5 for all the methods.
We took the simplex as the feasible set for all the test problems, i.e.,

i=1

We set b = 10 and took the same starting point 2’ = (b/n)e for all the methods. For
(CGMI) and (CGMIS), we applied the cyclic selection of indices. In all the series, we
took the convex cost functions.

D:{JI:ER’fF
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Table 1: Quadratic cost function

(CGM) (CGMS)
n it kf kg it kf kg
5 202 2098 1010 65 65 325
10| 713 8256 7130 87 87 870
20 | 503 6500 10060 | 833 833 16660
50 | 1729 24624 86450 | 2155 2155 107750
100 | 2540 38454 254000 | 5430 5430 543000
(CGMI) (CGMIS)
n it kf kg it kf kg
51 199 2072 472 71 71 192
10 | 743 8690 4098 | 743 743 4060
20 | 583 7687 5953 | 124 124 1296
50 | 2037 29558 50532 | 2214 2214 53868
100 | 2888 44296 14864 | 6417 6417 21764

In the first series, we chose f(x) = p;(z) where

the elements of the matrix P were defined by

sin(i) cos(j)  ifi <,
) sin(j)cos(i)  ifi > 7,
pij = N (32)
’ Slpisl 41 ifi=j.
s#£i

The results are given in Table 1. In the second series, we took the cost function

f(z) = p1(x) + p2()

where the function ¢; was defined as in (31)—(32) and the function s was defined by
the formula

pa() = 1/({¢, ) + d), (33)

where the elements of the vector ¢ were defined by
¢; =2+sin(i) for i=1,...,n,

and d = 5. The results are given in Table 2.
In the third series, we chose f(z) = ¢3(x) where

p3(z) = 0.5]|Pz — g%, (34)
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Table 2: Convex cost function ¢ + o

(CGM) (CGMS)
n it kf kg it kf kg
5 203 2116 1015 65 65 325
10 | 705 8155 7050 87 87 870
20 | 491 6329 9820 | 833 833 16660
50 | 1760 25105 88000 | 2155 2155 107750
100 | 2594 39338 259400 | 5496 5496 549600
(CGMI) (CGMIS)
n it kf kg it kf kg
51 209 2192 517 71 71 192
10| 731 8528 4008 | 706 706 3866
20 | 547 7150 5660 | 123 123 1291
50 | 2026 29359 50551 | 2070 2070 50506
100 | 2921 44797 16343 | 6321 6321 17517

the elements of the m x n matrix P were defined by

p”_{ﬁiﬁz if i = j; (35)

where
pij =In(1+4/j)sin(i/j)/(i+7), i=1,...,m,j=1,...,n; (36)
and
j=1

The results are given in Table 3. In the fourth series, we took the cost function

f(x) = p3(z) + pa(7)

where the function 3 was defined as in (34)—(37) and the function ¢, was defined as
in (33). The results are given in Table 4.

In almost all the cases, (CGMS) and (CGMIS), which do not use line-search, showed
rather rapid convergence, they outperformed (CGM) and (CGMI), respectively, in the
total number of goal function calculations. Similarly, the inexact versions (CGMI)
and (CGMIS) showed essential reduction of the total number of partial derivatives
calculations in comparison with (CGM) and (CGMS), respectively.
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Table 3: Quadratic cost function 3

(CGM) (CGMS)
m n it kf kg | it kf kg
2 5 | 2362 25584 11810 | 68 68 340
5 10 | 2998 33752 29980 | 88 88 880
10 20 | 4076 43381 81520 | 77 77 1540
25 50| 219 2438 10950 | 497 497 24850
50 100 | 4197 48491 419700 | 93 93 9300

(CGMI) (CGMIS)
m n it kf kg | it kf kg
2 5| 2412 26273 3617 | 54 o4 103
5 10 | 3328 38601 9379 | 107 107 255
10 20 | 4296 50567 18508 | 93 93 393
25 50 | 3924 45769 35894 | 837 837 7343
50 100 | 4176 48969 5385 | 116 116 1774

Table 4: Convex cost function ¢s + 9

(CGM) (CGMS)
m n it kf kg | it kf kg
2 5 | 2365 25633 11825 | 68 68 340
5 10 | 2926 32957 29260 | 93 93 930
10 20| 3972 46047 79440 | 83 83 1660
25 50| 229 2564 11450 | 497 497 24850
50 100 | 4192 48894 419200 | 92 92 9200

(CGMI) (CGMIS)
m n it kf kg it kf kg
2 5| 2386 25956 3577 | 54 o4 103
5 10 | 3276 37911 9271 | 107 107 255
10 20 | 4543 53856 19532 | 92 92 392
25 50 | 3806 44284 34835 | 867 867 7615
50 100 | 4304 50627 7408 | 115 115 1763
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