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1 Introduction

There are many practical problems where one has to make decisions sequentially based on
data (observations) available at time of the decision. Trying to make such decisions under
uncertainty in some optimal way looking forward in time leads to the area of multistage op-
timization. Traditionally uncertainty was modeled as randomness using tools of probability
theory. However uncertainty can come in many different ways where the basic concept of
probability distribution could be questionable. Even if there is available data from which
a relevant probability distribution could be estimated, there are many modeling questions.
A useful model should on one hand represent reality in a reasonable way and on the other
hand should be computationally manageable. This raises a nontrivial question of a bal-
ance/compromise between these two, often contradictory, requirements. This tutorial is
aimed at presenting a certain point of view on multistage stochastic optimization rather
than a complete survey of the topic. There are many technical issues, sometimes quite non-
trivial, involved in the presented material. We try here to avoid discussion of complicated
technical details whenever it is reasonably possible.

Development of theory and practice of sequential decisions is going back to the pioneering
work of Abraham Wald on sequential analysis more than 70 years ago. Traditionally there
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are three modelling approaches dealing with sequential optimization problems, namely the
Markov Decision Process (MDP), Stochastic Optimal Control (SOC) and Stochastic Pro-
gramming. Although they deal with related classes of problems, the employed modeling and
solution methods are somewhat different. For the theory of MDP and SOC we can refer
to the classical monographs by Puterman [27] and Bertsekas and Shreve [7]. From the be-
ginning, the MDP and SOC methodologies were based on dynamic programming equations.
On the other hand, the stochastic programming started in works of Beale [2] and Dantzig
[12], originally was concerned with a two stage setting and was based on a finite number of
generated scenarios.

Recently an alternative to stochastic approach was suggested by the so-called adjustable
robust multistage modeling of an uncertain process. This originated in Ben-Tal, Goryashko,
Guslitzer and Nemirovski [5], we can refer to Ben-Tal, El Ghaoui and Nemirovski [4] for a
thorough discussion of that approach, and to Yanikoğlu, Gorissen and Hertog [42] for a recent
survey. Which of these two approaches - stochastic or robust, should be applied depends on
a particular application. Also what became known in recent literature as distributionally
robust stochastic programming, is somewhat between these two approaches to dealing with
uncertainty. It is closely related to the so-called risk averse stochastic programming. In the
next section we demonstrate some aspects of the involved issues on the classical example of
the inventory model (we refer to Zipkin [43] for a thorough discussion of that model).

We use the following notation and terminology throughout the paper. We denote [a]+ :=
max{0, a}, by the notation ‘:=’ we mean ‘equal by definition’. By E[X] we denote the
expectation of random variable X, and by E|Y [X] the conditional expectation of X given
random variable Y . By 1A we denote the indicator function of set A, i.e., 1A(ω) = 1 if ω ∈ A
and 1A(ω) = 0 if ω 6∈ A. A sample space (Ω,F) consists of an abstract set Ω and sigma
algebra F of subsets of Ω. In particular if Ω = {ω1, ..., ωm} is finite, then we assume that
the associated sigma algebra F consists of all subsets of Ω. If P and Q are two probability
measures on (Ω,F), then it is said that Q is absolutely continuous with respect to P if A ∈ F
and P (A) = 0 implies that Q(A) = 0. By the Radon–Nikodym Theorem, Q is absolutely
continuous with respect to P if and only if there exists density function f = dQ/dP such that
Q(A) =

∫
A
fdP for any A ∈ F . If Ω = {ω1, ..., ωm} is finite and P is a probability measure

(distribution) on Ω such that probability pi = P ({ωi}), i = 1, ...,m, of every elementary
event is positive, then any probability measure Q on Ω is absolutely continuous with respect
to P . Recall that random process ξt ∈ Rdt , t = 1, ..., T , is Markovian if the conditional
distribution of ξt+1 given ξ[t] is the same as the conditional distribution of ξt+1 given ξt,
t = 1, ..., T − 1, where ξ[t] := (ξ1, ..., ξt) denotes history of the data process ξ1, ...., ξT , up to
time t. We use bold face notation ξt for random vector to distinguish it from ξt considered
as a vector variable.

2 Inventory model

Suppose that a company has a planning horizon of T periods of time. At each time period
t = 1, ..., T , the company has to make a decision of placing an order to replenish its inventory
level to xt. In the sequel we sometimes refer to the time period when a decision is made as
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stage. The cost incurred at stage t is

ct(xt − yt) + bt[dt − xt]+ + ht[xt − dt]+. (2.1)

Here ct, bt, ht are the ordering cost, backorder penalty cost and holding cost per unit, respec-
tively, yt is the current inventory level and dt is the demand at time t. Clearly the order
quantity xt−yt should be nonnegative, i.e., xt should be not less than yt. A natural objective
is to minimize the total cost over the T periods (stages).

Let us take a close look at modeling of this problem. At the beginning of the planning
horizon the manager wants to make a decision about order quantities xt − yt for every time
period t = 1, ..., T . It is assumed that the initial inventory level y1 and the parameters
ct, bt, ht, t = 1, ..., T , are known. What is not known to the manager are future values of the
demand dt. This raises questions of how to model uncertainty of the demand process, what is
the objective to optimize (minimize) and for how many periods T to look ahead. A classical
approach is to model the demand process D1, ..., DT as a stochastic process with a specified
(joint) probability distribution (we use capital letter Dt for the demand at time t viewed as
a random variable, and dt for its particular realization). At each time period t we know the
past, i.e., we know realization d[t−1] = (d1, ..., dt−1) of the demand process. Naturally our
decision should be based on that knowledge, i.e., xt = xt(d[t−1]) should be a function of the
realization of the demand process until time t. The first stage decision x1 is deterministic, it
is made before observing any realization of the random data becomes available, and hence
should not depend on realizations of the demand process. (For uniformity of the notation
we can write x1 = x1(d0) and think about D0 = d0 as deterministic.) At the beginning of
the planning horizon, by defining functions xt = xt(d[t−1]), t = 1, ..., T , the manager assigns
a policy (also called decision rule) describing what order decision to make for any future
realization of the demand process.

It should be clearly understood that the decision variables xt = xt(d[t−1]), t = 1, ..., T ,
here are functions of the demand process. By substituting random variable Dt instead of
its particular realization dt, we view decisions xt = xt(D[t−1]) as random variables. We use
the bold face script xt and yt when considering these variables as random, rather than their
respective realizations xt and yt.

Next important choice is what objective to optimize. In this modeling the total cost is a
function of the demand process and a chosen policy, hence is a random variable. One possible
approach is to minimize the expected value of the total cost over the planning horizon. This
can be written as the following optimization problem

min
xt≥yt

E
[

T∑
t=1

ct(xt − yt) + bt[Dt − xt]+ + ht[xt −Dt]+

]
s.t. yt+1 = xt −Dt, t = 1, ..., T.

(2.2)

Note that actually there are two sets of decision variables in this formulation, namely xt and yt
which are related by the balance equations yt+1 = xt−dt. For a chosen policy xt = xt(d[t−1]),
t = 1, ..., T , the inventory levels yt are completely defined by these balance equations and
the initial value y1. We use notation π =

(
x1, x2(d[1]), ..., xT (d[T−1])

)
for a considered policy.

The optimization (minimization) in (2.2) is performed over policies satisfying the respective
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feasibility constraints. The expectation in (2.2) is taken with respect to the specified (joint)
probability distribution of the demand process D1, ..., DT , with xt = xt(D[t−1]), t = 2, ..., T ,
viewed as random variables. The feasibility constraints xt ≥ yt, t = 1, ..., T , should be
satisfied for almost every (a.e.) realization of the demand process D1, ..., DT .

Unless stated otherwise we assume that the probability distribution of the demand process
does not depend on the chosen policy. In some cases it is natural to consider situations where
our actions can change the demand distribution, and hence the expectation, denoted Eπ,
depends on the policy. This will make the problem much more difficult from the modeling
and computational points of view.

In the above formulation (2.2) the total cost is minimized on average. This could be
justified by the Law of Large Numbers. That is, if this procedure is repeated many times
under more or less the same probabilistic assumptions, then optimizing on average makes
sense. It should be noted, however, that for a particular realization of the demand process
the total cost could be quite different from its expected value. Also the above problem (2.2)
depends on the specified probability distribution of the demand process. This raises the
question of controlling the risk, which we will discuss later.

For a considered policy π we need to compute the expected value E[Z] of the total cost

Z :=
T∑
t=1

ct(xt − yt) + bt[Dt − xt]+ + ht[xt −Dt]+. (2.3)

Recall that by using the bold face xt = xt(D[t−1]) and yt we emphasize that these are
random variables associated with the considered policy; consequently the total cost Z is a
random variable. The expected value of the total cost depends on the chosen policy and the
specified distribution of the demand process. From the modeling point of view typically it
is natural to model the corresponding random data process (here the demand process) as
having a continuous distribution with an infinite number of possible realizations. However,
this leads to two major difficulties. One is how to compute the expected value of the total
cost. The other is that the minimization should be performed over feasible policies which
are functions of the demand process. In case the demand process has an infinite number of
possible realizations this leads to an infinite dimensional optimization problem. The standard
approach, used in stochastic programming, is to discretize the random data process. Let us
have a closer look at that approach.

As it was pointed above our decision at each period time t depends on the realization
d[t−1] = (d1, ..., dt−1) of the demand process up to time t. We also assume that we know
(specify) the conditional probability distribution of the future demand (Dt, ..., DT ) given
D[t−1] = d[t−1]. This is an important point, our decisions are conditional and consequently
we need to model the demand distribution in a conditional way. This leads to the concept of
scenario tree. Starting with a root node we need to construct sample paths of the demand
process. One can think here about the root node as known value of the demand at time
t = 0. Then at the next time period t = 1 possible values of realizations of the demand are
specified. Conditional on these realizations, possible realizations of the demand at time t = 2
are specified, and so on until the end of the planning horizon. Each path of the constructed
tree represents a possible realization of the demand process and is called scenario. Each
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node at time t represents history of the process up to time t. If the number of leaves at each
node at time t is the same, say Nt, then the total number of scenarios is N =

∏T−1
t=1 Nt. Such

scenario tree represents possible paths of the demand process. Still it needs to be equipped
with respective conditional probabilities to make it a stochastic process.

There are several problems with the scenario tree approach. One is the modeling question
of how to construct such a tree. In some cases we have at our disposal historical data
from which we can try to construct the probability distribution of the demand process.
Typically we observe just one realization (sample path) of the data process, we cannot
go back in time to make another measurement. On the other hand we need to evaluate
conditional distributions of the data process. The only way to deal with this problem is
to make structural assumptions about the data process. The most natural and often used
approach is to assume a Markovian structure of the process. One classical approach is to
use time series analysis to fit an autoregressive model to the observed data.

Another difficulty is computational. Our decision variables, with respect to which we need
to perform the optimization, are policies (decision rules) π =

(
x1, x2(d[1]), ..., xT (d[T−1])

)
.

Since the scenario tree is finite, the number of considered policies is also finite and is propor-
tional to the number of scenarios. In principle it is also possible to consider scenario trees
with an infinite number of scenarios - although useful as a conceptual visualization of the
data process, it is not directly applicable for computational purposes. In order to make a
reasonable approximation of the data process one needs to continue branching of scenarios at
all time periods. This leads to a quick (exponential) growth of the total number of scenarios.
For example if at each stage we use just Nt = 100 leaves, the total number of scenarios is
N = 102(T−1), e.g., with T = 4 we have million scenarios. Note that employing just one
leaf, Nt = 1, starting from a certain time period, makes the problem deterministic from that
period on, ignoring variability of the data process. This suggests that for time periods T ≥ 4,
say, the scenario tree discretization approach could be impractical from the computational
point of view. It could also be noted that solving the problem for the constructed scenario
tree defines policies only for the scenarios of that tree. This does not say what decisions
to make, except the first stage decision which is made before observing any realization of
the data process, at least not in a direct way, for possible realizations of the data process
different from the constructed ones (we will discuss this further in Section 6).

An alternative approach is suggested by dynamic programming. The expectation opera-
tor has the following decomposition property. If X and Y are two random variables having
a joint distribution, then E[X] = E

[
E|Y [X]

]
, provided the corresponding expectations are

well defined. This formula has a simple intuitive interpretation. In case of discrete distribu-
tions, if we partition values of X according to values of Y , for each partition compute the
average and then take the average of these averages, it will be the total average of X. Using
this property we can write the expected value of the total cost Z, defined in (2.3), in the
following decomposable form

E[Z] = E
[
E|D[1]

[
E|D[2]

[· · ·E|D[T−1]
[Z]]
]]
. (2.4)

(Recall that the total cost Z is associated with the considered policy and is a function of the
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random demand process, and hence is random.) Hence problem (2.2) can be written as

min
(x1,...,xT (·))∈Π

E
[
E|D[1]

[
E|D[2]

[· · ·E|D[T−1]
[Z]]
]]
, (2.5)

where Π is the set of feasible policies. The notation (x1, x2(·), ..., xT (·)) emphasizes that
the minimization in (2.5) is performed over the respective functions. Recall that the first
stage decision x1 is deterministic and made before observing any realization of the random
data process, and that a policy is feasible if it satisfies the feasibility constraints for a.e.
realization of the data process.

This leads to the dynamic programming equations. Consider minimization with respect
to the last decision xT = xT (d[T−1]). Under mild regularity conditions the minimization
and (conditional) expectation operators can be interchanged (see Section 5.1), i.e., the min-
imization with respect to xT can be taken inside the expectation E|D[T−1]

[Z]. Continuing
this process backwards in time, with respect to decision variables xT−1, ..., x1, it is possible
to write the following dynamic programming equations. The value (also called cost-to-go)
functions Vt(yt, d[t−1]), t = T, ..., 2, are given as optimal values of the respective problems

min
xt≥yt

ct(xt − yt) + E|D[t−1]=d[t−1]

[
bt[Dt − xt]+ + ht[xt −Dt]+ + Vt+1

(
xt −Dt, D[t]

) ]
, (2.6)

with VT+1(·, ·) omitted. Finally, at the first stage we need to solve the problem

min
x1≥y1

c1(x1 − y1) + E
[
b1[D1 − x1]+ + h1[x1 −D1]+ + V2(x1 −D1, D1)

]
. (2.7)

The value Vt(yt, d[t−1]) represents the minimum expected value of the cost from the time
period t upwards until the end T of the horizon, conditional on D[t−1] = d[t−1] and inventory
level yt. A policy π̄ = (x̄1, ..., x̄T (d[T−1])) is an optimal solution of the problem (2.2) if and
only if each x̄t, t = 1, ..., T , solves the respective minimization problem (2.6). In particular,
the first stage optimal decision x̄1 and the optimal value of problem (2.2) are given by
respective an optimal solution and the optimal value of problem (2.7) conditional on the
initial inventory level y1.

By writing the dynamic programming equations we reduce the original problem (2.2) to
the sequence of finite dimensional optimization problems (2.6) - (2.7), with the respective
deterministic decision variables xt and yt. A cost of that reduction is that we need to
represent the value functions Vt(yt, d[t−1]) in a computationally feasible way in order to keep
them in the computer memory going backward in time t. This is simplified dramatically if
the process D1, ..., DT is stagewise independent, i.e., for each t = 2, ..., T , the random variable
Dt is independent of D[t−1]. Then the conditional expectations in equations (2.6) become
the corresponding unconditional expectations, and consequently value functions Vt(yt) can
be viewed as functions of the respective univariate variables yt only (this can be shown by
induction going backwards in time). In that case at every stage we only need to remember
the current inventory level yt, and do not need to keep track of the respective history of the
demand process. In the terminology of optimal control, variables yt are called state variables
and xt called control variables. We will discuss this further in Section 6.
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3 Risk neutral multistage programming

Consider now the following multistage stochastic programming problem

min E
[∑T

t=1 ct(xt, ξt)
]

s.t. Btxt−1 +Atxt = bt, xt ∈ Xt, t = 1, ..., T,
(3.1)

with the term B1x0 at the first stage omitted (alternatively x0 can be viewed as the (given)
initial state of the system). Here ξt ∈ Rdt , t = 1, ..., T , is a random data process, ct :
Rnt × Rdt → R are costs functions, bt = bt(ξt) are right side vectors, Bt = Bt(ξt) and
At = At(ξt) are matrices of appropriate dimensions and Xt ⊂ Rnt are polyhedral sets,
e.g., Xt = {xt ∈ Rnt : xt ≥ 0}. It is assumed that the first stage data vector ξ1 is known
(deterministic). As before we use the bold face script to emphasize which considered variables
are random. To simplify the presentation we consider the data (bt, Bt, At) as a function of
ξt rather than the whole history ξ[t].

Optimization in (3.1) is performed over feasible policies (also called decision rules). A
policy is a sequence of (measurable) functions xt = xt(ξ[t]), t = 1, ..., T . Each xt(ξ[t]) is a
function of the data process ξ[t] = (ξ1, ..., ξt) up to time t, this ensures the nonanticipative
property of a considered policy. The first stage decision x1 is deterministic, i.e., does not
depend on realizations of random data (here the process starts at time t = 1 with x1 being
deterministic, while in the inventory model, discussed in Section 2, the stage at time t = 0 is
viewed as deterministic). Note again that the decisions xt = xt(ξ[t]) become random when
the data process is viewed as random. This is emphasized by using the respective bold face
script in problem (3.1). The constraints should be satisfied for almost every realization of
the random data process.

We denote by Π the set of feasible policies π =
(
x1, x2(ξ[2]), ..., xT (ξ[T ])

)
. It is assumed

that the probability distribution of the data process ξ1, ..., ξT does not depend on the con-
sidered policies π ∈ Π. The constraints Btxt−1 + Atxt = bt define the dynamics of the
system and often represent balance equations. It is possible to consider more general formu-
lations of stochastic programs with nonlinear dynamic constraints. Nevertheless the above
formulation is sufficiently general to cover many practical applications and to demonstrate
the main properties of multistage stochastic programs. In particular if the cost functions
ct(xt, ξt) = ct(ξt)

>xt are linear, problem (3.1) becomes a multistage stochastic linear pro-
gram. The inventory model, discussed in Section 2, can be considered in this framework
with cost functions defined in (2.1).

An approach to solving problem (3.1), often used in stochastic programming, is to dis-
cretize distribution of the data process by constructing a scenario tree and consequently
solving the obtained deterministic optimization problem. In the linear case this leads to a
large scale linear program with the size proportional to the number of generated scenarios.
In the two stage case (T = 2) one needs to discretize only the probability distribution of the
random vector ξ2. Randomization techniques, such as the Sample Average Approximation
(SAA) method, are shown to be quite efficient in that case. On the other hand, in the mul-
tistage case the number of scenarios, needed to approximate distribution of the data process
with a reasonable accuracy, grows exponentially with increase of the number of stages. Con-
sequently computational complexity, measured in terms of the number of scenarios, grows
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exponentially making this approach impractical for the number of stages say greater than
three (this was already discussed in Section 2). Of course there could be situations where
there is no need to look at say more than one step ahead. In that case one can take the ap-
proach of solving the respective two stage problems and recomputing the first stage solution
every time the new observations become available. We will discuss this further in Section 6.

Next we discuss the alternative approach of dynamic programming which has its own
limitations. Suppose for the moment that the multistage problem (3.1) is deterministic, i.e.,
the cost functions ct(xt) and the corresponding constraints do not involve random parameters;
of course this can be considered in terms of problem (3.1) with just one scenario. That is,
consider the following problem

min
x1,...,xT

∑T
t=1 ct(xt)

s.t. Btxt−1 + Atxt = bt, xt ∈ Xt, t = 1, ..., T.
(3.2)

Here Bt, At and bt are deterministic (not random) and minimization in (3.2) is performed
over deterministic vectors x1, ..., xT . We can approach problem (3.2) in the following way.
First we perform minimization with respect to xT . Consequently the obtained minimal value
should be minimized with respect to x1, ..., xT−1. This leads to the following minimization
problem

min
x1,...,xT−1

∑T−1
t=1 ct(xt) + VT (xT−1)

s.t. Btxt−1 + Atxt = bt, xt ∈ Xt, t = 1, ..., T − 1,
(3.3)

where VT (xT−1) is the optimal value of problem

min
xT∈XT

cT (xT )

s.t. BTxT−1 + ATxT = bT .
(3.4)

The above problem (3.4) represents minimization with respect to xT , its optimal value is a
function of xT−1 only. Next we perform minimization in (3.3) with respect to xT−1, which
leads to the minimization problem

min
xT−1∈XT−1

cT−1(xT−1) + VT (xT−1)

s.t. BT−1xT−2 + AT−1xT−1 = bT−1.
(3.5)

Optimal value, denoted by VT−1(xT−2), of the above problem is a function of xT−2. And so on
continuing this process, going backwards in time, eventually at the first stage the following
problem should be solved

min
x1∈X1

c1(x1) + V2(x1)

s.t. A1x1 = b1.
(3.6)

The idea of going backwards in time can be extended to the stochastic setting. This
requires the following additional observations. Using the decomposability property of the
expectation operator, problem (3.1) can be written in the following form (compare with
(2.5))

min E|ξ1
[
· · ·E|ξ[T−1]

[∑T
t=1 ct(xt, ξt)

]]
s.t. Btxt−1 +Atxt = bt, xt ∈ Xt, t = 1, ..., T.

(3.7)
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Recall that ξ1 is deterministic and hence E|ξ1 is the same as the unconditional expectation,
we write this in that form for uniformity of notation. Furthermore by interchanging the
respective minimization and (conditional) expectation operators, problem (3.1) can be writ-
ten in the following nested form (see Section 5.1 for a discussion of the interchangeability
principle)

min
A1x1=b1
x1∈X1

c1(x1) + E|ξ1
[

min
B2x1+A2x2=b2

x2∈X2

c2(x2, ξ2) + · · ·

+E|ξ[T−1]

[
min

BTxT−1+ATxT=bT
xT∈XT

cT (xT , ξT )
]]
.

(3.8)

The nested formulation leads to the dynamic programming equations. That is, at stage
t = T the value (cost-to-go) function VT (xT−1, ξT ) is given by the optimal value of the
problem (recall that in the stochastic setting, elements of BT , AT and bT can be also functions
of ξT )

min
xT∈XT

cT (xT , ξT )

s.t. BTxT−1 + ATxT = bT .
(3.9)

Note that variable xT in (3.9) is viewed as a deterministic vector xT ∈ RnT . The optimal
value VT (xT−1, ξT ) of problem (3.9) is a function of xT−1 ∈ RnT−1 and realization ξT of the
random vector ξT . At stages t = T − 1, ..., 2, the value function Vt(xt−1, ξ[t]) is given by the
optimal value of the problem

min
xt∈Xt

ct(xt, ξt) + V(xt, ξ[t])

s.t. Btxt−1 + Atxt = bt,
(3.10)

where
V(xt, ξ[t]) := E|ξ[t]=ξ[t] [Vt+1(xt, ξ[t+1])]

is the conditional expectation of Vt+1(xt, ξ[t+1]) given realization ξ[t] of ξ[t]. At the first stage
the following problem should be solved

min
x1∈X1

c1(x1) + E[V2(x1, ξ2)]

s.t. A1x1 = b1.
(3.11)

As it was pointed out in the previous section, the dynamic programming equations reduce
the original optimization problem to the sequence of finite dimensional optimization prob-
lems (3.9) - (3.11) with respect to deterministic decision variables xt. The value (cost-to-go)
function Vt(xt−1, ξ[t]), at time t, depends on xt−1 ∈ Rnt−1 because of the balance equations
Btxt−1 + Atxt = bt. It also depends on the history ξ[t] of the data process because the con-
ditional expectation E|ξ[t] involves the conditional distribution of ξ[t+1] given realization ξ[t]

of ξ[t]. Dependence on so many variables makes it inapplicable for computational purposes.
The situation simplifies if we assume that the data process has a Markovian structure. From
the statistical point of view the simplest case is when the process ξt, t = 1, ..., T , is stagewise
independent, i.e., random vector ξt+1 is independent of ξ[t], t = 1, ..., T − 1. In the stagewise
independent case, since ξT is independent of ξ[T−1], we have that the conditional expectation
E|ξ[T−1]

[VT (xT−1, ξT )] is the same as the unconditional expectation E[VT (xT−1, ξT )]. Hence
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VT−1(xT−2, ξT−1) is a function of ξT−1 rather than ξ[T−1]. Continuing this backwards in time
we obtain that for t = T − 1, ..., 2, the cost-to-go function Vt(xt−1, ξt) is given by the optimal
value of the problem

min
xt∈Xt

ct(xt, ξt) + Vt+1(xt)

s.t. Btxt−1 + Atxt = bt,
(3.12)

where Vt+1(xt) := E[Vt+1(xt, ξt+1)] is the expected cost-to-go function (the expectation is
taken with respect to the distribution of ξt+1). Formally this can be shown by induction in
t = T − 1, ..., 2. Consequently in the stagewise independent case we only need to keep track
of the functions Vt+1(xt) of xt alone, when solving problems (3.12). Yet one of the main
difficulties of the dynamic programming approach is how to represent functions Vt+1(xt) in
the computer when the dimension of xt is large, this is the so-called “curse of dimensionality”.
We will discuss this further in Section 6.

The relevant and important question is how many variables are needed for representa-
tion of the cost-to-go functions. In a somewhat informal way such variables are called state
variables. That is, at every stage we need to keep track of state variables only. For example
in the inventory model at every stage we only need to know the current inventory level yt,
provided the demand process is stagewise independent. If the demand process is not stage-
wise independent, then the distribution of the current demand Dt depends on realizations at
previous stages and hence we need to remember these realizations as well. Of course, in the
stagewise independent case, we can refer to all components of decision vectors xt of the mul-
tistage problem (3.1) as state variables. Naturally one can think about a minimal number
of state variables to represent the value functions. This question depends on a considered
model. In the approach of optimal control (below) there is an explicit separation between
state and control variables.

3.1 Optimal control model

Problem (3.1) can be compared with the optimal control (in discrete time) formulation (e.g.,
Bertsekas and Shreve [7])

min E
[∑T

t=1 ct(yt,ut, ξt) + cT+1(yT+1)
]
,

s.t. yt+1 = Ft(yt,ut, ξt), t = 1, ..., T,
ut ∈ Ut(yt), t = 1, ..., T.

(3.13)

Here variables yt ∈ Rnt , t = 1, ..., T + 1, represent state of the system, ut ∈ Rmt , t = 1, ..., T ,
are controls, ξt ∈ Rdt , t = 1, ..., T , are random vectors (random noise or disturbances),
ct : Rnt × Rmt × Rdt → R, t = 1, ..., T , are cost functions, cT+1(yT+1) is final cost function,
Ft : Rnt × Rmt × Rdt → Rnt+1 are measurable mappings, and Ut : Rnt ⇒ Rmt are multifunc-
tions (point-to-set mappings). Values y1 and ξ0 are deterministic (initial conditions). The
optimization in (3.13) is performed over policies satisfying the corresponding feasibility con-
straints almost surely (with probability one). The inventory model (discussed in Section 2) is
of that form with cost functions (2.1), state variables yt, control variables xt, random distur-
bances Dt, balance equations yt+1 = xt − dt and control constraints Ut(yt) := {xt : xt ≥ yt}.
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It is possible to view problem (3.13) as a stochastic programming problem with decision
variables xt = (yt+1, ut). If moreover mappings Ft(yt, ut, ξt) are linear (affine), then problem
(3.13) can be considered as a particular case of problem (3.1). The corresponding dynamic
programming equations here take the form (compare with dynamic equations of the inventory
model)

Vt(yt, ξ[t−1]) = inf
ut∈Ut(yt)

E|ξ[t−1]=ξ[t−1]

[
ct(yt, ut, ξt) + Vt+1

(
Ft(yt, ut, ξt), ξ[t]

)]
, (3.14)

t = 2, ..., T . In optimal control the random process ξt, t = 1, ..., T , is often viewed as noise
and assumed to be stagewise independent. In that case, value (expected cost-to-go) functions
Vt(yt) depend only on the state variables yt and the conditional expectation in (3.14) becomes
the respective unconditional expectation. Also the minimizers ūt = π̄t(yt), t = 1, ..., T , on
the right hand side of (3.14), provided that such minimizers exist, define an optimal policy
for problem (3.13). That is, in the stagewise independent case optimization in (3.13) can be
performed over policies of the form ut = πt(yt), t = 1, ..., T .

If the data process is Markovian, then the value (cost-to-go) function Vt(yt, ξt−1) also
depends on ξt−1 with the conditional expectation in (3.14) taken with respect to ξt−1 rather
than ξ[t−1]. In that case one can think about (yt, ξt−1) as state variables. For example,
suppose that the data process can be modeled as the first order autoregressive time series
ξt+1 = µ + Φξt + εt, where µ is vector and Φ is matrix of estimated parameters and εt is
the error process assumed to be independent identically distributed (iid). Then in terms of
state variables zt = (yt, ξt), problem (3.13) can be written as

min E
[∑T

t=1 ct(zt,ut) + cT+1(yT+1)
]
,

s.t. zt+1 = F̂t(zt,ut, εt), t = 1, ..., T,
ut ∈ Ut(yt), t = 1, ..., T,

(3.15)

with F̂t(zt, ut, εt) := (Ft(yt, ut, ξt), µ+ Φξt + εt) and εt viewed as the noise process.

4 Distributionally robust and risk averse stochastic pro-

gramming

One of the basic modeling assumptions, used in the previous section, is that the probability
distribution of the random data is specified exactly and moreover does not depend on our
actions. In real applications the “true” distribution is never known exactly and at best could
be estimated from available data. This motivates to consider a worst distribution approach.
Such min-max approach has a long history, it originated in John von Neumann’s game
theory. In an elegant paper Scarf [32] analyzed the one stage inventory model (called the
Newsvendor problem) when only the mean and variance of the distribution of the demand
are known. In stochastic programming discussion of the worst distribution approach goes
back at least to Žáčková [40]. In the recent literature it is often referred to as distributionally
robust stochastic programming.
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4.1 Static setting

In the static setting distributionally robust stochastic problems can be formulated in the
following minimax form

min
x∈X

sup
Q∈M

EQ[F (x, ω)]. (4.1)

Here X is a nonempty subset of Rn, M is a specified set of probability measures (distri-
butions) on a sample space (Ω,F), and F : X × Ω → R is an objective function. It is
assumed that for every x ∈ X the random variable Fx(ω) = F (x, ω) is F -measurable and
the expectation EQ[Fx(ω)] =

∫
Ω
Fx(ω)dQ(ω), with respect to every Q ∈ M, is well defined

and finite valued. Recently such distributionally robust stochastic programs became a hot
topic of research with various suggestions for the so-called ambiguity set M of distributions
(see, e.g., Wiesemann, Kuhn, and Sim [41] and references therein).

With the set M we can associate the following functional

R(Z) := sup
Q∈M

EQ[Z]. (4.2)

In order for the functional R to be well defined, we need to restrict the set of considered
random variables Z : Ω→ R. We assume that R : Z → R is defined on a linear space Z of
measurable functions (variables) Z : Ω→ R. That is, if values R(Z) and R(Z ′) are defined
for some Z,Z ′ : Ω→ R, then values R(Z + Z ′) and R(αZ) are also defined for any α ∈ R.
We also assume that if Z ∈ Z and a ∈ R, then Z + a ∈ Z. With this notation we can write
problem (4.1) as

min
x∈X
R[Fx]. (4.3)

The functional R has the following properties.

(i) Subadditivity, if Z,Z ′ ∈ Z, then R(Z + Z ′) ≤ R(Z) +R(Z ′).

(ii) Monotonicity, if Z,Z ′ ∈ Z and Z ≥ Z ′, then R(Z) ≥ R(Z ′).

(iii) Translation equivariance, if Z ∈ Z and a ∈ R, then R(Z + a) = R(Z) + a.

(iv) Positive homogeneity, if Z ∈ Z and α ≥ 0, then R(αZ) = αR(Z).

Functionals satisfying the above properties (i)-(iv) were called coherent risk measures in
Artzner et al [1] (for a discussion of coherent risk measures we can refer to Föllmer and
Schied [14] and Shapiro, Dentcheva and Ruszczyński [36]).

It turns out that in a certain sense every coherent risk measure, satisfying conditions (i)-
(iv), has a dual representation of the form (4.2). Suppose for the moment that the sample
space Ω = {ω1, ..., ωm} is finite equipped with sigma algebra of all its subsets. Then every
probability distribution Q on (Ω,F) can be identified with a vector q = (q1, ..., qm) ∈ ∆m,
where

∆m := {q ∈ Rm :
∑m

i=1 qi = 1, q ≥ 0} . (4.4)

Moreover, with every variable Z : Ω → R we can associate vector z = (z1, ..., zm) ∈ Rm

with components zi = Z(ωi), i = 1, ...,m. We can view then a coherent risk measure R as
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functional R : Rm → R. By the classical convex analysis the conditions (i) and (iv) imply
that R is the support function of a set M ⊂ Rm, i.e., R(z) = supq∈M q>z for some set
M ⊂ Rm. Note that the set M is not defined uniquely by the respective functional R, and
the functional R is not changed if M is replaced by the topological closure of its convex hull.
Therefore it is natural to assume that the considered set M is convex and closed. It is possible
to show that condition (ii) implies that every vector q ∈ M has nonnegative components,
and condition (iii) implies that

∑m
i=1 qi = 1, and hence M is a subset of ∆m. That is, in

the finite dimensional setting there is a one-to-one correspondence between coherent risk
measures and functionals of the form

R(Z) = sup
q∈M

m∑
i=1

qiZ(ωi), M ⊂ ∆m. (4.5)

In infinite dimensional settings the situation is more delicate. In order to derive a duality
relation between coherent risk measures, satisfying conditions (i)-(iv), and functionals of the
form (4.2) one needs to define a proper space Z of allowable variables Z : Ω→ R and a dual
space Z∗ equipped with a scalar product 〈ζ, Z〉 for any Z ∈ Z and ζ ∈ Z∗. One possible
approach is the following. Suppose that there is a reference probability measure P defined
on the sample space (Ω,F) and consider the corresponding probability space (Ω,F , P ). Let
Z be the space of variables Z having finite p-th order moments, p ∈ [1,∞), i.e., measurable
Z : Ω → R belongs to Z if EP [|Z|p] is finite. This space is denoted Z = Lp(Ω,F , P ). The
dual of the space Lp(Ω,F , P ) is the space Z∗ = Lq(Ω,F , P ), where q ∈ (1,∞] is such that
1/p+ 1/q = 1, with the scalar product 〈ζ, Z〉 :=

∫
Ω
ζ(ω)Z(ω)dP (ω). In particular for p = 1

the dual of space L1(Ω,F , P ) is the space L∞(Ω,F , P ) of essentially bounded variables.
In this construction the set M consists of probability measures absolutely continuous with
respect to the reference measure P , i.e., each Q ∈ M has density ζ = dQ/dP ∈ Z∗. And
indeed it is possible to show that if R : Lp(Ω,F , P ) → R is a (real valued) coherent risk
measure satisfying the conditions (i)-(iv), then it has the dual representation

R(Z) = sup
ζ∈A

∫
Ω

ζ(ω)Z(ω)dP (ω), Z ∈ Lp(Ω,F , P ), (4.6)

with A ⊂ Z∗ being a set of density functions, i.e., every ζ ∈ A is nonnegative valued and∫
Ω
ζ(ω)dP (ω) = 1 (cf., Ruszczyński and Shapiro [31]). In that setting the probabilistic

statement is made with respect to the reference probability measure P . In particular by
writing Z ≥ Z ′ for some Z,Z ′ ∈ Z we mean that this inequality holds almost surely (a.s),
i.e., Z(ω) ≥ Z ′(ω) for all ω in the set Ω except on a subset of Ω of P -measure zero.

By the above discussion the distributionally robust and risk averse approaches (4.1)
and (4.3) to stochastic optimization can be viewed as dual to each other. However, the
difference is how the set M of probability distributions and the risk measure R are defined
in the respective settings. In the risk averse setting it is assumed existence of a reference
probability measure P . It is natural then to consider law invariant risk functionals when
R(Z) depends only on the distribution of Z. That is, the functional R is law invariant
if R(Z) = R(Z ′) whenever Z,Z ′ ∈ Z are distributionally equivalent with respect to P ,
i.e., P (Z ≤ z) = P (Z ′ ≤ z) for all z ∈ R. Law invariance necessarily implies that every
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measure Q ∈ M in the dual representation (4.2) is absolutely continuous with respect to
the reference measure P . Indeed, it follows that if A ∈ F is such that P (A) = 0, then the
indicator function 1A is distributionally equivalent to the identically zero variable, and hence
R(1A) = R(0) = 0. This implies that EQ[1A] = 0 for every Q ∈M. Since EQ[1A] = Q(A),
we obtain that if P (A) = 0, then Q(A) = 0, and hence Q is absolutely continuous with
respect to P .

There are basically two popular ways how the set M of probability distributions is defined.
In one approach a reference probability distribution P is specified and M is defined as a set
of probability measures in some sense close to P . A very general way of doing this is the
following. Let H be a nonempty set of measurable functions h : Ω → R. For a probability
measure Q on (Ω,F) consider

d(Q,P ) := sup
h∈H

∣∣∣∣∫
Ω

h(ω)dQ(ω)−
∫

Ω

h(ω)dP (ω)

∣∣∣∣ . (4.7)

Formula (4.7) defines a semi-distance between probability measures Q and P . This could be
semi-distance since it could happen that d(Q,P ) = 0 for two different probability measures
Q and P . In order to avoid such cases, and hence to have d(·, ·) as a distance, the set H
should be sufficiently large to separate different probability measures. Define then M as a
set of probability measures Q such that d(Q,P ) ≤ ε for some ε > 0. In this formulation
probability measure Q ∈ M does not need to be absolutely continuous with respect to P ,
in which case the corresponding functional R cannot be considered in the dual form (4.6).
If moreover only absolutely continuous with respect to P probability measures Q ∈ M are
considered, then in a sense this construction allows to generate any set A of density functions
(we refer to Section 3, and specifically to Proposition 3.3, of [34] where such construction is
discussed in detail).

An alternative approach is to define the set M by moment constraints. That is, to
consider probability measures Q on the sample space (Ω,F) such that

∫
Ω
φi(ω)dQ(ω) ≤ bi,

i = 1, ..., `, for some measurable functions φi : Ω → R. For example, it can be assumed
that only say first and second order moments of the considered distributions are known
(estimated). Also qualitative type properties of considered distributions can be added to
the construction of M. In such approach there is no reference probability measure and
it does not make sense to talk about law invariance and dual representations of the form
(4.6). Nevertheless the respective functional R(Z) can be well defined by formula (4.2) and
satisfy the conditions (i)-(iv). There is a delicate technical issue here. In the monotonicity
condition (ii), two variables Z,Z ′ : Ω → R are considered such that Z ≥ Z ′. In the setting
with the reference probability measure P this inequality is understood as holding almost
surely with respect to P . In the setting of moment constraints it is natural to define it as
that Z(ω) ≥ Z ′(ω) for all ω ∈ Ω (see Remark 4.1 below).

4.2 Multistage setting

Consider formulation (3.1) of multistage stochastic programming, referred to as risk neutral
formulation. It is tempting, similar to (4.1), to specify a family M of probability distributions
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of the data process (ξ1, ..., ξT ), and to define the following distributionally robust analogue
of (3.1)

min
π∈Π

sup
Q∈M

EQ
[∑T

t=1 ct(xt, ξt)
]

(4.8)

with the optimization performed over a set Π of policies satisfying the feasibility constraints.
However, formulation (4.8) does not explicitly specify dynamics of the considered problem
in a sense which we elaborate below.

By interchanging the ‘min’ and ‘max’ operators in (4.8) we can consider problem

max
Q∈M

inf
π∈Π

EQ
[∑T

t=1 ct(xt, ξt)
]
. (4.9)

Optimal value of problem (4.9) is always less than or equal to the optimal value of problem
(4.8). Assuming that the cost functions ct(·, ξt) of problem (4.8) are convex, e.g. linear, we
have that the above minimax problem is convex-concave, and hence under mild regularity
conditions optimal values of problems (4.8) and (4.9) are equal to each other. In particular,
if the number of possible realizations of the data process is finite, then the set M can be
identified with a (closed convex) subset of ∆m of the appropriate dimension m, and the
equality of the optimal values follows provided the optimal value of (4.8) is finite (this is
since the set ∆m is bounded and hence M is a compact subset of Rm).

Suppose further that problem (4.9) has an optimal solution Q̄. Then problem (4.8) (as
well as problem (4.9)) is equivalent to the risk neutral multistage problem

min
π∈Π

EQ̄
[∑T

t=1 ct(xt, ξt)
]
. (4.10)

In turn problem (4.10) can be represented in the nested form

min
A1x1=b1
x1∈X1

c1(x1) + EQ̄|ξ1
[

min
B2x1+A2x2=b2

x2∈X2

c2(x2, ξ2) + · · ·

+EQ̄|ξ[T−1]

[
min

BTxT−1+ATxT=bT
xT∈XT

cT (xT , ξT )
]]
,

(4.11)

and the corresponding dynamic programming equations can be written, with respect to
the probability distribution Q̄ of (ξ1, ..., ξT ). Of course, in order to identify the ‘worst’
probability distribution Q̄ one would need to solve problem (4.9) which could be even more
difficult then solving the original problem. Note also that this distribution Q̄ does not depend
on realizations of the data process, and as a consequence is not adjusted to the dynamics of
the problem. This motivates to consider the following approach.

For a policy π = (x1, ..., xT (ξ[T ])) consider the respective cost Zπ :=
∑T

t=1 ct(xt, ξt) with
xt = xt(ξ[t]). For Q ∈M we can write

EQ[Zπ] = EQ
[
EQ|ξ[1]

[
· · ·EQ|ξ[T−1]

[Zπ]
]]
. (4.12)

It follows that

sup
Q∈M

EQ[Zπ] ≤ sup
Q∈M

EQ
[

sup
Q∈M

EQ|ξ[1]
[
· · · sup

Q∈M
EQ|ξ[T−1]

[Zπ]
]]
. (4.13)
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Reason for possibly strict inequality in (4.13) is that the maxima, with respect to Q ∈ M,
on the right hand side of (4.13) can depend on realization of the data process (cf., [33]).
The right hand side of (4.13) leads to the following nested formulation of the distributionally
robust problem

min
A1x1=b1
x1∈X1

c1(x1) + sup
Q∈M

EQ|ξ1
[

min
B2x1+A2x2=b2

x2∈X2

c2(x2, ξ2) + · · ·

+ sup
Q∈M

EQ|ξ[T−1]

[
min

BTxT−1+ATxT=bT
xT∈XT

cT (xT , ξT )
]]
.

(4.14)

Note again that the inequality in (4.13) can be strict and problem (4.14) is not equivalent
to problem (4.8).

Remark 4.1 There are delicate technical issues involved in the above distributionally robust
formulations. In the risk neutral formulation (3.1) the feasibility constraints should be
satisfied almost surely (with probability one) with respect to the considered probability
distribution of the data process. That is, we can disregard sets of scenarios having measure
zero. In case every distribution Q ∈M is absolutely continuous with respect to a specified
reference distribution, the almost sure feasibility with respect to the reference distribution
automatically implies the respective almost sure feasibility property for every Q ∈M. When
there is no reference distribution, as for example in the setting of moment constraints, it could
be required that the feasibility constraints should hold almost surely with respect to every
Q ∈M.

As another issue, when the set M is uncountable the ‘ sup’ in (4.13) - (4.14) should be
replaced by the conditional essential supremum. For a mathematically rigorous introduction
of the essential supremum we refer to Karatzas and Shreve [17, Appendix A].

One can start with the nested formulation (4.14) for some specified family M of proba-

bility distributions. It is possible to show then that there exists a family M̂ of probability
distributions of (ξ1, ..., ξT ), generally different from M, such that problem (4.14) can be

formulated in the form (4.8) with M replaced by M̂ (cf., [33]). For the nested formulation
(4.14) it is possible to write dynamic programming equations with the respective cost-to-
go (value) functions Vt(xt−1, ξ[t]) given by the optimal value of the problem (compare with
(3.10)–(3.11))

min
xt∈Xt

ct(xt, ξt) + sup
Q∈M

EQ|ξ[t]=ξ[t] [Vt+1(xt, ξ[t+1])]

s.t. Btxt−1 + Atxt = bt,
(4.15)

at stages t = T, T − 1, ..., 2, and VT+1(·, ·) omitted. At the first stage the following problem
is supposed to be solved

min
x1∈X1

c1(x1) + sup
Q∈M

EQ[V2(x1, ξ2)]

s.t. A1x1 = b1.
(4.16)

In fact it suffices to consider the maximum (supremum) in (4.15) with respect to marginal
distributions of ξ[t+1] of the probability distributions of the set M, and similarly in (4.16).

16



In particular suppose that the family M is of the form

M := {Q = Q1 × · · · ×QT : Qt ∈Mt, t = 1, ..., T} , (4.17)

where Mt is a family of (marginal) distributions of ξt, t = 1, ..., T (recall that ξ1 is deter-
ministic, therefore M1 is the singleton consisting of measure δξ1 of mass one at the point
ξ1). That is, each Q ∈ M is the direct product of the respective marginal distributions of
random vectors ξt. One can view this as a distributionally robust analogue of the stagewise
independence assumption, often it is referred to as the rectangularity condition. In such
rectangular case the dynamic programming equations are simplified, with each cost-to-go
function Vt(xt−1, ξt) depending on ξt, rather than the whole history ξ[t], and is given by the
optimal value of the problem

min
xt∈Xt

ct(xt, ξt) + sup
Qt+1∈Mt+1

EQt+1 [Vt+1(xt, ξt+1)]

s.t. Btxt−1 + Atxt = bt.
(4.18)

This is analogous to the rectangular robust MDPs considered by Iyengar [16] and Nilim and
El Ghaoui [25] (see also the recent tutorial by Mannor and Xu [23] and references therein).
Yet even when the set M, in the nested formulation (4.14) is of the rectangular form (4.17),

the corresponding set M̂ of formulation (4.8) generally is different from M and can be quite
complicated (we can refer to [33] for a further discussion of this topic).

As it was already pointed out, the maximization with respect to Q ∈ M on the right
hand side of (4.13) depends on realization of the data process. It is possible to write the
nested formulation in a minimax form by considering the involved probability distributions
as functions of the data process. That is, assuming that on the right hand side of (4.12), at
every stage t, the probability measure Q is a function of ξ[t−1] and maximizing over Q ∈M
results in the nested expression given in the right hand side of (4.13). For example, suppose
that the number of scenarios is finite and hence the data process can be represented by
the corresponding (finite) scenarios tree. A node of that tree at stage t represents history
ξ[t] of the data process. The corresponding distribution in the nested formulation can be
considered as a function of node ξ[t−1] at stage t− 1 (cf., [36, Remark 43, page 356]).

5 Time consistency

Discussion of time consistency goes back at least to Koopmans [20] (see Bielecki, Cialenco
and Piterat [9] for a recent survey and references therein). Consider a multistage stochastic
programming problem of the risk neutral form (3.1). As it was pointed out before, optimiza-
tion in (3.1) is performed over feasible policies. A policy is a sequence of decisions which, at
every time period (stage) t = 1, ..., T , depend on a realization ξ1, ..., ξT , of the data process,
up to time t (this is the so-called nonaticipativity property). Such policies are implementable
since at every time period the decision is made based on a historical data available to the de-
cision maker and does not depend on future values of the data process which are unknown at
the time of the decision. By solving problem (3.1) we are supposedly find an implementable
policy (decision rule) which is optimal in the sense of producing the minimal expected value
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of the total cost
∑T

t=1 ct(xt, ξt). This optimality is related to the total cost and is decided
before observing any realization of the data process. Suppose now that we are at a period
(stage) t ≥ 2 and already observed a realization of the data process up to that time. An
implementable policy still gives a rule for making decisions in the following stages depending
on future realizations of the data process.

However, optimality of the designed policy was decided from the beginning by solving
problem (3.1). So a natural question is whether the designed policy is still optimal at every
stage t = 2, ..., T of the decision process conditional on an observed realization of the data
process up to time t. In order to answer this question we need to give a precise definition of
optimality at every stage t = 2, ..., T , given (conditional on) a realization of the data process
up to the considered time period. In the risk neutral case this comes naturally by using
the conditional expectations and hence writing (3.1) in the form (3.7), and consequently
formulating it in the nested form (3.8). In that sense every optimal solution of (3.1) is
time consistent in the sense that it is still optimal at every stage of the decision process
with respect to the conditional expectation criterion. The respective dynamic programming
equations (3.10)–(3.11) provide necessary and sufficient conditions for these optimal policies.

The situation is more involved in the distributionally robust and risk averse formulations
of stochastic programs. That is, consider the following multistage problem

min
π∈Π
R
[∑T

t=1 ct(xt, ξt)
]
, (5.1)

where Π is the set of policies satisfying the corresponding feasibility constraints and R is a
chosen risk functional.

• We assume that the functional R : Z → R is monotone, i.e., if Z,Z ′ ∈ Z and Z ≥ Z ′,
then R(Z) ≥ R(Z ′).

Naturally such monotonicity is a minimal requirement which a reasonable risk functional
should satisfy. In particular if R(Z) := supQ∈M EQ[Z], then (5.1) becomes the distribution-
ally robust problem (4.8) and this functional satisfies the monotonicity condition.

5.1 Interchangeability principle and dynamic equations

Derivation of the dynamic programming equations is based on the following interchangeabil-
ity principle (for the expectation operator this is discussed in Rockafellar and Wets [30, Chap-
ter 14(F)], and for general risk functionals in [35]). Consider a function f : X×Ω→ R∪{+∞}
and F (ω) := infx∈X f(x, ω). Suppose that this random variable F belongs to the considered
(specified) space Z (in particular this implies that F : Ω → R is finite valued), and hence
value

R(F ) = R
[

infx∈X f(x, ω)
]

(5.2)

is well defined.
We address now the question whether the functional R and the ‘inf’ operator in (5.2)

can be interchanged. Let X be a set of mappings χ : Ω → X such that fχ ∈ Z, where
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fχ(·) := f(χ(·), ·). We have that fχ ≥ F for every χ ∈ X, and hence by monotonicity of R
it follows that

inf
χ∈X
R(fχ) ≥ R(F ). (5.3)

Suppose for the moment that for every ω ∈ Ω the minimum of f(x, ω) over x ∈ X is
attained at some point χ̄(ω) ∈ X , i.e., F (·) = f(χ̄(·), ·). Since F ∈ Z it follows that
χ̄(·) ∈ X. Consequently

R(F ) = R(fχ̄) ≥ inf
χ∈X
R(fχ). (5.4)

It follows from (5.3) and (5.4) that

R
[

infx∈X f(x, ω)
]

= infχ∈XR
(
f(χ(ω), ω)

)
. (5.5)

It also follows that:

if χ̄(·) ∈ arg min
x∈X

f(x, ·), then χ̄ ∈ arg min
χ∈X
R(fχ). (5.6)

In the above derivation of the interchangeability formula (5.5) we used the following assump-
tions: (i) the functional R is monotone, (ii) the min-function F (·) belongs to the considered
space Z of allowable functions, and (iii) the minimum minx∈X f(x, ω) is attained for all
ω ∈ Ω. The assumption of monotonicity is basic for derivation of the interchangeability
formula. The assumption (ii) requires, in particular, verification that the min-function F (ω)
is measurable. The last assumption of existence of minimizers is not essential; the proof can
be pushed through by considering ε-optimal solutions.

Consider the converse of implication (5.6), which is directly related to the issue of time
consistency,

if χ̄ ∈ arg min
χ∈X
R(fχ), then χ̄(·) ∈ arg min

x∈X
f(x, ·). (5.7)

This implication holds if the monotonicity assumption is strengthened to the following con-
dition of strict monotonicity. A monotone functional R : Z → R is said to be strictly
monotone if the following implication holds

Z,Z ′ ∈ Z, Z ≥ Z ′ and Z 6= Z ′, implies that R(Z) > R(Z ′)

(note that Z ≥ Z ′ and Z 6= Z ′ means that Z ≥ Z ′ a.s. and Z is strictly greater than Z ′

with positive probability). The expectation operator R := E is strictly monotone. On the
other hand the Average Value-at-Risk functional R := AV@Rα is not strictly monotone for
α ∈ (0, 1). The AV@Rα can be defined as (cf., Föllmer and Schied [14], Rockafellar and
Uryasev [29])

AV@Rα(Z) := inf
t∈R

{
t+ α−1EP [Z − t]+

}
, (5.8)

with Z := L1(Ω,F , P ). In the dual form, it has representation (4.6) with

A =
{
ζ : 0 ≤ ζ ≤ 1/α,

∫
Ω
ζdP = 1

}
.

Without strict monotonicity the implication (5.7) may not hold. In order to see this
suppose that there exists a minimizer x̄(ω) of f(x, ω) over x ∈ X for every ω ∈ Ω, i.e.,
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x̄(·) ∈ arg minx∈X f(x, ·). Consider a mapping x̂ : Ω → X and let Z̄(·) := f(x̄(·), ·) and
Ẑ(·) := f(x̂(·), ·). We have that Z̄ ≤ Ẑ and hence R(Z̄) ≤ R(Ẑ). That is, monotonicity
of R ensures the implication (5.6). On the other hand, without the strict monotonicity it
could happen that R(Z̄) = R(Ẑ) although Z̄ 6= Ẑ. It is possible to give various examples of
that type where the implication (5.7) does not hold (cf., [35]).

This can be applied already to a two stage setting. That is, consider the following problem

min
x∈X
R(Fx), (5.9)

where Fx(ω) is the optimal value of the second stage problem

min
y
g(x, y, ω) s.t. (x, y) ∈ Y , (5.10)

with Y ⊂ Rn × Rk and g : Rn × Rk × Ω → R. It is possible to absorb the feasibility
constraints (x, y) ∈ Y in problem (5.10) into the objective function by giving the infinite,
+∞, penalty for violating these constraints. Then in (5.11) we should define R(Z) for
variables Z(ω) which could take the +∞ value. This can be done by defining EQ[Z] = +∞
when Q-probability of Z = +∞ is positive.

Assuming that the functional R is monotone, the interchangeability principle ensures
that the optimal value of problem (5.9) is equal to the optimal value of the problem

min
x,y(·)
R
(
g(x,y(·), ·)

)
s.t. x ∈ X , (x,y(·)) ∈ Y , (5.11)

where the notation y(·) emphasizes that the minimization in (5.11) is performed over map-
pings y : Ω→ Rk. Also if x̄ is an optimal solution of the first stage problem (5.9) and

ȳ(ω) ∈ arg min
y
{g(x̄, y, ω) : (x̄, y) ∈ Y}, ω ∈ Ω, (5.12)

then (x̄, ȳ(·)) is an optimal solution of problem (5.11). However, unless R is strictly mono-
tone, it could happen that the converse implication does not hold. That is, we have the
following.

• If the functional R is not strictly monotone, then it could happen that the first stage
problem (5.11) possesses optimal solutions which do not satisfy the second stage opti-
mality condition (5.12), and in that sense are not time consistent.

If R(Z) := supQ∈M EQ(Z) for some set M of probability measures, then problem (5.11)
can be written as

min
x,y(·)

sup
Q∈M

EQ[g(x,y(·), ·)] s.t. x ∈ X , (x,y(·)) ∈ Y . (5.13)

It turns out that if the set M is defined by a finite number ` of moment constraints and
cardinality of the set Ω is greater than ` (in particular if the set Ω is infinite), then the
respective functional R cannot be strictly monotone (cf., [35]).
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5.1.1 Finite sample space

Suppose that the set Ω is finite, Ω = {ω1, ..., ωm}, and let M be a nonempty closed convex
subset of ∆m. As it was pointed above before here every variable Z : Ω → R can be
identified with vector z = (z1, ..., zm) in Rm by setting zi := Z(ωi), i = 1, ...,m. Consider
the corresponding functional R(Z) defined in (4.2). That is (compare with equation (4.5))

R(Z) = supq∈M
∑m

i=1 qizi.

This functional is strictly monotone if and only if M ⊂ Rm
++, i.e., all components of every

vector q ∈M are strictly positive (e.g., [35, Proposition 2.4]).
In order to see what happens when R is not strictly monotone, suppose that the set M

has vectors with some components equal zero. Consider a point z̃ ∈ Rm and let q̃ ∈ M be
such that R(z̃) = q̃>z̃. Note that such maximizer

q̃ ∈ arg maxq∈M q>z̃

always exists, although may be not unique, since the set M is closed and bounded. Suppose
further that q̃i = 0 for all i ∈ I, where I ⊂ {1, ...,m} is a nonempty index set. Now let
z̄ ∈ Rm be such that z̄i = z̃i for i ∈ {1, ...,m} \ I, and z̄i ≤ z̃i for i ∈ I. Since z̄ ≤ z̃ we have
that R(Z̄) ≤ R(Z̃). On the other hand

R(Z̄) = sup
q∈M

m∑
i=1

qiz̄i ≥
m∑
i=1

q̃iz̄i =
m∑
i 6∈I

q̃iz̄i =
m∑
i 6∈I

q̃iz̃i = R(Z̃).

Hence for any such z̄ we have that R(Z̃) = R(Z̄). Of course if z̄i is strictly less than z̃i
for some i ∈ I, then Z̃ 6= Z̄. Note that such vector z̃ always exists here; for example for
z̃ = 0 the set of the corresponding maximizers coincides with the set M and hence there is
a corresponding maximizer q̃ ∈ M having a zero component by the assumption. That is,
R(Z̃) = R(Z̄) when there are scenarios having probability zero in the optimal measure Q̃.
This corresponds to existence of the so called ineffective scenarios in the sense of Rahimian,
Bayraksan and Homem de Mello [28].

Now problem (5.13) can be written as

min
x,y1,...,ym

sup
q∈M

m∑
i=1

qi g(x, yi, ωi) s.t. x ∈ X , (x, yi) ∈ Y , i = 1, ....,m. (5.14)

Let x̄ be an optimal solution of the first stage problem and

ȳi ∈ arg min
y
{g(x̄, y, ωi) : (x̄, y) ∈ Y} , i = 1, ...,m, (5.15)

be solutions of the second stage problem. Then (x̄, ȳ1, ..., ȳm) is an optimal solution of
problem (5.14). Moreover, if M ⊂ Rm

++, i.e., the functional R is strictly monotone, then all
optimal solutions of problem (5.14) are of that form.

On the other hand suppose that R is not strictly monotone. Denote z̄i := g(x̄, ȳi, ωi),
where x̄ and ȳi, i = 1, ....,m, are optimal solutions of the first and second stage problems,
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respectively. Consider some feasible points ỹi, i.e. (x̄, ỹi) ∈ Y , i = 1, ....,m, and denote
z̃i := g(x̄, ỹi, ωi). Suppose that for some q̃ ∈ arg maxq∈M q>z̃ and a nonempty index set I, it
follows that q̃i = 0 for all i ∈ I. Suppose further that z̄i = z̃i for i ∈ {1, ...,m}\I, and z̄i ≤ z̃i
for i ∈ I. Then by the above discussion we have that R(Z̄) = R(Z̃), and hence (x̄, ỹ1, ..., ỹm)
is also an optimal solution of problem (5.14). That is, if it will be possible to find such ỹi,
not all of them being minimizers of g(x̄, ·, ωi), then we will have a time inconsistent optimal
solution. For example if the set M is defined by ` moment constraints, then for any z ∈ Rm

there exists a corresponding maximizer q̃ ∈ M with at most ` + 1 nonzero components.
Hence when m is larger than `+ 1, we have that there always exists maximizer q̃ ∈M with
zero components. In such cases quite often there exist optimal solutions of problem (5.14)
which are not time consistent.

5.2 Time consistency of risk averse multistage problems

As it was discussed in the previous section in the risk averse setting (5.1) time inconsistency
can happen already for two stage problems, and finite set Ω, if the risk functional R is
not strictly monotone. Policy (x̄, ȳ(·)), with x̄ being an optimal solution of the first stage
problem (5.9) and ȳ(·) satisfying (5.12), is time consistent in the sense that ȳ(·) is an optimal
solution of the second stage problem. However, if R is not strictly monotone, then there may
exist a mapping ỹ(·), satisfying the feasibility constraint (x̄, ỹ(·)) ∈ Y , such that for random
variables Z̄(·) := g(x̄, ȳ(·), ·) and Z̃(·) := g(x̄, ỹ(·), ·) we will have that R(Z̄) = R(Z̃) while
Z̃(ω) is strictly bigger than Z̄(ω) for some set of ω ∈ Ω. Although such policy (x̄, ỹ(·)) solves
the optimization problem (5.11), this inconsistent policy is inferior to the policy (x̄, ȳ(·)) in
the sense that for some realizations of ω ∈ Ω the corresponding value g(x̄, ỹ(ω), ω) of the
second stage problem is strictly bigger than g(x̄, ȳ(ω), ω). Of course if problem (5.11) has
a unique optimal solution (x̄, ȳ(·)), then (5.12) should hold and hence this policy is time
consistent. That is, inconsistent optimal solutions do not happen when problem (5.11) has
unique optimal solution.

In multistage cases, when T ≥ 3, there are additional issues which we are going to discuss
now. The equivalence between problem (3.1), its nested formulation (3.8) and the respec-
tive dynamic equations is based on the interchageability principle and the decomposability
property of the expectation operator. As it was already mentioned, in order to give a precise
meaning to time consistency of a considered policy one has to specify an appropriate con-
ditional optimality criterion at every stage of the decision process. In the risk neutral case
such optimality criterion is formulated in a natural way as the corresponding conditional
expectation. In the risk averse and distributionally robust settings the situation is consid-
erably more delicate. Consider the distributionally robust problem (4.8). It can be written
as risk neutral problem (4.10), provided that the corresponding worst case distribution Q̄
does exist. Then the required conditional criteria can be thought of as the corresponding
conditional expectations with respect to the distribution Q̄. However, Q̄ is not known and
may not exist. Moreover, even if such worst case distribution does exist, it is adjusted to a
particular choice of the considered optimization problem and in a sense to its optimal solu-
tion. In other words the conditional optimality is adjusted to considered optimal solutions
of problem (4.8). In that way any policy could be viewed as time consistent. This does not
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make much sense.
For the nested formulation it is natural to use the respective nested conditional expecta-

tion criterion
sup
Q∈M

EQ|ξ[t]
[

sup
Q∈M

EQ|ξ[t+1]

[
· · · sup

Q∈M
EQ|ξ[T−1]

[ · ]
]]
. (5.16)

Note that criterion (5.16) is not the same as taking the supQ∈M EQ|ξ[t] [ · ]. The reason is
the same as the one discussed in Section 4.2 for showing that formulations (4.8) and (4.14)
are not equivalent. For the nested formulation it is possible to write dynamic programming
equations.

• It is said that a policy π̄ =
(
x̄1, x̄2(ξ[2]), ..., x̄T (ξ[T ])

)
satisfies the dynamic programming

equations if for every time period t, vector x̄t = x̄t(ξ[t]) is an optimal solution of
the corresponding optimization problem (4.15) for almost every realization ξ[t] of the
random vector ξ[t]. (By “almost every” we mean that this holds with respect to every
Q ∈M (see Remark 4.1).)

Any policy satisfying the dynamic programming equations is time consistent in the sense
of the (nested) conditional criterion (5.16). And conversely any time consistent policy, in
the sense of the (nested) conditional criterion, satisfies the dynamic programming equations.
However, without strict monotonicity it could happen that there exist optimal policies which
do not satisfy the dynamic programming equations and are not time consistent in the above
sense (as it was already discussed, this could happen even for two stage problems and finite
Ω). In the robust setting the corresponding risk functional is of max-type form which is
not strictly monotone. It was shown in Bertsimas, Iancu and Parrilo [8] that in the robust
setting, in certain cases, affine policies (decision rules) are optimal, but do not satisfy the
dynamic programming equations and are not time consistent. For the robust inventory
problem time inconsistent optimal policies were explicitly constructed in Delage and Iancu
[13]. It is shown in [39] that in the distributionally robust with moment constraints inventory
problems, typically there exist an infinite number of time inconsistent optimal policies.

Now consider problem (5.1). For the risk functional R we may consider its conditional
analogues similar to the conditional expectations. In general, precise definition of such
conditional risk functionals could be quite technical and is beyond the scope of this paper.
Nevertheless in many interesting cases this has a natural intuitive meaning. As it was
discussed in Section 4.1, risk functionals R(Z) which are functions of the distribution of Z
(with respect to the reference distribution P ), are called law invariant. For example the
Average Value-at-Risk functional is law invariant. For law invariant risk functionals their
conditional analogues are obtained by using the respective conditional distributions. In the
distributionally robust framework, when R(Z) = supQ∈M EQ[Z], the respective conditional
analogue is

R|ξ[t](Z) := sup
Q∈M

EQ|ξ[t] [Z].

It looks natural to use the respective conditional risk functional R|ξ[t] in the conditional
optimization criterion. Similar to the distributionally robust setting this will lead to the
nested formulation (compare with (4.14))
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min
A1x1=b1
x1∈X1

c1(x1) + R|ξ1
[

min
B2x1+A2x2=b2

x2∈X2

c2(x2, ξ2) + · · ·

+R|ξ[T−1]

[
min

BTxT−1+ATxT=bT
xT∈XT

cT (xT , ξT )
]]
.

(5.17)

In order to verify equivalence of the formulations (5.1) and (5.17) we need the decom-
posability property

R(·) = R|ξ1
[
· · ·R|ξ[T−1]

(·)
]
, (5.18)

similar to the expectation operator. Unfortunately for a class of the law invariant coherent
risk measures, such decomposition property holds only for the expectation and max-type
functionals. For example for R := AV@Rα, with α ∈ (0, 1), the decomposability property
(5.18) does not hold and formulations (5.1) and (5.17) are not equivalent.

As it was already mentioned, in the distributionally robust setting the respective problem
(4.9) and its nested analogue (4.14) are not equivalent except in some rather special cases.
This motivates to define the functional in the nested form

R(·) := R|ξ1
[
· · ·R|ξ[T−1]

(·)
]
. (5.19)

By replacing functional R in (5.1) with the nested functional R we obtain optimization
problem for which we can write the dynamic programming equations (compare with (3.10)
and (4.15)) with value function Vt(xt−1, ξ[t]) given by the optimal value of the following
problem

min
xt∈Xt

ct(xt, ξt) +R|ξ[t] [Vt+1(xt, ξ[t+1])]

s.t. Btxt−1 + Atxt = bt.
(5.20)

Policy which is given by a solution of these dynamic programming equations is time
consistent in the sense of the conditional criteria given by the respective nested functionals

R|ξ[t](·) := R|ξ[t]
[
· · ·R|ξ[T−1]

(·)
]
. (5.21)

It could be emphasized again that, unless R is the expectation or max-type functional,
the nested functional R|ξ[t] is not the same as the conditional functional R|ξ[t] , and unless
R is strictly monotone, problem (5.1) with R replaced by R could have optimal solution
policies which do not satisfy the respective dynamic programming equations and are not
time consistent in the sense of the conditional criterion given by the nested functional (5.21).

6 Policy constructions

In this section we discuss various ways of how implementable policies could be constructed.
Let us consider the inventory model example, discussed in Section 2, with the corresponding
(risk neutral) optimization problem (2.2). It is well known that if the data process Dt is
stagewise independent, then a basestock policy is optimal (e.g., Zipkin [43]). That is, there
exist x∗t ∈ R, t = 1, ..., T , such that an optimal solution (optimal policy) of problem (2.2)
has the following form

x̄t = max{yt, x∗t}, t = 1, ..., T. (6.1)
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Let us make the following observations. Here the optimal policy is given in terms of the
control variables xt and is a function of the state variables yt only. That is, all relevant
information for making decision at time t is summarised in the state variable yt and we do
not need to remember the whole history D[t] of the demand process. This is the general
situation with the optimal control problem (3.13), provided the respective noise process
is stagewise independent, an optimal policy is of the form ut = πt(yt) (this was already
mentioned in Section 3.1).

In order to find the critical values x∗t one still needs to solve the corresponding dynamic
programming equations. The crucial assumption here is that the demand process is stagewise
independent. In that case each value function Vt(yt) of the dynamic programming equations
is a function of one variable (state variable yt). However, this assumption of stagewise
independence could be unrealistic in many applications. Often it makes sense to assume that
the demand process has a Markovian structure and can be modeled as, say, an autoregressive
time series of order p ≥ 1. Then the situation changes dramatically. In that case the value
function Vt(yt, dt−1, ..., dt−p) is also a function of last p values of the demand process, i.e.,
it becomes a function of p + 1 variables. Then the corresponding optimal policies are not
of the simple basestock form (6.1) and could be difficult to compute. This shows that even
a relatively simple inventory model could lead to an optimization problem which would be
very difficult to solve.

A popular approach in the stochastic programming literature is to approximate the un-
derlying data process by scenario trees. Limitations of this approach were already discussed
in Section 2. An argument in favor of the scenario tree approach is that typically only the
first stage solution, which is deterministic, is used. Therefore at each time period the prob-
lem is recalculated after observing last available realization of the data process. Hence at
every time period the decision is conditional on an observed realization and in that way an
implementable policy is generated. This is the approach of rolling horizon. As it was already
pointed, because of the exponential growth of the number of scenarios, one cannot branch
the employed scenario tree for more than a few time periods. In some problems the optimal
policies are myopic (a policy is said to be myopic if at every time period it suffices to solve
the problem looking just one stage ahead). In such cases indeed the rolling horizon approach
makes sense, since it suffices to look at just one stage ahead and hence to branch the scenario
tree at the first stage only. This raises the question of a value of multistage formulation of
stochastic programming problems. This question, of course, is problem dependent.

The above discussion illuminates limitations of the scenario trees approach. The alter-
native approach of dynamic programming was discussed in Section 3. However, there are
several problems with the dynamic programming approach as well. While going backwards in
time, the value (cost-to-go) functions Vt+1(xt, ξ[t+1]) should be kept in the computer memory
in a computationally feasible way. When dimension of (xt, ξ[t+1]) is large this becomes prac-
tically impossible. The situation is simplified dramatically if the data process is stagewise
independent. Then the expected value (cost-to-go ) functions Vt+1(xt) = E[Vt+1(xt, ξt+1)] do
not depend on realizations of the data process. For the optimal control model (3.13) and
stagewise independent noise, the respective (expected value) cost-to-go functions Vt(yt) are
functions of the state variables only. A way of representing the cost-to-go functions is by
using discretization of state variables. However, the number of discretization points needed
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for an accurate representation of the cost-to-go functions grows exponentially with increase
of the dimension of state variables and this approach becomes impractical for the respective
dimensions say greater than 3. This is the so-called “curse of dimensionality”, which was
recognized from the beginning of the dynamic programming approach (cf., Bellman [3]). Al-
though this is not a rigorous mathematical theorem, there are compelling reasons indicating
that generically, even linear, multistage stochastic problems are computationally intractable
(cf., [37]). Yet the class of multistage problems is too important to be dismissed that easily.
So it makes sense to talk about approximate solutions.

To some extend this can be dealt with by using approximations of the cost-to-go functions.
There is a large literature on approximate dynamic programming (e.g., Bertsekas [6] and
references therein). When the cost-to-go functions are convex, it could be natural to use their
approximations by piecewise linear functions given by maximum of a set of cutting planes.
This is an idea of the Stochastic Dual Dynamic Programming (SDDP) method, introduced
in Pereira and Pinto [26]. Its origins can be traced to the nested decomposition algorithm of
Birge [10]. Assuming that the data process is stagewise independent, consider the expected
value functions Vt+1(xt). Suppose that we have at hand an approximation V̂t+1(·) of Vt+1(·)
for t = 2, ..., T . Then an implementable policy π̂ = (x̂1, ..., x̂T ) can be computed by going
forward with (since Bt, At, bt are functions of the data process, the solutions x̂t depend on a
considered realization of the data process, this is suppressed in the notation)

x̂t ∈ arg min
xt∈Xt

{
ct(xt, ξt) + V̂t+1(xt) : Btxt−1 + Atxt = bt

}
, (6.2)

t = 1, ..., T . Of course, this requires to solve optimization problems, given by the right
hand side of (6.2), for a considered realization of the data process ξ1, ..., ξT . If the costs
ct(xt, ξt) = c>t xt are linear and the approximate functions V̂t+1(·) are given as maximum
of linear (affine) functions, then such optimization problems can be formulated as linear
programs and this approach becomes computationally feasible. Such policy π̂ satisfies the
feasibility constraints and is implementable. Its quality depends on how well functions
V̂t+1(·) approximate the respective true cost-to-go functions. In some cases this allows to
solve convex multistage stochastic programs, with a moderate number of state variables, to a
reasonable accuracy. The SDDP could be also adapted to deal with risk averse formulations
(cf., [38]).

Another possible approach is to consider a family of policies

xt(ξ[t]) := χt(ξ[t], θ), t = 1, ..., T,

defined by a finite number of parameters. Here χt : Rd2+...+dt × Rm → Rnt are explicitly
defined functions of the data ξ[t] and parameter vector θ lying in a set Θ ⊂ Rm. The
multistage problem (3.1) is then reduced to the problem of finding optimal value of the
parameter vector θ ∈ Θ. That is, problem (3.1) is reduced to the static problem

min
θ∈Θ

E
[∑T

t=1 ct(χt(ξ[t], θ), ξt)
]

s.t. Btχt−1(ξ[t−1], θ) +Atχt(ξ[t], θ) = bt, χt(ξ[t], θ) ∈ Xt, t = 1, ..., T.
(6.3)

The expectation in (6.3) is taken with respect to the probability distribution of (ξ1, ..., ξT ).
Such parametric approach is often used by practitioners since it is much easier to solve the
static problem (6.3) than to solve the corresponding multistage problem.
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Success of the parametric approach depends on an appropriate choice of the parame-
terized family of policies. In the approximate dynamic programming literature this is often
approached by using projected equations which are the basis for the approach, called Galerkin
method in Bertsekas [6]. Note that the constraints in (6.3) should be satisfied for all (almost
all) realizations of the data process ξ1, ..., ξT . This indicates a serious requirement for the
chosen parametric family, since the obtained problem (6.3) could be even infeasible. One
possible approach is to consider policies which are linear (affine) functions of the data pro-
cess. This is the approach of linear decision rules. It was shown in Kuhn, Wiesemann, and
Georghious [21] that for a certain class of linear multistage stochastic programs it is possible
formulate the corresponding reduced problem as a tractable linear or semidefinite program
of moderate size. Recently this was extended to a two-stage linear decision rules setting in
Bodur and Luedtke [11].

The following approach was suggested in Koivu and Pennanen [19]. Suppose that we
have a finite number of implementable policies πi =

(
xi1, x

i
2(ξ[2]), ..., x

i
T (ξ[T ])

)
, i = 1, ...,m,

satisfying the feasibility constraints of the multistage problem (3.1). Consider now policies
given by convex combinations of policies πi. That is

χt(ξ[t], θ) :=
m∑
i=1

θi x
i
t(ξ[t]), t = 1, ..., T, (6.4)

with θ ∈ ∆m. Assuming that the sets Xt are convex, it follows from feasibility of every policy
πi that the convex combination policy is also feasible. Consequently the multistage problem
(3.1) is reduced to the static problem

min
θ∈∆m

E

[
T∑
t=1

ct(χt(ξ[t], θ), ξt)

]
. (6.5)

Note that if the cost functions ct(xt, ξt) = c>t xt are linear, then the objective function in
(6.5) is simply

T∑
t=1

m∑
i=1

θi E
[
c>t x

i
t(ξ[t])

]
=

m∑
i=1

θival(πi),

where val(πi) = E
[∑T

t=1 c
>
t x

i
t(ξ[t])

]
is the value of policy πi. In that case the minimum in

(6.5) is attained at one of the considered policies with the minimal objective value. That is,
in such linear case we do not gain an improvement by considering convex combinations of
the given policies.

7 Future directions, open questions

Although a considerable progress was made in recent years, we still do not have a clear un-
derstanding about computational complexity of multistage stochastic programming. From
the deterministic point of view, already two-stage problems are computationally intractable
- it is shown by Hanasusanto, Kuhn and Wiesemann [15] that even the approximate solution
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of linear two-stage stochastic programs with fixed recourse are #P-hard for a sufficiently
high accuracy when the random problem data is governed by independent uniform distribu-
tions. However, it was demonstrated that randomization algorithms based on Monte Carlo
sampling techniques can solve with a reasonable accuracy a large class of static (two-stage)
stochastic programs. We refer to Nemirovski et al [24] for a discussion and comparison
of such two popular approaches, namely the Sample Average Approximation (SAA) and
Stochastic Approximation (SA) methods.

On the other hand there are compelling reasons to think that generically even linear mul-
tistage stochastic programming problems are computationally intractable even if a moderate
accuracy is sought (cf., Shapiro and Nemirovski [37]). This of course does not mean that
certain classes of multistage programs cannot be solved with a reasonable accuracy which
could be sufficient for applications. This raises the question of what really is a value of trying
to solve multistage formulation of a considered problem. Clearly this question is problem
dependent. There is a need for a library of realistic examples of multistage programs which
can be used for testing various approaches in numerical experiments.

The SDDP method became popular for solving linear stochastic multistage programs. In
the two stage setting this is the primitive cutting plane algorithm going back to Kelley [18].
In the static (deterministic) setting bundle type cutting plane algorithms are considerably
more efficient. Currently the best cutting plane algorithm is the level set bundle method of
Lemaréchal, Nemirovskii and Nesterov [22]. It is not clear how more efficient bundle type
algorithms could be applied to the multistage setting. The reason is that in the multistage
setting the solution is in itself is random and it is not obvious where the regularization should
be applied at every stage of the problem. Another question is how to deal with integer
variables, this introduces another level of difficulty for solving multistage stochastic integer
programs. A step in that direction was made in Zou, Ahmed and Sun [44] by introducing
an extension of the SDDP, called Stochastic Dual Dynamic integer Programming (SDDiP),
for solving multistage linear stochastic integer programs with binary state variables.
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[14] H. Föllmer and A. Schied. Stochastic Finance: An Introduction in Discrete Time.
Walter de Gruyter, Berlin, 2nd edition, 2004.

[15] G.A. Hanasusanto, D. Kuhn, and W. Wiesemann. A comment on computational com-
plexity of stochastic programming problems. Mathematical Programming, 159:557–569,
2015.

[16] G.N. Iyengar. Robust Dynamic Programming. Mathematics of Operations Research,
30:257–280, 2005.

[17] I. Karatzas and S.E. Shreve. Methods of Mathematical Finance. Stochastic Modelling
and Applied Probability. Springer, 1998.

[18] J.E. Kelley. The cutting-plane method for solving convex programs. Journal of the
Society for Industrial and Applied Mathematics, 8:703–712, 1960.

[19] M. Koivu and T. Pennanen. Galerkin methods in dynamic stochastic programming.
Optimization, 59:339–354, 2010.

[20] T.C. Koopmans. Stationary ordinal utility and impatience. Econometrica, 28:287–309,
1960.

[21] D. Kuhn, W. Wiesemann, and A. Georghious. Primal and dual linear decision rules in
stochastic and robust optimization. Mathematical Programming, 130:177–209, 2011.
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