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Abstract

Mixed-integer second-order cone optimization (MISOCO) has become very popular in the last decade.
Various aspects of solving these problems in Branch and Conic Cut (BCC) algorithms have been studied
in the literature. This study aims to fill a gap and provide a novel way to find feasible solutions early in
the BCC algorithm. Such solutions have a huge impact on reducing tree size and proving the feasibility
of the problem. Despite the rich literature on mixed-integer linear optimization (MILO), there is no work
on heuristic methods specific to MISOCO problems. In this work, we use the optimal Jordan frames
of a second-order cone optimization (SOCO) subproblem to generate MILO rounding problems. These
rounding problems can provide feasible solutions for the original MISOCO instances in a relatively short
time. Based on extensive computational experiments, the proposed heuristics provide feasible solutions
for 1327 out of 1328 problems in CBLIB and QPLIB test problems at the root node.

Keywords— mixed-integer conic optimization, branch and bound, heuristic methods

1 Introduction

Primal heuristics are one of the most important elements of search tree methods. Despite the fact that primal
heuristics are not exact methods, their contribution to the efficiency of commercial solvers is significant.
Therefore, commercial MILO solvers are packed with heuristics [5, 24, 29, 30].

MISOCO formulations consist of a linear objective and a set of linear and conic constraints. A MISOCO
formulation in the standard form can be written as follows:

min c>x
s.t. Ax = b,

x ∈ K,
xj ∈ Z ∀j ∈ J ⊆ N,

(1)

where A ∈ Rm×n is a full row rank matrix, c ∈ Rn, and b ∈ Rm, N = {1, 2, . . . , n}, K is the Cartesian
product of second-order cones of various dimensions, i.e., K = Ln1 × Ln2 × · · · × Lnk , where Lni = {xi ∈
Rni | xi1 ≥ ‖xi2:ni

‖}, for i = 1, . . . , k, with
∑k

i=1 ni = n for x =
(
(x1)>, (x2)>, . . . , (xk)>

)>
, and xi ∈ Rni .

The development of solution methodologies for MISOCO problems is an active research area. As MISOCO
is a generalization of MILO, researchers mainly focus on translating existing MILO techniques to MISOCO.
The main reason behind the popularity of MISOCO problems is twofold. The first reason is the availability
of MISOCO formulations for a variety of problems from different sectors, such as portfolio optimization
problems [12, 19] and option pricing problems [33] from finance, the turbine balancing problem [22] from
energy, and the stereotactic surgery treatment planning with isocenter selection problem [28] from healthcare.
Another reason is the existence of efficient solution methodologies to solve underlying SOCO subproblems.

The ongoing research has been focused on generating valid inequalities for MISOCO problems [6, 7, 8, 9,
10, 11, 21, 31, 32, 36]. Despite recent advances in warm-start of MISOCO problems [20], vital elements of
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a full BCC framework are still missing, such as pre-processing and primal heuristics. Notably MILO has a
remarkably rich literature on this topic. Since there is no available study on heuristics specific to MISOCO,
we give a brief review of the MILO and MINLO literature.

Primal heuristics play an important role in state-of-the-art MILO solvers. Their main role is to provide
an upper bound early in the search tree. This upper bound proves feasibility of the problem and can help
reduce search tree size significantly by pruning nodes by bound early [3]. There are three types of primal
heuristics. The first set of heuristics is called diving heuristics, which dive inside the search tree with the
aim of finding a feasible MILO solution as quickly as possible. The second set of heuristics is called rounding
heuristics, where the aim is to generate a feasible solution by rounding a fractional LO solution. The third
set of heuristics is called improvement heuristics, where one or more primal feasible solutions are used to
construct a better feasible solution. For an extensive discussion, see Achterberg [1] and Berthold [14].

Fischetti et al. [25] propose a heuristic called feasibility pump (FP). In simple terms, FP generates two
sets of solutions: the first set consists of points that satisfy feasibility constraints except integrality, whereas
the second set consists of points that are integer but possibly infeasible. These solutions are generated
consecutively by using rounding and then solving an auxiliary problem. This heuristic is shown to be effective
for binary MILO problems. FP’s efficiency has led to several variations of the heuristic are discussed in the
literature. Bertacco et al. [13] work on improving the efficiency of FP for general MILO problems. Moreover,
they provide a restart method to prevent cycling. Achterberg and Berthold [2] propose a variation of FP
that takes the objective function into consideration when finding solutions. Their aim is to find a better
feasible solution for MILO instead of an arbitrary one, and their modification is shown to be more effective
for the majority of the test problems in terms of providing a better bound. Bonami et al. [18] and Bonami
and Gonçalves [17] extend FP for convex MINLO problems in different ways. Bonami and Gonçalves [17]
discussed extensions of several primal heuristics for convex MINLO problems and showed that variants of
FP can provide a solution for 93—94% of instances. Primal heuristics for MINLO problems help them to
reduce the total solution time about 11% on average. Finally, Berthold [15] gives an extensive review of
heuristics for MINLO and presents a variation of FP for non-convex MINLO problems.

Berthold et al. [16] extend the SCIP solver to solve mixed-integer quadratic optimization (MIQO)
problems by using two simple primal heuristics. They compare SCIP against other solvers on MIQO
problems, where some of them are MISOCO instances available in the CBLIB [26] test set.

It is apparent that many of the available MILO heuristics can be used for MISOCO problems. However,
MISOCO formulations allow us to explore further heuristics that are specific to MISOCO. To our knowledge,
there is no research on development of heuristics for general MISOCO problems.

The purpose of this paper is to present novel heuristics that are specific to MISOCO problems to generate
feasible solutions in BCC search tree. We consider a general MISOCO formulation, where the Jordan frames
of the SOCO subproblem can be obtained easily. These Jordan frames are used to create linear constraints
that enforce conic feasibility in a limited feasible region. By solving the rounding MILO problems, it is
possible to generate a feasible solution for many problems in practice. Then the generated solution can be
improved by changing continuous variables. This way, we can generate a feasible solution even at the root
node of a BCC search tree, which helps prune more nodes, prove feasibility, and provide an upper bound
to estimate the optimality gap throughout the search. Our method consists of two parts: in the first part
(rounding), we solve several SOCO problems to construct a feasible MISOCO solution and in the second
part (improvement), we use this solution to improve the solution.

The rest of the paper is structured as follows: In Section 2 we give preliminaries. In Section 3, we
give descriptions of conic rounding heuristics and their translation to quadratic optimization formulations.
This is followed by the results of the numerical experiments on CBLIB test problems in Section 4. Finally,
summary of the paper, implications, and future research directions are discussed in Section 5.
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2 Preliminaries

2.1 Jordan frames

A quick review of related Jordan algebra concepts is given in this subsection, see [4, 23] for details. Given a
second-order cone Lni ⊆ Rni , a vector x can be decomposed as follows:

xi = λ+i f
+
i + λ−i f

−
i ,

where
λ+i = xi1 + ‖xi2:ni

‖, λ−i = xi1 − ‖xi2:ni
‖,

f+i = 1
2

(
1

xi
2:ni

‖xi
2:ni
‖

)
, f−i = 1

2

(
1

− xi
2:ni

‖xi
2:ni
‖

)
.

Here λi and fi are called Jordan values and Jordan frames of the vector xi, respectively. Vectors f+i and f−i
are always on the boundary of Lni and they are orthogonal to each other. For notational convenience let F
be the matrix defined by the Jordan frames of vectors xi, i ∈ {1, . . . , k} and let λ be a vector of size 2k, such
as

F =




f+1 0 . . . 0 f−1 0 . . . 0
0 f+2 . . . 0 0 f−2 . . . 0
...

...
. . .

...
...

...
. . .

...

︸ ︷︷ ︸
F+

0 0 . . . f+k ︸ ︷︷ ︸
F−

0 0 . . . f−k


 ∈ Rn×2k,

λ =
[
λ+1 , λ+2 , . . . λ+k , λ−1 , λ−2 , . . . λ−k

]> ∈ Rn.

Now, we can write x = Fλ. For the special case of ‖x2:ni‖ = 0, we can choose any Jordan frame pair f+i , f
−
i ,

as the vector xi can be represented when λ+i = λ−i = xi1 in this case. Choosing a random Jordan frame for
this special case has no impact on the heuristic.

Notice that for a given f+i and f−i , the vector xi = λ+i f
+
i + λ−i f

−
i is in Lni if and only if λ+i , λ

−
i ≥ 0.

This is a key observation that ensures conic feasibility.

2.2 Rounding problems

Terlaky and Pólik [35] and Pólik and Góez [34] present rounding problems for SOCO problems. Rounding
problems are originally introduced to provide a way to get a numerically better solution at the end of IPMs
when solving SOCO instances. We give a brief review of rounding problems and their duals in this subsection.
For the following derivations, consider the continuous relaxation of a MISOCO problem,

min c>x
s.t. Ax = b,

x ∈ K,
and its dual

max b>y
s.t. A>y + z = c,

z ∈ K.
Let FP be the Jordan frame obtained from the primal variable x and FD the Jordan frame obtained

from the dual slack variable1 z. The primal rounding problem replaces the primal variable x with FPλ and
enforces conic feasibility with non-negativity of the Jordan values λ as follows:

min c>FPλ
s.t. AFPλ = b,

λ ≥ 0.
(PR)

1If x and z are an optimal primal-dual solution, then FP and FD can be chosen the same.
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Symmetrically, the dual rounding problem replaces the dual slack variable z with FDκ and enforces conic
feasibility with non-negativity of the Jordan values κ. It is written as follows:

max b>y
s.t. A>y + FDκ = c,

κ ≥ 0.
(DR)

min (c>FP )λ
s.t. (AFP )λ = b, (PR)

λ ≥ 0

dual⇔
max b>y
s.t. F>P A

>y + u = F>P c, (D-PR)
u ≥ 0

[m]× [2k] [2k]× [m+ 2k]

(for x = FPλ)

⊆
⊆

min c>x
s.t. Ax = b, (P-SOCO)

x ∈ K

dual⇔
max b>y
s.t. A>y + z = c, (D-SOCO)

z ∈ K
[m]× [n] [n]× [m+ n]

⊆

(for z = FDκ) ⊆

min c>x
s.t. Ax = b, (D-DR)

F>Dx ≥ 0

dual⇔
max b>y
s.t. A>y + FDκ = c, (DR)

κ ≥ 0

[m+ 2k]× [n] [n]× [m+ 2k]

Figure 1: Feasibility and duality relationship between SOCO and rounding LO problems

Notice that (PR) and (DR) are not duals of each other. We introduce their duals, the dual of the primal
rounding (D-PR) and the dual of the dual rounding (D-DR) as given in Figure 1. Any solution to (PR)
is always a feasible solution to the continuous relaxation of the MISOCO instance. Let FP be the Jordan
frame of a conic feasible solution x ∈ K. Then, x̃ = FPλ is a feasible solution to the continuous relaxation
for any λ that is feasible to (PR). Similarly, we can find a feasible solution to original dual SOCO problem
(D-SOCO) from any feasible solution to (DR). Let FD be the Jordan frame of a conic feasible solution z ∈ K
which is used to define (D-DR). Then, x is a feasible solution to (D-DR) for any x that is feasible to the
continuous relaxation.

There is a weak duality relationship between (PR) and (DR). Let λ∗ and y∗(DR) be optimal solutions for

(PR) and (DR), respectively. Then, c>FPλ
∗ ≥ b>y∗(DR). This relationship can be exploited to prune nodes

in a branch and bound tree, see Çay et al. [20]. It is important to emphasize that the strong duality property
of the original SOCO relaxation is not assumed as it is not needed for any of our results.

3 Conic rounding heuristics

The main purpose of conic rounding heuristics is to provide a feasible solution for the original MISOCO
problem. We begin this section with preliminaries on Jordan algebra and rounding problems. We use these
components to describe four heuristics in the following subsections: the primal rounding heuristic, the dual
rounding heuristic, the primal-dual rounding heuristic, and a hybrid heuristic.
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3.1 The primal rounding heuristic

The main difficulties of finding a feasible solution for a MISOCO comes from two sources: integer variables
and conic constraints. To deal with the latter source, one can use a restricted problem of the original instance
by using a set of feasible Jordan frames. Primal rounding (PR) with integrality constraints can be used to
generate feasible solutions to the original MISOCO instance. This idea is the underlying foundation of the
primal rounding heuristic, where we solve a series of mixed-integer primal rounding and auxiliary SOCO
problems to generate a feasible solution.

The primal rounding heuristic starts with an optimal solution of the continuous relaxation of MISOCO.
The Jordan frame that corresponds to this solution is stored for the iterative steps. Then we solve the
mixed-integer primal rounding problem (MIPR), which is written as follows:

minimize: c>x
subject to: Ax = b,

x = F ∗λ,
xi1 ≥ 0, i ∈ 1, . . . , k
xj ∈ Z, j ∈ J ⊆ N
λ ∈ R2k

+ .

(MIPR)

If the (MIPR) problem is feasible, then its solution x∗ is a feasible solution to the original MISOCO problem
as well. This solution can be further improved by fixing the integer variables and solving the remaining
SOCO problem to optimality. This problem is called fix-and-relax (FR) and is written as follows:

minimize: c>x
subject to: Ax = b,

xj = x∗j ∀j ∈ J ⊆ N,
x ∈ K.

(FR)

After solving (FR), we can update the best known upper bound. Moreover, the optimal solution x̄ of (FR)
is used to obtain a new Jordan frame. This way new solutions, which are obtained in consecutive iterations,
are guaranteed to be bounded by this solution.

A penalty problem is solved to generate more Jordan frames for the problem in each iteration regardless
of whether (MIPR) is feasible. Denote F̂ = F+ − F− and the penalty problem is written as follows:

minimize: ϕ c>

‖c‖x+ (1− ϕ)
∥∥∥F̂>x

∥∥∥
subject to: Ax = b,

x ∈ K,
where ϕ represents the tradeoff between the original objective and the penalty term. The reason for using
the penalty term F̂>x is to obtain a different solution and a Jordan frame. The term ‖F̂>x‖ reaches its
minimum value 0 if x is orthogonal to F̂ and to its maximum value if the solution of the penalty problem
xp is equal to the (MIPR) solution. Because the transformation x = F>P λ and the constraint λ ≥ 0 are used
as a way to enforce conic feasibility and because new Jordan frames could be added to F , obtaining a larger
feasible region is vital by obtaining different Jordan frames. Minimizing this term enlarges the feasible region
for (MIPR) in consecutive iterations. The penalty term could be 1-norm, 2-norm, or infinity-norm and can
be solved as a SOCO. The objective function of the penalty problem is similar to the objective proposed in
[2], a penalty problem with a tradeoff between maximizing the feasible region and minimizing the original
objective function. After the penalty problem is solved, (MIPR) is solved again with new Jordan frames,
and the loop continues until a predefined termination criteria is reached, such as iteration or gap. All Jordan
frames obtained in consecutive iterations are collected in a pool. Since the solution of the penalty problem
is requested to be different from existing solutions, all Jordan frames can be added to the problem. The
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general form of the penalty problem (PEN) is written as follows:

minimize: ϕ c>

‖c‖x+ (1− ϕ)
∑

`

∥∥∥F̂>` x
∥∥∥

subject to: Ax = b,
x ∈ K,

(PEN)

where F̂` is the penalty term that corresponds to the `th Jordan frame in the pool.
When (MIPR) is infeasible, it means that there are no feasible points in the restricted region defined

by x = F ∗λ. One can add more Jordan frames to F , which is equivalent to expanding the feasible region
of (MIPR). In theory, one can add infinitely many unique Jordan frames to (MIPR) and solve the original
MISOCO problem as a series of (MIPR) problems. Our aim is to keep this number at a reasonable level
and still be able to produce feasible results. As shown in Section 4, we rarely need more than a few frames
even for larger cones. In fact, three Jordan frames are enough to obtain a feasible solution for 98% of all
test instances, so the generated Jordan frames are far from being an inner-approximation of SOCs.

An overview of the flow of the primal rounding heuristic is given in Figure 2. In the figure, C represents

conic feasible solutions, I represents integer feasible solutions, and IC represents both integer and conic
feasible solutions. Potential solution outcomes are indicated on the top right corner of blocks. The heuristic
steps are given in Algorithm 1.

3.1.1 Example

We provide a numerical example in this subsection to describe how the primal rounding heuristic works in
practice. Consider the following optimization model:

minimize: 2x1 + x2 − 2x3
subject to: 10 x1 + x2 = 19,

(x1, x2, x3) ∈ L3,
x1, x2 ∈ Z.

Following are the steps of the primal rounding heuristic, which are illustrated in Figure 3. Numerical values
are given up to three digits of precision.

1. Solve SOCO subproblem:
minimize: 2x1 + x2 − 2x3

subject to: 10 x1 + x2 = 19,
(x1, x2, x3) ∈ L3.

The solution of the SOCO subproblem is xs = (1.991,−0.907, 1.772). For illustration, see Figure 3a.

2. Obtain the Jordan frames. The F matrix is

F =




0.5 0.5
−0.228 0.228
0.445 −0.445


 .

3. Solve the (MIPR) problem:

minimize: 2x1 + x2 − 2x3
subject to: 10 x1 + x2 = 19,

x1 = 0.5λ1 + 0.5λ2,
x2 = −0.228λ1 + 0.228λ2,
x3 = 0.445λ1 − 0.445λ2,
x1 ≥ 0,

x1, x2 ∈ Z,
λ1, λ2 ∈ R+.
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Figure 2: Flow of the primal rounding heuristic.

Algorithm 1 The primal rounding heuristic for MISOCO

Input: A MISOCO instance (1),
maximum number of iterations t

Output: A feasible solution x̃ to MISOCO, if found
1: Set c̃ =∞, ϕ = 0.5
2: Solve the continuous relaxation of MISOCO, obtain its solution xs

3: Add F s to the Jordan frame pool
4: while i ≤ t do
5: Solve (MIPR), obtain its solution x∗ if exists
6: if (MIPR) is feasible then
7: Add F ∗ to the Jordan frame pool
8: Solve (FR) using x∗, obtain its solution xr

9: Add F r to the Jordan frame pool
10: if c>xr ≤ c̃ then
11: c̃ = c>xr, x̃ = xr

12: ϕ = 1+ϕ
2

13: else
14: ϕ = ϕ

2

15: Solve the penalty problem (PEN), obtain its solution xp

16: Add F p to the Jordan frame pool
17: i = i+ 1

18: return x̃
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(a) Solution of the continuous relaxation,
xs = (1.991,−0.907, 1.772).

(b) Conic feasible region for (MIPR)
(infeasible).

(c) Solution of the penalty problem (PEN),
xp = (1.745, 1.553, 0.795).

(d) Conic feasible region for (MIPR),
solution x∗ = (2,−1, 1.506).

(e) Solution of (FR), xr = (2,−1,
√

3).

Figure 3: Steps of the primal rounding heuristic on the example problem.
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(MIPR) is infeasible at this step. Supposing that we have budget for iteration, we continue. For
illustration, see Figure 3b.

4. Solve the penalty problem (PEN) for ϕ = 0.5:

minimize: ϕ(x1 − x3) + (1− ϕ)|x3|
subject to: 10 x1 + x2 = 19,

(x1, x2, x3) ∈ L3.

The optimal solution of (PEN) is xp = (1.745, 1.553, 0.795). For illustration, see Figure 3c.

5. Obtain the Jordan frames. The F matrix is updated:

F =
[
F+
(1) F−(1) F+

(2) F−(2)

]
=




0.5 0.5 0.5 0.5
−0.228 0.228 0.445 −0.445
0.445 −0.445 0.228 −0.228


 .

6. Solve the (MIPR) problem:

minimize: 2x1 + x2 − 2x3
subject to: 10 x1 + x2 = 19,

x1 = 0.5λ1 + 0.5λ2 + 0.5λ3 + 0.5λ4,
x2 = −0.228λ1 + 0.228λ2 + 0.445λ3 − 0.445λ4,
x3 = 0.445λ1 − 0.445λ2 + 0.228λ3 − 0.228λ4,
x1 ≥ 0,

x1, x2 ∈ Z,
λ1, λ2, λ3, λ4 ∈ R+.

The optimal solution of (MIPR) is x∗ = (2,−1, 1.506), the current upper bound is –0.012. For
illustration, see Figure 3d.

7. Solve the (FR) problem:
minimize: 2x1 + x2 − 2x3

subject to: 10 x1 + x2 = 19,
x1 = 2,
x2 = −1,

(x1, x2, x3) ∈ L3,

The (FR) problem improves the solution and provides a feasible MISOCO solution xr = (2,−− 1,
√

3)
with objective value −0.464. For illustration, see Figure 3e.

8. Obtain Jordan frames. The Jordan frame is

F =




0.5 0.5
−0.25 0.25
0.433 −0.433


 .

9. Solve the (MIPR) problem:

minimize: 2x1 + x2 − 2x3
subject to: 10 x1 + x2 = 19,

x1 = 0.5λ1 + 0.5λ2,
x2 = −0.25λ1 + 0.25λ2,
x3 = 0.433λ1 − 0.433λ2,
x1 ≥ 0,

x1, x2 ∈ Z,
λ1, λ2 ∈ R+.

(MIPR) gives the same solution x∗ = (2,−1,
√

3).
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The relaxation objective for this problem is –0.4697, where the bound generated by the conic rounding
heuristic is –0.4641. Despite the small gap, we cannot guarantee optimality in general. However, the solution
provided by the heuristic is the unique optimal solution for this example.

3.1.2 Discussion

Despite following a simple logic, the primal rounding heuristic works well in practice. However, the perfor-
mance depends highly on the feasible region of the problem. For problems where feasible solutions appear
inside second-order cone (SOC), it is relatively easy to find Jordan frames where a feasible solution lies
inside their convex combinations. On the other hand, if all the feasible solutions appear on, or close to the
boundary of the SOCs, then we need to find the exact Jordan frame to obtain a feasible solution. Finding the
exact Jordan frame is not always possible. In our experiments with CBLIB test problems, we observed that
the primal rounding heuristic is not able to produce feasible solutions for stochastic service system design
(sssd) problems. To provide an alternative to the primal rounding heuristic for problems where solutions
are close to the boundary of SOCs, we propose the dual rounding heuristic in the following subsection.

3.2 The dual rounding heuristic

Using the relationship between the rounding problems and the original MISOCO instances, we can approach
the problem of finding a feasible solution from the dual side. As shown in Figure 1, (D-DR) is a relaxation
of the original MISOCO instance. The underlying idea for the dual rounding heuristic is to solve a series of
(D-DR) problems with integrality constraints and (FR) problems.

The dual rounding heuristic starts with the solution of the continuous relaxation of the original instance.
Next, the mixed-integer dual rounding problem (MIDR) is solved by using the Jordan frame matrix that
was obtained from the relaxation solution, which is written as follows:

minimize: c>x
subject to: Ax = b,

F>x ≥ 0,
xi1 ≥ 0, i ∈ 1, . . . , k
xj ∈ Z, j ∈ J ⊆ N.

(MIDR)

If the solution is conic feasible, then the solution is an optimal solution to the MISOCO problem, and we
terminate. Otherwise, Jordan frames obtained from the solution are added to the matrix F . Note that we
can still obtain the Jordan frame that corresponds to the projection of the (MIDR) solution onto K. Adding
this Jordan frame to matrix F cuts off the current (MIDR) solution for the next iteration. By using the conic
infeasible solution, we solve an (FR) problem by fixing integer variables. If the problem is feasible, then we
obtained a feasible solution to MISOCO. We add the corresponding Jordan frame to F , and continue to the
next iteration.

Figure 4 shows an overview of the dual rounding heuristic, and Algorithm 2 describes the dual rounding
heuristic steps.

In theory, one can keep adding unique Jordan frames until an outer-approximation of the K to the desired
precision is achieved because the second-order cones are self-dual and the constraint F>x ≥ 0 provides a
supporting hyperplane for K. The set of Jordan frames provides a rough outer-approximation of the SOCs
since we often have a limited number of Jordan frames as shown in our numerical results.

Because of its relationship to the original MISOCO problem, (MIDR) is feasible at each iteration of
the heuristic for a feasible MISOCO problem. Therefore, if (MIDR) becomes infeasible at any iteration of
the dual rounding heuristic, then the original MISOCO problem is infeasible. Moreover, if the solution to
(MIDR) satisfies conic feasibility x ∈ K, then it is an optimal solution for MISOCO.

One of the major benefits of the dual rounding heuristic is the detection of infeasible cases. The other
benefit is that the dual rounding heuristic provides a lower bound for the MISOCO problem, thus providing
a better gap for the optimality information. A lower bound is provided even if the heuristic fails to find a
feasible solution. As shown in our numerical experiments, the dual rounding heuristic works well for certain
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Figure 4: Flow of the dual rounding heuristic.

Algorithm 2 The dual rounding heuristic for MISOCO

Input: A MISOCO instance (1),
maximum number of iterations t

Output: A feasible solution x̃ to MISOCO if found, a global lower bound cL
1: Set c̃ =∞
2: Solve the continuous relaxation of MISOCO, obtain its solution xs, set cL = c>xs

3: Add F s to the Jordan frame pool
4: while i ≤ t do
5: Solve (MIDR), obtain solution x∗

6: Add F ∗ to the Jordan frame pool
7: if c>x∗ ≥ cL then
8: cL = c>x∗

9: if x∗ ∈ K then
10: x̃ = x∗, c̃ = c>x∗

11: Terminate with an optimal solution to MISOCO x∗.
12: else
13: Solve (FR) using x∗, obtain its solution xr if exists
14: if (FR) is feasible then
15: Add F r to the Jordan frame pool
16: if c>xr ≤ c̃ then
17: c̃ = c>xr, x̃ = xr

18: if cL = c̃ then
19: Terminate with an optimal solution to MISOCO x̃.

20: i = i+ 1

21: return x̃, cL
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problem types and provides a good solution in a few iterations. The main difference between the dual
rounding heuristic and the primal rounding heuristic is the existence of penalty problems. Since any solution
of (MIDR) cuts off the current solution and effectively decreases the feasible region, there is no need to solve
a separate penalty problem.

3.2.1 Example

In this subsection, we provide a numerical example to illustrate how the dual rounding heuristic works in
practice. The steps of the dual rounding heuristic are illustrated in Figure 5.

Consider the following optimization model:

minimize: −15x2 − 8x3
subject to: x1 = 3,

x2, x3 ≤ 3,
(x1, x2, x3) ∈ L3,

x1, x3 ∈ Z.

Following are the steps of the dual rounding heuristic. Numerical values are given up to three digits precision.

1. Solve the SOCO subproblem:

minimize: −15x2 − 8x3
subject to: x1 = 3,

x2, x3 ≤ 3,
(x1, x2, x3) ∈ L3.

The solution of the SOCO subproblem is x∗ = (3, 2.647, 1.412) with objective value –51. For illustra-
tion, see Figure 5a.

2. Obtain the Jordan frames. The F matrix is

F =




0.5 0.5
0.471 −0.471
0.167 −0.167


 .

3. Solve the (MIDR) problem:

minimize: −15x2 − 8x3
subject to: x1 = 3,

x2, x3 ≤ 3,
0.5x1 + 0.471x2 + 0.167x3 ≥ 0,
0.5x1 − 0.471x2 − 0.167x3 ≥ 0,

x1 ≥ 0,
x1, x3 ∈ Z.

(MIDR) provides a solution x̄ = (3, 1.8, 3), which is conic infeasible. We fix the integer variables
x1 = 3, x3 = 3 and solve the (FR) problem. The (FR) problem provides a conic and integer feasible
solution x∗ = (3, 0, 3) with objective value –24. This is the best feasible solution for the MISOCO
problem so far. For illustration, see Figure 5b.

4. Obtain Jordan frames from both the optimal solution of (MIDR) and the solution of (FR). The F
matrix is

F =




0.5 0.5 0.5 0.5 0.5 0.5
0.471 −0.471 0.257 −0.257 0 0
0.167 −0.167 0.429 −0.429 0.5 −0.5


 .

12
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(a) Solution of the original continuous relaxation,
xs = (3, 2.647, 1.412).
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(b) Solutions obtained after the first iteration,
x∗ = (3, 1.8, 3), xr = (3, 0, 3).
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(c) Solutions obtained after the second iteration,
x∗ = (3, 2.333, 2), xr = (3, 2.236, 2).
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(d) Solutions obtained after the third iteration,
x∗ = (3, 2.867, 1, 3), xr = (3, 2.828, 1).

Figure 5: Steps of the dual rounding heuristic on the sample problem for the cross section at x1 = 3.
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5. Solve the (MIDR) problem:

minimize: −15x2 − 8x3
subject to: x1 = 3,

x2, x3 ≤ 3,
0.5x1 + 0.471x2 + 0.167x3 ≥ 0,
0.5x1 − 0.471x2 − 0.167x3 ≥ 0,
0.5x1 + 0.257x2 + 0.429x3 ≥ 0,
0.5x1 − 0.257x2 − 0.429x3 ≥ 0,

0.5x1 + 0.5x3 ≥ 0,
0.5x1 − 0.5x3 ≥ 0,

x1 ≥ 0,
x1, x3 ∈ Z.

The solution of (MIDR) is x∗ = (3, 2.333, 2). We fix the integer variables x1 = 3, x3 = 2 and solve
(FR). The (FR) provides a feasible solution x∗ = (3, 2.236, 2) with objective value –49.541. This is the
best feasible solution for the MISOCO problem so far. For illustration see Figure 5c.

6. Obtain the Jordan frames.

F =




0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.471 −0.471 0.257 −0.257 0 0 0.379 −0.379 0.372 −0.372
0.167 −0.167 0.429 −0.429 0.5 −0.5 0.325 −0.325 0.333 −0.333


 .

7. Solve the (MIDR) problem:

minimize: −15x2 − 8x3
subject to: x1 = 3,

x2, x3 ≤ 3,
0.5x1 + 0.471x2 + 0.167x3 ≥ 0,
0.5x1 − 0.471x2 − 0.167x3 ≥ 0,
0.5x1 + 0.257x2 + 0.429x3 ≥ 0,
0.5x1 − 0.257x2 − 0.429x3 ≥ 0,

0.5x1 + 0.5x3 ≥ 0,
0.5x1 − 0.5x3 ≥ 0,

0.5x1 + 0.379x2 + 0.325x3 ≥ 0,
0.5x1 − 0.379x2 − 0.325x3 ≥ 0,
0.5x1 + 0.372x2 + 0.333x3 ≥ 0,
0.5x1 − 0.372x2 − 0.333x3 ≥ 0,

x1 ≥ 0,
x1, x3 ∈ Z.

The solution of (MIDR) is x∗ = (3, 2.867, 1), which violates the conic constraint slightly. We fix the
integer variables x1 = 3, x3 = 1 and solve (FR). The (FR) produces the solution xr = (3, 2.828, 1) with
objective value –50.426. This is the best feasible solution for the MISOCO so far. For illustration, see
Figure 5d.

Repeating the heuristic for one more iteration results in an (MIDR) solution of x∗ = (3, 2, 828, 1), which
proves that the solution is the true optimal solution for the MISOCO. This example demonstrates a good
case where only a few iterations provided the unique optimal solution. In general, there is no guarantee that
a feasible solution can be found in a finite number of iterations.

14



3.2.2 Discussion

The dual rounding heuristic is useful for finding a feasible solution when the integer feasible solutions of
MISOCO are close to the boundary of the SOCs. A pathological case occurs if there is a continuous region
near the both sides of the boundary. Without (FR), infinitely many iterations are required to find a feasible
solution in this case.

The dual rounding heuristic is similar to the primal rounding heuristic in terms of utilizing Jordan
frames to generate feasible solutions. The main difference lies in where the solutions of the mixed-integer
rounding problems appear. If feasible, (MIPR) produces a feasible solution to MISOCO. On the other hand,
if MISOCO is feasible, then (MIDR) is always feasible, but its solution is likely to be infeasible for MISOCO
because of violated conic constraints. These two different heuristics are useful for different cases. The primal
rounding heuristic works better when feasible solutions are inside the SOCs, whereas it fails for cases where
the feasible solutions are close to, or lie on the boundary of the SOCs. The dual rounding heuristic works
better when feasible solutions are close to the boundary of SOCs, but fails when there is a continuous feasible
region alongside a cone.

In the next subsection we present the primal-dual rounding heuristic, where the iteration budget is shared
equally between the primal rounding and the dual rounding without needing penalty problems.

3.3 The primal-dual rounding heuristic

As we discussed in previous subsections, the primal rounding heuristic and the dual rounding heuristic are
useful for different types of feasible regions. For a problem with known structure, one can decide which
heuristic to deploy. However, one often does not have enough knowledge about the feasible region, making
the decision of which heuristic to use. In this subsection, we propose a combination of two heuristics. This
heuristic is called the primal-dual rounding heuristic and consists of components of both heuristics.

The primal-dual rounding heuristic starts with the solution of the SOCO problem and its Jordan frames.
Then, the (MIPR) problem is solved using the frames available in the pool. If it is feasible, then an (FR)
step follows to improve the solution. The generated solution is fed to the set of Jordan frames, and the
best solution is updated. Then, whether the (MIPR) is feasible or not, the (MIDR) problem is solved. The
(MIDR) problem is guaranteed to be always feasible unless the original problem is infeasible; hence the
solution can be added to the Jordan frame pool. If the solution to (MIDR) is conic feasible, it means that
we found an optimal solution to the original MISOCO problem. If not, then we use the solution in an (FR)
step to see if the (MIDR) can lead to a feasible solution. If (FR) provides a feasible solution, then we add the
corresponding Jordan frame to the pool. We iterate by solving (MIPR) until we reach a predefined iteration
limit.

Figure 6 shows an overview of the primal-dual rounding heuristic, and Algorithm 3 describes the steps
of the primal-dual rounding heuristic.

Although the primal-dual rounding heuristic is a combination of both of the primal and dual rounding
heuristics that were introduced earlier, there are some differences in terms of the flow. The most significant
difference between the primal rounding and the primal-dual rounding heuristic is how we generate new
Jordan frames. A penalty problem is solved in every iteration of the primal rounding heuristic to generate
new frames. This means that we need to solve two SOCOs in every iteration if we have a feasible solution.
For the primal-dual rounding heuristic, we benefit from the frames generated by the (MIDR) solutions.
Another advantage is that there is no need to solve a separate penalty problem to generate new frames.
However, whereas the the primal rounding heuristic does not provide a lower bound, the dual rounding
heuristic provides a lower bound at every iteration. By combining these two heuristics, we aim to provide a
feasible solution and a better lower bound at the same time.
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Algorithm 3 The primal-dual rounding heuristic for MISOCO

Input: A MISOCO instance (1),
maximum number of iterations t

Output: A feasible solution x̃ to MISOCO if found, a global lower bound cL
1: Set c̃ =∞
2: Solve the continuous relaxation of MISOCO, obtain its solution xs, set cL = c>xs

3: Add F s to the Jordan frame pool
4: while i ≤ t do
5: Solve (MIPR), obtain its solution x∗ if it exists
6: if (MIPR) feasible then
7: Add F ∗ to the Jordan frame pool
8: Solve (FR) using x∗, obtain its solution xr

9: Add F r to the Jordan frame pool
10: if c>xr ≤ c̃ then
11: c̃ = c>xr, x̃ = xr

12: Solve (MIDR), obtain solution x∗

13: Add F ∗ to the Jordan frame pool
14: if x∗ ∈ K then
15: c̃ = c>x∗, x̃ = x∗

16: Terminate with an optimal solution to MISOCO.

17: if c>x∗ ≥ cL then
18: cL = c>x∗

19: Solve (FR) using x∗, obtain its solution xr if it exists
20: if (FR) feasible then
21: Add F r to the Jordan frame pool
22: if c>xr < c̃ then
23: c̃ = c>xr, x̃ = xr

24: if cL = c̃ then
25: Terminate with an optimal solution to MISOCO

26: i = i+ 1

27: return x̃, cL

16



Figure 6: Flow of the primal-dual rounding heuristic.

3.4 Hybrid strategy

The primal-dual rounding heuristic allocates budget equally among primal and dual rounding heuristics.
Moreover, primal rounding uses only Jordan frames that are generated by the dual rounding heuristic,
specifically by (MIDR) and dual (FR) problems. In our experiments we noticed that the primal rounding
heuristic provides a feasible solution to the majority of the test problems within a few iterations. Therefore,
we present a hybrid strategy (HS) as a combination of two heuristics, where a few iterations are pure primal
rounding heuristic and the remaining are dual rounding heuristic only. They do not interact, except we
carry Jordan frames obtained in the primal side to the dual rounding heuristic and start it from the existing
Jordan frames. Although this sounds intuitive, the benefit of carrying existing Jordan frames might be
controversial, because it sometimes changes the frames obtained from the dual side significantly.

4 Numerical results

4.1 Implementation and test set

For computational experiments, we implemented all heuristics in MATLAB 2014b2. The SOCO problems
are solved with MOSEK 7.1, and the MILO problems are solved with CPLEX 12.7 via their respective
MATLAB API. Problems are solved on an AMD Opteron 2.0 GHz with 8GB of memory.

One of the most used test sets for MISOCO instances is CBLIB [26]. We tested our heuristics on all
MISOCO instances in this test set; however, because the memory is limited to 8 GB, only 1322 out of
1754 test problems are included in the numerical experiments. We also converted 6 convex binary quadratic
optimization problems from the QPLIB test set [27] into MISOCO using MOSEK and applied our heuristics
on these problems as well. The problem types and corresponding cone sizes are shown in Table 1.

Table 1 shows a huge variety of problems, where some problems have a few relatively big cones (QPLIB)
and some problems have multiple small cones (pp and turbine). All problems are converted to the

2Please contact the corresponding author to receive a copy of the source code.
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Variables Integers Cones Cone sizes

Pr. Types #P Min Max Min Max Min Max Min Max

ck 90 611 3271 25 75 10 20 27 77
classical 399 146 356 20 50 1 1 21 51
estein 9 125 246 9 18 9 18 3 3
pp 3 72 702 10 100 10 100 3 3
robust 400 198 468 21 51 2 2 22 52
shortfall 400 194 464 21 51 2 2 21 51
sssd 14 273 785 72 264 12 24 3 3
turbine 7 121 512 11 56 25 119 3 3
QPLIB 6 3033 13538 20 400 1 1 802 4502

Summary 1328 72 13538 9 400 1 119 3 4502

Table 1: Details of the problem test set.

standard MISOCO form using MOSEK. After conversion, only three problems in the test set (turbine07,
turbine07 aniso and turbine54) have integer variables that appear in multiple-dimensional cones. All of
these problems have 11 integers and all of them are leading variable in their cones. No problems in the
standard form have integer variables as an in-cone variable, but it is likely that integer variables are related
to in-cone variables in some of the test problems.

4.2 Efficiency of the heuristics

First, we experimented with the heuristics to see how often they provide a feasible solution and how many
iterations it takes to produce a feasible solution. Table 2 shows how many iterations it takes for heuristics to
generate the first feasible solution for MISOCO problems. We limited the number of MILO problems to be
solved by 10. For the hybrid strategy, we allocate three out of 10 MILO problem budget to primal rounding
heuristic and the remaining to dual rounding heuristic.

The most spectacular results in Table 2 are the percentage of problems where the primal rounding
heuristic provided a solution and the number of iterations to generate them. The primal rounding heuristic
fails to find a feasible solution for only 19 out of 1329 problems. Out of the 98.5% of problems that the
primal rounding heuristic provided a solution for, a feasible solution is obtained for 48% and 96% problems
in only one and two iterations, respectively. This is a remarkable result for a primal heuristic in general.
Moreover, the hybrid strategy fails only for three problems in total.

In terms of feasibility, the dual rounding heuristic provides a feasible solution for 78% of all test problems,
where it provided a solution in one iteration for 33% and in two iterations for 44% of all test problems. The
primal-dual rounding heuristic provides a feasible solution for 80% of all test problems with 65% feasible
in two iterations. The primal-dual rounding heuristic is expected to perform between the primal rounding
heuristic and the dual rounding heuristic, since the iteration budget is essentially halved between these two
except minor differences.

As discussed after introducing the primal rounding heuristic, an interesting result can be seen from the
Table 2 for sssd problems. The primal heuristic fails to find a feasible solution in 10 iterations for all
problems in this set. Coincidentally, the dual rounding heuristic and also the primal-dual rounding heuristic
provide a feasible solution in only one iteration for all problems in this class.

One can conclude that there is little chance for the primal rounding heuristic to provide a solution after
two iterations. However, the dual rounding and the primal-dual rounding heuristics may provide a solution
in subsequent iterations.

Overall, there is only one problem, robust 50 51, where all four heuristics failed to provide a solution
with the given iteration limit. The primal rounding heuristic, the dual rounding heuristic, and the primal-
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# Iters

Heur P.Type 1 2 3 4 5 6 7 8 9 10 Failed Total

P 647 628 28 2 3 1 1 18 1328

ck 90 90
classical 5 393 1 399
estein 9 9
pp 2 1 3
robust 136 231 24 2 3 1 1 2 400
shortfall 400 400
sssd 14 14
turbine 2 2 2 1 7
QPLIB 5 1 6

D 445 146 73 80 50 57 52 46 50 44 285 1328

ck 10 15 13 8 8 5 6 9 3 13 90
classical 140 42 19 30 15 19 16 9 18 14 77 399
estein 9 9
pp 2 1 3
robust 120 40 24 33 16 16 19 20 17 13 82 400
shortfall 142 45 17 8 11 17 10 8 12 17 113 400
sssd 14 14
turbine 4 2 1 7
QPLIB 6 6

PD 647 230 8 68 36 2 53 1 23 260 1328

ck 90 90
classical 5 138 42 18 30 15 151 399
estein 9 9
pp 3 3
robust 136 73 5 25 18 2 23 1 8 109 400
shortfall 400 400
sssd 14 14
turbine 2 4 1 7
QPLIB 5 1 6

HS 647 629 27 16 2 2 2 3 1328

ck 90 90
classical 5 393 1 399
estein 9 9
pp 3 3
robust 136 231 24 2 2 2 3 400
shortfall 400 400
sssd 13 1 14
turbine 2 2 2 1 7
QPLIB 5 1 6

Table 2: Number of iterations where the first feasible solution to MISOCO is reported.
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dual rounding heuristic are able to find a solution for this problem in 12 iterations, 19 iterations, and 19
iterations, respectively. To sum up, all heuristics, especially the primal rounding heuristic, work well in
practice in terms of finding solutions in a few iterations. This is a remarkable performance for heuristics of
this type.

4.3 Quality of the provided solutions

In this part, we evaluate the quality of the provided solution at the termination. Notice that all heuristics
may terminate early if the objective value of the generated solution is equal to the global lower bound, hence
proving its optimality. This is more likely for the dual and the primal-dual rounding heuristics, since they
keep generating new lower bounds for the problem over iterations.

Table 3 shows detailed performance of the heuristics over problem types. In the table, number of problems
(#P), number of problems solved (#S), average reported gap (RG), average true gap (TG), average number
of iterations to reach the first feasible solution (IFS), average number of MILOs solved (#MILO), average
number of SOCOs solved (#SOCO), and the total number of instances where the best solution is provided
by the primal (FR) problem, the dual (FR) problem, and the (MIDR) problem are presented. It is apparent
that the reported gap of the primal rounding heuristic is significantly higher compared to its true gap from
the optimal solution for some problem types, estein, turbine, and QPLIB. This is mainly due to the gap
between the solution of the continuous relaxation and the solution of the MISOCO problem.

Another interesting result is that the dual rounding heuristic provides an optimal solution for ck problems,
whenever feasible. Since (FR) fails to find a solution in most of the cases, it is very likely that integer variables
are directly related to in-cone variables.
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Figure 7: Comparison of gaps to the true optimal across heuristics.

See Figure 7 for a representation of the gaps to the true optimal solution across all problems. Problems
are sorted based on the gap provided by the heuristic, and the plots are shifted to show failed problems.
Also see Figure 8 for a comparison of gap to the true optimal with the first feasible solutions versus the
number of iterations to first feasible solution. We can conclude that the primal rounding heuristic provides
smaller gaps in fewer steps despite failing to provide a solution for certain problem types. The dual rounding
heuristic usually takes more iterations, but the gap provided is usually close to the true optimal solution,
unlike the primal rounding heuristic where many solutions provide a gap close to 100% at the first feasible
solution. The optimal strategy is likely a combination of primal and dual heuristics on average, but it is up
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P.Type Heur #P #S RG TG IFS #MILO #SOCO FR-P FR-D MIDR

ck
P 90 90 75.36% 71.67% 1.00 10.00 20.00 90 0 0
D 90 77 0.00% 0.00% 4.18 5.02 4.22 0 5 72
PD 90 90 35.94% 35.90% 1.00 7.36 6.79 37 3 50
HS 90 90 38.59% 38.54% 1.00 8.11 9.57 41 2 47

classical
P 399 399 10.28% 8.56% 1.99 9.80 18.43 399 0 0
D 399 322 20.86% 19.52% 3.34 10.00 10.00 0 322 0
PD 399 248 16.44% 15.03% 3.82 9.91 6.84 117 131 0
HS 399 399 15.04% 13.42% 1.99 9.83 10.71 366 33 0

estein
P 9 9 99.48% 0.09% 1.00 10.00 20.00 9 0 0
D 9 9 0.15% 0.00% 1.00 9.11 9.11 0 9 0
PD 9 9 1.69% 0.00% 1.00 10.00 10.00 2 7 0
HS 9 9 1.26% 0.04% 1.00 9.56 11.56 3 6 0

pp
P 3 3 0.22% 0.13% 2.33 10.00 19.00 3 0 0
D 3 3 1.27% 1.26% 3.67 9.33 9.00 0 2 1
PD 3 3 0.00% 0.00% 3.00 10.00 8.67 2 0 1
HS 3 3 33.33% 33.34% 2.00 10.00 11.00 3 0 0

robust
P 400 398 10.84% 10.34% 1.79 7.65 14.19 398 0 0
D 400 318 20.30% 19.91% 3.64 9.97 9.97 0 318 0
PD 400 291 19.43% 19.07% 2.72 8.18 5.92 215 76 0
HS 400 397 11.59% 11.09% 1.78 7.64 8.52 370 27 0

shortfall
P 400 400 1.65% 1.49% 1.00 9.72 19.44 400 0 0
D 400 287 1.70% 1.56% 3.08 10.00 10.00 0 287 0
PD 400 400 1.41% 1.25% 1.00 9.76 9.76 340 60 0
HS 400 400 1.44% 1.28% 1.00 9.73 11.71 365 35 0

sssd
P 14 0 - - - 10.00 10.00 0 0 0
D 14 14 0.00% 0.00% 1.00 8.29 7.29 0 6 8
PD 14 14 0.22% 0.06% 2.00 10.00 8.86 7 7 0
HS 14 14 3.33% 0.95% 4.14 10.00 8.93 7 7 0

turbine
P 7 6 43.79% 4.51% 2.00 10.00 17.43 6 0 0
D 7 7 0.00% 0.00% 1.71 4.00 3.57 0 5 2
PD 7 7 0.00% 0.00% 2.00 4.86 3.57 3 2 2
HS 7 7 0.00% 0.00% 2.57 5.71 5.86 4 1 2

QPLIB
P 6 5 90.15% 73.91% 1.00 10.00 18.17 5 0 0
D 6 6 70.40% 46.53% 1.00 10.00 10.00 0 6 0
PD 6 6 70.42% 46.51% 1.17 10.00 8.83 1 5 0
HS 6 6 72.69% 51.02% 1.50 10.00 11.00 1 5 0

Table 3: Detailed performance of the heuristics on problem types.
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Figure 8: Gap to the true optimal versus the number of iterations to first feasible solution for each heuristic.
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Figure 9: Gap to the true optimal versus the number of iterations to best feasible solution for each heuristic.
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to the user’s knowledge to find the best combination. See Figure 9 for a comparison of the gap to the true
optimal with the best solution obtained versus the number of iterations to get the best feasible solution. It
is apparent that having multiple iterations helps reduce the gap significantly. The solution provided by the
heuristic keeps getting better as we keep iterating. The HS dominates other heuristics in terms of final gaps.

In some cases, the heuristic stops early and returns the solution obtained if the objective value is equal
to the best known lower bound. In these cases, we prove the optimality of the solution. Table 4 shows the
number of instances and iterations where the true optimal solution is obtained. Note that there are instances
where an optimal solution is found but cannot be proved because the lower bound is not sufficient, which is
a common case for the primal rounding heuristic. These instances are not included in this table.

# Iters

Heur P.Type 1 2 3 4 5 6 7 8 9 10 Total

P 107 13 4 3 1 2 2 132

classical 5 2 1 2 2 12
robust 93 8 3 1 2 107
shortfall 9 3 1 13

D 14 19 13 11 9 8 12 13 7 6 112

ck 10 15 13 8 8 5 6 9 3 77
estein 2 2 2 1 7
pp 1 1
robust 1 2 2 5 10
sssd 2 4 3 2 1 12
turbine 2 2 1 5

PD 107 14 13 16 2 12 3 8 9 184

ck 10 15 1 12 8 8 54
classical 5 1 6
estein 2 2
pp 1 1
robust 91 9 1 2 103
shortfall 9 4 13
turbine 2 2 1 5

HS 109 16 3 18 1 13 6 15 2 7 190

ck 15 12 1 15 1 7 51
classical 5 2 1 1 9
estein 1 1 2
robust 93 10 2 4 109
shortfall 9 3 1 1 14
turbine 2 2 1 5

Table 4: Number of instances where an optimal solution is found.

The primal-dual heuristic is capable of finding more optimal solutions because primal and dual rounding
heuristics work together to provide upper and lower bounds, respectively. This result verifies our intuition
about the hybrid strategy.
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4.4 Effect of iterations on solution quality

One can terminate the heuristics whenever a feasible solution is obtained. However, taking more iterations
often provides a much better solution.

See Figure 10 for a scatter plot of the gap of the first feasible solution and the final solution after a
maximum of 10 MILO problems.
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Figure 10: Final gap to the true optimal (vertical axis) versus the first gap (horizontal axis) for each instance.

These plots show that having more iterations helps the primal rounding heuristic very significantly,
especially for cases where the initial gap is around 100%. The effect of multiple iterations is very significant
for the primal-dual rounding heuristic, where the gap to true optimality decreases from the 60—100% interval
to 0%.

The solutions obtained after having even a few iterations are significantly better. Even for the problems
where the first feasible solution is obtained in the first iteration, the gap to the true optimal is 33%, 64%, 51%,
and 36% better when we obtain the best known solution in the second iteration for primal, dual, primal-dual
rounding heuristics, and the hybrid strategy, respectively. Having more iterations gradually improves the
gap compared to the first feasible solution. On average, the primal rounding heuristics provide 54% better
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gap, while the number is 45% for the dual rounding and 54% for the primal-dual rounding. Overall, having
multiple iterations results in an average of 52% better gap at return. These numbers show the significance
of running the heuristic for a few iterations.

5 Conclusions and future work

In this paper, we presented four novel rounding heuristics for MISOCO problems. The proposed heuristics
are specific to MISOCO and provide major contributions to the existing body of the research. As the first
of its kind, the conic rounding heuristics complement the theoretical developments in the MISOCO area and
their implementations provide a cost-efficient and novel strategy for finding feasible solutions.

Based on our computational results on the CBLIB and QPLIB test sets, HS finds a feasible solution for
almost all test problems. This is a significant result for a heuristic method, it would be significant even for
linear optimization. Overall, using a budget of 10 MILO problems, at least one of the heuristics found a
feasible solution to 1327 out of 1328 total problems.

This study is an important step to open new research directions for future studies. Due to the close
relationship between SOCO and semi-definite optimization (SDO), these heuristics can also be applied to
SDO problems. However, it might be expensive to obtain eigenvectors for larger and dense matrices for SDO
problems. Therefore, more work is needed to develop efficiently computable versions of these heuristics for
SDO problems.
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