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Abstract. We introduce an extension of Dual Dynamic Programming (DDP) to solve linear dynamic pro-
gramming equations. We call this extension IDDP-LP which applies to situations where some or all primal

and dual subproblems to be solved along the iterations of the method are solved with a bounded error
(inexactly). We provide convergence theorems both in the case when errors are bounded and for asymp-

totically vanishing errors. We extend the analysis to stochastic linear dynamic programming equations,

introducing Inexact Stochastic Dual Dynamic Programming for linear programs (ISDDP-LP), an inexact
variant of SDDP applied to linear programs corresponding to the situation where some or all problems to be

solved in the forward and backward passes of SDDP are solved approximately. We also provide convergence

theorems for ISDDP-LP for bounded and asymptotically vanishing errors. Finally, we present the results
of numerical experiments comparing SDDP and ISSDP-LP on a portfolio problem with direct transaction

costs modelled as a multistage stochastic linear optimization problem. On these experiments, ISDDP-LP

allows us to obtain a good policy faster than SDDP.

Stochastic programming and Decomposition algorithms and Monte Carlo sampling and SDDP and Inex-
act cuts in SDDP

AMS subject classifications: 90C15, 90C90.

1. Introduction

Multistage stochastic convex programs are useful to model many real-life applications in engineering
and finance, see for instance [22] and references therein. A popular solution method for such problems is
Stochastic Dual Dynamic Programming (SDDP, pioneered by [17]) which introduces sampling in the Nested
Decomposition (ND) algorithm [5, 4]. It was extended and analysed in several publications: extension for
problems with interstage dependent processes [15], [7], adaptations for risk-averse problems [13, 12, 21, 16],
regularizations [2, 14], cut selection [18, 19, 11], extension to problems with integer variables [24], convergence
proofs for linear programs [20], for nonlinear risk-neutral programs [6], and for nonlinear risk-averse programs
[8]. Recently, Inexact SDDP (ISDDP) was proposed in [10]: it uses inexact cuts in SDDP applied to
Multistage Stochastic NonLinear Problems (MSNLPs). The motivations for ISDDP are twofold:

(i) first, when SDDP is applied to nonlinear problems, only approximate solutions for the subproblems
solved in the backward and forward passes are available. ISDDP allows us to build valid cuts on the
basis of approximate solutions to these subproblems.

(ii) Second, for the first iterations and the first stages, the cuts computed by SDDP can be quite distant
from the corresponding recourse function in the neighborhood of the trial point at which the cut
was computed (see for instance the numerical experiments in [11, 9]), making this cut dominated by
other ”more relevant” cuts in this neighborhood as the method progresses. Therefore, it is natural to
try and solve less accurately, inexactly, the subproblems in the forward and backward passes for the
first iterations and stages and to increase the precision of the computed solutions as the algorithm
progresses to decrease the overall computational bulk.

The goal of this paper is to pursue this line of research considering linear instead of nonlinear programs.
More precisely, we propose and analyse a variant of SDDP applied to Multistage Stochastic Linear Programs
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(MSLPs) called ISDDP-LP (Inexact SDDP for Linear Programs), which allows us to build cuts, called
inexact cuts, on the basis of feasible (not necessarily optimal and eventually far from optimal) solutions to
the subproblems solved in the forward and backward passes of the method. The combination of inexact
cuts with Benders Decomposition [3] was first proposed by [23] for two-stage stochastic linear programs.
Therefore, ISDDP-LP can be seen as an extension to a multistage setting of the algorithm presented in [23].

The main results of this paper are the following:

(A) we propose an extension of DDP (Dual Dynamic Programming, the deterministic counterpart of
SDDP) called IDDP-LP (Inexact DDP for Linear Programs) which builds inexact cuts for the cost-
to-go functions. For a problem with T periods, when noises (error terms quantifying the inexactness)
are bounded by δ̄ in the forward pass and by ε̄ in the backward pass, we show in Theorem 3.2 that

the limit superior of the sequence of upper bounds is at most (δ̄ + ε̄)T (T+1)
2 distant to the optimal

value of the problem and the limit inferior of the sequence of lower bounds is at most δ̄T + ε̄(T − 1)
distant to this optimal value. When noises asymptotically vanish, we show that IDDP-LP solves the
original optimization problem.

(B) The study of IDDP-LP allows us to introduce and analyse ISDDP-LP which builds inexact cuts for
the cost-to-go functions of a MSLP. We provide a convergence theorem (Theorem 4.1) for ISDDP-LP
when noises are bounded and show in Theorem 4.2 that ISDDP-LP solves the original MSLP when
noises asymptotically vanish.

(C) We compare the computational bulk of SDDP and ISDDP-LP on four instances of a portfolio opti-
mization problem with direct transaction costs. On these instances, ISDDP-LP allows us to obtain
a good policy faster than SDDP (compared to SDDP, with ISDDP-LP the CPU time decreases by
a factor of 6.2%, 6.4%, 6.5%, and 11.1% for the four instances considered). It is also interesting
to notice that once SDDP is implemented on a MSLP, the implementation of the corresponding
ISDDP-LP with given parameters (δkt , εkt ) is straightforward. Therefore, if for a given application,
or given classes of problems, we can find suitable choices of parameters (δkt , εkt ) either using the rules
from Remark 4.3, other rules, or ”playing” with these parameters running ISDDP-LP on instances,
ISDDP-LP could allow us to solve similar new instances quicker than SDDP.

The paper is organized as follows. In Section 2 we explain how to build inexact cuts for the value function
of a linear program (this elementary observation is used to build cuts in IDDP-LP and ISDDP-LP). In Section
3 we introduce and analyse IDDP-LP while in Section 4 we introduce and analyse ISDDP-LP. Numerical
simulations are presented in Section 5.

2. Computing inexact cuts for the value function of a linear program

Let X ⊂ Rm and let Q : X → R be the value function given by

(2.1) Q(x) =

{
miny∈Rn cT y
y ∈ Y (x) := {y ∈ Rn : Ay +Bx = b, Cy ≤ f},

for matrices and vectors of appropriate sizes. We assume:

(H) for every x ∈ X, the set Y (x) is nonempty and y → cT y is bounded from below on Y (x).

If Assumption (H) holds then Q is convex and finite on X and by duality we can write

(2.2) Q(x) =

{
maxλ,µ λT (b−Bx) + µT f
ATλ+ CTµ = c, µ ≤ 0,

for x ∈ X. We will call cut for Q on X an affine lower bounding function for Q on X. We say that cut C is
inexact at x̄ for convex function Q if the distance Q(x̄)− C(x̄) between the values of Q and of the cut at x̄
is strictly positive. When Q(x̄) = C(x̄) we will say that cut C is exact at x̄.

The following simple proposition will be used in the sequel: it provides an inexact cut for Q at x̄ ∈ X on
the basis of an approximate solution of (2.2):

Proposition 2.1. Let Assumption (H) hold and let x̄ ∈ X.
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Let (λ̂, µ̂) be an ε-optimal basic feasible solution for dual problem (2.2) written for x = x̄ (it is in particular

an extreme point of the feasible set), i.e., AT λ̂+ CT µ̂ = c, µ̂ ≤ 0, and

(2.3) λ̂T (b−Bx̄) + µ̂T f ≥ Q(x̄)− ε,

for some ε ≥ 0. Then the affine function

C(x) := λ̂T (b−Bx) + µ̂T f

is a cut for Q at x̄, i.e., for every x ∈ X we have Q(x) ≥ C(x) and the distance Q(x̄) − C(x̄) between the
values of Q and of the cut at x̄ is at most ε.

Proof. C is indeed a cut for Q (an affine lower bounding function for Q) because (λ̂, µ̂) is feasible for
optimization problem (2.2). Relation (2.3) gives the upper bound ε for Q(x̄)− C(x̄). �

3. Inexact cuts in DDP applied to linear programs

3.1. Algorithm. Consider the linear program

(3.4)
min

x1,...,xT∈Rn

T∑
t=1

cTt xt

Atxt +Btxt−1 = bt, xt ≥ 0, t = 1, . . . , T,

where x0 is given. For this problem we can write the following dynamic programming equations: for t =
1, . . . , T ,

(3.5) Qt(xt−1) =

{
min
xt∈Rn

cTt xt +Qt+1(xt)

Atxt +Btxt−1 = bt, xt ≥ 0

with the convention that QT+1 is null. Clearly, the optimal value of (3.4) is Q1(x0).
For convenience, we will denote

Xt(xt−1) := {xt ∈ Rn : Atxt +Btxt−1 = bt, xt ≥ 0}.

We make the following assumption:

(H1-D) The set X1(x0) is nonempty and bounded and for every x1 ∈ X1(x0), for every t = 2, . . . , T , for
every x2 ∈ X2(x1), . . . , xt−1 ∈ Xt−1(xt−2), the set Xt(xt−1) is nonempty and bounded.

In this section, we introduce a variant of DDP to solve (3.4) called Inexact DDP for linear programs (IDDP-
LP) where the subproblems of the forward and backward passes are solved approximately. At iteration k,
for t = 2, . . . , T , convex function Qt is approximated by a piecewise affine lower bounding function Qkt which
is a maximum of affine lower bounding functions Cit called inexact cuts:

Qkt (xt−1) = max
1≤i≤k

Cit(xt−1) with Cit(xt−1) = θit + 〈βit , xt−1〉

where coefficients θit, β
i
t are computed as explained below. The steps of IDDP-LP are as follows:

IDDP-LP, Step 1: Initialization. For t = 2, . . . , T , take for Q0
t a known lower bounding affine function

for Qt. Set the iteration count k to 1 and Q0
T+1 ≡ 0.

IDDP-LP, Step 2: Forward pass. Using approximation Qk−1t+1 of Qt+1 (computed at previous iter-

ations), we compute a δkt -optimal basic feasible solution xkt of the problem (it is in particular an extreme
point of the feasible set)

(3.6)

{
minxt∈Rn cTt xt +Qk−1t+1 (xt)
xt ∈ Xt(x

k
t−1)

for t = 1, . . . , T , where xk0 = x0.
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IDDP-LP, Step 3: Backward pass. The backward pass builds inexact cuts for Qt at trial points xkt−1
computed in the forward pass. For k ≥ 1 and t = 1, . . . , T , we introduce the function Qkt : Rn → R given by

(3.7) Qkt (xt−1) =

{
minxt∈Rn cTt xt +Qkt+1(xt)
xt ∈ Xt(xt−1),

where QkT+1 ≡ 0. We solve approximately the problem

(3.8) QT (xkT−1) =

{
min
xT∈Rn

cTTxT

ATxT +BTx
k
T−1 = bT , xT ≥ 0,

with dual

{
maxλ λ

T (bT −BTxkT−1)
ATTλ ≤ cT .

More precisely, let λkT be an εkT -optimal basic feasible solution of the dual problem above (it is in particular
an extreme point of the feasible set). We compute

(3.9) θkT = 〈bT , λkT 〉 and βkT = −BTT λkT .

Using Proposition 2.1 we have that CkT (xT−1) = θkT + 〈βkT , xT−1〉 is an inexact cut for QT at xkT−1 which
satisfies

(3.10) QT (xkT−1)− CkT (xkT−1) ≤ εkT .

Then for t = T − 1 down to t = 2, knowing Qkt+1 ≤ Qt+1, consider the optimization problem

(3.11) Qkt (xkt−1) =

{
min
xt

cTt xt +Qkt+1(xt)

xt ∈ Xt(x
k
t−1)

=


min
xt,f

cTt xt + f

Atxt +Btx
k
t−1 = bt, xt ≥ 0,

f ≥ θit+1 + 〈βit+1, xt〉, i = 1, . . . , k.

Observe that due to (H1-D) the above problem is feasible and has a finite optimal value. Therefore Qkt (xkt−1)
can be expressed as the optimal value of the corresponding dual problem:

(3.12) Qkt (xkt−1) =


max
λ,µ

λT (bt −Btxkt−1) +

k∑
i=1

µiθ
i
t+1

ATt λ+

k∑
i=1

µiβ
i
t+1 ≤ ct,

k∑
i=1

µi = 1,

µi ≥ 0, i = 1, . . . , k.

Let (λkt , µ
k
t ) be an εkt -optimal basic feasible solution of dual problem (3.12). We compute

(3.13) θkt = 〈λkt , bt〉+ 〈µkt , θt+1,k〉 and βkt = −BTt λkt ,

where vector θt+1,k has components θit+1, i = 1, . . . , k, arranged in the same order as components µkt (i), i =

1, . . . , k, of µkt . Recalling that Ckt (xt−1) = θkt + 〈βkt , xt−1〉 and using Proposition 2.1, we have

(3.14) Qkt (xt−1) ≥ Ckt (xt−1) and Qkt (xkt−1)− Ckt (xkt−1) ≤ εkt .

Using the fact that Qkt+1(xt−1) ≤ Qt+1(xt−1), we have Qkt (xt−1) ≤ Qt(xt−1), and therefore

(3.15) Qt(xt−1) ≥ Ckt (xt−1)

which shows that Ckt is a cut for Qt.

IDDP-LP, Step 4: Do k ← k + 1 and go to Step 2.

Following the proof of Lemma 1 in [20], we obtain that for all t = 2, . . . , T + 1, the collection of distinct
values (θkt , β

k
t )k is finite and cut coefficients (θkt , β

k
t )k are uniformly bounded. Observe that this proof uses

the fact that (λkt , µ
k
t ) are extreme points of the feasible set of (3.12). There could however be unbounded

sequences of approximate optimal feasible solutions to (3.12).
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3.2. Convergence analysis. In this section we state a convergence result for IDDP-LP in Theorem 3.2
when noises δkt , ε

k
t are bounded and in Theorem 3.3 when these noises asymptotically vanish.

We will need the following simple extension of [6, Lemma A.1]:

Lemma 3.1. Let X be a compact set, let f : X → R be Lipschitz continuous, and suppose that the sequence
of L-Lipschitz continuous functions fk, k ∈ N satisfies fk(x) ≤ fk+1(x) ≤ f(x) for all x ∈ X, k ∈ N. Let
(xk)k∈N be a sequence in X and assume that

(3.16) lim
k→+∞

f(xk)− fk(xk) ≤ S

for some S ≥ 0. Then

(3.17) lim
k→+∞

f(xk)− fk−1(xk) ≤ S.

Proof. Let us show (3.17) by contradiction. Assume that (3.17) does not hold. Then there exist ε0 > 0 and
σ : N→ N increasing such that for every k ∈ N we have

(3.18) f(xσ(k))− fσ(k)−1(xσ(k)) > S + ε0.

Since xσ(k) is a sequence of the compact set X, it has some convergent subsequence which converges to some
x∗ ∈ X. Taking into account (3.16) and the fact that fk are L-Lipschitz continuous, we can take σ such
that (3.18) holds and

f(xσ(k))− fσ(k)(xσ(k)) ≤ S +
ε0
4
,(3.19)

fσ(k)−1(xσ(k))− fσ(k)−1(x∗) > −ε0
4
,(3.20)

fσ(k)(x∗)− fσ(k)(xσ(k)) > −ε0
4
.(3.21)

Therefore for every k ≥ 1 we get

fσ(k)(x∗)− fσ(k−1)(x∗) ≥ fσ(k)(x∗)− fσ(k)−1(x∗) since σ(k) ≥ σ(k − 1) + 1,
= fσ(k)(x∗)− fσ(k)(xσ(k)) (> −ε0/4 by (3.21)),

+fσ(k)(xσ(k))− f(xσ(k)) (≥ −S − ε0/4 by (3.19)),
+f(xσ(k))− fσ(k)−1(xσ(k)) (> S + ε0 by (3.18)),
+fσ(k)−1(xσ(k))− fσ(k)−1(x∗) (> −ε0/4 by (3.20)),

> ε0/4,

which implies fσ(k)(x∗) > fσ(0)(x∗) +k ε04 . This is in contradiction with the fact that the sequence fσ(k)(x∗)
is bounded from above by f(x∗). �

Theorem 3.2 (Convergence of IDDP-LP with bounded noises). Consider the sequences of decisions (xkt )
and of functions (Qkt ) generated by IDDP-LP. Assume that (H1-D) holds and that noises εkt and δkt are
bounded: 0 ≤ εkt ≤ ε̄, 0 ≤ δkt ≤ δ̄ for some δ̄, ε̄ ≥ 0.

(i) Then for t = 2, . . . , T + 1,

(3.22) 0 ≤ lim
k→+∞

Qt(xkt−1)−Qkt (xkt−1) ≤ lim
k→+∞

Qt(xkt−1)−Qkt (xkt−1) ≤ (δ̄ + ε̄)(T − t+ 1).

(ii) The limit superior and limit inferior of the sequence of upper bounds (
∑T
t=1 c

T
t x

k
t )k on the optimal

value Q1(x0) of (3.4) satisfy

(3.23) Q1(x0) ≤ lim
k→+∞

T∑
t=1

cTt x
k
t ≤ lim

k→+∞

T∑
t=1

cTt x
k
t ≤ Q1(x0) + (δ̄ + ε̄)

T (T + 1)

2
.

(iii) The limit superior and limit inferior of the sequence of lower bounds (Qk1(x0))k on the optimal value
Q1(x0) of (3.4) satisfy

(3.24) Q1(x0)− δ̄T − ε̄(T − 1) ≤ lim
k→+∞

Qk1(x0) ≤ lim
k→+∞

Qk1(x0) ≤ Q1(x0).
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Proof. We show (i) by backward induction on t. Relation (3.22) holds for t = T + 1. Now assume that

(3.25) 0 ≤ lim
k→+∞

Qt+1(xkt )−Qkt+1(xkt ) ≤ lim
k→+∞

Qt+1(xkt )−Qkt+1(xkt ) ≤ (ε̄+ δ̄)(T − t).

for some t ∈ {2, . . . , T}. We have

(3.26)

0 ≤ Qt(xkt−1)−Qkt (xkt−1) ≤ Qt(xkt−1)− Ckt (xkt−1) since Qkt ≥ Ckt ,
≤ ε̄+Qt(xkt−1)−Qkt (xkt−1) using (3.14) and εkt ≤ ε̄,
≤ ε̄+Qt(xkt−1)−Qk−1t (xkt−1) by monotonicity,

≤ ε̄+ δ̄ +Qt(xkt−1)− cTt xkt −Qk−1t+1 (xkt ) by definition of xkt ,

= ε̄+ δ̄ +Qt(xkt−1)− cTt xkt −Qt+1(xkt )︸ ︷︷ ︸
≤0 by definition of Qt

+Qt+1(xkt )−Qk−1t+1 (xkt ),

≤ ε̄+ δ̄ +Qt+1(xkt )−Qk−1t+1 (xkt ).

Using (3.25) and applying Lemma 3.1 to xk = xkt , f
k = Qkt+1, f = Qt+1, we obtain

(3.27) lim
k→+∞

Qt+1(xkt )−Qk−1t+1 (xkt ) ≤ (ε̄+ δ̄)(T − t).

Combining (3.26) and (3.27) we obtain (3.22) which achieves the proof of (i).

Since (xk1 , x
k
2 , . . . , x

k
T ) is feasible for (3.4) we have Q1(x0) ≤

∑T
t=1 c

T
t x

k
t . Using (3.26) we deduce

(3.28)

Q1(x0) ≤
T∑
t=1

cTt x
k
t ≤ (ε̄+ δ̄)T +

T∑
t=1

Qt(xkt−1)−Qk−1t+1 (xkt )

= (ε̄+ δ̄)T +

T∑
t=1

[
Qt(xkt−1)−Qt+1(xkt )

]
+

T∑
t=1

[
Qt+1(xkt )−Qk−1t+1 (xkt )

]
= (ε̄+ δ̄)T +Q1(x0) +

T∑
t=1

[
Qt+1(xkt )−Qk−1t+1 (xkt )

]
.

Recalling that relation (3.27) holds for t = 1, . . . , T , and passing to the limit in (3.28), we obtain (ii).
Finally,

(3.29)
0 ≤ Q1(x0)−Qk1(x0) ≤ Q1(x0)−Qk−11 (x0)

≤ δ̄ +Q1(x0)− cT1 xk1 −Qk−12 (xk1)

≤ δ̄ +Q2(xk1)−Qk−12 (xk1).

Using (3.29) and relation (3.27) with t = 1, we obtain (iii). �

When all subproblems are solved exactly, i.e., when ε̄ = δ̄ = 0, Theorem 3.2 shows that the sequences of

upper bounds
∑T
t=1 c

T
t x

k
t and of lower bounds Qk1(x0) converge to the optimal value of (3.4) and that any

accumultation point of the sequence (xk1 , . . . , x
k
T ) is an optimal solution of (3.4). Therefore, in this situation,

IDDP-LP can stop when
∑T
t=1 c

T
t x

k
t −Q

k
1(x0) ≤ Tol for some parameter Tol> 0, in which case, a Tol-optimal

solution to (3.4) has been found.
More generally, when noises are vanishing, i.e., when limk→+∞ εkt = limk→+∞ δkt = 0, we can show that

IDDP-LP solves (3.4) in a finite number of iterations:

Theorem 3.3 (Convergence of IDDP-LP with asymptotically vanishing noises). Consider the sequence of
decisions (xk1 , . . ., x

k
T )k computed along the iterations of IDDP-LP. Let Assumption (H1-D) hold. Assume

that all subproblems in the forward and backward passes of IDDP-LP are solved using an algorithm that
necessarily outputs an extremal point of the feasible set, for instance the simplex algorithm. If limk→+∞ εkt =
limk→+∞ δkt = 0 for all t, then there is k0 ∈ N such that for every k ≥ k0, (xk1 , x

k
2 , . . . , x

k
T ) is an optimal

solution of (3.4).

Proof. Recalling that xk1 is an extremal point of X1(x0) and that Assumption (H1-D) holds, IDDP-LP can
only generate a finite number of different xk1 . For each such xk1 , X2(xk1) has a finite number of extremal
points and xk2 is one of these points. Therefore IDDP-LP can only generate a finite number of different xk2 .
By induction, the number of different trial points xk1 , x

k
2 , . . . , x

k
T is finite. Similarly, only a finite number of

different functions QkT can be generated (because the cut coefficients for QT are extremal points of a bounded
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polyhedron). For each of these functions, a finite number of different functions QkT−1 can be computed.

Indeed, the number of different trial points xkT−1 is finite and the cut coefficients λkT−1 for QT−1 are extremal

points of a bounded polyhedron. Therefore we get a finite number of cuts QkT−1(xkT−1)+〈λkT−1, xT−1−xkT−1〉.
By induction, only a finite number of different functions Qkt , t = 2, . . . , T , can be generated. Therefore, after
some iteration k1, every optimization subproblem solved in the forward and backward passes is a copy of an
optimization problem solved previously. It follows that after some iteration k0 all subproblems are solved
exactly (optimal solutions are computed for all subproblems) and functions Qkt do not change anymore.
Consequently, from iteration k0 on, to achieve the proof, we can apply the arguments of the proof of
convergence of (exact) DDP (see Theorem 6.1 in [9]). �

Remark 3.4. [Choice of parameters δkt and εkt ] Recalling our convergence analysis and what motivates
IDDP-LP, it makes sense to choose for δkt and εkt sequences which decrease with k and which, for fixed k,
decrease with t. A simple rule consists in defining relative errors, as long as a solver handling such errors is
used to solve the problems of the forward and backward passes. Let the relative error for step t and iteration
k be Rel Errkt . We should take δk1 negligible (for instance 10−12) to compute a valid lower bound in the first
stage of the forward pass. We propose to use the relative error

(3.30) Rel Errkt =
1

k

[
ε−

(
ε− ε0
T − 2

)
(t− 2)

]
,

for step t ≥ 2 and iteration k ≥ 1 (in both the forward and backward passes), which induces corresponding
δkt and εkt for t ≥ 2, k ≥ 1. With this choice, for fixed k, the relative error linearly decreases with t: it is
maximal for t = 2 (equal to some parameter 0 < ε/k < 1, with for instance ε = 0.1) and minimal for t = T
(equal to some parameter 0 < ε0/k < 1, with for instance ε0 = 10−12).

If one wishes to provide absolute errors instead of relative errors to the solvers, we need a guess on the
optimal values of the linear programs solved in the backward and forward passes. In this situation, we propose
to take as an estimation of Qkt (xkt−1) the value Qk−1t (xkt−1) which is available before solving (3.12) since it

was computed in the forward pass of iteration k. We take all δkt negligible and define the absolute errors

(3.31) εkt = max
(

1,
∣∣∣Qk−1t (xkt−1)

∣∣∣ )Rel Errkt

where Rel Errkt is given by (3.30).

4. Inexact cuts in SDDP applied to linear programs

4.1. Problem formulation assumptions, and algorithm. We are interested in solution methods for
linear Stochastic Dynamic Programming equations: the first stage problem is

(4.32) Q1(x0) =

{
minx1∈Rn cT1 x1 +Q2(x1)
A1x1 +B1x0 = b1, x1 ≥ 0

for x0 given and for t = 2, . . . , T , Qt(xt−1) = Eξt [Qt(xt−1, ξt)] with

(4.33) Qt(xt−1, ξt) =

{
minxt∈Rn cTt xt +Qt+1(xt)
Atxt +Btxt−1 = bt, xt ≥ 0,

with the convention that QT+1 is null and where for t = 2, . . . , T , random vector ξt corresponds to the
concatenation of the elements in random matrices At, Bt which have a known finite number of rows and
random vectors bt, ct. Moreover, it is assumed that ξ1 is not random. For convenience, we will denote

Xt(xt−1, ξt) := {xt ∈ Rn : Atxt +Btxt−1 = bt, xt ≥ 0}.

We make the following assumptions:

(H1-S) The random vectors ξ2, . . . , ξT are independent and have discrete distributions with finite support.
(H2-S) The set X1(x0, ξ1) is nonempty and bounded and for every x1 ∈ X1(x0, ξ1), for every t = 2, . . . , T ,

for every realization ξ̃2, . . . , ξ̃t of ξ2, . . . , ξt, for every xτ ∈ Xτ (xτ−1, ξ̃τ ), τ = 2, . . . , t − 1, the set

Xt(xt−1, ξ̃t) is nonempty and bounded.
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We put Θ1 = {ξ1} and for t ≥ 2 we will denote by Θt = {ξt1, . . . , ξtMt} the support of ξt for stage t
with pti = P(ξt = ξti) > 0, i = 1, . . . ,Mt and with vector ξtj being the concatenation of the elements in
Atj , Btj , btj , ctj .

Inexact SDDP applied to linear Stochastic Dynamic Programming equations (4.32), (4.33) is a simple
extension of SDDP, called ISDDP-LP, where the subproblems of the forward and backward passes are solved
approximately. At iteration k, for t = 2, . . . , T , function Qt is approximated by a piecewise affine lower
bounding function Qkt which is a maximum of affine lower bounding functions Cit called inexact cuts:

Qkt (xt−1) = max
1≤i≤k

Cit(xt−1) with Cit(xt−1) = θit + 〈βit , xt−1〉

where coefficients θit, β
i
t are computed as explained below. The steps of ISDDP-LP are as follows.

ISDDP-LP, Step 1: Initialization. For t = 2, . . . , T , take for C0t = Q0
t a known lower bounding affine

function for Qt. Set the iteration count k to 1 and Q0
T+1 ≡ 0.

ISDDP-LP, Step 2: Forward pass. We generate a sample ξ̃k = (ξ̃k1 , ξ̃
k
2 , . . . , ξ̃

k
T ) from the distribution

of ξk ∼ (ξ1, ξ2, . . . , ξT ), with the convention that ξ̃k1 = ξ1. Using approximation Qk−1t+1 of Qt+1 (computed at

previous iterations), we compute a δkt -optimal basic feasible solution xkt of the problem

(4.34)

{
minxt∈Rn xTt c̃

k
t +Qk−1t+1 (xt)

xt ∈ Xt(x
k
t−1, ξ̃

k
t )

for t = 1, . . . , T , where xk0 = x0 and where c̃kt is the realization of ct in ξ̃kt . For k ≥ 1 and t = 1, . . . , T , define

the function Qk
t : Rn×Θt → R by

(4.35) Qk
t (xt−1, ξt) =

{
minxt∈Rn cTt xt +Qkt+1(xt)
xt ∈ Xt(xt−1, ξt).

With this notation, we have

(4.36) Qk−1
t (xkt−1, ξ̃

k
t ) ≤ 〈c̃kt , xkt 〉+Qk−1t+1 (xkt ) ≤ Qk−1

t (xkt−1, ξ̃
k
t ) + δkt .

ISDDP-LP, Step 3: Backward pass. The backward pass builds inexact cuts for Qt at xkt−1 computed

in the forward pass. For t = T +1, we have Qkt = QkT+1 ≡ 0, i.e., θkT+1 and βkT+1 are null. For j = 1, . . . ,MT ,
we solve approximately the problem

(4.37) QT (xkT−1, ξTj) =

{
min
xT∈Rn

cTTjxT

ATjxT +BTjx
k
T−1 = bTj , xT ≥ 0,

with dual

{
maxλ λ

T (bTj −BTjxkT−1)
ATTjλ ≤ cTj .

Let λkTj be an εkT -optimal basic feasible solution of the dual problem above: ATTjλ
k
Tj ≤ cTj and

(4.38) QT (xkT−1, ξTj)− εkT ≤ 〈λkTj , bTj −BTjxkT−1〉 ≤ QT (xkT−1, ξTj).

We compute

(4.39) θkT =

MT∑
j=1

pTj〈bTj , λkTj〉 and βkT = −
MT∑
j=1

pTjB
T
Tjλ

k
Tj .

Using Proposition 2.1 we have that CkT (xT−1) = θkT + 〈βkT , xT−1〉 is an inexact cut for QT at xkT−1. Using
(4.38), we also see that

(4.40) QT (xkT−1)− CkT (xkT−1) ≤ εkT .

Then for t = T − 1 down to t = 2, knowing Qkt+1 ≤ Qt+1, for j = 1, . . . ,Mt, consider the optimization
problem

(4.41) Qk
t (xkt−1, ξtj) =

{
min
xt

cTtjxt +Qkt+1(xt)

xt ∈ Xt(x
k
t−1, ξtj)

=


min
xt,f

cTtjxt + f

Atjxt +Btjx
k
t−1 = btj , xt ≥ 0,

f ≥ θit+1 + 〈βit+1, xt〉, i = 1, . . . , k,
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with optimal value Qk
t (xkt−1, ξtj). Observe that due to (H2-S) the above problem is feasible and has a finite

optimal value. Therefore Qk
t (xkt−1, ξtj) can be expressed as the optimal value of the corresponding dual

problem:

(4.42) Qk
t (xkt−1, ξtj) =


max
λ,µ

λT (btj −Btjxkt−1) +

k∑
i=1

µiθ
i
t+1

ATtjλ+

k∑
i=1

µiβ
i
t+1 ≤ ctj ,

k∑
i=1

µi = 1,

µi ≥ 0, i = 1, . . . , k.

Let (λktj , µ
k
tj) be an εkt -optimal basic feasible solution of dual problem (4.42) and let Qkt be the function given

by Qkt (xt−1) =
∑Mt

j=1 ptjQ
k
t (xt−1, ξtj). We compute

(4.43) θkt =

Mt∑
j=1

ptj

(
〈λktj , btj〉+ 〈µktj , θt+1,k〉

)
and βkt = −

Mt∑
j=1

ptjB
T
tjλ

k
tj ,

where vector θt+1,k has components θit+1, i = 1, . . . , k, arranged in the same order as components µktj(i), i =

1, . . . , k, of µktj . Setting Ckt (xt−1) = θkt + 〈βkt , xt−1〉 and using Proposition 2.1, we have

(4.44) Qkt (xt−1) ≥ Ckt (xt−1) and Qkt (xkt−1)− Ckt (xkt−1) ≤ εkt .

Using the fact that Qkt+1(xt−1) ≤ Qt+1(xt−1), we have Qk
t (xt−1, ξtj) ≤ Qt(xt−1, ξtj), Qkt (xt−1) ≤ Qt(xt−1),

and therefore

(4.45) Qt(xt−1) ≥ Ckt (xt−1)

which shows that Ckt is an inexact cut for Qt.

ISDDP-LP, Step 4: Do k ← k + 1 and go to Step 2.

Similarly to IDDP-LP, the collection of distinct values (θkt , β
k
t )k is finite and cut coefficients (θkt , β

k
t )k are

uniformly bounded.

4.2. Convergence analysis. In this section we state a convergence result for ISDDP-LP in Theorem 4.1
when noises δkt , ε

k
t are bounded and in Theorem 4.2 when these noises asymptotically vanish.

We will assume that the sampling procedure in ISDDP-LP satisfies the following property:

(H3-S) The samples in the backward passes are independent: (ξ̃k2 , . . . , ξ̃
k
T ) is a realization of ξk =

(ξk2 , . . . , ξ
k
T ) ∼ (ξ2, . . . , ξT ) and ξ1, ξ2, . . . , are independent.

Before stating our first convergence theorem, we need more notation. Due to Assumption (H1-S), the
realizations of (ξt)

T
t=1 form a scenario tree of depth T+1 where the root node n0 associated to a stage 0 (with

decision x0 taken at that node) has one child node n1 associated to the first stage (with ξ1 deterministic).
We denote by N the set of nodes and for a node n of the tree, we define:

• C(n): the set of children nodes (the empty set for the leaves);
• xn: a decision taken at that node;
• pn: the transition probability from the parent node of n to n;
• ξn: the realization of process (ξt) at node n1: for a node n of stage t, this realization ξn contains in

particular the realizations cn of ct, bn of bt, An of At, and Bn of Bt.

Next, we define for iteration k decisions xkn for all node n of the scenario tree simulating the policy

obtained in the end of iteration k − 1 replacing cost-to-go function Qt by Qk−1t for t = 2, . . . , T + 1:

1The same notation ξIndex is used to denote the realization of the process at node Index of the scenario tree and the value
of the process (ξt) for stage Index. The context will allow us to know which concept is being referred to. In particular, letters

n and m will only be used to refer to nodes while t will be used to refer to stages.
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Simulation of the policy in the end of iteration k − 1.
For t = 1, . . . , T ,

For every node n of stage t− 1,
For every child node m of node n, compute a δkt -optimal solution xkm of

(4.46) Qk−1
t (xkn, ξm) =

{
inf
xm

cTmxm +Qk−1t+1 (xm)

xm ∈ Xt(x
k
n, ξm),

where xkn0
= x0.

End For
End For

End For

We are now in a position to state our first convergence theorem for ISDDP-LP:

Theorem 4.1 (Convergence of ISDDP-LP with bounded noises). Consider the sequences of decisions
(xkn)n∈N and of functions (Qkt ) generated by ISDDP-LP. Assume that (H1-S), (H2-S), (H3-S) hold, and
that noises εkt and δkt are bounded: 0 ≤ εkt ≤ ε̄, 0 ≤ δkt ≤ δ̄ for finite δ̄, ε̄. Then the following holds:

(i) for t = 2, . . . , T + 1, for all node n of stage t− 1, almost surely

(4.47) 0 ≤ lim
k→+∞

Qt(xkn)−Qkt (xkn) ≤ lim
k→+∞

Qt(xkn)−Qkt (xkn) ≤ (δ̄ + ε̄)(T − t+ 1);

(ii) for every t = 2, . . . , T , for all node n of stage t − 1, the limit superior and limit inferior of the

sequence of upper bounds
( ∑
m∈C(n)

pm(cTmx
k
m +Qt+1(xkm))

)
k

satisfy almost surely

(4.48)

0 ≤ limk→+∞

∑
m∈C(n)

pm

[
cTmx

k
m +Qt+1(xkm)

]
−Qt(xkn),

limk→+∞
∑

m∈C(n)

pm

[
cTmx

k
m +Qt+1(xkm)

]
−Qt(xkn) ≤ (δ̄ + ε̄)(T − t+ 1);

(iii) the limit superior and limit inferior of the sequence of lower bounds (Qk−1
1 (x0, ξ1))k on the optimal

value Q1(x0) of (4.32) satisfy almost surely

(4.49) Q1(x0)− δ̄T − ε̄(T − 1) ≤ lim
k→+∞

Qk−1
1 (x0, ξ1) ≤ lim

k→+∞
Qk−1

1 (x0, ξ1) ≤ Q1(x0).

Proof. The proof is a simple combination of arguments from the proof of Theorem 3.1 in [6] and of Theorem
3.2 from Section 3. For interested readers, the detailed proof is provided in the appendix. �

Theorem 4.2 below shows the convergence of ISDDP-LP in a finite number of iterations when noises εkt , δ
k
t

asymptotically vanish.

Theorem 4.2 (Convergence of ISDDP-LP with asymptotically vanishing noises). Consider the sequences of
decisions (xkn) and of functions (Qkt ) generated by ISDDP-LP. Let Assumptions (H1-S), (H2-S), and (H3-S)
hold. If limk→+∞ δkt = limk→+∞ εkt = 0, then ISDDP-LP converges with probability one in a finite number
of iterations to an optimal solution to (4.32), (4.33).

Proof. The arguments are similar to the proof of Theorem 3.3. Due to Assumptions (H1-S), (H2-S), ISDDP-
LP generates almost surely a finite number of trial points xk1 , x

k
2 , . . . , x

k
T . Similarly, almost surely only a finite

number of different functions Qkt , t = 2, . . . , T, can be generated. Therefore, after some iteration k1, every
optimization subproblem solved in the forward and backward passes is a copy of an optimization problem
solved previously. It follows that after some iteration k0 all subproblems are solved exactly (optimal solutions
are computed for all subproblems) and functions Qkt do not change anymore. Consequently, from iteration
k0 on, we can apply the arguments of the proof of convergence of (exact) SDDP applied to linear programs
(see Theorem 5 in [20]). �
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Remark 4.3. [Choice of parameters δkt and εkt ] As for IDDP-LP, we take δk1 is negligible (for instance
10−12) and the relative error

(4.50) Rel Errkt =
1

k

[
ε−

(
ε− ε0
T − 2

)
(t− 2)

]
,

for step t ≥ 2 and iteration k ≥ 1 (in both the forward and backward passes), which induces corresponding
δkt and εkt for t ≥ 2, k ≥ 1.

However, it seems more delicate to define sound absolute errors. Ultimately, absolute errors (3.31) used
for IDDP-LP could be replaced by

(4.51) εkt = max
(

1,
∣∣∣Qk−1

t (xkt−1, ξ̃
k
t )
∣∣∣ )Rel Errkt

with Rel Errkt still given by (4.50).

5. Numerical experiments

Our goal in this section is to compare SDDP and ISDDP-LP (denoted for short ISDDP in what follows)
on the risk-neutral portfolio problem with direct transaction costs presented in Section 5.1 of [14] (see [14]
for details). For this application, ξt is the vector of asset returns: if n is the number of risky assets, ξt has
size n+ 1, ξt(1 : n) is the vector of risky asset returns for stage t while ξt(n+ 1) is the return of the risk-free
asset. We generate four instances of this portfolio problem as follows.

For fixed T (number of stages) and n (number of risky assets), the distributions of ξt(1 : n), t = 2, . . . , T ,
have M realizations with pti = P(ξt = ξti) = 1/M , and ξ1(1 : n), ξt1(1 : n), . . . , ξtM (1 : n) obtained sampling
from a normal distribution with mean and standard deviation chosen randomly in respectively the intervals
[0.9, 1.4] and [0.1, 0.2]. The monthly return ξt(n + 1) of the risk-free asset is 1.01 for all t. The initial
portfolio x0 has components uniformly distributed in [0, 10] (vector of initial wealth in each asset). The
largest possible position in any security is set to ui = 20%. Transaction costs are known with νt(i) = µt(i)
obtained sampling from the distribution of the random variable 0.08 + 0.06 cos( 2π

T UT ) where UT is a random
variable with a discrete distribution over the set of integers {1, 2, . . . , T}. Our four instances of the portfolio
problem are obtained taking for (M,T, n) the combinations of values (100, 10, 50), (100, 30, 50), (50, 20, 50),
and (50, 40, 10). All linear subproblems of the forward and backward passes are solved numerically using
Mosek solver [1] and for ISDDP, we solve approximately these subproblems limiting the number of iterations
of Mosek solver as indicated in Table 2 in the Appendix. The strategy given in this table is (as indicated in
Remark 4.3) to increase the accuracy (or, equivalently, increase the maximal number of iterations allowed
for Mosek solver) of the solutions to subproblems as ISDDP iteration increases and for a given iteration
of ISDDP, to increase the accuracy (or, equivalently, increase the maximal number of iterations allowed for
Mosek solver) of the solutions to subproblems as the number of stages increases from t = 2 to t = T , knowing
that we solve exactly the subproblems for the last stage T and for the first stage t = 1.

SDDP and ISDDP were implemented in Matlab and the code was run on a Xeon E5-2670 processor with
384 GB of RAM. For a given instance, SDDP and ISDDP were run using the same set of sampled scenarios
along iterations. We stopped SDDP algorithm when the gap is < 10% and run ISDDP for the same number
of iterations.2

On our four instances, we then simulate the policies obtained with SDDP and ISDDP on a set of 500
scenarios of returns. The gap between the two policies on these scenarios and the CPU time reduction using
ISDDP are given in Table 1. In this table, the gap is defined by 100 CostISDDP−CostSDDP

CostSDDP
where CostISDDP

and CostSDDP are respectively the mean cost for ISDDP and SDDP policies on the 500 simulated scenarios
and the CPU time reduction is given by 100 TimeSDDP−TimeISDDP

TimeSDDP
where TimeSDDP and TimeISDDP correspond

to the time needed to compute SDDP and ISDDP policies (before running the Monte Carlo simulation),
respectively.

On all instances the gap is relatively small and ISDDP policy is computed faster than SDDP policy.

2The gap is defined as Ub−Lb
Ub

where Ub and Lb correspond to upper and lower bounds, respectively. Though the portfolio

problem is a maximization problem (of the mean income), we have rewritten it as a minimization problem (of the mean loss),

of form (4.32), (4.33). The lower bound Lb is the optimal value of the first stage problem and the upper bound Ub is the
upper end of a 97.5%-one-sided confidence interval on the optimal value for N = 100 policy realizations, see [21] for a detailed

discussion on this stopping criterion.

11



M T n Gap (%) CPU time reduction (%)
50 20 50 0.1 6.2
50 40 10 4.2 11.1
100 10 50 0.8 6.5
100 30 50 3.4 6.4

Table 1. Empirical gap between SDDP and ISDDP policies and CPU time reduction for
ISDDP over SDDP.

More precisely, we report in Figure 1 (for instances with (M,T, n) = (100, 10, 50) and (M,T, n) =
(100, 30, 50)) and Figure 2 (for instances with (M,T, n) = (50, 20, 50) and (M,T, n) = (50, 40, 10)) three
outputs along the iterations of SDDP and ISDDP: the cumulative CPU time (in seconds), the number of
iterations needed for Mosek LP solver to solve all backward and forward subproblems, and the upper and
lower bounds on the optimal value computed by the methods (note that the upper bounds are only computed
from iteration 100 on, because the past N = 100 iterations are used to compute them).

These experiments (i) show that it is possible to obtain a near optimal policy quicker than SDDP solving
approximately some subproblems in SDDP and (ii) confirm that ISDDP computes a valid lower bound since
first stage subproblems are solved exactly. For the first iterations, this lower bound can however be distant
from SDDP lower bound (see for instance the bottom left plots of Figures 1 and 2). However, both SDDP
and ISDDP lower and upper bounds are quite close after 200 iterations, even if Mosek LP solver uses much
less iterations to solve the subproblems with ISDDP (see the middle plots of Figures 1, 2). The total CPU
time needed by ISDDP is significantly inferior but this CPU time reduction decreases when the number of
iterations increases. If many iterations are required to solve the problem, after a few hundreds iterations
backward and forward subproblems are solved in similar CPU time for SDDP and ISDDP and the total
CPU time reduction starts to stabilize.

6. Conclusion

We introduced IDDP-LP and ISDDP-LP, the first inexact variants of DPP and SDDP applied to respec-
tively linear programs and multistage stochastic linear programs. We studied the convergence of IDDP-LP
and ISDDP-LP and presented the results of numerical experiments comparing the computational bulk of
SDDP and ISDDP-LP on a portfolio problem.

Since ISDDP-LP can be much quicker than SDDP for some well chosen parameters (δkt , ε
k
t ) and is straight-

forward to implement from SDDP, it would be interesting to use ISDDP-LP on other real-life applications
modelled by multistage stochastic linear programs.

As a continuation of this work, it would also be interesting to consider a variant of SDDP that builds cuts
in the backward pass on the basis of approximate solutions which are not necessarily feasible (but of course
asymptotically feasible to derive a convergence result).
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Appendix

Proof of Theorem 4.1.

(i) We show (4.47) for t = 2, . . . , T + 1, and all node n of stage t − 1 by backward induction on t. The
relation holds for t = T + 1. Now assume that it holds for t + 1 for some t ∈ {2, . . . , T}. Let us show
that it holds for t. Take a node n of stage t − 1. Observe that the sequence Qt(xkn) − Qkt (xkn) is almost
surely bounded and nonnegative. Therefore it has almost surely a nonnegative limit inferior and a finite
limit superior. Let Sn = {k : nkt = n} be the iterations where the sampled scenario passes through node n.
For k ∈ Sn we have
(6.52)

0 ≤ Qt(x
k
n)−Qk

t (xkn) ≤ Qt(x
k
n)− Ckt (xkn)

≤ εkt +Qt(x
k
n)−Qk

t
(xkn)

≤ ε̄+
∑

m∈C(n)

pm
[
Qt(x

k
n, ξm)−Qk

t (xkn, ξm)
]

≤ ε̄+
∑

m∈C(n)

pm
[
Qt(x

k
n, ξm)−Qk−1

t (xkn, ξm)
]

≤ ε̄+ δkt +
∑

m∈C(n)

pm
[
Qt(x

k
n, ξm)− 〈cm, xkm〉 − Qk−1

t+1 (xkm)
]

≤ ε̄+ δ̄ +
∑

m∈C(n)

pm
[
Qt(x

k
n, ξm)− 〈cm, xkm〉 − Qt+1(xkm)︸ ︷︷ ︸

≤0 by definition of Qt and xk
m

+Qt+1(xkm)−Qk−1
t+1 (xkm)

]
≤ ε̄+ δ̄ +

∑
m∈C(n)

pm
[
Qt+1(xkm)−Qk−1

t+1 (xkm)
]
.
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Using the induction hypothesis, we have for every m ∈ C(n) that

lim
k→+∞

Qt+1(xkm)−Qkt+1(xkm) ≤ (δ̄ + ε̄)(T − t).

In virtue of Lemma 3.1, this implies

(6.53) lim
k→+∞

Qt+1(xkm)−Qk−1t+1 (xkm) ≤ (δ̄ + ε̄)(T − t),

which, plugged into (6.52), gives

(6.54) lim
k→+∞,k∈Sn

Qt(xkn)−Qkt (xkn) ≤ (δ̄ + ε̄)(T − t+ 1).

Now let us show by contradiction that

(6.55) lim
k→+∞

Qt(xkn)−Qkt (xkn) ≤ (δ̄ + ε̄)(T − t+ 1).

If (6.55) does not hold then there exists ε0 > 0 such that there is an infinite set of iterations k satisfying
Qt(xkn)−Qkt (xkn) > (δ̄ + ε̄)(T − t+ 1) + ε0 and by monotonicity, there is also an infinite set of iterations k

in the set K = {k ≥ 1 : Qt(xkn)−Qk−1t (xkn) > (δ̄ + ε̄)(T − t+ 1) + ε0}. Let k1 < k2 < ... be these iterations:
K = {k1, k2, . . . , }. Let ykn be the random variable which takes the value 1 if k ∈ Sn and 0 otherwise. Due
to Assumption (H3-S), random variables yk1n , y

k2
n , . . . , are i.i.d. and have the distribution of y1n. Therefore

by the Strong Law of Large Numbers we get

1

N

N∑
j=1

ykjn
N→+∞−−−−−→ E[y1n] > 0 a.s.

Now let z1 < z2 < . . . be the iterations in Sn: Sn = {z1, z2, . . .}. Relation (6.54) can be written

lim
k→+∞

Qt(xzkn )−Qzkt (xzkn ) ≤ (δ̄ + ε̄)(T − t+ 1),

which, using Lemma 3.1, implies

lim
k→+∞

Qt(xzkn )−Qzk−1

t (xzkn ) ≤ (δ̄ + ε̄)(T − t+ 1).

Using the fact that zk ≥ zk−1 + 1, we deduce that

limk→+∞,k∈Sn Qt(xkn)−Qk−1t (xkn) = limk→+∞Qt(xzkn )−Qzk−1t (xzkn )

≤ limk→+∞Qt(xzkn )−Qzk−1

t (xzkn ) ≤ (δ̄ + ε̄)(T − t+ 1).

Therefore, there can only be a finite number of iterations that are both in K and in Sn. This gives

1

N

N∑
j=1

ykjn
N→+∞−−−−−→ 0 a.s.

We obtain a contradiction and therefore (6.55) must hold.
(ii) Using (6.52), we obtain for every t = 2, . . . , T + 1, and every node n of stage t− 1, that

(6.56) 0 ≤
∑

m∈C(n)

pm

[
cTmx

k
m +Qt+1(xkm)

]
−Qt(xkn) ≤ δ̄ + ε̄+

∑
m∈C(n)

pm

[
Qt+1(xkm)−Qk−1t+1 (xkm)

]
.

Therefore

lim
k→+∞

∑
m∈C(n)

pm

[
cTmx

k
m +Qt+1(xkm)

]
−Qt(xkn) ≥ 0

and using (6.53) we get

lim
k→+∞

∑
m∈C(n)

pm

[
cTmx

k
m +Qt+1(xkm)

]
−Qt(xkn) ≤ (δ̄ + ε̄)(T − t+ 1).

(iii) We have

(6.57)
Q1(x0) ≥ Qk−1

1 (x0, ξ1) ≥ cT1 x
k
1 +Qk−12 (xk1)− δk1

≥ −δ̄ +Q1(x0) +Qk−12 (xk1)−Q2(xk1).
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ISDDP
iteration

[1, 20] [21, 50] [51, 100]

LP solver
maximal
number of
iterations at t

⌈
(0.4 + 0.6 (t−2)

T−2 )Imax

⌉ ⌈
(0.45 + 0.55 (t−2)

T−2 )Imax

⌉ ⌈
(0.5 + 0.5 (t−2)

T−2 )Imax

⌉
ISDDP

iteration
[101, 200] [201, 300] [301, 400]

LP solver
maximal
number of
iterations at t

⌈
(0.55 + 0.45 (t−2)

T−2 )Imax

⌉ ⌈
(0.6 + 0.4 (t−2)

T−2 )Imax

⌉ ⌈
(0.65 + 0.35 (t−2)

T−2 )Imax

⌉
ISDDP

iteration
[401, 500] [501, 600] [601, 700]

LP solver
maximal
number of
iterations at t

⌈
(0.7 + 0.3 (t−2)

T−2 )Imax

⌉ ⌈
(0.75 + 0.25 (t−2)

T−2 )Imax

⌉ ⌈
(0.8 + 0.2 (t−2)

T−2 )Imax

⌉
ISDDP

iteration
[701, 800] [801, 900] > 900

LP solver
maximal
number of
iterations at t

⌈
(0.85 + 0.15 (t−2)

T−2 )Imax

⌉ ⌈
(0.9 + 0.1 (t−2)

T−2 )Imax

⌉
Imax

Table 2. Maximal number of iterations for Mosek LP solver for solving backward and
forward passes subproblems as a function of stage t ≥ 2, ISDDP iteration, and the number
Imax of iterations used to solve subproblems with SDDP with high accuracy. In this table,
dxe is the smallest integer larger than or equal to x.

Using (6.57) and (6.53) with t = 1, we obtain (iii).

Additional parameters for ISDDP. For ISDDP, the maximal number of iterations allowed for Mosek
LP solver to solve subproblems along the iterations of ISDDP is given in Table 2.
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